Nonexistence of Normal Quintic Abelian Surfaces in $\boldsymbol{P}^{\mathbf{3}}$

Iku NAKAMURA and Yumiko UMEZU

Hokkaido University and Toho University
(Communicated by S. Endo)

Introduction.

Normal surfaces X_{d} of degree d in the complex projective 3-space \boldsymbol{P}^{3} have simple birational structure if d is small: X_{1} and X_{2} are rational, and X_{3} is birationally equivalent to a ruled surface (for further details, see [B-W], [H-W]), since in general $K_{X_{d}} \simeq$ $\mathcal{O}_{X_{d}}(d-4)$. Moreover X_{4} is birationally equivalent to either a ruled or a K3 surface ([Um1]).

To the contrary, various X_{d} may occur if $d \geq 5$. If the singularity of X_{d} is mild, then X_{d} is birationally equivalent to a surface of general type, while X_{d} may be birationally equivalent to a ruled surface if it has severe singularity. Moreover there are examples of X_{5} which are birationally equivalent to K3 surfaces, Enriques surfaces or general elliptic surfaces ([I], [Yan], [St], [K], [Um2], [Um3], [Um4]). This leads us to the question whether there exists an X_{d} which is birationally an abelian or a hyperelliptic surface or not. The purpose of this note is to answer this question in the case of $d=5$. We prove:

Main Theorem. No normal quintic surface in $\boldsymbol{P}^{\mathbf{3}}$ is birationally equivalent to an abelian or a hyperelliptic surface.

Our proof of the theorem goes as follows. First we note that if a normal quintic surface $X=X_{5}$ is birationally an abelian or a hyperelliptic surface, then its minimal resolution \tilde{X} is an at most 5 -fold blowing-up $\mu: \tilde{X} \rightarrow \bar{X}$ of the non-singular minimal model \bar{X}. On the other hand, the pull-back of K_{X} to \tilde{X} minus $K_{\tilde{X}}$ is an effective divisor \tilde{D}, which reflects the property of the singularity of X fairly well. Such property of \tilde{D} and the condition of $\mu_{*} \tilde{D}$ as a divisor on an abelian or hyperelliptic surface finally lead us in every case to a contradiction.

Conjecture. No normal hypersurface in $\boldsymbol{P}^{\mathbf{3}}$ is birationally equivalent to an abelian surface.

Also for hyperelliptic surfaces we raise:

[^0]Revised December 6, 1994

Problem. Are there normal hypersurfaces in $\boldsymbol{P}^{\mathbf{3}}$ which are birationally hyperelliptic surfaces?

§ 1. Preliminaries.

In this section we summarize some results from local theory of surface singularity, which we will use later.

Let (Y, y) be a numerically Gorenstein normal surface singularity, $\pi: \tilde{Y} \rightarrow Y$ its minimal resolution and A the exceptional set: $A=\pi^{-1}(y)$. Then there is an effective divisor D with $\operatorname{supp} D \subseteq A$ such that $\omega_{\tilde{Y}} \equiv \mathcal{O}_{\tilde{Y}}(-D)$. Let p_{a} or p_{g} stand for the arithmetic or the geometric genus of (Y, y) respectively. By definition ([W]),

$$
p_{a}=\sup _{\substack{D \\ \operatorname{supp}\left(D^{\prime}\right) \subseteq A}} p_{a}\left(D^{\prime}\right), \quad p_{g}=\operatorname{dim} R^{1} \pi_{*} \mathcal{O}_{\tilde{Y}}
$$

It is known (cf. [A]) that the following conditions are equivalent:
(i) $D \neq 0$ (ii) $\operatorname{supp} D=A$ (iii) $p_{a}>0$ (iv) $p_{g}>0$.

Lemma 1.1 (Y. Koyama). $p_{a} \leq-D^{2} / 8+1$. In particular, if $D^{2} \geq-7$, then $p_{a} \leq 1$.
Proof. See [Um5].
Remark 1.2. If $D^{2}=-8$ and $p_{a}=2$, then $D / 2$ is an integral and the unique divisor on A whose arithmetic genus is equal to 2 .

