
TOKYO J. MATH.
VOL. 18, No. 2, 1995

Ringed Spaces of Valuation Rings over Hilbert Rings

Koji SEKIGUCHI

Sophia University

Introduction.

Given a field $K$ and a subring $A$ of $K$, we consider the local ringed space $Zar(K|A)$

consisting of all valuation rings of $K$ which contain $A$ (see [4] or [5]). If $A$ is a Hilbert
ring, in other words, if any prime ideals of $A$ are intersections of maximal ideals (see
[1], p. 373), then the ringed space $X=Zar(K|A)$ satisfies the condition

(1) $\beta_{X}$ : $t(X_{c1}, \mathscr{F}_{X}|_{X_{c1}})s(X, \mathscr{F}_{X})$ .

Here $X_{c1}$ is the set of closed points of $X$ and $\mathscr{F}_{X}$ is the structure sheaf on $X$. For the
morphism $\beta_{X}$ of ringed spaces, see (17). Given a topological space $W$, we denote by $tW$

the set of irreducible closed subsets of $W$. If $(W, \mathscr{F}_{W})$ is a ringed space, then $tW$ also
has a structure of ringed spaces donoted by $t(W, \mathscr{F}_{W})$ . The correspondence
$(W, \mathscr{F}_{W})\mapsto t(W, \mathscr{F}_{W})$ gives rise to a covariant functor from the category of ringed spaces
to itself. Moreover, if $W$ is a $T_{1}$ -space, then the ringed space (X, $\mathscr{F}_{X}$) $=t(W, \mathscr{F}_{W})$ satisfies
the condition (1), and the morphism $f:X\rightarrow Y$ of ringed spaces obtained by $t$ from a
morphism of $T_{1}$ -ringed spaces satisfies the condition

(2) $f(X_{c1})\subset Y_{c1}$ .

In this case, $t$ gives an equivalence of the categories (see section 1). Therefore, we shall
consider the following problem.

PROBLEM 1. Characterize the ringed spaces (X, $\mathscr{F}_{X}$) satisfying the condition (1).

EXAMPLES. (i) Let $X$ be an affine scheme Spec $A$ . Then $X$ satisfies the condition (1)

if and only if $A$ is a Hilbert ring.
(ii) Any integral scheme $X$ of finite type over a field satisfies the condition (1).

For a local ringed space $(W, \mathcal{O}_{W})$ , we introduce a morphism $\pi_{W}$ : $W\rightarrow Spec\mathcal{O}_{W}(W)$

defined by $\pi_{W}(x)=\rho_{W,x}^{-1}(m(\mathcal{O}_{W,x}))$ . Here $\rho_{W,x}$ : $\mathcal{O}_{W}(W)\rightarrow \mathcal{O}_{W,x}$ are the canonical mappings
and $m(R)$ denotes the unique maximal ideal of a local ring $R$ . The next problem is
closely related to Problem 1.
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PROBLEM 2. Characterize the local ringed space $(W, \mathcal{O}_{W})$ satisfying the condition:

(3) $\pi_{W}(\pi_{W}^{-1}(F))=F$ , for any closed subsets $F$ of Spec $\mathcal{O}_{W}(W)$ .

Relating to these problems, the following three theorems are obtained.

THEOREM 1. Let $A$ be an integral domain, $X=SpecA$ and $W=X_{c1}$ . Then the next

three conditions are equivalent:
(a) $X$ satisfies the condition (1).
(b) $W$ is irreducible and satisfies the condition (3).
(c) $A$ is a Hilbert ring.

For a field $K$ and a subring $A$ of $K$, let $Loc(K|A)$ denote the set of local subrings
of $K$ which contain $A$ . Then the set $Loc(K|A)$ has a structure of local ringed spaces (see

[6]).

THEOREM 2. Let $X=Loc(K|A)$ and $W=X_{c1}$ . Then
(i) $X$ satisfies the condition (1) ifand only $\iota fA$ is a Hilbert Prufer ring with quotient

field $K$.
(ii) $W$ is irreducible and satisfies the condition (3) if and only if $A$ is Hilbert.

THEOREM 3. Let $X=Zar(K|A)$ and $W=X_{c1}$ . Then the next three conditions are
equivalent:
(a) $X$ satisfies the condition (1).
(b) $W$ is irreducible and satisfies the condition (3).
(c) $A$ is a Hilbert ring.

COROLLARY. Suppose that $A$ is a Hilbert ring and $i:W\rightarrow X$ is the inclusion mapping.
Then

(i) $\mathcal{O}_{W}=i^{-1}\mathcal{O}_{X}$ and $\mathcal{O}_{X}=i_{*}\mathcal{O}_{W}$ .
(ii) Let $\Omega_{X}^{m}$ (resp. $\Omega_{W}^{m}$) be the sheaf of regular differential forms on $X$ (resp. $W$) for

any multi-index $m$ . Then $\Omega_{W}^{m}=i^{-1}\Omega_{X}^{m},$ $\Omega_{X}^{m}=i_{*}\Omega_{W}^{m}$ and hence $\Omega_{X}^{m}(X)=\Omega_{W}^{m}(W)$ (see also
[6], Theorem 2).

