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Introduction.

Normal surfaces $X_{d}$ of degree $d$ in the complex projective 3-space $P^{3}$ have simple
birational structure if $d$ is small: $X_{1}$ and $X_{2}$ are rational, and $X_{3}$ is birationally equivalent
to a ruled surface (for further details, see [B-W], [H-W]), since in general $ K_{X_{d}}\simeq$

$\mathcal{O}_{X_{d}}(d-4)$ . Moreover $X_{4}$ is birationally equivalent to either a ruled or a K3 surface
([Uml]).

To the contrary, various $X_{d}$ may occur if $d\geq 5$ . If the singularity of $X_{d}$ is mild,
then $X_{d}$ is birationally equivalent to a surface ofgeneral type, while $X_{d}$ may be birationally
equivalent to a ruled surface if it has severe singularity. Moreover there are examples
of $X_{5}$ which are birationally equivalent to K3 surfaces, Enriques surfaces or general
elliptic surfaces ([I], [Yan], [St], [K], [Um2], [Um3], [Um4]). This leads us to the
question whether there exists an $X_{d}$ which is birationally an abelian or a hyperelliptic
surface or not. The purpose of this note is to answer this question in the case of d$=5$ .
We prove:

MAIN THEOREM. No normal quintic surface in $P^{3}$ is birationally equivalent to an
abelian or a hyperelliptic surface.

Our proof of the theorem goes as follows. First we note that if a normal quintic
surface $X=X_{5}$ is birationally an abelian or a hyperelliptic surface, then its minimal
resolution $\tilde{X}$ is an at most 5-fold blowing-up $\mu:\tilde{X}\rightarrow\overline{X}$ of the non-singular minimal
model $\overline{X}$. On the other hand, the pull-back of $K_{X}$ to $\tilde{X}$ minus $K_{\tilde{X}}$ is an effective divisor
$\tilde{D}$ , which reflects the property of the singularity of $X$ fairly well. Such property of $\tilde{D}$

and the condition of $\mu_{*}\tilde{D}$ as a divisor on an abelian or hyperelliptic surface finally lead
us in every case to a contradiction.

CONJECTURE. No normal hypersurface in $P^{3}$ is birationally equivalent to an abelian
surface.

Also for hyperelliptic surfaces we raise:
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PROBLEM. Are there normal hypersurfaces in $P^{3}$ which are birationally
hyperelliptic surfaces?

\S 1. Preliminaries.

In this section we summarize some results from local theory of surface singularity,
which we will use later.

Let $(Y, y)$ be a numerically Gorenstein normal surface singularity, $\pi:\tilde{Y}\rightarrow Y$ its
minimal resolution and $A$ the exceptional set: $A=\pi^{-1}(y)$ . Then there is an effective
divisor $D$ with supp $D\subseteqq A$ such that ru $Y\equiv \mathcal{O}r(-D)$. Let $p_{a}$ or $p_{g}$ stand for the arithmetic
or the geometric genus of $(Y, y)$ respectively. By definition ([W]),

$p_{a}=$
$\sup_{D’>0,\sup p(D’)\subseteq A}p_{a}(D^{\prime})$

, $p_{g}=\dim R^{1}\pi_{*}\mathcal{O}p$ .

It is known (cf. [A]) that the following conditions are equivalent:
(i) $D\neq 0$ (ii) supp$D=A$ (iii) $p_{a}>0$ (iv) $p_{g}>0$ .

LEMMA 1.1 (Y. Koyama). $p_{a}\leq-D^{2}/8+1$ . In particular, if $D^{2}\geq-7$ , then $p_{a}\leq 1$ .
$PR\infty F$ . See [Um5].

REMARK 1.2. If $D^{2}=-8$ and $p_{a}=2$ , then $D/2$ is an integral and the unique divisor
on $A$ whose arithmetic genus is equal to 2.

In what follows (except for Corollary 1.5) we assume moreover that $p_{a}=1$ , i.e. our
singularity $(Y, y)$ is elliptic ([W]). Then Yau (for the minimal good resolution) and
Tomari (for any resolution) defined the elliptic sequence $\{Z_{1}, \cdots, Z_{i}\}$ as follows: Let
$E$ denote the minimal elliptic cycle of Laufer [L], i.e., $E$ is the minimal effective divisor
such that supp $E\subseteqq A$ and $p_{a}(E)=1$ . For $Z_{1}$ we take the fundamental cycle. Suppose that
we have defined $Z_{1},$ $\cdots,$ $Z_{k}$ . If $Z_{k}E<0$ , we define $\{Z_{1}, \cdots, Z_{k}\}$ as the elliptic sequence:
$l=k$ . Assume $Z_{k}E=0$ . Then let $B_{k+1}$ denote the connected component containing $E$ of
the sum of the components $A_{i}$ of $A$ satisfying $Z_{k}A_{i}=0$ . We define $Z_{k+1}$ to be the
fundamental cycle $ofB_{k+1}$ . Since supp $z_{k}\not\equiv suppZ_{k+1}$ , the elliptic sequence $\{Z_{1}, \cdots, Z_{i}\}$

is defined as a finite sequence. The following results for the minimal resolution will play
an important role later.

THEOREM 1.3 ([T], [Yau]). (i) $D=\sum_{i=1}^{i}Z_{i}$ . (ii) $Z_{i}=E$. (iii) $p_{g}\leq l$.
From this theorem, we obtain the following

COROLLARY 1.4. $p_{g}\leq-D^{2}$ .

COROLLARY 1.5. Let $(Y, y)$ be a numerically Gorenstein normal surface singularity
ofgeometric genus $p_{g}$ , and $\pi:\tilde{Y}\rightarrow Y$ its minimal resolution. Assume that the exceptional
set $\pi^{-1}(y)$ consists ofa chain ofcurves $A_{0}=E,$ $A_{1},$ $\cdots,$ $A_{m}(m\geq 1)$ with $p_{a}(E)=1,$ $p_{a}(A_{i})=0$
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$(1 \leq i\leq m)$ . Then we have
(i) $E^{2}=-1$ ,
(ii) $m\geq p_{g}-1$ and $A_{i}^{2}=-2$ for $1\leq i\leq p_{g}-2$ .

PROOF. The fundamental cycle $Z_{1}$ coincides with $\pi$

‘

$1(y)$ with reduced structure,
hence $p_{a}(Z_{1})=1$ , and so $(Y, y)$ is an elliptic singularity ([W]). Then $E$ is the minimal
elliptic cycle. Theorem 1.3 implies that for every $i,$ $Z_{i}$ contains more than $p_{g}-i$

components. In particular, for $i=1$ , we get $m\geq p_{g}-1$ ; for $i=2,$ $Z_{1}E=0$ and $Z_{1}A_{i}=0$

$(1\leq i\leq p_{g}-2)$ , which proves $E^{2}=-1$ and $A_{i}^{2}=-2(1\leq i\leq p_{g}-2)$ .

\S 2. Properties of divisors on the resolution.

