Токуо Ј. Матн. Vol. 18, No. 2, 1995

Ringed Spaces of Valuation Rings over Hilbert Rings

Koji SEKIGUCHI

Sophia University

Introduction.

Given a field K and a subring A of K, we consider the local ringed space Zar(K|A) consisting of all valuation rings of K which contain A (see [4] or [5]). If A is a Hilbert ring, in other words, if any prime ideals of A are intersections of maximal ideals (see [1], p. 373), then the ringed space X = Zar(K|A) satisfies the condition

(1)
$$\beta_X \colon t(X_{cl}, \mathscr{F}_X|_{X_{cl}}) \cong (X, \mathscr{F}_X).$$

Here X_{cl} is the set of closed points of X and \mathscr{F}_X is the structure sheaf on X. For the morphism β_X of ringed spaces, see (17). Given a topological space W, we denote by tW the set of irreducible closed subsets of W. If (W, \mathscr{F}_W) is a ringed space, then tW also has a structure of ringed spaces donoted by $t(W, \mathscr{F}_W)$. The correspondence $(W, \mathscr{F}_W) \mapsto t(W, \mathscr{F}_W)$ gives rise to a covariant functor from the category of ringed spaces to itself. Moreover, if W is a T_1 -space, then the ringed space $(X, \mathscr{F}_X) = t(W, \mathscr{F}_W)$ satisfies the condition (1), and the morphism $f: X \to Y$ of ringed spaces obtained by t from a morphism of T_1 -ringed spaces satisfies the condition

$$(2) f(X_{\rm cl}) \subset Y_{\rm cl} \,.$$

In this case, t gives an equivalence of the categories (see section 1). Therefore, we shall consider the following problem.

PROBLEM 1. Characterize the ringed spaces (X, \mathcal{F}_X) satisfying the condition (1).

EXAMPLES. (i) Let X be an affine scheme Spec A. Then X satisfies the condition (1) if and only if A is a Hilbert ring.

(ii) Any integral scheme X of finite type over a field satisfies the condition (1).

For a local ringed space (W, \mathcal{O}_W) , we introduce a morphism $\pi_W \colon W \to \operatorname{Spec} \mathcal{O}_W(W)$ defined by $\pi_W(x) = \rho_{W,x}^{-1}(m(\mathcal{O}_{W,x}))$. Here $\rho_{W,x} \colon \mathcal{O}_W(W) \to \mathcal{O}_{W,x}$ are the canonical mappings and m(R) denotes the unique maximal ideal of a local ring R. The next problem is closely related to Problem 1.

Received May 30, 1994 Revised July 19, 1994

PROBLEM 2. Characterize the local ringed space (W, \mathcal{O}_W) satisfying the condition:

(3) $\overline{\pi_{W}(\pi_{W}^{-1}(F))} = F$, for any closed subsets F of Spec $\mathcal{O}_{W}(W)$.

Relating to these problems, the following three theorems are obtained.

THEOREM 1. Let A be an integral domain, $X = \operatorname{Spec} A$ and $W = X_{cl}$. Then the next three conditions are equivalent:

(a) X satisfies the condition (1).

(b) W is irreducible and satisfies the condition (3).

(c) A is a Hilbert ring.

For a field K and a subring A of K, let Loc(K|A) denote the set of local subrings of K which contain A. Then the set Loc(K|A) has a structure of local ringed spaces (see [6]).

THEOREM 2. Let X = Loc(K|A) and $W = X_{cl}$. Then

(i) X satisfies the condition (1) if and only if A is a Hilbert Prüfer ring with quotient field K.

(ii) W is irreducible and satisfies the condition (3) if and only if A is Hilbert.

THEOREM 3. Let X = Zar(K|A) and $W = X_{cl}$. Then the next three conditions are equivalent:

(a) X satisfies the condition (1).

(b) W is irreducible and satisfies the condition (3).

(c) A is a Hilbert ring.

COROLLARY. Suppose that A is a Hilbert ring and i: $W \rightarrow X$ is the inclusion mapping. Then

(i) $\mathcal{O}_{W} = i^{-1} \mathcal{O}_{X}$ and $\mathcal{O}_{X} = i_{\star} \mathcal{O}_{W}$.

(ii) Let Ω_X^m (resp. Ω_W^m) be the sheaf of regular differential forms on X (resp. W) for any multi-index m. Then $\Omega_W^m = i^{-1} \Omega_X^m$, $\Omega_X^m = i_* \Omega_W^m$ and hence $\Omega_X^m(X) = \Omega_W^m(W)$ (see also [6], Theorem 2).