Given an integral Hilbert ring $A$ , we introduce the following three categories.
$\mathscr{C}_{0}(A)$ : the category of fields $K$ which contain $A$ and A-ring homomorphisms.
$\mathscr{C}_{1}(A)$ : the category of local ringed spaces $Zar(K|A)$ and dominant morphisms over

Spec $A$ satisfying the condition (2).
$\mathscr{C}_{2}(A)$ : the category of local ringed spaces $Zar(K|A)_{c1}$ and dominant morphisms over

Spec $A$ .
We can give an explicit characterization for objects of both the categories $\mathscr{C}_{1}(A)$

and $\mathscr{C}_{2}(A)$ among local ringed spaces (see Theorem 1 in [5] and Lemma 15).

From Theorem 1 in [5], the category $\mathscr{C}_{O}(A)$ is anti-equivalent to $\mathscr{C}_{1}(A)$ . Moreover,
the next result is obtained as an application of Theorem 3.
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THEOREM 4. Let $A$ be an integral Hilbert ring. Then
(i) the categories $\mathscr{C}_{1}(A)$ and $\mathscr{C}_{2}(A)$ are equivalent. Therefore the categories $\mathscr{C}_{0}(A)$

and $\mathscr{C}_{2}(A)$ are anti-equivalent.
(ii) If $A$ is an algebraically closedfield $k$ and $K$ is a fieldfinitely generated over $k$,

then

$Zar(K|k)_{c1}\simeq proj.\lim V$ ,

where $V$ runs over all complete algebraic varieties over $k$ with rational function field $K$.
In the following we shall prove Theorems 1, 2, 3 and 4.
The author wishes to express his thanks to Professor Shigeru Iitaka for his advices

and warm encouragement.

\S 1. Here we collect some properties of the functor $t$ omitting proofs. First we
consider in topological spaces. By (Top) we denote the category of topological spaces
and continuous mappings.

For a topological space $X$, let $tX$ denote the totality of irreducible closed subsets
$ofX$. There existsa unique topology on tX with the family of closed subsets { $tE|$ Eis
closed in $X$}. Then the mapping: {closed subsets $ofX$} $\rightarrow$ {$closed$ subsets of $tX$} defined by

(4) $E\mapsto tE$ , for closed subsetsE of X

is an inclusion-preserving bijection, and

(5) $E$ is irreducible if and only if $tE$ is irreducible ,

(6) $tE=\overline{\{E\}}$ : the closure in $tX$ , for any $E\in tX$ .
Thus the mapping: $tX\rightarrow t(tX)$ defined by

(7) $E\mapsto\overline{\{E\}}$ , for $E\in tX$

is also an inclusion-preserving bijection.
For a continuous mapping $f:X\rightarrow Y$, a mapping $tf:tX\rightarrow tY$ is defined by

(8) $(tfXE)=\overline{f(E)}$ : the closure in $Y$ , for $E\in tX$ .
Then

(9) $(tf)^{-1}(tF)=t(f^{-1}(F))$ , for any closed subsetsF ofY.

Therefore $tf$ is continuous, and hence $t;(Top)\rightarrow(Top)$ is a covariant functor.
For a topological space $X$, a mapping $\alpha_{X}$ : $X\rightarrow tX$ is defined by

(10) $\alpha_{X}(x)=\overline{\{x\}}$ : the closure in $X$ , for $x\in X$ .

Then, for any closed subsets $E$ of $X$,
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(11) $\alpha_{X}^{-1}(tE)=E$ , $\overline{\alpha_{X}(E)}=tE$ ,

and hence $\alpha_{X}$ is continuous and dominant. Therefore $\alpha:id\rightarrow t$ is a natural transformation,

where id is the identity functor of the category (Top). Moreover the mapping: {closed
subsets of $tX$} $\rightarrow$ {$closed$ subsets of $X$} dePned by

(12) $F\mapsto\alpha_{X}^{-1}(F)$ , for closed subsetsF of tX

is an inclusion-preserving bijection and is the inverse of the mapping defined by (4).

LEMMA 1. Let $X$ be a topological space. Then
(i) $X$ satisfies $T_{0}\Leftrightarrow\alpha_{X}$ is injective

$\Leftrightarrow\alpha_{X}$ is an into-homeomorphism.
(ii) $\alpha_{tX}$ : $tX\rightarrow t(tX)$ is an inclusion-preserving homeomorphism.
(iii) $X$ satisfies $T_{1}$ if and only $\iota fX$ satisfies $T_{0}$ and ${\rm Im}\alpha_{X}=(tX)_{c1}$ .