Let $X$ be a normal quintic surface in $P^{3}$ . Let $\pi;\tilde{X}\rightarrow X$ denote the minimal resolu-
tion of $X,$ $H$ a general hyperplane section of $X$ and $\tilde{H}$ its pull-back on $\tilde{X}$. Then there
exists a unique effective divisor $\tilde{D}$ on $\tilde{X}$ such that $K_{\tilde{X}}=\tilde{H}-\tilde{D}$ . This divisor $\tilde{D}$ is sup-
ported on the exceptional sets of $\pi$ which correspond to singularities with positive

geometric genus. Let $\mu:\tilde{X}=X_{n}\rightarrow^{\mu_{n}}X_{n-1}\rightarrow\mu_{n-1}\ldots\rightarrow^{\mu_{1}}X_{0}=\overline{X}$ be the sequence of blow-
downs obtaining a non-singular minimal model $\overline{X}$ of $\tilde{X},$

$\mu_{i}^{\prime}$ the induced morphism $\tilde{X}\rightarrow X_{i}$

$(0\leq i\leq n)$ , and $E_{i}(1\leq i\leq n)$ the total transform on $\tilde{X}$ of the exceptional curve of the
blow-up $\mu_{i}$ . In what follows we fix our notations as above and assume moreover that
$\overline{X}$ is either an abelian or a hyperelliptic surface.

LEMMA 2.1. $\tilde{D}^{2}=-n-5$ and $1\leq n\leq 5$ . Moreover, $\iota fn=5$ and if $\Gamma$ is a rational
curve on $\tilde{X}$, then either

(i) $\tilde{H}\Gamma=1$ ( $\Gamma$ is not exceptional for $\pi$), $\tilde{D}\Gamma=2,$ $\Gamma^{2}=-1$ , or
(ii) $\tilde{H}\Gamma=0(\Gamma isexceptionalfor\pi),\tilde{D}\Gamma=0,$ $\Gamma^{2}=-2$ .
$PR\infty F$ . Since $\overline{X}$ has a numerically trivial canonical bundle, $-n=K_{\tilde{X}}^{2}=(\tilde{H}-\tilde{D})^{2}=$

$5+\tilde{D}^{2}$ , and hence $\tilde{D}^{2}=-n-5$ . Since each $E_{i}$ contains at least one (-l)-curve and
$\tilde{X}$ is the minimal resolution, we have $\tilde{H}E_{i}>0$ , and so $5=\tilde{H}^{2}=\tilde{H}(\tilde{H}-\tilde{D})=\tilde{H}K_{\tilde{X}}=$

$\sum_{i=1}^{n}\tilde{H}E_{i}\geq n$ . $n\geq 1$ since $\tilde{H}-\tilde{D}\not\equiv 0$ . Note that any rational curve on $\tilde{X}$ is a component
of $E_{i}$ for some $i$ since $\overline{X}$ contains no rational curve. Assume $n=5$ . Then $\tilde{H}E_{i}=1(1\leq i\leq 5)$ .
Hence, for each $i$, there exists a unique component $\Gamma_{i}$ in $E_{i}$ , with multiplicity 1, such
that $\tilde{H}\Gamma_{i}=1$ , and other components of $E_{i}$ are exceptional for $\pi$ and so have non-positive
intersection number with $\tilde{D}$ . Since $\Gamma_{i}$ is a (-l)-curve, $-1=K_{\tilde{X}}\Gamma_{i}=(\tilde{H}-\tilde{D})\Gamma_{i}$ , hence
$\tilde{D}\Gamma_{i}=2$ . By $-1=K_{\tilde{X}}E_{i}=K_{\tilde{X}}\Gamma_{i}+K_{\tilde{X}}(E_{i}-\Gamma_{i})=-1+\tilde{D}(E_{i}-\Gamma_{i})$ , we see that any com-
ponent $\Gamma$ in $E_{i}-\Gamma_{i}$ satisfies $\tilde{D}\Gamma=0$ and so $\Gamma^{2}=-2$ .

LEMMA 2.2. For each $i(1\leq i\leq n)$ , the center of the blow-up $\mu_{i}$ lies on the singular
locus of $(\mu_{i-1^{\cap}}^{\prime})_{*}\tilde{D}$ .

PROOF. Since-l $=K_{\tilde{X}}E_{i}=\tilde{H}E_{i}-\tilde{D}E_{i}$ and $\tilde{H}E_{i}>0$ , we have $\tilde{D}E_{i}\geq 2$ , which implies
the Lemma.
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LEMMA 2.3. dim $R^{1}\pi_{*}\mathcal{O}_{\tilde{X}}=5$ .
$PR\infty F$ . From the exact sequence accociated with the Leray spectral sequence:

$0\rightarrow H^{1}(X, \mathcal{O}_{X})\rightarrow H^{1}(\tilde{X}, \mathcal{O}p)\rightarrow R^{1}\pi_{*}\mathcal{O}_{\tilde{X}}\rightarrow H^{2}(X, \mathcal{O}_{X})\rightarrow H^{2}(\tilde{X}, \mathcal{O}p)\rightarrow 0$ ,

we have dim $R^{1}\pi_{*}\mathcal{O}x=4+q(\tilde{X})-p_{g}(\tilde{X})=5$ .

COROLLARY 2.4. Let $\tilde{D}=\tilde{D}_{1}+\cdots+\tilde{D}_{s}$ be the decomposition of $\tilde{D}$ into its connected
components. Then

$\sum_{i=1}^{s}h^{0}(\mathcal{O}_{\tilde{D}_{i}})=5$ .

$PR\infty F$ . Let $y_{i}$ denote the singular point on $X$, which is obtained by contracting
$\tilde{D}_{i}$ . Let $Y_{i}\subset X$ be a Stein neighbourhood of $y_{i},\tilde{Y}_{i}=\pi^{-1}(Y_{i})$ and $\pi_{i}=\pi_{|Y_{i}}$ . Note that
$\omega_{\tilde{Y}_{i}}\simeq \mathcal{O}_{\tilde{Y}_{i}}(-\tilde{D}_{i})$ . Then we have $h^{0}(\mathcal{O}_{\tilde{D}_{i}})=\dim R^{1}(\pi_{i})_{*}\mathcal{O}Y_{i}$ , so that the Corollary follows
from Lemma 2.3. In fact, consider the natural exact sequence:

$H^{1}(\mathcal{O}_{Y_{i}}(-\tilde{D}_{i}))\rightarrow H^{1}(\mathcal{O}_{Y_{i}})\rightarrow H^{1}(\mathcal{O}_{\tilde{D}_{i}})\rightarrow 0$ .
We see that the first term vanishes by Grauert-Riemenschneider’s theorem. The second
term is isomorphic to $R^{1}(\pi_{i})_{*}\mathcal{O}_{\tilde{Y}_{i}}$ , and the third is dual to $H^{0}(\mathcal{O}_{D_{i}})$ .