Given an integral Hilbert ring A, we introduce the following three categories. $\mathscr{C}_0(A)$: the category of fields K which contain A and A-ring homomorphisms.

 $\mathscr{C}_1(A)$: the category of local ringed spaces Zar(K|A) and dominant morphisms over Spec A satisfying the condition (2).

 $\mathscr{C}_2(A)$: the category of local ringed spaces $\operatorname{Zar}(K|A)_{cl}$ and dominant morphisms over Spec A.

We can give an explicit characterization for objects of both the categories $\mathscr{C}_1(A)$ and $\mathscr{C}_2(A)$ among local ringed spaces (see Theorem 1 in [5] and Lemma 15).

From Theorem 1 in [5], the category $\mathscr{C}_0(A)$ is anti-equivalent to $\mathscr{C}_1(A)$. Moreover, the next result is obtained as an application of Theorem 3.

THEOREM 4. Let A be an integral Hilbert ring. Then

(i) the categories $\mathscr{C}_1(A)$ and $\mathscr{C}_2(A)$ are equivalent. Therefore the categories $\mathscr{C}_0(A)$ and $\mathscr{C}_2(A)$ are anti-equivalent.

(ii) If A is an algebraically closed field k and K is a field finitely generated over k, then

 $\operatorname{Zar}(K|k)_{\mathrm{cl}} \simeq \operatorname{proj.lim} V$,

where V runs over all complete algebraic varieties over k with rational function field K.

In the following we shall prove Theorems 1, 2, 3 and 4.

The author wishes to express his thanks to Professor Shigeru Iitaka for his advices and warm encouragement.

§1. Here we collect some properties of the functor t omitting proofs. First we consider in topological spaces. By (Top) we denote the category of topological spaces and continuous mappings.

For a topological space X, let tX denote the totality of irreducible closed subsets of X. There exists a unique topology on tX with the family of closed subsets $\{tE \mid E \text{ is} closed \text{ in } X\}$. Then the mapping: $\{closed \text{ subsets of } X\} \rightarrow \{closed \text{ subsets of } tX\}$ defined by

(4)
$$E \mapsto tE$$
, for closed subsets E of X

is an inclusion-preserving bijection, and

(5)
$$E$$
 is irreducible if and only if tE is irreducible,

(6) $tE = \overline{\{E\}}$: the closure in tX, for any $E \in tX$.

Thus the mapping: $tX \rightarrow t(tX)$ defined by

(7)
$$E \mapsto \{E\}, \quad \text{for } E \in tX$$

is also an inclusion-preserving bijection.

For a continuous mapping $f: X \rightarrow Y$, a mapping $tf: tX \rightarrow tY$ is defined by

(8)
$$(tf)(E) = f(E)$$
: the closure in Y, for $E \in tX$.

Then

(9)
$$(tf)^{-1}(tF) = t(f^{-1}(F))$$
, for any closed subsets F of Y.

Therefore tf is continuous, and hence $t: (Top) \rightarrow (Top)$ is a covariant functor. For a topological space X, a mapping $\alpha_X: X \rightarrow tX$ is defined by

(10)
$$\alpha_X(x) = \overline{\{x\}}$$
: the closure in X, for $x \in X$.

Then, for any closed subsets E of X,

(11)
$$\alpha_X^{-1}(tE) = E, \qquad \alpha_X(E) = tE,$$

and hence α_X is continuous and dominant. Therefore α : id $\rightarrow t$ is a natural transformation, where id is the identity functor of the category (Top). Moreover the mapping: {closed subsets of tX} \rightarrow {closed subsets of X} defined by

(12) $F \mapsto \alpha_X^{-1}(F)$, for closed subsets F of tX

is an inclusion-preserving bijection and is the inverse of the mapping defined by (4).

LEMMA 1. Let X be a topological space. Then

(i) X satisfies $T_0 \Leftrightarrow \alpha_X$ is injective

 $\Leftrightarrow \alpha_x$ is an into-homeomorphism.

- (ii) $\alpha_{tx}: tX \rightarrow t(tX)$ is an inclusion-preserving homeomorphism.
- (iii) X satisfies T_1 if and only if X satisfies T_0 and $\text{Im}\alpha_X = (tX)_{cl}$.

We introduce the following three conditions for a continuous mapping $f: X \rightarrow Y$.

(13)
$$tf: tX \rightarrow tY$$
 is a homeomorphism.

(14)
$$f: X \to f(X)$$
 is a closed mapping and $F \cap f(X) = F$

for any closed subsets F of Y.