In what follows (except for Corollary 1.5) we assume moreover that $\boldsymbol{p}_{a}=1$, i.e. our singularity (Y, y) is elliptic ([W]). Then Yau (for the minimal good resolution) and Tomari (for any resolution) defined the elliptic sequence $\left\{Z_{1}, \cdots, Z_{l}\right\}$ as follows: Let E denote the minimal elliptic cycle of Laufer [L], i.e., E is the minimal effective divisor such that $\operatorname{supp} E \subseteq A$ and $p_{a}(E)=1$. For Z_{1} we take the fundamental cycle. Suppose that we have defined Z_{1}, \cdots, Z_{k}. If $Z_{k} E<0$, we define $\left\{Z_{1}, \cdots, Z_{k}\right\}$ as the elliptic sequence: $l=k$. Assume $Z_{k} E=0$. Then let B_{k+1} denote the connected component containing E of the sum of the components A_{i} of A satisfying $Z_{k} A_{i}=0$. We define Z_{k+1} to be the fundamental cycle of B_{k+1}. Since $\operatorname{supp} Z_{k}$ 雨 $\operatorname{supp} Z_{k+1}$, the elliptic sequence $\left\{Z_{1}, \cdots, Z_{l}\right\}$ is defined as a finite sequence. The following results for the minimal resolution will play an important role later.

Theorem 1.3 ([T], [Yau]). $\begin{array}{lll}\text { (i) } D=\sum_{i=1}^{l} Z_{i} \text {. } & \text { (ii) } Z_{l}=E . & \text { (iii) } p_{g} \leq l .\end{array}$
From this theorem, we obtain the following
Corollary 1.4. $p_{g} \leq-D^{2}$.
COROLlary 1.5. Let (Y, y) be a numerically Gorenstein normal surface singularity of geometric genus p_{g}, and $\pi: \tilde{Y} \rightarrow Y$ its minimal resolution. Assume that the exceptional set $\pi^{-1}(y)$ consists of a chain of curves $A_{0}=E, A_{1}, \cdots, A_{m}(m \geq 1)$ with $p_{a}(E)=1, p_{a}\left(A_{i}\right)=0$
$(1 \leq i \leq m)$. Then we have
(i) $E^{2}=-1$,
(ii) $m \geq p_{g}-1$ and $A_{i}^{2}=-2$ for $1 \leq i \leq p_{g}-2$.

Proof. The fundamental cycle Z_{1} coincides with $\pi^{-1}(y)$ with reduced structure, hence $p_{a}\left(Z_{1}\right)=1$, and so (Y, y) is an elliptic singularity ([W]). Then E is the minimal elliptic cycle. Theorem 1.3 implies that for every i, Z_{i} contains more than $p_{g}-i$ components. In particular, for $i=1$, we get $m \geq p_{g}-1$; for $i=2, Z_{1} E=0$ and $Z_{1} A_{i}=0$ ($1 \leq i \leq p_{g}-2$), which proves $E^{2}=-1$ and $A_{i}^{2}=-2\left(1 \leq i \leq p_{g}-2\right)$.

§2. Properties of divisors on the resolution.

Let X be a normal quintic surface in \boldsymbol{P}^{3}. Let $\pi: \tilde{X} \rightarrow X$ denote the minimal resolution of X, H a general hyperplane section of X and \tilde{H} its pull-back on \tilde{X}. Then there exists a unique effective divisor \tilde{D} on \tilde{X} such that $K_{\tilde{X}}=\tilde{H}-\tilde{D}$. This divisor \tilde{D} is supported on the exceptional sets of π which correspond to singularities with positive geometric genus. Let $\mu: \tilde{X}=X_{n} \xrightarrow{\mu_{n}} X_{n-1} \xrightarrow{\mu_{n-1}} \cdots \xrightarrow{\mu_{1}} X_{0}=\bar{X}$ be the sequence of blowdowns obtaining a non-singular minimal model \bar{X} of $\tilde{X}, \mu_{i}^{\prime}$ the induced morphism $\tilde{X} \rightarrow X_{i}$ ($0 \leq i \leq n$), and $E_{i}(1 \leq i \leq n)$ the total transform on \tilde{X} of the exceptional curve of the blow-up μ_{i}. In what follows we fix our notations as above and assume moreover that \bar{X} is either an abelian or a hyperelliptic surface.

Lemma 2.1. $\tilde{D}^{2}=-n-5$ and $1 \leq n \leq 5$. Moreover, if $n=5$ and if Γ is a rational curve on \tilde{X}, then either
(i) $\tilde{H} \Gamma=1$ (Γ is not exceptional for π), $\tilde{D} \Gamma=2, \Gamma^{2}=-1$, or
(ii) $\tilde{H} \Gamma=0(\Gamma$ is exceptional for $\pi), \tilde{D} \Gamma=0, \Gamma^{2}=-2$.