LEMMA 2.5. Let $D$ be a connected divisor on $\tilde{X}$ with negative intersection matrix.
If all irreducible components of $D$ are rational curves, then the contraction of $D$ is at
worst rational singularity.

PROOF. Since $\overline{X}$ contains no rational curve, the support of $D$ is contained in a
divisor which is contracted to a non-singular point (by $\mu$). Hence the geometric genus
of the contraction of $D$ vanishes.

LEMMA 2.6. Let $C$ and $C^{\prime}$ be irreducible curves on an abelian surface [resp. $a$

hyperelliptic surface] S. Then
(i) $C^{2}$ is an even non-negative integer,
(ii) $C^{2}=0$ if and only if $C$ is a non-singular elliptic curve,
(iii) if the desingularization of $C$ is an elliptic curve, then $C$ itself is smooth,
(iv) if $CC^{\prime}=0$, then $C^{2}=C^{\prime 2}=0$ and $C$ and $C^{\prime}$ are algebraically equivalent [resp.

if $CC^{\prime}=0$, then $C^{2}=C^{\prime 2}=0$ and $C\equiv qC^{\prime}$ for some positive $q\in Q$],
(v) if $C$ and $C^{\prime}$ are elliptic curves, then they intersect transversally.

$PR\infty F$ . Since $S$ has trivial or numerically trivial canonical sheaf, $p_{a}(C)=C^{2}/2+1$ .
Moreover $S$ contains no rational curves, whence (i) and (ii). For $(iii)-(v)$ , we first assume
that $S$ is an abelian surface. Then (iii) is a special case of [Ue, Theorem 10.3]. (iv) If
$CC^{\prime}=0$, then neither $C$ nor $C^{\prime}$ is ample, and so $C^{2}=C^{\prime 2}=0$ . Moreover $C^{\prime}$ is a fiber of
the quotient morphism $S\rightarrow S/C$ . Hence $C$ and $C^{\prime}$ are algebraically equivalent. Finally,
if two elliptic curves $C$ and $C^{\prime}$ intersect, then the morphism $C^{\prime}\rightarrow S/C$ is finite and
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unramified, and hence (v). Suppose next that $S$ is a hyperelliptic surface. Then there is
a finite unramified covering $f:\tilde{S}\rightarrow S$ where $\tilde{S}$ is an abelian surface. Notice that any
unramified cover of an elliptic curve is a disjoint union of elliptic curves. Hence (v) is
clear. (iii) Let $\tilde{C}\rightarrow C$ denote the desingularization of $C$ . Then $\tilde{S}\times{}_{S}\tilde{C}$ is the resolution
of $f^{-1}(C)$ . Since $\tilde{S}\times{}_{S}\tilde{C}$ is a disjoint union of non-singular elliptic curves, we see that
$f^{-1}(C)$ itself is non-singular, and hence so is C. (iv) The former part is proved in the
same way as in the abelian case. Moreover, $C^{2}=C^{;2}=0$ and $CC^{\prime}=0$ mean that $[C]$

and $[C^{\prime}]$ are not linearly independent in $NS(S)\otimes Q$ .

\S 3. Reduction to the case with only elliptic singularities.

We use the notations in \S 2, and assume that $\overline{X}$ is either an abelian or a hyperelliptic
surface. In this section we will prove that there exists on $X$ no singularity with arithmetic
genus greater than 1. We first notice by Lemma 2.5 that every connected component
of $\tilde{D}$ contains a non-rational curve.

(3.1) Assume that there exists in $\tilde{D}$ an irreducible curve $D_{1}$ with $p_{a}(D_{1})\geq 2$ . Let
$D$ denote the connected component of $\tilde{D}$ containing $D_{1}$ and $D^{\prime}$ the sum of the other
components: $\tilde{D}=D+D^{\prime}$ . By Lemma 1.1 and 2.1, we have $-10\leq D^{2}\leq-8$ and the
arithmetic genus of the singularity corresponding to $D$ is equal to 2. Hence, by Lemma
2.6 (iii), $D_{1}$ is a non-singular curve of genus 2 and the other components of $D$ , if exist,
are all non-singular rational curves. Since $0\geq D^{\prime 2}\geq-2$ , all singular points corresponding
to $D^{\prime}$ are elliptic singularities.

Case 3.1.1. $D^{2}=-8$ : Remark 1.2 says that $D=2D_{1}$ and $D_{1}^{2}=-2$ . The exact
sequence

$0\rightarrow \mathcal{O}_{D_{1}}(-D_{1})\rightarrow \mathcal{O}_{2D_{1}}\rightarrow \mathcal{O}_{D_{1}}\rightarrow 0$

shows

$h^{0}(\mathcal{O}_{D})=h^{0}(\mathcal{O}_{D_{1}}(-D_{1}))+h^{0}(\mathcal{O}_{D_{1}})=h^{0}(\omega_{D_{1}})+1=3$ .

Hence, by Corollary 2.4 and its proof, it follows that $D^{\prime}$ corresponds to either one
singular point with geometric genus equal to 2 or two singular points both of which
have geometric genus 1. Hence $D^{\prime 2}=-2,$ $n=5$ (Corollary 1.4 and Lemma 2.1). By
Lemma 2.6, we have $(\mu_{*}D)^{2}>0$ and $(\mu_{*}D)(\mu_{*}D^{\prime})>0$ and so there is achain of rational
curves $\Gamma_{1},$ $\cdots,$ $\Gamma_{k}$ on $\tilde{X}$ such that $\Gamma_{i}\not\subset\tilde{D}(1\leq i\leq k)$ and $\Gamma_{1}D_{1}>0,$ $\Gamma_{k}D^{\prime}>0$ . Both $\Gamma_{1}$ and
$\Gamma_{k}$ are not exceptional for $\pi$ , and hence are (-l)-curves by Lemma 2.1. For $2\leq i\leq k-1$ ,
$\Gamma_{i}$ is either a (-l)-curve or else an exceptional curve for $\pi$ , i.e., a (-2)-curve. Therefore
it turns out that $k=1$ : there exists a (-l)-curve $\Gamma$ such that $\tilde{D}\Gamma=(2D_{1}+D^{\prime})\Gamma\geq 3$ , which
contradicts Lemma 2.1.

Case 3.1.2. $D^{2}=-9$ : Let $D=mD_{1}+Y(Y\not\geq D_{1})$ . Since $2=p_{a}(D_{1})=(D_{1}^{2}-D_{1}D)/2$

$+1$ ,
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$D_{1}D=D_{1}^{2}-2\leq-3$ . (1)

Therefore

$-9=D^{2}=mD_{1}D+YD\leq mD_{1}D=m(D_{1}^{2}-2)\leq-3m$ , (2)

and so
$1\leq m\leq 3$ .