(15) $f: X \to Y$ is an into-homeomorphism and $\overline{F \cap f(X)} = F$ for any closed subsets F of Y.

LEMMA 2. Let $f: X \rightarrow Y$ be a continuous mapping. Then

- (i) f is dominant if and only if tf is dominant.
- (ii) $(15) \Rightarrow (13) \Rightarrow (14).$

Next we consider the functor t in ringed spaces. By (R. Spaces), we denote the category of ringed spaces.

For a ringed space (X, \mathcal{F}_X) , we put $t(X, \mathcal{F}_X) = (tX, \alpha_{X*}\mathcal{F}_X)$. We also write $\mathcal{F}_{tX} = \alpha_{X*}\mathcal{F}_X$.

For a morphism $(f, f^*): (X, \mathscr{F}_X) \to (Y, \mathscr{F}_Y)$ of ringed spaces, we put $t(f, f^*) = (tf, \alpha_{Y*}f^*)$. We also write $(tf)^* = \alpha_{Y*}f^*$. Accordingly t becomes a functor: (R. Spaces) \to (R. Spaces).

Letting α_X^* be the natural identity of $\alpha_{X*} \mathscr{F}_X$ for any ringed space (X, \mathscr{F}_X) , we obtain a morphism $\alpha_{(X,\mathscr{F}_X)} = (\alpha_X, \alpha_X^*) : (X, \mathscr{F}_X) \to t(X, \mathscr{F}_X)$ of ringed spaces. Thus $\alpha : id \to t$ is a natural transformation, where id is the identity functor of (R. Spaces). Note that $\mathscr{F}_{tX,Y} = \mathscr{F}_{X,Y}$ for any $Y \in tX$, and hence $(\alpha_X^*)_X : \mathscr{F}_{tX,\alpha_X(x)} \to \mathscr{F}_{X,x}$ is the identity mapping for any $x \in X$. Moreover,

(16) any irreducible closed subset of X has a unique generic point in $X \Rightarrow \alpha_X$ is bijective

 $\Leftrightarrow \alpha_{(X,\mathscr{F}_X)}$ is an isomorphism of ringed spaces.

LEMMA 3. Let X be a topological space. Then the category of sheaves on X and the category of sheaves on tX are equivalent by the functors α_{X*} and α_X^{-1} .

LEMMA 4. Let $(f, f^*): (X, \mathscr{F}_X) \to (Y, \mathscr{F}_Y)$ be a morphism of ringed spaces. Then

(i) $t(f, f^*)$ is an isomorphism of ringed spaces if and only if tf is a homeomorphism and $f^*: \mathscr{F}_Y \to f_*\mathscr{F}_X$ is an isomorphism of sheaves on Y.

(ii) If $\mathscr{F}_{\chi} = f^{-1} \mathscr{F}_{\gamma}$, then $\mathscr{F}_{t\chi} = (tf)^{-1} \mathscr{F}_{t\gamma}$.

(iii) If tf is a homeomorphism and $\mathcal{F}_{X} = f^{-1}\mathcal{F}_{Y}$, then $\mathcal{F}_{Y} = f_{*}\mathcal{F}_{X}$, and hence $t(f, f^{*})$ is an isomorphism of ringed spaces.

COROLLARY. Let (X, \mathcal{F}_X) be a ringed space, $W \subset X$, $\mathcal{F}_W = \mathcal{F}_X|_W$ and let $(i, i^*): (W, \mathcal{F}_W) \rightarrow (X, \mathcal{F}_X)$ be the inclusion morphism of ringed spaces. Then $t(i, i^*)$ is an isomorphism of ringed spaces if and only if $\overline{E \cap W} = E$ for any closed subsets E of X.

Suppose that α_X is an isomorphism of ringed spaces for a ringed space (X, \mathscr{F}_X) . Then we can define a morphism β_X of ringed spaces by

(17)
$$\beta_X = \alpha_X^{-1} \circ ti : \quad t(X_{\rm cl}) \to X .$$

Here $i: X_{cl} \rightarrow X$ is the inclusion morphism of ringed spaces. Thus the following diagram commutes:

(18)
$$\begin{array}{cccc} X_{c1} & \stackrel{i}{\longleftarrow} & X \\ \alpha_{X_{c1}} & & & \downarrow \\ \alpha_{X_{c1}} & & & \downarrow \\ \beta_{X} & & & \downarrow \\ t(X_{c1}) & \stackrel{i}{\longrightarrow} & tX \end{array}$$

Therefore (X, \mathscr{F}_X) satisfies the condition (1) if and only if any irreducible closed subset of X has a unique generic point in X and $\overline{E \cap X_{cl}} = E$ for any closed subsets E of X.

