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Abstract. We give a local normal form of first order partial differential equations with singular solution
up to contact diffeomorphism.

In [3] we establish the notion of first order $d\iota fferential$ equations with singular
solution by using the method which is originated in Kossowski [4]. In this note we give
a local normal form of such equations up to contact diffeomorphism. The method using
here depends heavily on ([3], [4]), however we have never seen a normal form theorem
for such a class of equations. We now review notions and results in [3]. $A$ first order
differential equations (or briefly, an equation) is a relation $F=0$ , where $F:(J^{1}(R^{n}, R),$ $z_{0}$) $\rightarrow$

$(R, 0)$ is a submersion germ on the l-jet space of functions of n-variables. Let $\theta$ be the
canonical contact form on $J^{1}(R^{n}, R)$ which is given by $\theta=dy-\sum_{i=1}^{n}p_{i}dx_{i}$ , where $(x, y, p)$

are canonical coordinates of $J^{1}(R^{n}, R)$ . Throughout the remainder of this note, we shall
consider $J^{I}(R^{n}, R)as$ a contact manifold whose contact structure is given by the canonical
l-form. The notion of a solution of an equation is given by the philosophy of Lie. $A$

geometric solution (or, a Legendrian solution) of $F=0$ is defined to be an immersion
$i;(L, q_{0})\rightarrow(J^{1}(R^{n}, R),$

$z_{0}$) from an n-dimensional manifold such that $i^{*}\theta=0$ and
$i(L)\subset F^{-1}(0)$ (i.e. a Legendrian submanifold which is contained in $F^{-1}(0)$). The following
notion is quite important to consider the notion of singular solutions. We say that $z_{0}$

is a contact singular point (or, characteristic point) if $\theta(T_{z_{O}}F^{-1}(0))=0$ . We denote the set
of contact singular points by $\Sigma_{c}(F)$ . We call it a contact singular set of $F$. The notion
of singular solutions (in the classical sense) has been appeared accompanied by the
notion of complete solutions in classical treatises. A complete solution of $F=0$ is de-
fined to be a foliation whose leaves are geometric solutions of $F=0$ . We defined the
notion of singular solutions (in the strict sense) as follows. A geometric solution
$i:(L, q_{0})\rightarrow(J^{1}(R^{n}, R),$

$z_{0}$) of $F=0$ is called a singular solution (in the strict sense) if it
satisfies the following condition:

$(*)$ There exists a representative $i:\sim U\rightarrow F^{-1}(0)$ of $i$ such that $ i(V)\sim$ is not contained
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in a leaf of any complete solutions of $F=0$ for any open subset $V\subset U$.
In [3] we have shown the following results.

LEMMA. An equation $F:(J^{1}(R^{n}, R),$ $z_{0}$) $\rightarrow(R, 0)$ has a singular solution (in the strict
sense) if and only if $\Sigma_{c}(F)$ is an n-dimensional submanifold. Moreover, $\Sigma_{c}(F)$ is a singular
solution of $F=0$ .

We call the equation which satisfies the condition in Lemma an equation with
singular solution.

We remark that $z_{0}$ is a contact singular point of $F=0$ if and only if
$F(z_{0})=\partial F/\partial p_{i}(z_{0})=(\partial F/\partial x_{i}+p_{i}(\partial F/\partial z_{i}))(z_{0})=0$ . So we can easily check that $\Sigma_{c}(F)$ is a
submanifold or not. Our main result is as follows:

THEOREM. Let $F:(J^{1}(R^{n}, R),$ $z_{0}$) $\rightarrow(R, 0)$ be an equation with singular solution. Then
there is a contact diffeomorphism germ $f:(J^{1}(R^{n}, R),$ $z_{0}$) $\rightarrow(J^{1}(R^{n}, R),$ $0$) such that
$f(F^{-1}(0))=\{y=0\}$ .

For the proof we quote the following very important result.

KOSTANT-STERNBERG’S THEOREM. ([2]) Let $(P, \omega)$ be a symplectic manifold, $L$ a
Lagrangian submanifold and $\alpha$ a smooth l-form on a neighbourhood of $L$ in $P$ with $\alpha|L=0$

and $ d\alpha=\omega$ . Then there exist a tubular neighbourhood $V$ of $L$ in $P$, a neighbourhood $U$

ofzero section $L$ in $T^{*}L$ anda unique $ loca\Gamma$
’ vector bundle isomorphism $K:(V, L)\rightarrow(U, L)$

such that $K$ is the identity on $ LandK^{*}\theta_{L}=\alpha$ . Here, $\theta_{L}$ is the canonical l-form on $T^{*}L$ .