If $m=1$ , then $D_{1}D=D_{1}^{2}+D_{1}Y\geq D_{1}^{2}$ , which contradicts (1).
If $m=2$, then, by (1), $-3\geq D_{1}D=2D_{1}^{2}+D_{1}Y$ and so $D_{1}^{2}\leq-2$ . Henoe $D_{1}^{2}=-2$ by

(2). Hence, using (1), we have

$D_{1}Y=D_{1}D-2D_{1}^{2}=D_{1}^{2}-2-2D_{1}^{2}=0$ .
This implies $Y=0$ and so $D^{2}=(2D_{1})^{2}=-8$ , a contradiction.

Assume $m=3$ . Then $D_{1}^{2}=-1$ by (2) and hence $D_{1}Y=D_{1}D-3D_{1}^{2}=0$ by (1), i.e.
$Y=0:D=3D_{1}$ . Therefore

$h^{0}(\mathcal{O}_{D})\leq h^{0}(\mathcal{O}_{D_{1}}(-2D_{1}))+h^{0}(\mathcal{O}_{2D_{1}})=h^{0}(\omega_{D_{1}})+h^{0}(\mathcal{O}_{D_{1}}(-D_{1}))+h^{0}(\mathscr{O}_{D_{1}})\leq 4$ .
Hence we have $D^{\prime}\neq 0,$ $n=5$ , and are led to a contradiction as in Case 3.1.1.

Case 3.1.3. $D^{2}=-10$ : In this case $D=\tilde{D}$ and $n=5$ . We set $\tilde{D}=mD_{1}+Y$ as before,
where $\tilde{D}Y=0$ and Yconsists of (-2)-curves by Lemma 2.1. Note that (1) in the previous
case holds as well. Hence we have

$-10=\tilde{D}^{2}=mD_{1}\tilde{D}=m(D_{1}^{2}-2)\leq-3m$ ,

therefore $m=1$ or 2.
If $m=1$ , then $D_{1}\tilde{D}=-10$ and $D_{1}^{2}=-8$ , which is impossible because $D_{1}\tilde{D}=$

$D_{1}^{2}+D_{1}Y\geq D_{1}^{2}$ .
If$m=2$ , then $D_{1}\tilde{D}=-5$ and $D_{1}^{2}=-3$ , hence $\tilde{D}=2D_{1}+YandD_{1}Y=1$ . This implies

that $Y$ is a reduced irreducible (-2)-curve. But then we calculate

$h^{O}(\mathcal{O}_{\tilde{D}})=h^{O}(\mathcal{O}_{D_{1}}(-D_{1}-Y))+h^{o}(\mathcal{O}_{D_{1}+Y})=h^{o}(\omega_{D_{1}})+1=3$ ,

and so get a contradiction with Corollary 2.4.
Hence we have proved with Lemma 2.6 that every non-rational component of $\tilde{D}$

is a non-singular elliptic curve.
(3.2) Suppose that $\tilde{D}$ has a connected component $D$ which contains two distinct

non-singular elliptic curves $D_{1}$ and $D_{2}$ . Then $D$ corresponds to a singularity with $p_{a}=2$

(Lemma 1.1). We set $\tilde{D}=D+D^{\prime}$ .
Case 3.2.1. $D^{2}=-8$ : We can show a contradiction in a similar way as in Case

3.1.1, by taking a chain of reduced curves in $D$ connecting $D_{1}$ and $D_{2}$ instead of $D_{1}$ .
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Case 3.2.2. $D^{2}=-9$ : Set $D=m_{1}D_{1}+m_{2}D_{2}+Y,$ $Y\not\geq D_{1},$ $D_{2}$ .
From

$D_{i}^{2}=D_{i}D=m_{i}D_{i}^{2}+m_{j}D_{1}D_{2}+D_{i}Y$ ,

we have

$(1-m_{i})D_{i}^{2}=m_{j}D_{1}D_{2}+D_{i}Y$ (3)

where $\{i,j\}=\{1,2\}$ . Since $D$ is connected, the right hand side of (3) is positive, and so
$m_{i}\geq 2(i=1,2)$ . Also we have

$m_{1}D_{1}^{2}+m_{2}D_{2}^{2}=(m_{1}D_{1}+m_{2}D_{2})D=D^{2}-DY\geq D^{2}=-9$ . (4)

Consider first the case of $D_{1}D_{2}>0$ . Then $D_{1}D_{2}=1$ since $p_{a}=2$ .
We first show that $D_{i}^{2}\leq-2(i=1,2)$ . Assume to the contrary, say $D_{1}^{2}=-1$ . Then

(3) is reduced to

$m_{1}-1=m_{2}+D_{1}Y$ , (5)

$(1-m_{2})D_{2}^{2}=m_{1}+D_{2}Y$ ,
hence

$(1-m_{2})D_{2}^{2}=m_{2}+1+(D_{1}+D_{2})Y$ . (6)

From (5), we get $m_{1}\geq m_{2}+1$ . (6) implies $D_{2}^{2}\leq-2$ , but if $D_{2}^{2}=-2$ , then $m_{2}\geq 3$ , and so
$m_{1}\geq 4$, which contradicts (4). Therefore the unique possibility is $D_{2}^{2}=-3,$ $m_{1}=3,$ $m_{2}=2$

and $D_{1}Y=D_{2}Y=0$ , i.e. $D=3D_{1}+2D_{2}$ with $D_{1}^{2}=-1,$ $D_{2}^{2}=-3$ . But then we have
$h^{0}(\mathcal{O}_{D})\leq h^{0}(\mathcal{O}_{D_{1}}(-2D_{1}-2D_{2}))+h^{0}(\mathcal{O}_{D_{2}}(-2D_{1}-D_{2}))+h^{0}(\mathcal{O}_{D_{1}}(-D_{1}-D_{2}))$

$+h^{0}(\mathcal{O}_{D_{1}+D_{2}})\leq 4$ .
Hence it follows $D^{\prime}\neq 0$ and $n=5$ , and then a contradiction as in Case 3.1.1. Thus we
obtain $D_{1}^{2},$ $D_{2}^{2}\leq-2$ .

By (4) we have $D_{1}^{2}=D_{2}^{2}=-2,$ $m_{1}=m_{2}=2$ and $DY=-1$ . But then (3) implies
$D_{1}Y=D_{2}Y=0$ and hence $Y=0$ , a contradiction.

Therefore we obtain $D_{1}D_{2}=0$ , in particular $D_{1}Y>0,$ $D_{2}Y>0$ . Then, by (3),

$(1-m_{i})D_{i}^{2}=D_{i}Y$ $(i=1,2)$ . (7)

If $D_{1}Y=1$ , then $m_{1}=2,$ $D_{1}^{2}=-1$ , and there exists a unique component $Y_{1}$ of $Y$

such that $Y_{1}D_{1}=1$ and that the multiplicity of $Y_{1}$ in $Y$ is 1. Therefore

$-2=Y_{1}^{2}-Y_{1}D=Y_{1}(-2D_{1}-m_{2}D_{2}-(Y-Y_{1}))$

$=-2-Y_{1}(m_{2}D_{2}+(Y-Y_{1}))<-2$ .
Hence $D_{1}Y\geq 2,$ $D_{2}Y\geq 2$ .