Let us introduce the following two categories.

- \mathscr{C}_1 : the category of ringed spaces satisfying the condition (1) and morphisms of ringed spaces satisfying the condition (2).
- \mathscr{C}_2 : the full subcategory of ringed spaces consisting of objects which satisfy the separable condition T_1 .

Then the functor $t: \mathscr{C}_2 \to \mathscr{C}_1$ gives an equivalence of categories, and $X \mapsto X_{cl}$ is the inverse functor of t.

§2. In this section we study the relationship between the functor t and intersection sheaves.

Let K be a field, A a subring of K, X an irreducible topological space and

 $s: X \to \text{Loc}(K|A)$ a continuous mapping. For any non empty open subsets V of X, define $\mathcal{O}_X(V)$ to be $\bigcap_{x \in V} s(x)$. Thus we obtain an integral local ringed space (X, \mathcal{O}_X) . Then \mathcal{O}_X is said to be an intersection sheaf of X with respect to the mapping s (see [6]).

LEMMA 5. Let K, A, X and s be as above. For any irreducible subset Y of X, we put $\xi_Y = \bigcup_{x \in Y} s(x) \subset K$. Then

(i) $\xi_Y \in \text{Loc}(K|A)$ and $\overline{s(Y)} = \overline{\{\xi_Y\}}$ in Loc(K|A). Therefore s is dominant if and only if $\xi_X = K$.

(ii) If Y is dense in X, then $\xi_{Y} = \xi_{X}$.

(iii) Let \mathcal{O}_X be the intersection sheaf of X with respect to s. Then $\mathcal{O}_{X,Y} \simeq \xi_Y$. Thus $\operatorname{Rat} X \simeq \xi_X$. In what follows, we identify the above two rings. Then $\operatorname{dom}(\alpha) = s^{-1}(\operatorname{Loc}(K|A[\alpha]))$ for any $\alpha \in \operatorname{Rat} X \subset K$.

(iv) (X, \mathcal{O}_X) satisfies the condition (8) in [5] if and only if Rat X is a field.

PROOF. For $\alpha \in K$, we put $Y(\alpha) = Y \cap s^{-1}(\operatorname{Loc}(K|A[\alpha]))$. Then $\alpha \in \xi_Y$ if and only if $Y(\alpha) \neq \emptyset$.

(i) For any α , $\beta \in \xi_Y$, there exists $x \in Y$ such that α , $\beta \in s(x)$. Thus ξ_Y is a subring of K. Note that $\xi_Y^{\times} = \bigcup_{x \in Y} s(x)^{\times}$. Since $\xi_Y - \xi_Y^{\times}$ is an ideal of ξ_Y , we obtain $\xi_Y \in \text{Loc}(K|A)$. Moreover,

(19)
$$\bigcap_{x \in Y} m(s(x)) \subset m(\xi_Y) .$$

It is clear that $s(Y) \subset \overline{\{\xi_Y\}}$. If we put $V = \text{Loc}(K | A[\alpha_1, \dots, \alpha_r])$ for any $\alpha_1, \dots, \alpha_r \in K$, then $Y \cap s^{-1}(V) = Y(\alpha_1) \cap \dots \cap Y(\alpha_r)$. If $\xi_Y \in V$, then $Y(\alpha_i) \neq \emptyset$ $(i=1, \dots, r)$. Since Y is irreducible, we obtain $Y \cap s^{-1}(V) \neq \emptyset$. Thus $s(Y) \cap V \neq \emptyset$ and hence $\xi_Y \in \overline{s(Y)}$. Therefore $\overline{s(Y)} = \overline{\{\xi_Y\}}$.

(ii) Since $s(X) = s(\overline{Y}) \subset \overline{s(Y)} \subset \overline{s(X)}$, we have $\overline{s(Y)} = \overline{s(X)}$. By (i), we see that $\overline{\{\xi_Y\}} = \overline{s(Y)} = \overline{s(X)} = \overline{\{\xi_X\}}$. Thus $\xi_Y = \xi_X$.

(iii) The mapping $\xi_Y \to \mathcal{O}_{X,Y}$ defined by $\alpha \mapsto \langle X(\alpha), \alpha \rangle_Y$ is an isomorphism of rings.