We introduce the following three conditions for a continuous mapping $f:X\rightarrow Y$.

(13) $tf:tX\rightarrow tY$ is a homeomorphism.

(14) $f;X\rightarrow f(X)isaclosedmappingandF\cap f(X)=F$

for any closed subsets $F$ of $Y$ .

(15) $f:X\rightarrow Y$ is an into-homeomorphism and $F\cap f(X)=F$

for any closed subsets $F$ of $Y$ .

LEMMA 2. Let $f:X\rightarrow Y$ be a continuous mapping. Then
(i) $f$ is dominant if and only $\iota ftf$ is dominant.
(ii) (15) $\Rightarrow(13)\Rightarrow(14)$ .
Next we consider the functor $t$ in ringed spaces. By (R. Spaces), we denote the

category of ringed spaces.
For a ringed space (X, $\mathscr{F}_{X}$), we put $t(X, \mathscr{F}_{X})=(tX, \alpha_{X*}\mathscr{F}_{X})$ . We also write

$\mathscr{F}_{tX}=\alpha_{X*}\mathscr{F}_{X}$ .
For a morphism $(f, f^{\$}):(X, \mathscr{F}_{X})\rightarrow(Y, \mathscr{F}_{Y})$ of ringed spaces, we put $t(f, f^{\$})=$

$(tf, \alpha_{Y*}f^{\$})$ . We also write $(tf)^{\$}=\alpha_{Y*}f$ . Accordingly $t$ becomes a functor:
(R. $Spaces$) $\rightarrow$ ( $R$ . Spaces).

Letting $\alpha_{X}^{l}$ be the natural identity of $\alpha_{X*}\mathscr{F}_{X}$ for any ringed space (X, $\mathscr{F}_{X}$), we obtain
a morphism $\alpha_{\langle X,\mathcal{F}_{X})}=(\alpha_{X}, \alpha_{X}^{\$}):(X, \mathscr{F}_{X})\rightarrow t(X, \mathscr{F}_{X})$ of ringed spaces. Thus $\alpha;id\rightarrow t$ is a
natural transformation, where id is the identity functor of (R. Spaces). Note that
$\mathscr{F}_{tX,Y}=\mathscr{F}_{X,Y}$ for any $Y\in tX$, and hence $(\alpha_{X}^{l})_{x}$ : $\mathscr{F}_{tX,\alpha_{X}\langle x)}\rightarrow \mathscr{F}_{X,x}$ is the identity mapping
for any $x\in X$. Moreover,

(16) any irreducible closed subset of $X$ has a unique generic point in $X$

$\Leftrightarrow\alpha_{X}$ is bijective
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$\Leftrightarrow\alpha_{\langle X,\mathcal{F}_{X})}$ is an isomorphism of ringed spaces.

LEMMA 3. Let $X$ be a topological space. Then the category of sheaves on $X$ and
the category of sheaves on $tX$ are equivalent by the functors $\alpha_{X*}and$ $\alpha_{X}^{-1}$ .

LEMMA 4. Let $(f, f^{\#}):(X, \mathscr{F}_{X})\rightarrow(Y, \mathscr{F}_{Y})$ be a morphism of ringed spaces. Then
(i) $t(f, f^{r})$ is an isomorphism ofringed spaces ifand only $\iota ftf$ is a homeomorphism

and $f^{r}$ : $\mathscr{F}_{Y}\rightarrow f_{*}\mathscr{F}_{X}$ is an isomorphism of sheaves on $Y$.
(ii) If $\mathscr{F}_{X}=f^{-1}\mathscr{F}_{Y}$ , then $\mathscr{F}_{tX}=(tf)^{-1}\mathscr{F}_{tY}$ .
(iii) If $tf$ is a homeomorphism and $\mathscr{F}_{X}=f^{-1}\mathscr{F}_{Y}$ , then $\mathscr{F}_{Y}=f_{*}\mathscr{F}_{X}$ , and hence

$t(f, f^{t})$ is an isomorphism of ringed spaces.

COROLLARY. Let (X, $\mathscr{F}_{X}$) be a ringed space, $W\subset X,$ $\mathscr{F}_{W}=\mathscr{F}_{X}|_{W}$ and let
$(i, i^{\#}):(W, \mathscr{F}_{W})\rightarrow(X, \mathscr{F}_{X})$ be the inclusion morphism of ringed spaces. Then $t(i, i^{\$})$ is an
isomorphism of ringed spaces $lf$ and only if $\overline{E\cap W}=E$ for any closed subsets $E$ of $X$.

Suppose that $\alpha_{X}$ is an isomorphism of ringed spaces for a ringed space (X, $\mathscr{F}_{X}$).

Then we can define a morphism $\beta_{X}$ of ringed spaces by

(17) $\beta_{X}=\alpha_{X}^{-1}\circ tt$ : $t(X_{c1})\rightarrow X$ .