Suppose $D_{i}^{2}=-1$ . Then, since $(\mu_{*}D_{i})^{2}=0$ (Lemma 2.6 (ii), (iii)), there exists a
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unique component $Y_{i}$ of Ysuch that $D_{i}Y_{i}=1$ and every other component of $Y$ is disjoint
from $D_{i}$ . Moreover, we see from (7) that the multiplicity of $Y_{i}$ in $Y$ is $m_{i}-1$ , and that
$m_{i}\geq 3$ since $D_{i}Y\geq 2$ . We note that $(\mu_{*}D_{1})(\mu_{*}D_{2})>0$ . Hence, iffurthermore $D_{1}^{2}=D_{2}^{2}=-1$ ,
we get $m_{1}=m_{2}\geq 3$ because in this situation $Y_{1}=Y_{2}$ in the notation above. Therefore,
assuming $D_{1}^{2}\geq D_{2}^{2}$ in general, we have by (4) and (7) that there are the following
possibilities:

$D_{1}^{2}$ $D_{2}^{2}$

(i) $-1$ $-1$

(ii) $-1$ $-1$

(iii) $-1$ $-2$

(iv) $-1$ $-2$

(v) $-1$ $-3$

(vi) $-1$ $-2$

(vii) $-1$ $-2$

(viii) $-2$ $-2$

$m_{1}$ $m_{2}$ $DY$

$3$ 3 $-3$

$4$ 4 $-1$

$3$ 2 $-2$

$3$ 3 $0$

$3$ 2 $0$

$4$ 2 $-1$

$5$ 2 $0$

$2$ 2 $-1$

In (i) and (ii), there is a curve $Y_{1}$ of multiplicity $m_{1}-1\geq 2$ in $Y$ with $D_{1}Y_{1}=$

$D_{2}Y_{1}=1$ . Note that $Y_{1}^{2}\leq-3$ , since if $Y_{1}^{2}=-2$ then $0=DY_{1}\geq 2m_{1}+(m_{1}-1)(-2)=2$ .
Hence (ii) is impossible, and in (i) we have $Y_{1}^{2}=-3$ by $DY=-3$ . But then-l $=DY_{1}\geq$

$2m_{1}+(m_{1}-1)(-3)=0$ . In (iv) and (v), all components of $Y$ are (-2)-curves. There is
a component $Y_{1}$ with multiplicity $m_{q}-1=2$ in $Y$ and $D_{1}Y_{1}=1$ . Hence
$(D-3D_{1}-2Y_{1})Y_{1}=1$ , and so there is a unique component $Y_{2}$ with multiplicity 1 in $Y$

such that $Y_{1}Y_{2}=1$ . This implies $D=3D_{1}+2Y_{1}+Y_{2}$ , which is absurd. In (vi)-(viii),
where $D_{2}^{2}=-2$ and $m_{2}=2$ , there is a curve $Y_{2}$ of multiplicity 2 in $Y$ with $D_{2}Y_{2}=1$ .
Since $DY\geq-1,$ $Y_{2}$ is a (-2)-curve. Hence there is a unique curve $Y_{3}$ in $D-2D_{2}-2Y_{2}$

of multiplicity 2 in it with $Y_{2}Y_{3}=1,$ $Y_{3}$ is a (-2)-curve if $Y_{3}\leq Y$. Proceeding in this
way, we find in (vi) and (vii) an infinite sequence $Y_{2},$ $Y_{3},$ $\cdots$ in $Y$; in (viii)
$D=2(D_{2}+Y_{2}+\cdots+D_{1})$ , contradicting $D^{2}=-9$ . Therefore it only remains the case
(iii). Since then also $D_{2}^{2}=-2$ and $m_{2}=2$ , we can start from $D_{2}$ in the same way as
above and deduce $D=3D_{1}+2Y_{1}+\cdots+2Y_{k}+2D_{2}$ , where $k\geq 1,$ $Y_{1}^{2}=-3,$ $Y_{2}^{2}=\cdots$

$=Y_{k}^{2}=-2$ and $D_{1},$ $Y_{1},$ $\cdots,$ $Y_{k},$ $D_{2}$ form a chain. Hence we obtain

$h^{O}(\mathcal{O}_{D})\leq h^{0}(\mathcal{O}_{D_{1}}(-2D_{1}-2Y_{1}-\cdots-2Y_{k}-2D_{2}))$

$+h^{0}(\mathcal{O}_{D_{1}+Y_{1}+\cdots+Y_{k}+D_{2}}(-D_{1}-Y_{1}-\cdots-D_{2}))+h^{O}(\mathcal{O}_{D_{1}+Y_{1}+\cdots+Y_{lc}+D_{2}})$

$\leq 4$ ,

and so $D^{\prime}\neq 0,$ $n=5$ , hence a contradiction as in Case 3.1.1.

Case 3.2.3. $D^{2}=-10$ : Note first that $D=\tilde{D}$ and $n=5$ . Set $\tilde{D}=m_{1}D_{1}+m_{2}D_{2}+Y$

as in Case 3.2.2. Then we have as before

$(1-m_{i})D_{i}^{2}=m_{j}D_{1}D_{2}+D_{i}Y$ , $\{i,j\}=\{1,2\}$ ,
(8)

$m_{1},$ $m_{2}\geq 2$ ,
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and since $Y$ consists of (-2)-curves by Lemma 2.1,

$m_{1}D_{1}^{2}+m_{2}D_{2}^{2}=(m_{1}D_{1}+m_{2}D_{2})\tilde{D}=\tilde{D}^{2}-\tilde{D}Y=\tilde{D}^{2}=-10$ . (9)

Suppose $D_{1}D_{2}>0$ . Then $D_{1}D_{2}=1$ since $p_{a}=2$ , and so (8) is rewritten as
$(1-m_{i})D_{i}^{2}=m_{j}+D_{i}Y$ , $\{i,j\}=\{1,2\}$ ,

(10)
$m_{1},$ $m_{2}\geq 2$ .

If $D_{1}^{2}=-1$ , then $m_{1}=m_{2}+1+D_{1}Y$ by (10). In particular $D_{2}^{2}\leq-2$ . If furthermore
$D_{2}^{2}\leq-3$ , then $D_{2}^{2}=-3,$ $m_{1}=4$ and $m_{2}=2$ by (9), which is not compatible with (10).
Hence $D_{2}^{2}=-2$ , and we see with (9) and (10) that only $(m_{1}, m_{2})=(4,3)$ is possible. The
case of $D_{i}^{2}\leq-2$ is easier. Then, assuming $D_{1}^{2}\geq D_{2}^{2}$ , there are two possibilities:

$D_{1}^{2}$ $D_{2}^{2}$
$m_{1}$ $m_{2}$ $D_{1}Y$ $D_{2}Y$

(i) $-1$ $-2$ 4 3 $0$ $0$

(ii) $-2$ $-3$ 2 2 $0$ 1
In (i) we get $Y=0:\tilde{D}=4D_{1}+3D_{2}$ . But then $\tilde{D}$ can not be obtained from $\overline{X}$ by more
than 3 blow-ups (Lemma 2.2 and Lemma 2.6 (ii), (iii)). In (ii) $Y$ is a reduced irreducible
(-2)-curve since $D_{2}Y=1$ and $m_{2}=2$ . This implies

$h^{o}(\mathcal{O}_{\tilde{D}})=h^{0}(\mathcal{O}_{D_{1}+D_{2}}(-D_{1}-D_{2}-Y))+h^{0}(\mathcal{O}_{D_{1}+D_{2}+Y})=h^{0}(\omega_{D_{1}+D_{2}})+1=3$ ,

which is impossible by Corollary 2.4.
This proves $D_{1}D_{2}=0$ and so by (8)

$(1-m_{i})D_{i}^{2}=D_{i}Y$ $(i=1,2)$ .