(iv) The "only if" part is verified from Lemma 7 in [5]. For "if" part, it suffices to prove that $\bigcap_{x \in V} \pi_V(x) = 0$ for any non empty open sets V of X, by Lemma 3 in [5]. By (19), (ii) and (iii), $\bigcap_{x \in V} \pi_V(x) = \bigcap_{x \in V} m(s(x)) \subset m(\xi_V) = m(\xi_X) = m(\operatorname{Rat} X) = 0$. Q.E.D.

LEMMA 6. Let K be a field, A a subring of K and X a topological space. Then

(i) the mapping: $C(tX, Loc(K|A)) \rightarrow C(X, Loc(K|A))$ defined by $r \mapsto r \circ \alpha_X$ is a bijection. Here C(X, Y) is the set of continuous mappings from X to Y.

(ii) Assume that X is irreducible. Let $s = r \circ \alpha_X$ and let \mathcal{O}_X (resp. \mathcal{O}_{tX}) be the intersection sheaf of X (resp. tX) with respect to s (resp. r). Then $\mathcal{O}_X = \alpha_X^{-1} \mathcal{O}_{tX}$, $\mathcal{O}_{tX} = \alpha_X * \mathcal{O}_X$ and $\operatorname{Rat}(X, \mathcal{O}_X) = \operatorname{Rat}(tX, \mathcal{O}_{tX})$.

PROOF. (i) Since Loc(K|A) is a T_0 -space, the mapping in question is injective. For any continuous mapping $s: X \rightarrow \text{Loc}(K|A)$, we put $r(Y) = \xi_Y$ for $Y \in tX$. Then $r: tX \rightarrow \text{Loc}(K|A)$ is continuous and $s = r \circ \alpha_X$.

(ii) is induced from Lemma 2 in [6], Lemmas 3 and 5.

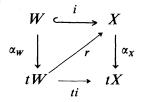
COROLLARY. (i) If (X, \mathcal{O}_X) is a local ringed space and \mathcal{O}_X is an intersection sheaf, then $t(X, \mathcal{O}_X)$ is also a local ringed space and \mathcal{O}_{tX} is an intersection sheaf.

(ii) If (X, \mathcal{O}_X) is an integral local ringed space satisfying the condition (8) in [5], then $t(X, \mathcal{O}_X)$ is an integral local ringed space satisfying the condition (8) in [5].

LEMMA 7. Let W be a subset of Loc(K|A). Take a continuous mapping $r: tW \rightarrow Loc(K|A)$ such that $r \circ \alpha_W$ is the inclusion mapping from W to Loc(K|A). If we put X = Imr, then

(i) $W \subset X$ and $r: tW \to X$ is a homeomorphism. Moreover the mapping: $X \to tW$ defined by $R \mapsto \overline{\{R\}} \cap W$ is the inverse mapping of r.

(ii) Assume that W is irreducible. Let \mathcal{O}_W (resp. \mathcal{O}_X) be the intersection sheaf of W (resp. X) with respect to the inclusion mapping. Then $r: t(W, \mathcal{O}_W) \rightarrow (X, \mathcal{O}_X)$ is an isomorphism of local ringed spaces, and the following diagram commutes.



The proof is complete from Lemmas 5 and 6.

REMARK. If $W = X_{cl}$, then $r = \beta_x$ by (18).

§3. Using some elementary properties of Hilbert rings, we shall prove Theorems 1, 2 and 3.

For Hilbert rings, the next two lemmas are well-known (see [1]).

LEMMA 8. The following four conditions for a ring A are equivalent:

- (a) A is a Hilbert ring.
- (b) $\overline{F \cap m}$ -Spec $\overline{A} = F$, for any closed subsets F of Spec A.
- (c) If $\varphi: A \to B$ is a ring homomorphism of finite type and $m \in \text{m-Spec } B$, then $\varphi^{-1}(m) \in \text{m-Spec } A$.
- (d) For any $f \in A$, let $\varphi: A \to A_f$ denote the canonical mapping. Then $\varphi^{-1}(m) \in \text{m-Spec } A_f$ for any $m \in \text{m-Spec } A_f$.

LEMMA 9. Let A be a ring and B a ring integral over A. Then A is Hilbert if and only if B is Hilbert.

COROLLARY. Suppose that A and B are subrings of a field K which satisfy $\operatorname{Zar}(K|A) = \operatorname{Zar}(K|B)$. Then A is Hilbert if and only if B is Hilbert.

LEMMA 10. Let (W, \mathcal{O}_W) be a local ringed space such that $\pi_W(W) = \text{m-Spec}\mathcal{O}_W(W)$.

Then (W, \mathcal{O}_W) satisfies the condition (3) if and only if $\mathcal{O}_W(W)$ is a Hilbert ring.