Here $i:X_{c1}\rightarrow X$ is the inclusion morphism of ringed spaces. Thus the following diagram
commutes:

$X$

(18) $\downarrow\alpha_{X}$

$t(X_{c1})\rightarrow^{ti}$
$tX$

Therefore (X, $\mathscr{F}_{X}$) satisfies the condition (1) if and only if any irreducible closed subset
of $X$ has a unique generic point in $X$ and $\overline{E\cap X_{c1}}=E$ for any closed subsets $E$ of $X$.

Let us introduce the following two categories.

$\mathscr{C}_{1}$ : the category of ringed spaces satisfying the condition (1) and morphisms of ringed
spaces satisfying the condition (2).

$\mathscr{C}_{2}$ : the full subcategory of ringed spaces consisting of objects which satisfy the separable
condition $T_{1}$ .

Then the functor $t;\mathscr{C}_{2}\rightarrow \mathscr{C}_{1}$ gives an equivalence of categories, and $X\mapsto X_{c1}$ is the inverse
functor of $t$ .

\S 2. In this section we study the relationship between the functor $t$ and intersection
sheaves.

Let $K$ be a field, $A$ a subring of $K,$ $X$ an irreducible topological space and
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$s:X\rightarrow Loc\langle K|A$ ) a continuous mapping. For any non empty open subsets $V$ of $X$, define
$\mathcal{O}_{X}(V)$ to be $\bigcap_{x\in V}s(x)$ . Thus we obtain an integral local ringed space (X, $\mathcal{O}_{X}$). Then $\mathcal{O}_{X}$

is said to be an intersection sheaf of $X$ with respect to the mapping $s$ (see [6]).

LEMMA 5. Let $K,$ $A,$ $X$ and $s$ be as above. For any irreducible subset $Y$ of $X$, we
put $\xi_{Y}=\bigcup_{x\in Y}s(x)\subset K$. Then

(i) $\xi_{Y}\in Loc(K|A)$ and $\overline{s(Y)}=\overline{\{\xi_{Y}\}}$ in $Loc(K|A)$ . Therefore $s$ is dominant ifand only
$\iota f\xi_{X}=K$.

(ii) If $Y$ is dense in $X$, then $\xi_{Y}=\xi_{X}$ .
(iii) Let $\mathcal{O}_{X}$ be the intersection sheaf of $X$ with respect to $s$ . Then $\mathcal{O}_{X,Y}\simeq\xi_{Y}$ .

Thus Rat $X\simeq\xi_{X}$ . In what follows, we identify the above two rings. Then $dom(\alpha)=$

$s^{-1}(Loc(K|A[\alpha]))$ for any $\alpha\in RatX\subset K$.
(iv) (X, $\mathcal{O}_{X}$) satisfies the condition (8) in [5] if and only if Rat $X$ is a field.
$PR\infty F$ . For $\alpha\in K$, we put $Y(\alpha)=Y\cap s^{-1}(Loc(K|A[\alpha]))$ . Then $\alpha\in\xi_{Y}$ if and only if

$ Y(\alpha)\neq\emptyset$ .
(i) For any $\alpha,$ $\beta\in\xi_{Y},$ $thereexistsx\in Ysuchthat\alpha,$ $\beta\in s\langle x$). Thus $\xi_{Y}$ isasubring

of $K$. Note that $\xi_{Y}^{x}=\bigcup_{x\in Y}s\langle x)^{x}$ . Since $\xi_{Y}-\xi_{Y}^{x}$ is an ideal of $\xi_{Y}$ , we obtain $\xi_{Y}\in Loc(K|A)$ .
Moreover,

(19) $\bigcap_{x\in Y}m(s(x))\subset m(\xi_{Y})$ .

It is clear that $s(Y)\subset\overline{\{\xi_{Y}\}}$ . If we put $V=Loc(K|A[\alpha_{1}, \cdots, \alpha_{r}])$ for any $\alpha_{1},$ $\cdots,$ $\alpha_{r}\in K$,
then $Y\cap s$

‘

$1(V)=Y(\alpha_{1})\cap\cdots\cap Y(\alpha_{r})$ . If $\xi_{Y}\in V$, then $Y(\alpha_{i})\neq\emptyset(i=1, \cdots, r)$ . Since $Y$ is
irreducible, we obtain $Y\cap s^{-1}(V)\neq\emptyset$ . Thus $ s(Y)\cap V\neq\emptyset$ and hence $\xi_{Y}\in\overline{s(Y)}$ . Therefore
$\overline{s(Y)}=\overline{\{\xi_{Y}\}}$ .