Then we have, as in Case 3.2.2, $m_{i}\geq 2;m_{i}\geq 3$ if $D_{i}^{2}=-1;m_{1}=m_{2}$ if $D_{1}^{2}=D_{2}^{2}=-1$ . We
may assume that $D_{1}^{2}\geq D_{2}^{2}$ and that $m_{1}\leq m_{2}$ if $D_{1}^{2}=D_{2}^{2}$ . Then, by (9), the possibilities
are as follows:

$D_{1}^{2}$ $D_{2}^{2}$
$m_{1}$ $m_{2}$

(i) $-1$ $-1$ 5 5
(ii) $-1$ $-2$ 4 3
(iii) $-1$ $-2$ 6 2
(iv) $-1$ $-3$ 4 2
(v) $-2$ $-2$ 2 3
(vi) $-2$ $-3$ 2 2

For (i), (ii) and (iv), let $Y_{0}=D_{1},$ $Y_{1},$ $\cdots,$ $Y_{k},$ $Y_{k+1}=D_{2}$ denote the chain of curves
in $\tilde{D}$ connecting $D_{1}$ and $D_{2}(k\geq 1)$ , and $l_{j}$ the multiplicity of $Y_{j}$ in $\tilde{D}$ . Since $D_{1}^{2}=-1$ ,
$l_{1}=m_{1}-1$ . Moreover, since $Y_{j}$ is a (-2)-curve for $1\leq j\leq k$, we have $l_{j}-1\geq l_{j+1}$ for
$0\leq j\leq k$ , and so $m_{1}-k-1\geq m_{2}$ . Hence (i) and (ii) are impossible. In (iv) we have $k=1$ ,
hence $\tilde{D}=4D_{1}+3Y_{1}+2D_{2}$ . But then there exists a (-l)-curve $\Gamma$ on $\tilde{X}$ such that $\Gamma Y_{1}>0$

and so $\tilde{D}\Gamma=3$ , which contradicts Lemma 2.1. Replace $D_{1}$ and $D_{2}$ in (iii). Then for
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each ofthe remaining cases we notice that $D_{1}^{2}=-2$ and $m_{1}=2$ . Let $Y_{0},$ $Y_{1},$ $\cdots,$ $Y_{k},$ $Y_{k+1}$

be as above. Then we have $\tilde{D}=2D_{1}+2Y_{1}+\cdots+2Y_{k}+2D_{2}+Y^{\prime}$ , where $Y^{\prime}$ consists of
(-2)-curves and is disjoint from $D_{1},$ $Y_{1},$ $\cdots,$ $Y_{k}$ . Hence only the case (vi) can occur.
Since $D_{2}\tilde{D}=-3,$ $D_{2}Y^{\prime}=1$ , i.e., $Y^{\prime}$ is reduced and irreducible. But then there exists a
(-l)-curve $\Gamma$ on $\tilde{X}$ such that $Y^{\prime}\Gamma=1$ , henoe $\tilde{D}\Gamma$ is odd, contradicting Lemma 2.1.

(3.3). By what we have proved, every connected component $D$ of $\tilde{D}$ is the union
of an elliptic curve and some exceptional rational curves for $\mu$ . Let $F$ be a non-trivial
effective divisor on $\tilde{X}$ with supp $F\subseteqq suppD$ . Then $F=\mu^{*}\overline{F}+\sum_{i=1}^{n}a_{i}E_{i}$ where $\overline{F}=\mu_{*}F$

and $a_{i}\in Z(1\leq i\leq n)$ . Therefore

$p_{a}(F)=\frac{1}{2}(\mu^{*}\overline{F}+\sum_{i=1}^{n}a_{i}E_{i})(\mu^{*}\overline{F}+\sum_{i=1}^{n}a_{i}E_{i}+\sum_{i=1}^{n}E_{i})+1$

$=\frac{1}{2}\overline{F}^{2}+1-\frac{1}{2}\sum_{i=1}^{n}a_{i}(a_{i}+1)$ .

Here $\overline{F}$ is a multiple of an elliptic curve and so $\overline{F}^{2}=0$ by Lemma 2.6. Moreover
$a(a+1)\geq 0$ for any integer $a$ . Hence $p_{a}(F)\leq 1$ , and so the singularity corresponding to
$D$ is elliptic.

\S 4. The case with elliptic singularities.

We continue to use the notations in \S 2 and assume that $\overline{X}$ is either an abelian or
a hyperelliptic surface. To complete our proof of the Theorem, we will deduce a
contradiction under the assumption that every connected component $D$ of $\tilde{D}$ cor-
responds to an elliptic singularity. Recall that then $D$ consists of a non-singular elliptic
curve and possibly some rational curves.

(4.1) Assume that there exists a connected component $D$ of $\tilde{D}$ which contains a
rational curve. This is equivalent to that $X$ has a singularity with $p_{g}\geq 2$ . Set $\tilde{D}=D+D^{\prime}$

and let $D_{1}$ denote the unique elliptic curve in $D$ . Then $D_{1}$ is the minimal elliptic cycle
of $D$ . In general, we note that $\mu_{*}\tilde{D}$ is numerically equivalent to $\mu_{*}\tilde{H}$, and hence is
connected and ample. In particular $D^{\prime}\neq 0$ .