The proof is obvious from Lemma 8.

LEMMA 11. Let A be an integral domain, W = m-Spec A and $\mathcal{O}_W = \tilde{A}|_W$. If W is irreducible, then $\mathcal{O}_W(W) = A$ and $\pi_W(W) = \text{m-Spec} \mathcal{O}_W(W)$.

PROOF. Since A is integral, the structure sheaf \tilde{A} on Spec A is the intersection sheaf with respect to the mapping: Spec $A \to \text{Loc}(QA|A)$ defined by $P \mapsto A_P$. Thus \mathcal{O}_W is also an intersection sheaf and hence $\mathcal{O}_W(W) = \bigcap_{m \in W} A_m = A$. Since $\pi_W : W \to \text{Spec } A$ is the inclusion mapping, we obtain $\pi_W(W) = \text{m-Spec } A$. Q.E.D.

Now the proof of Theorem 1 is complete from Lemmas 8, 10 and 11.

LEMMA 12. Let K be a field, A a subring of K and $W = \text{Loc}(K|A)_{cl}$. Then $W = \{A_m \mid m \in m \text{-} \text{Spec } A\}$.

The proof is easy.

COROLLARY. If W is irreducible, then $\mathcal{O}_{W}(W) = A$ and $\pi_{W}(W) = \text{m-Spec}\mathcal{O}_{W}(W)$. Here \mathcal{O}_{W} is the intersection sheaf of W with respect to the inclusion mapping.

PROOF OF THEOREM 2. (i) First, we show the "only if" part. Note that $X = \operatorname{Im} r$ by Lemma 7. For any $P \in \operatorname{Spec} A$, there exists $Y \in t(\operatorname{m-Spec} A)$ such that $A_P = \bigcup_{m \in Y} A_m$. Then $P = \bigcap_{m \in Y} m$. Thus A is Hilbert. For any $P \in \operatorname{Spec} A$, there exists $R \in \operatorname{Zar}(K|A)$ such that R dominates A_P . Since $\operatorname{Loc}(K|A) = \{A_P \mid P \in \operatorname{Spec} A\}$, we can take $Q \in \operatorname{Spec} A$ such that $R = A_Q$. Then P = Q and hence $A_P = R \in \operatorname{Zar}(K|A)$. Thus A is a Prüfer ring with quotient field K. Then we check the "if" part. Since $\operatorname{Loc}(K|A) = \operatorname{Zar}(K|A) \simeq \operatorname{Spec} A$ and $\beta_{\operatorname{Spec} A}$: $t(\operatorname{m-Spec} A) \to \operatorname{Spec} A$ is an isomorphism of local ringed spaces, $\beta_X = r : tW \to X$ is also an isomorphism of local ringed spaces.

(ii) is derived from Lemmas 8, 10 and the corollary to Lemma 12. Q.E.D.

LEMMA 13. Let K be a field, A a subring of K, X = Zar(K|A) and $W = X_{cl}$. Suppose that \mathcal{O}_X is the intersection sheaf of X with respect to the inclusion mapping and $\mathcal{O}_W = \mathcal{O}_X|_W$.

- (i) If W is irreducible, then $\mathcal{O}_{W}(W) = \mathcal{O}_{X}(X)$ and $\pi_{W}(W) = \text{m-Spec}\mathcal{O}_{W}(W)$.
- (ii) The following three conditions are equivalent.
- (a) $\overline{W} = X$.
- (b) W is irreducible and $K = \operatorname{Rat} W$.
- (c) For any intermediate ring B between A and K such that B is of finite type over A, there exists m∈m-Spec B such that A ∩ m∈m-Spec A.
 (iii) The following two conditions are equivalent.

(a') $r: tW \rightarrow X$ is an isomorphism of local ringed spaces.

(c') If a ring B is an intermediate ring between A and K such that B is of finite type over A and $m \in m$ -Spec B, then $A \cap m \in m$ -Spec A.

PROOF. (i) is induced from Lemma 7 and Proposition 8 in [4].