(ii) Sinoe $s(X)=s(\overline{Y})\subset\overline{s(Y)}\subset\overline{\aleph X)}$, we have $\overline{s(Y)}=\overline{s(X)}$ . By (i), we see that $\overline{\{\xi_{Y}\}}$

$=\overline{s(Y)}=\overline{s(X)}=\overline{\{\xi_{X}\}}$ . Thus $\xi_{Y}=\xi_{X}$ .
(iii) The mapping $\xi_{Y}\rightarrow \mathcal{O}_{X,Y}$ defined by $\alpha\mapsto\langle X(\alpha), \alpha\rangle_{Y}$ is an isomorphism ofrings.
(iv) The “only if” part is verified from Lemma 7 in [5]. For “if” part, it suffices

to prove that $\bigcap_{x\in V}\pi_{V}(x)=0$ for any non empty open sets $V$ of $X$, by Lemma 3 in [5].
By (19), (ii) and (iii), $\bigcap_{x\in V}\pi_{V}(x)=\bigcap_{x\in V}m(s(x))\subset m(\xi_{V})=m(\xi_{X})=m(RatX)=0$ . Q.E.D.

LEMMA 6. Let $K$ be a field, $A$ a subring of $K$ and $X$ a topological space. Then
(i) the mapping: $C(tX, LodK|A))\rightarrow C(X, Loc(K|A))$ defined by $r\mapsto r\circ\alpha_{X}$ is a

bijection. Here $C(X, Y)$ is the set of continuous mappings from $X$ to Y.
(ii) Assume that $X$ is irreducible. Let $s=r\circ\alpha_{X}$ and let $\mathcal{O}_{X}$ (resp. $\mathcal{O}_{tX}$) be the

intersection sheafof $X$ (resp. $tX$) with respect to $s$ (resp. $r$). Then $\mathcal{O}_{X}=\alpha_{X}^{-1}\mathcal{O}_{tX},$
$\mathcal{O}_{tX}=\alpha_{X*}\mathcal{O}_{X}$

and Rat(X, $\mathcal{O}_{X}$) $=Rat(tX, \mathcal{O}_{tX})$ .
$PR\infty F$ . (i) Since $Loc(K|A)$ is a $T_{0}$-space, the mapping in question is injective.

For any continuous mapping $s:X\rightarrow Loc\langle K|A$), we put $r(Y)=\xi_{Y}$ for $Y\in tX$. Then
$r;tX\rightarrow Loc\{K|A$) is continuous and $s=r\circ\alpha_{X}$ .
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(ii) is induced from Lemma 2 in [6], Lemmas 3 and 5.

COROLLARY. (i) If (X, $\mathcal{O}_{X}$) is a local ringed space and $\mathcal{O}_{X}$ is an intersection sheaf,
then $t(X, \mathcal{O}_{X})$ is also a local ringed space and $\mathcal{O}_{tX}$ is an intersection sheaf.

(ii) If (X, $\mathcal{O}_{X}$) is an integral local ringed space satisfying the condition (8) in [5],
then $t(X, \mathcal{O}_{X})$ is an integral local ringed space satisfying the condition (8) in [5].

LEMMA 7. Let $W$ be a subset of $Loc(K|A)$ . Take a continuous mapping
$r;tW\rightarrow Loc(K|A)$ such that $r\circ\alpha_{W}$ is the inclusion mapping from $W$ to $Loc(K|A)$ . If we
put $X={\rm Im} r$, then

(i) $W\subset X$ and $r:tW\rightarrow X$ is a homeomorphism. Moreover the mapping: $X\rightarrow tW$

defined by $R\mapsto\overline{\{R\}}\cap W$ is the inverse mapping of $r$ .
(ii) Assume that $W$ is irreducible. Let $\mathcal{O}_{W}$ (resp. $\mathcal{O}_{X}$) be the intersection sheaf of $W$

(resp. $X$) with respect to the inclusion mapping. Then $r:t(W, \mathcal{O}_{W})\rightarrow(X, \mathcal{O}_{X})$ is an
isomorphism of local ringed spaces, and the following diagram commutes.

$W\leftarrow^{i}\rightarrow X$

The proof is complete from Lemmas 5 and 6.

REMARK. If $W=X_{c1}$ , then $r=\beta_{X}$ by (18).

\S 3. Using some elementary properties of Hilbert rings, we shall prove Theorems
1, 2 and 3.

For Hilbert rings, the next two lemmas are well-known (see [1]).

LEMMA 8. The following four conditions for a ring $A$ are equivalent:
(a) $A$ is a Hilbert ring.
(b) $\overline{F\cap m- SpecA}=F$, for any closed subsets $F$ of Spec $A$ .
(c) If $\varphi:A\rightarrow B$ is a ring homomorphism of finite type and $m\in m$-Spec $B$, then

$\varphi^{-1}(m)\in$ m-Spec $A$ .
(d) For any $f\in A$ , let $\varphi:A\rightarrow A_{f}$ denote the canonical mapping. Then $\varphi^{-1}(m)$ em-Spec $A$

for any $m\in m$-Spec $A_{f}$ .
LEMMA 9. Let $A$ be a ring and $B$ a ring integral over A. Then $A$ is Hilbert if and

only $\iota fB$ is Hilbert.