Suppose first that the rational components of $D$ are not connected. Then $D_{1}^{2}\leq-2$

and there are exactly two connected components of rational curves because the number
of blow-ups $n$ is bounded by 5 (Lemma 2.1). If one of them has length $\geq 2$ , then the
equality holds, the other has length 1, and every rational curve in $D$ is a (-2)-curve.
It follows that $D$ can not be contracted to a numerically Gorenstein singularity (Theorem
1.3 (ii)). Hence we have that $D=2D_{1}+Y_{1}+Y_{2}$ , where $Y_{i}$ is a rational curve with
$D_{1}Y_{1}=D_{1}Y_{2}=1,$ $Y_{1}Y_{2}=0$ and $D_{1}^{2}=-2$ , and that the corresponding singularity has a
geometric genus equal to 2 (Theorem 1.3 (i), (iii)). Hence the sum of the geometric
genera of singularities corresponding to $D^{\prime}$ is equal to 3 (Lemma 2.3). Moreover, if
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$Y_{1}^{2}\leq-3$ , then $n=5$ , which contradicts Lemma 2.1. Hence we have $Y_{1}^{2}=Y_{2}^{2}=-2$ , and
so there exist rational curve $s\Gamma_{1}$ and $\Gamma_{2}$ such that $Y_{i}\Gamma_{j}=\delta_{ij}$ . If $n=4$, then $\Gamma_{1}$ and $\Gamma_{2}$

are (-l)-curves. There is on $\tilde{X}$ no rational curve other than $Y_{1},$ $Y_{2},$ $\Gamma_{1}$ and $\Gamma_{2}$ , and
so $D^{\prime}$ consists of three disjoint elliptic curves: $D^{\prime}=D_{2}+D_{3}+D_{4}$ , each of which meets
either $\Gamma_{1}$ or $\Gamma_{2}$ . We may assume that $D_{2}\Gamma_{1}>0$ and $D_{3}\Gamma_{1}>0$ . But then $\mu_{*}D_{2}$ intersects
$\mu_{*}D_{3}$ tangentially, contradicting Lemma 2.6 (v). If $n=5$ , then $\Gamma_{1}$ and $\Gamma_{2}$ are also
(-l)-curves by Lemma 2.1. There is another $(-1)$-curve $\Gamma_{3}$ which is disjoint from $D$ ,
$\Gamma_{1}$ and $\Gamma_{2}$ . Moreover $D^{\prime}=D_{2}+D_{3}+D_{4}$ as before. Since $\tilde{D}\Gamma_{j}=2$ and $D_{i}\Gamma_{j}\leq 1$

$(1\leq i\leq 4,1\leq j\leq 3)$ by Lemma 2.1 and 2.6 (iii), we can assume that the dual graph of
$D_{1},$ $\cdots,$ $D_{4},$ $Y_{1},$ $Y_{2},$ $\Gamma_{1},$ $\Gamma_{2},$ $\Gamma_{3}$ is as follows:

$D\Gamma D\Gamma_{1}YDY_{2}\Gamma D_{4}O-O$

But then we obtain $(\mu_{*}D_{2}+\mu_{*}D_{3})^{2}>0,$ $(\mu_{*}D_{4})^{2}=0$ and $(\mu_{*}D_{2}+\mu_{*}D_{3})(\mu_{*}D_{4})=0$ , a
contradiction to Hodge Index Theorem. It follows that there is a unique rational
component $Y_{1}$ in $D$ which intersects $D_{1}$ .

Suppose that there is a rational curve in $D$ which intersects more than two other
components in $D$ . From Lemma 2.1, we can deduce that the dual graph of $D$ is one of
the following:

(i)
$D_{1^{-}}o_{I_{1^{-O}}^{Y_{2}}}$ $D_{1^{-}}o_{I_{1^{-O}}^{Y_{2}}}-0$

In (ii) we have $n=5$ . Hence all rational components of $D$ are (-2)-curves (Lemma 2.1),

and so there is a unique rational curve $\Gamma$ , which is a (-l)-curve, except the components
of D. $\Gamma$ intersects $Y_{1}$ or $Y_{2}$ , and also every elliptic curve $D_{i}$ in $D^{\prime}$ . Therefore $\mu_{*}D_{1}$ and
$\mu_{*}D_{i}$ can not intersect transversally, which contradicts Lemma 2.6 (v). In (i), if $n=4$ ,

then there is a (-l)-curve $\Gamma$ , which plays a similar role as $\Gamma$ in (ii), and we are led to
a contradiction. Assume $n=5$ . Then every rational component in $\tilde{D}$ is a (-2)-curve,

hence again there is a unique (-l)-curve $\Gamma_{1}$ which intersects $Y_{1}$ or $Y_{2}$ . If $D^{\prime}\Gamma_{1}>0$ , we
get a contradiction as in (ii). If $D^{\prime}\Gamma_{1}=0$ , then there is another (-l)-curve $\Gamma_{2}$ such that
$D_{1}\Gamma_{2}>1,$ $D^{\prime}\Gamma_{2}>0$ . But the multiplicity of $D_{1}$ in $D$ is greater than 1 (Theorem 1.3), and
so we have $D\Gamma_{2}\geq 2$ , hence $\tilde{D}\Gamma_{2}\geq 3$ , which contradicts Lemma 2.1. Therefore we conclude
that $D$ consists of a chain $D_{1},$ $Y_{1},$ $\cdots,$ $Y_{m}(m\geq 1)$ of an elliptic curve $D_{1}$ and rational
curves $Y_{i}$ .

Let $\tilde{D}=\tilde{D}_{1}+\cdots+\tilde{D}_{s}$ be the decomposition of $\tilde{D}$ into its connected components
with $\tilde{D}_{1}=D$ . Let $p_{i}$ denote the geometric genus of the singularity corresponding to $\tilde{D}_{i}$ ,

$D_{i}$ the unique elliptic curve in $\tilde{D}_{i}$ . We note that $D_{i}^{2}=-1$ if $p_{i}\geq 2$ (Corollary 1.5 $(i)$),

and that $D_{i}^{2}\geq-3$ if $p_{i}=1$ , since then $\tilde{D}_{i}=D_{i}$ is to be contracted to a simple elliptic
hypersurface singularity ([Sa]). Set $C_{i}=\mu_{*}D_{i}$ , then $C_{i}$ is also a non-singular elliptic curve.
Recall that $C_{1}+\cdots+C_{s}$ is connected and ample. In particular $s\geq 2$ and there exists $i$
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$(2\leq i\leq s)$ such that $C_{1}C_{i}>0$ . Since $D_{1}^{2}=-1$ , we see that $C_{1}C_{i}=1$ . We may assume that
the point $P_{1}=C_{1}\cdot C_{i}$ is the center of the first blow-up $\mu_{1}$ . By our assumption, the proper
transform $Y_{1}$ on $\tilde{X}$ of $\mu_{1}^{-1}(P_{1})$ is a component of $D$ , and so $D_{i}^{2}\leq-2$ , and hence $p_{i}=1$ .
Suppose that some $p_{j}(2\leq j\leq s)$ is greater than 1. Then we have $C_{1}C_{j}=0$ , and so $C_{i}C_{j}>0$

for any $i$ such that $C_{1}C_{i}>0$ , since $C_{1}+C_{i}$ is ample (or by Lemma 2.6 (iv)). Hence our
assumption that $p_{j}\geq 2$ implies $D_{i}^{2}\leq-4$, which is impossible. Therefore we have $p_{i}=1$

for $2\leq l\leq s$ , and so $p_{1}+s-1=5$ (Lemma 2.3). We may assume that $P_{1}\in C_{i}(1\leq i\leq s_{1})$

and $P_{1}\not\in C_{i}(s_{1}+1\leq i\leq s)$ for some $s_{1}(2\leq s_{1}\leq s)$ . Since $C_{s_{1}+}$ ${}_{1}C_{s}$ are disjoint from
$C_{1}$ , they are also disjoint from each other. Hence $C_{2}\cap(\sum_{i=s}^{s}+1C_{i})$ consists of greater
than or equal to $s-s_{1}$ distinct points. This proves, $w1$ith Corollary 1.5 (ii),
$-3\leq D_{2}^{2}\leq-p_{1}-(s-s_{1})=s_{1}-6$ . On the other hand, if $p_{1}\geq 3$ , then $Y_{1}^{2}=-2$ by
Corollary 1.5 (ii), and so $s_{1}=2$ (cf. Lemma 2.6 $(v)$), which is impossible. Hence we
obtain $p_{1}=2,$ $s=4$ and $3\leq s_{1}\leq 4$ . The last inequality implies $Y_{1}^{2}\leq-3$ and hence $n\leq 4$