(ii) The equivalence between (a) and (b) is verified from Lemma 5. (a) \Rightarrow (c): let $V = \operatorname{Zar}(K|B)$ for any *B*. Then $V \cap W \neq \emptyset$. Take $R \in V \cap W$ and let $m = B \cap m(R)$. Since $A/A \cap m \subset B/m \subset R/m(R)$ are integral extensions by Lemma 7 in [4], we obtain $m \in \operatorname{m-Spec} B$ and $A \cap m \in \operatorname{m-Spec} A$. (c) \Rightarrow (a): it suffices to prove that $\operatorname{Zar}(K|B) \cap W \neq \emptyset$ for any *B*. There exists $m \in \operatorname{m-Spec} B$ such that $A \cap m \in \operatorname{m-Spec} A$. By a weak form of Hilbert's zero-point theorem, B/m is integral over $A/A \cap m$. On the other hand, since the mapping $\Phi_{K|B}$: $\operatorname{Zar}(K|B)_{cl} \rightarrow \operatorname{m-Spec} B$ is onto, there exists $R \in \operatorname{Zar}(K|B)_{cl}$ such that $m = B \cap m(R)$. Then R/m(R) is integral over $A/A \cap m$. By Lemma 7 in [4], we have $R \in W$. Therefore $\operatorname{Zar}(K|B) \cap W \neq \emptyset$.

(iii) (a') \Rightarrow (c'): given *B* and *m*, there exists $R_0 \in \operatorname{Zar}(K|B)$ such that $m = B \cap m(R_0)$, since $\Phi_{K|B}$ is surjective. We let $E = \overline{\{R_0\}}^-$. By the corollary to Lemma 4, we obtain $\overline{E \cap W} = E \ni R_0$, and hence $\operatorname{Zar}(K|B) \cap E \cap W \neq \emptyset$. If $R \in \operatorname{Zar}(K|B) \cap E \cap W$, then $m = B \cap m(R)$ and R/m(R) is integral over $A/A \cap m$. Thus $A \cap m \in m$ -Spec *A*. (c') \Rightarrow (a'): it suffices to prove r(tW) = X by Lemma 7. The inclusion $r(tW) \subset X$ is easy. Conversely, for any $R_0 \in X$, we put $Y = \overline{\{R_0\}} \cap W$. Let $V = \operatorname{Zar}(K|B)$ for any intermediate ring *B* between *A* and *K* such that *B* is of finite type over *A*. If $R_0 \in V$, then $B \subset R_0$. By Proposition 8 in [4], there exists $R \in \operatorname{Zar}(K|B)_{cl}$ such that $R \subset R_0$. By Lemma 7 in [4], R/m(R) is integral over $B/B \cap m(R)$, and so $B \cap m(R) \in m$ -Spec *B*. By the assumption (c'), we have $A \cap m(R) \in m$ -Spec *A*. By a weak form of Hilbert's zero-point theorem, $B/B \cap m(R)$ is integral over $A/A \cap m(R)$. Therefore $R \in W$ and hence $V \cap Y \neq \emptyset$. This implies $R_0 \in \overline{Y}$ and $\overline{\{R_0\}} = \overline{Y}$. Since $Y \in tW$ and $R_0 = r(Y)$, we obtain X = r(tW). Q.E.D.

PROOF OF THEOREM 3. The equivalence between (a) and (c) is verified from Lemmas 8 and 13. The equivalence between (b) and (c) is induced from Lemmas 9, 10 and 13.

§4. Here we characterize the local ringed spaces $Zar(K|A)_{cl}$ explicitly, and prove Theorem 4.

For an integral domain A and a local ringed space (W, \mathcal{O}_W) , we introduce the following six conditions:

- (20) W satisfies the separable condition T_0 .
- (21) (W, \mathcal{O}_W) is an integral local ringed space satisfying the condition (8) in [5].
- (22) (W, \mathcal{O}_W) is a local ringed space over Spec A and the structure morphism is dominant.

REMARK. By (21) and (22), Rat W is a field and $A \subseteq \mathcal{O}_W(W) \subseteq \mathcal{O}_{W,x} \subseteq \mathcal{O}_W$. Rat W for any $x \in W$.

- (23) The topology of W is generated by $\{\operatorname{dom}(\alpha) \mid \alpha \in \operatorname{Rat} W\}$.
- (24) For any $x \in W$, the stalk $\mathcal{O}_{W,x}$ is a valuation ring of Rat W

and $\mathcal{O}_{W,x}/m(\mathcal{O}_{W,x})$ is an integral extension over $A/A \cap m(\mathcal{O}_{W,x})$.

(25) If R is a valuation ring of Rat W which contains A, then there exists $x \in W$ such that $\mathcal{O}_{W,x} \subset R$.

LEMMA 14. (i) Let K be a field, A a subring of K and $W = \text{Zar}(K|A)_{cl}$. If $\overline{W} = \text{Zar}(K|A)$, then (W, \mathcal{O}_W) satisfies the conditions (20), (21), (22), (23), (24), (25) and K = Rat W.