COROLLARY. Suppose that $A$ and $B$ are subrings ofafield $K$ which satisfy $Zar(K|A)=$

$Zar(K|B)$ . Then $A$ is Hilbert if and only $\iota fB$ is Hilbert.

LEMMA 10. Let $(W, \mathcal{O}_{W})$ be a local ringed space such that $\pi_{W}(W)=m$-Spec $\mathcal{O}_{W}(W)$ .
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Then $(W, \mathcal{O}_{W})$ satisfies the condition (3) $\iota f$ and only if $\mathcal{O}_{W}(W)$ is a Hilbert ring.

The proof is obvious from Lemma 8.

LEMMA 11. Let $A$ be an integral domain, $W=m$-Spec $A$ and $\mathcal{O}_{W}=\tilde{A}|_{W}$ . If $W$ is
irreducible, then $\mathcal{O}_{W}(W)=A$ and $\pi_{W}(W)=m$-Spec $\mathcal{O}_{W}(W)$ .

$PR\infty F$ . Since $A$ is integral, the structure sheaf $\tilde{A}$ on Spec $A$ is the intersection
sheaf with respect to the mapping: Spec $A\rightarrow Loc(QA|A)$ defined by $P\mapsto A_{P}$ . Thus $\mathcal{O}_{W}$ is
also an intersection sheaf and hence $\mathcal{O}_{W}(W)=\bigcap_{m\in W}A_{m}=A$ . Sinoe $\pi_{W}$ : $W\rightarrow SpecA$ is
the inclusion mapping, we obtain $\pi_{W}(W)=m$-Spec $A$ . Q.E.D.

Now the proof of Theorem 1 is complete from Lemmas 8, 10 and 11.

LEMMA 12. Let $K$ be a field, $A$ a subring of $K$ and $W=Loc\langle K|A)_{c1}$ . Then
$W=$ {$A_{m}|m\in m$-Spec $A$ }.

The proof is easy.

COROLLARY. If $W$ is irreducible, then $\mathcal{O}_{W}(W)=A$ and $\pi_{W}(W)=m$-Spec $\mathcal{O}_{W}(W)$ .
Here $\mathcal{O}_{W}$ is the intersection sheaf of $W$ with respect to the inclusion mapping.

$PR\infty F$ OF THEOREM 2. (i) First, we show the “only if” part. Note that $X={\rm Im} r$

by Lemma 7. For any $P\in SpecA$ , there exists $Y\in t$($m$-Spec $A$) such that $A_{P}=\bigcup_{m\in Y}A_{m}$ .
Then $P=\bigcap_{m\in Y}m$ . Thus $A$ is Hilbert. For any $P\in SpecA$ , there exists $R\in Zar(K|A)$ such
that $R$ dominates $A_{P}$ . Since $Loc(K|A)=\{A_{P}|P\in SpecA\}$ , we can take $Q\in SpecA$ such
that $R=A_{Q}$ . Then $P=Q$ and hence $A_{P}=R\in Zar(K|A)$ . Thus $A$ is a Pr\"ufer ring with
quotient field $K$. Then we check the “if” part. Since $Loc(K|A)=Zar(K|A)\simeq SpecA$ and
$\beta_{Sp\epsilon cA}$ : $t$($m$-Spec $A$) $\rightarrow SpecA$ is an isomorphism of local ringed spaces, $\beta_{X}=r:tW\rightarrow X$ is
also an isomorphism of local ringed spaces.

(ii) is derived from Lemmas 8, 10 and the corollary to Lemma 12. Q.E.D.

LEMMA 13. Let $K$ be afield, $A$ a subring of $K,$ $X=Zar(K|A)$ and $W=X_{c1}$ . Suppose
that $\mathcal{O}_{X}$ is the intersection sheafof $X$ with respect to the inclusion mapping and $\mathcal{O}_{W}=\mathcal{O}_{X}|_{W}$ .

(i) If $W$ is irreducible, then $\mathcal{O}_{W}(W)=\mathcal{O}_{X}(X)$ and $\pi_{W}(W)=m$-Spec $\mathcal{O}_{W}(W)$ .
(ii) The following three conditions are equivalent.

(a) $\overline{W}=X$.
(b) $W$ is irreducible and $K=RatW$.
(c) For any intermediate ring $B$ between $A$ and $K$ such that $B$ is offinite type over $A$ ,

there exists $m\in m$-Spec $B$ such that $A\cap m\in m$-Spec $A$ .
(iii) The following two conditions are equivalent.