(Lemma 2.1). If $s_{1}=3$ , then we have by Theorem 1.3 $\tilde{D}_{1}=2D_{1}+Y_{1}$ with $Y_{1}^{2}=-3$ ,
$D_{2}^{2}=D_{3}^{2}=-3$ and $D_{4}^{2}=-1$ :

$\overline{X}$

If $s_{1}=4$, then $\tilde{D}_{1}=2D_{1}+Y_{1}$ with $Y_{1}^{2}=-4$ and $D_{2}^{2}=D_{3}^{2}=D_{4}^{2}=-2$ :

$\overline{x}$

$\tilde{x}$

In both cases we obtain $\tilde{D}^{2}=-10$ , contradictory to Lemma 2.1.
Thus we proved that $\tilde{D}$ has no rational components.

(4.2) Finally let us consider the case where $\tilde{D}$ consists of disjoint non-singular
elliptic curves. Lemma 2.3 implies that $\tilde{D}$ has five components. Set $\tilde{D}=\sum_{i=1}^{5}D_{i}$ and
$C=\mu_{*}D=\sum_{i=1}^{5}C_{i}$ where $C_{i}=\mu_{*}D_{i}$ . $C_{i}$ and $D_{i}$ are non-singular elliptic curves $(1 \leq i\leq 5)$ ,
$D_{i}’ s$ are disjoint, but $C$ is connected. Let $P_{i}(1\leq i\leq n)$ denote the center of the blow-up
$\mu_{i}$ . Then, by Lemma 2.2 and 2.6 (v), $P_{1},$ $\cdots,$ $P_{n}$ are not infinitely near each other, hence
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we may regard them as distinct points on $\overline{X}$. Set $k_{i}=mult_{P_{i}}C$. Then $k_{i}$ is equal to the
number of curves $C_{j}$ which pass through $P_{i}$ . Lemma 2.2 says $k_{i}\geq 2(1\leq i\leq n)$ , and we
may assume $5\geq k_{1}\geq k_{2}\geq\cdots\geq k_{n}\geq 2$ .

With these notations we have first from Lemma 2.1

$\sum_{i=1}^{n}k_{i}=n+5$ (11)

since $-n-5=\tilde{D}^{2}=\sum_{j=1}^{5}D_{j}^{2}=\sum_{j=1}^{5}C_{j}^{2}-\sum_{i=1}^{n}k_{i}=-\sum_{i=1}^{n}k_{i}$ . Next, let us show that
$C_{i}C_{j}>0$ for any $i,j(i\neq j)$ . Let $s$ denote the maximal number of components in $C$, which
are disjoint each other. We may assume that $C_{1},$ $\cdots,$ $C_{s}$ are disjoint. Lemma 2.6 (iv)
implies $C_{j}\equiv q_{j}C_{1}$ for $2\leq j\leq s$, where $q_{j}$ are some positive rational numbers. Hence we
obtain by (11)

$s(5-s)\leq(\sum_{j=1}^{s}c_{j})(\sum_{j=s+1}^{5}c_{j})$

$=\sum_{ji_{i}=}(k_{i}-1)\leq\sum_{i=1}^{n}(k_{i}-1)=5$ ,

and so $s=1,4$ or 5. If $s=5$ , then $C$ is not connected, which is excluded. If $s=4$ , then
$C_{5}$ meets $C_{1},$ $C_{2},$ $C_{3}$ and $C_{4}$ , and hence $D_{5}^{2}\leq-4$ , which is impossible since $D_{5}$

corresponds to a simple elliptic hypersurface singularity. Therefore $s=1$ as required.
Now we shall derive a contradiction for each $n$ ( $1\leq n\leq 5$ by Lemma 2.1) from what

we have proved.
$n=1$ : Clear since then $5\geq k_{1}=n+5=6$ .
$n=2$ : We have two possibilities: (i) $k_{1}=5,$ $k_{2}=2$ ; (ii) $k_{1}=4,$ $k_{2}=3$ . In (i), all $C_{i}$

pass through $P_{1}$ and we may assume that $P_{2}\in C_{1},$ $C_{2}$ and $P_{2}\not\in C_{3},$ $C_{4},$ $C_{5}$ . Then the
intersection form of $C_{1},$ $\cdots,$ $C_{5}$ is as follows:

$(C_{i}C_{j})=\left\{\begin{array}{llll} & 021 & 1 & 1\\0 & 21 & 1 & 1\\ & 110 & 1 & 1\\11 & 1 & 0 & 1\\11 & 1 & 1 & 0\end{array}\right\}$ ,

which is clearly non-degenerate. But the Picard number of $\overline{X}$ is not greater than 4 since
$\overline{X}$ is an abelian or a hyperelliptic surface, and so we get a contradiction. In (ii), we may
assume that $P_{1}\not\in C_{1}$ , but then $C_{1}$ must meet every $C_{i}(2\leq i\leq 5)$ away from $P_{1}$ , that is
at $P_{2}$ , a contradiction.

$n=3$ : There are two possibilities: (i) $k_{1}=4,$ $k_{2}=k_{3}=2$ ; (ii) $k_{1}=k_{2}=3,$ $k_{3}=2$ . In
both cases we may assume $P_{1}\not\in C_{1}$ , and hence $C_{1}$ meets every $C_{i}(2\leq i\leq 5)$ at $P_{2}$ or $P_{3}$ ,

which is impossible for $k_{2},$ $k_{3}<5$ and $k_{2}+k_{3}<6$ .
$n=4$ : We have $k_{1}=3,$ $k_{2}=k_{3}=k_{4}=2$ . Assuming $P_{1}\not\in C_{1}$ , we see that $C_{1}$ should

meet every $C_{i}(2\leq i\leq 5)$ at either $P_{2},$ $P_{3}$ or $P_{4}$ , which is also impossible.
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$n=5$ : In this last case, $wehavek_{1}=\cdots=k_{5}=2andsothefivecurvesC_{1},$ $\cdots,$ $C_{5}$

should meet each other at only five points $P_{1},$ $\cdots,$ $P_{5}$ with multiplicity 2, which is absurd.
Thus we have completed our proof of the Main Theorem.
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