(ii) Conversely, suppose that an integral domain A and a local ringed space (W, \mathcal{O}_W) satisfy the conditions (20), (21), (22), (23), (24) and (25). If we put $K = \operatorname{Rat} W$, then K is a field containing A that satisfies $\overline{\operatorname{Zar}(K|A)_{cl}} = \operatorname{Zar}(K|A)$ and $(W, \mathcal{O}_W) \simeq \operatorname{Zar}(K|A)_{cl}$.

PROOF. (i) is induced from Lemma 7, Proposition 8 in [4] and Lemma 5.

(ii) By Lemmas 6, 7 in [5], Lemma 3 in [6] and (21), W is irreducible, $K = \operatorname{Rat} W$ is a field and \mathcal{O}_W is the intersection sheaf of W with respect to Ψ_W . By (22), A is a subring of K. Note that (20), (23) induce that Ψ_W is an into-homeomorphism, and (24), (25) imply that $\Psi_W(W) = \operatorname{Zar}(K|A)_{cl}$. Thus $W \simeq \operatorname{Zar}(K|A)_{cl}$. By Lemma 5, we obtain $\overline{\operatorname{Zar}(K|A)_{cl}} = \overline{\{K\}} = \operatorname{Zar}(K|A)$. Q.E.D.

Here we consider the following two categories for an integral ring A.

- %'₁(A): the category of local ringed spaces (X, O_X) satisfying the conditions (29), (30), (32), (33), (35) and (36) in [5] and morphisms f: X→Y of local ringed spaces over Spec A satisfying the condition (2).
- $\mathscr{C}'_2(A)$: the full subcategory of local ringed spaces over Spec A consisting of local ringed spaces (W, \mathcal{O}_W) which satisfy the conditions (20), (21), (22), (23), (24) and (25).

By Theorem 1 in [5], the objects of $\mathscr{C}_1(A)$ coincide with those of $\mathscr{C}'_1(A)$. Moreover,

LEMMA 15. Let A be an integral Hilbert ring. Then

(i) the functor $t: \mathscr{C}'_2(A) \rightarrow \mathscr{C}'_1(A)$ gives an equivalence of categories.

(ii) A local ringed space (W, \mathcal{O}_W) is an object of $\mathscr{C}_2(A)$ if and only if (W, \mathcal{O}_W) satisfies the conditions (20), (21), (22), (23), (24) and (25). Therefore the category $\mathscr{C}_i(A)$ is a subcategory of $\mathscr{C}'_i(A)$ obtained by assuming morphisms to be dominant (i = 1, 2).

PROOF. (i) is induced from Theorem 1 in [5], Lemmas 1, 14 and Theorem 3. (ii) is obvious from Theorem 1 in [5] and Lemma 14.

REMARK. Let $\mathscr{C}'_0(A)$ be the category of projective fields over A, in which morphisms are places that fix all elements of A. Then $\mathscr{C}'_0(A)$ and $\mathscr{C}'_1(A)$ are anti-equivalent (see [5], Lemma 11).

PROOF OF THEOREM 4. (i) is verified from Theorem 1 in [5], Lemmas 2 and 15. In order to show (ii), we first notice by Theorem 2 in [5];

$\operatorname{Zar}(K|k) \simeq \operatorname{proj.lim} X$,

where X runs over all integral schemes proper over Speck with rational function field K. By Examples, (ii) and Theorem 3, all objects and morphisms in (26) belong to the category \mathscr{C}_1 , and X_{cl} become complete algebraic varieties V. Since \mathscr{C}_1 and \mathscr{C}_2 are equivalent, we obtain

 $\operatorname{Zar}(K|k)_{\mathrm{cl}} \simeq \operatorname{proj.lim} V$.

Q.E.D.

References

[1] R. GILMER, Multiplicative Ideal Theory, Marcel Dekker (1972).

[2] A. GROTHENDIECK and J. DIEUDONNÉ, Eléments de Géométrie Algébrique, I.H.E.S. (1960–1967).

[3] R. HARTSHORNE, Algebraic Geometry, Springer-Verlag (1977).

[4] K. SEKIGUCHI, Prüfer domain and affine scheme, Tokyo J. Math. 13 (1990), 259–275.

[5] K. SEKIGUCHI, Ringed spaces of valuation rings and projective limits of schemes, Tokyo J. Math. 16 (1993), 191-203.

[6] K. SEKIGUCHI, Differential forms on ringed spaces of valuation rings, Tokyo J. Math. 18 (1995), 133–145.

Present Address:

Department of Mathematics, Sophia University, Kioicho, Chiyoda-ku, Tokyo, 102 Japan.

(26)