$(a^{\prime})$ $r:tW\rightarrow X$ is an isomorphism of local ringed spaces.
$(c^{\prime})$ Ifa ringB is an intermediate ring betweenA andK such thatB is offinite type over

$A$ and $m\in m$-Spec $B$, then $A\cap m\in m$-Spec $A$ .
$PR\infty F$ . (i) is induced from Lemma 7 and Proposition 8 in [4].
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(ii) The equivalence between (a) and (b) is verified from Lemma 5. $(a)\Rightarrow(c)$ : let
$V=Zar(K|B)$ for any $B$ . Then $ V\cap W\neq\emptyset$ . Take $R\in V\cap W$ and let $m=B\cap m(R)$ .
Since $A/A\cap m\subset B/m\subset R/m(R)$ are integral extensions by Lemma 7 in [4], we
obtain $m\in m$-Spec $B$ and $A\cap m\in m$-SpecA. $(c)\Rightarrow(a)$ : it suffices to prove that
$Zar(K|B)\cap W\neq\emptyset$ for any $B$ . There exists $m\in m$-Spec $B$ such that $A\cap m\in m$-Spec $A$ .
By a weak form of Hilbert’s zero-point theorem, $B/m$ is integral over $A/A\cap m$ .
On the other hand, since the mapping $\Phi_{K|B}$ : $Zar(K|B)_{c1}\rightarrow m$-Spec $B$ is onto, there
exists $R\in Zar(K|B)_{c1}$ such that $m=B\cap m(R)$ . Then $R/m(R)$ is integral over $A/A\cap m$ .
By Lemma 7 in [4], we have $R\in W$. Therefore $Zar(K|B)\cap W\neq\emptyset$ .

(iii) $(a^{\prime})\Rightarrow(c^{\prime})$ : given $B$ and $m$ , there exists $R_{0}\in Zar(K|B)$ such that
$m=B\cap m(R_{0})$ , since $\Phi_{K|B}$ is surjective. We let $E=\overline{\{R_{O}}\}^{-}$ . By the corollary to Lemma
4, we obtain $\overline{E\cap W}=E\ni R_{0}$ , and hence $Zar(K|B)\cap E\cap W\neq\emptyset$ . If $ R\in Zar(K|B)\cap$

$E\cap W$, then $m=B\cap m(R)$ and $R/m(R)$ is integral over $A/A\cap m$ . Thus $A\cap m\in m$-Spec $A$ .
$(c^{\prime})\Rightarrow(a^{\prime})$ : it suffices to prove $r(tW)=X$ by Lemma 7. The inclusion $r(tW)\subset X$ is easy.
Conversely, for any $R_{0}\in X$, we put $Y=\overline{\{R_{0}\}}\cap W$. Let $V=Zar(K|B)$ for any intermediate
ring $B$ between $A$ and $K$ such that $B$ is of finite type over $A$ . If $R_{0}\in V$, then $B\subset R_{0}$ . By
Proposition 8 in [4], there exists $R\in Zar(K|B)_{c1}$ such that $R\subset R_{O}$ . By Lemma 7 in [4],
$R/m(R)$ is integral over $B/B\cap m(R)$ , and so $B\cap m(R)\in m$-Spec $B$ . By the assumption $(c^{\prime})$ ,
we have $A\cap m(R)\in m$-Spec $A$ . By a weak form of Hilbert’s zero-point theorem,
$B/B\cap m(R)$ is integral over $A/A\cap m(R)$ . Therefore $R\in W$ and hence $ V\cap Y\neq\emptyset$ . This
implies $R_{0}\in\overline{Y}$ and $\overline{\{R_{0}\}}=\overline{Y}$. Since $Y\in tW$ and $R_{0}=r(Y)$ , we obtain $X=r(tW)$ . Q.E.D.

PROOF OF THEOREM 3. The equivalence between (a) and (c) is verified from Lemmas
8 and 13. The equivalence between (b) and (c) is induced from Lemmas 9, 10 and 13.

\S 4. Here we characterize the local ringed spaces $Zar(K|A)_{c1}$ explicitly, and prove
Theorem 4.

For an integral domain $A$ and a local ringed space $(W, \mathcal{O}_{W})$ , we introduce the
following six conditions:

(20) $W$ satisfies the separable condition $T_{0}$ .
(21) $(W, \mathcal{O}_{W})$ is an integral local ringed space satisfying

the condition (8) in [5].

(22) $(W, \mathcal{O}_{W})$ isalocal ringed space over SpecA and the
structure morphism is dominant.

REMARK. By (21) and (22), Rat $W$ is a field and $ A\subset_{\rightarrow}\mathcal{O}_{W}(W)\subset\rightarrow \mathcal{O}_{W,x}\subset\rightarrow$

Rat $W$ for any $x\in W$.

(23) The topology of $W$ is generated by $\{dom(\alpha)|\alpha\in RatW\}$ .