Let $F:(J^{1}(R^{n}, R),$ $z_{0}$) $\rightarrow(R, 0)$ be an equation such that $z_{0}$ is a contact singular
point. If $F_{y}=0$ at $z_{0}$ , then $F_{x_{i}}=F_{p\iota}=0$ at $z_{0}$ for any $i=1,$ $\cdots,$ $n$ . This contradicts the
fact that $F$ is a submersion germ. Then we have $F_{y}\neq 0$ . By the implicit function
theorem, there exists a function germ $h:(T^{*}R^{n}, (x_{0},p_{0}))\rightarrow(R, y_{0})$ such that $F^{-1}(0)=$

$\{(x, y, p)|y=h(x, p)\}$ , where $T^{*}R^{n}$ is the cotangent bundle of $R^{n}$ and $z_{0}=(x_{0}, y_{0},p_{0})$ .
Here, we consider that $J^{1}(R^{n}, R)\cong T^{*}R^{n}\times R$ . In the terminology of Kossowski [4] an
equation of the above form is called a graphlike equation. The following method is
originated by Kossowski. We now define a map germ

graph$(h):(T^{*}R^{n}, (x_{0},p_{0}))\rightarrow(J^{1}(R^{n}, R),$
$z_{0}$)

by

graph$(h)(x, p)=(x, h(x, p), p)$ .
We define a l-form on $T^{*}R^{n}$ by $\theta_{h}=graph(h)^{*}\theta=dh-\sum_{i=1}^{n}p_{i}dx_{i}$ . Then we have the
following one to one correspondence:

{$L|L$ is a solution of $y-h(x,$ $p)=0$}
graph$(h)\uparrow\downarrow\Pi_{*}$

{ $L|i:L\subset T^{*}R^{n}$ is a maximal integral submanifold of $\theta_{h}=0$ } ,
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where $\Pi(x, y, p)=(x, p)$ and $\Pi_{*}(L)=\Pi(L)$ . Thus a solution of a graphlike equation
$y-h(x, p)=0$ may be regarded as a maximal isotropic submanifold of $(T^{*}R^{n}, \theta_{h})$ . Since
$-d\theta_{h}=\sum_{i=1}^{n}dp_{i}\wedge dx_{i}$ is the canonical symplectic two form, a solution of $y-h(x, p)=0$

is a Lagrangian submanifold of $(T^{*}R^{n}, \omega)$ , where $\omega=-d\theta_{h}$ . For the definition and
properties of Lagrangian submanifolds, see [1]. Under the above preparations, we can
prove the normal form theorem.

PROOF OF THEOREM. We have $F^{-1}(0)=\{y-h(x, p)=0\}$ and $G_{h}^{-1}(\Sigma_{c}(F))=L_{h}$ is a
Lagrangian submanifold of $T^{*}R^{n}$ on which $\theta_{h}$ vanishes, where $\theta_{h}=dh-\sum_{i=1}^{n}p_{i}dx_{i}$ .
Kostant-Stemberg’s theorem asserts that there exist a tubular neighbourhood $V$ of
$L_{h}$ in $T^{*}R^{n}$ and a unique (local) vector bundle isomorphism $K:V\rightarrow T^{*}L_{h}$ such that $K$

is identity on $L_{h}$ and $K^{*}\theta_{L_{h}}=-\theta_{h}$ . We denote local coordinates of $L_{h}$ as $(x_{1}^{\prime}, \cdots, x_{n}^{\prime})$

and the corresponding canonical coordinates of $T^{*}L_{h}^{\prime}$ is denoted by $(x_{1}^{\prime},$ $\cdots,x_{n}^{\prime},p_{1}^{\prime}$ ,
$p_{n}^{\prime})$ . We define a diffeomorphism germ $\Phi:V\times R\rightarrow T^{*}L_{h}\times R$ by $\Phi(x, p, y)=$

$(K(x, p),$ $y-h(x, p))$ . On the other hand, we have the canonical contact structure on
$T^{*}L_{h}\times R$ given by the contact form $dy^{\prime}-\sum_{i=1}^{n}p_{i}^{\prime}dx_{i}^{\prime}$ , where $(x_{1}^{\prime},$

$\cdots,$ $x_{n}^{\prime},p_{1}^{\prime},$ $\cdots$ ,
$p_{n}^{\prime},$ $y^{\prime}$) is the canonical coordinate on $T^{*}L_{h}\times R$ induced by the previous arguments.
It follows that $\Phi^{*}(dy^{\prime}-\sum_{i=1}^{n}p_{i}^{\prime}dx_{i}^{\prime})=dy-dh+\theta_{h}=dy-\sum_{i=1}^{n}p_{i}dx_{i}$ . Since $V\times R$ may
be considered as an open set of $J^{1}(R^{n}, R),$ $\Phi$ is a local contact diffeomorphism. By
definition, we have $\Phi(\{y=h(x, p)\})=\{y^{\prime}=0\}$ and $\Phi(L_{h})=\{p_{1}^{\prime}=\cdots=p_{n}^{\prime}=0\}$ . This com-
pletes the proof.

We have some examples of first order differential equations with singular solution
in [3], however we only give a typical example here.

EXAMPLE. Consider the following equation around the origin:

$y-p^{m}=0$ $(n=1, m\geq 2)$ .
We can calculate that $\Sigma_{\pi}(F)=\Sigma_{c}(F)=\{y=p=0\}$ . We consider the following diffeo-
morphism germ at the origin:

$\left\{\begin{array}{l}X=x-\frac{m}{m-1}p^{m-1}\\Y=y-p^{m}\\P=p\end{array}\right.$

Then it is easy to show that this local diffeomorphism is a contact diffeomorphism and
it sends $\{y-p^{m}=0\}$ to $\{Y=0\}$ .

Finally, we remark that the normal form theorem can be easily generalized to the
case for overdetermined systems of first order equations.
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