(24) $Foranyx\in W$, the stalk $\mathcal{O}_{W,x}$ isavaluation ring of Rat W
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and $\mathcal{O}_{W,x}/m(\mathcal{O}_{W,x})$ is an integral extension over $A/A\cap m(\mathcal{O}_{W,x})$ .

(25) If $R$ is avaluation ring of Rat $W$ which contains $A$ , then
there exists $x\in W$ such that $\mathcal{O}_{W,x}\subset R$ .

LEMMA 14. (i) Let $K$ be a field, $A$ a subring of $K$ and $W=Zar(K|A)_{c1}$ . If
$\overline{W}=Zar(K|A)$ , then $(W, \mathcal{O}_{W})$ satisfies the conditions (20), (21), (22), (23), (24), (25)

and $K=RatW$.
(ii) Conversely, suppose that an integral domain $A$ and a local ringed space $(W, \mathcal{O}_{W})$

satisfy the conditions (20), (21), (22), (23), (24) and (25). If we put $K=RatW$, then
$K$ is a field containing $A$ that satisfies $\overline{Zar(K|A)_{c1}}=Zar(K|A)$ and $(W, \mathcal{O}_{W})\simeq Zar(K|A)_{c1}$ .

$PR\infty F$ . (i) is induced from Lemma 7, Proposition 8 in [4] and Lemma 5.
(ii) By Lemmas 6, 7 in [5], Lemma 3 in [6] and (21), $W$ is irreducible, $K=RatW$

is a field and $\mathcal{O}_{W}$ is the intersection sheaf of $W$ with respect to $\Psi_{W}$ . By (22), $A$ is a
subring of $K$. Note that (20), (23) induce that $\Psi_{W}$ is an into-homeomorphism, and (24),

(25) imply that $\Psi_{W}(W)=Zar(K|A)_{c1}$ . Thus $W\simeq Zar(K|A)_{c1}$ . By Lemma 5, we obtain
$\overline{Zar(K|A)_{c1}}=\overline{\{K\}}=Zar(K|A)$ . Q.E.D.

Here we consider the following two categories for an integral ring $A$ .

$\mathscr{C}_{1}^{\prime}(A)$ : the category of local ringed spaces (X, $\mathcal{O}_{X}$) satisfying the conditions (29), (30),

(32), (33), (35) and (36) in [5] and morphisms $f:X\rightarrow Y$ of local ringed spaces
over Spec $A$ satisfying the condition (2).

$\mathscr{C}_{2}^{\prime}(A)$ : the full subcategory of local ringed spaces over Spec $A$ consisting of local
ringed spaces $(W, \mathcal{O}_{W})$ which satisfy the conditions (20), (21), (22), (23), (24)

and (25).

By Theorem 1 in [5], the objects of $\mathscr{C}_{1}(A)$ coincide with those of $\mathscr{C}_{1}^{\prime}(A)$ . Moreover,

LEMMA 15. Let $A$ be an integral Hilbert ring. Then
(i) the functor $t;\mathscr{C}_{2}^{\prime}(A)\rightarrow \mathscr{C}_{1}^{\prime}(A)$ gives an equivalence of categories.
(ii) A local ringed space $(W, \mathcal{O}_{W})$ is an object of $\mathscr{C}_{2}(\Lambda)$ ifand only $\iota f(W, \mathcal{O}_{W})$ satisfies

the conditions (20), (21), (22), (23), (24) and (25). Therefore the category $\mathscr{C}_{l}(A)$ is a
subcategory of $\mathscr{C}_{i}^{\prime}(A)$ obtained by assuming morphisms to be dominant $(i=1,2)$ .

$PR\infty F$ . (i) is induced from Theorem 1 in [5], Lemmas 1, 14 and Theorem 3.
(ii) is obvious from Theorem 1 in [5] and Lemma 14.

REMARK. Let $\mathscr{C}_{\acute{O}}(A)$ be the category ofprojective fields over $A$ , in which morphisms
are places that fix all elements of $A$ . Then $\mathscr{C}_{O}^{\prime}(A)$ and $\mathscr{C}_{1}^{\prime}(A)$ are anti-equivalent (see [5],

Lemma 11).

$PR\infty F$ OF THEOREM 4. (i) is verified from Theorem 1 in [5], Lemmas 2 and 15.
In order to show (ii), we first notice by Theorem 2 in [5];
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(26) $Zar(K|k)\simeq proj.\lim X$ ,

where $X$ runs over all integral schemes proper over Spec $k$ with rational function field
$K$. By Examples, (ii) and Theorem 3, all objects and morphisms in (26) belong to the
category $\mathscr{C}_{1}$ , and $X_{c1}$ become complete algebraic varieties $V$. Since $\mathscr{C}_{1}$ and $\mathscr{C}_{2}$ are
equivalent, we obtain

$Zar(K|k)_{c1}\simeq proj.\lim V$ . Q.E.D.
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