Proof. Since \bar{X} has a numerically trivial canonical bundle, $-n=K_{\tilde{X}}^{2}=(\tilde{H}-\tilde{D})^{2}=$ $5+\tilde{D}^{2}$, and hence $\tilde{D}^{2}=-n-5$. Since each E_{i} contains at least one (-1)-curve and \tilde{X} is the minimal resolution, we have $\tilde{H} E_{i}>0$, and so $5=\tilde{H}^{2}=\tilde{H}(\tilde{H}-\tilde{D})=\tilde{H} K_{\tilde{X}}=$ $\sum_{i=1}^{n} \tilde{H} E_{i} \geq n . n \geq 1$ since $\tilde{H}-\tilde{D} \not \equiv 0$. Note that any rational curve on \tilde{X} is a component of E_{i} for some i since \bar{X} contains no rational curve. Assume $n=5$. Then $\tilde{H} E_{i}=1(1 \leq i \leq 5)$. Hence, for each i, there exists a unique component Γ_{i} in E_{i}, with multiplicity 1 , such that $\tilde{H} \Gamma_{i}=1$, and other components of E_{i} are exceptional for π and so have non-positive intersection number with \tilde{D}. Since Γ_{i} is a (-1)-curve, $-1=K_{\tilde{X}} \Gamma_{i}=(\tilde{H}-\tilde{D}) \Gamma_{i}$, hence $\tilde{D} \Gamma_{i}=2$. By $-1=K_{\tilde{X}} E_{i}=K_{\tilde{X}} \Gamma_{i}+K_{\tilde{X}}\left(E_{i}-\Gamma_{i}\right)=-1+\tilde{D}\left(E_{i}-\Gamma_{i}\right)$, we see that any component Γ in $E_{i}-\Gamma_{i}$ satisfies $\tilde{D} \Gamma=0$ and so $\Gamma^{2}=-2$.

Lemma 2.2. For each $i(1 \leq i \leq n)$, the center of the blow-up μ_{i} lies on the singular locus of $\left(\mu_{i-1}^{\prime}\right)_{*} \tilde{D}$.

Proof. Since $-1=K_{\tilde{X}} E_{i}=\tilde{H} E_{i}-\tilde{D} E_{i}$ and $\tilde{H} E_{i}>0$, we have $\tilde{D} E_{i} \geq 2$, which implies the Lemma.

Lemma 2.3. $\operatorname{dim} R^{1} \pi_{*} \mathcal{O}_{\tilde{X}}=5$.
Proof. From the exact sequence accociated with the Leray spectral sequence:

$$
0 \rightarrow H^{1}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{1}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right) \rightarrow R^{1} \pi_{*} \mathcal{O}_{\tilde{X}} \rightarrow H^{2}\left(X, \mathcal{O}_{X}\right) \rightarrow H^{2}\left(\tilde{X}, \mathcal{O}_{\tilde{X}}\right) \rightarrow 0
$$

we have $\operatorname{dim} R^{1} \pi_{*} \mathcal{O}_{\tilde{X}}=4+q(\tilde{X})-p_{g}(\tilde{X})=5$.
Corollary 2.4. Let $\tilde{D}=\tilde{D}_{1}+\cdots+\tilde{D}_{s}$ be the decomposition of \tilde{D} into its connected components. Then

$$
\sum_{i=1}^{s} h^{0}\left(\mathcal{O}_{\tilde{D}_{i}}\right)=5 .
$$

Proof. Let y_{i} denote the singular point on X, which is obtained by contracting \tilde{D}_{i}. Let $Y_{i} \subset X$ be a Stein neighbourhood of $y_{i}, \tilde{Y}_{i}=\pi^{-1}\left(Y_{i}\right)$ and $\pi_{i}=\pi_{\mid} \tilde{Y}_{i}$. Note that $\omega_{\tilde{Y}_{i}} \simeq \mathcal{O}_{\tilde{Y}_{i}}\left(-\tilde{D}_{i}\right)$. Then we have $h^{0}\left(\mathcal{O}_{\tilde{D}_{i}}\right)=\operatorname{dim} R^{1}\left(\pi_{i}\right)_{*} \mathcal{O}_{\tilde{Y}_{i}}$, so that the Corollary follows from Lemma 2.3. In fact, consider the natural exact sequence:

$$
H^{1}\left(\mathcal{O}_{\tilde{Y}_{i}}\left(-\tilde{D}_{i}\right)\right) \rightarrow H^{1}\left(\mathcal{O}_{\tilde{Y}_{i}}\right) \rightarrow H^{1}\left(\mathcal{O}_{\tilde{D}_{i}}\right) \rightarrow 0 .
$$

We see that the first term vanishes by Grauert-Riemenschneider's theorem. The second term is isomorphic to $R^{1}\left(\pi_{i}\right)_{*} \mathcal{O}_{\tilde{Y_{i}}}$, and the third is dual to $H^{0}\left(\mathcal{O}_{D_{i}}\right)$.

Lemma 2.5. Let D be a connected divisor on \tilde{X} with negative intersection matrix. If all irreducible components of D are rational curves, then the contraction of D is at worst rational singularity.

Proof. Since \bar{X} contains no rational curve, the support of D is contained in a divisor which is contracted to a non-singular point (by μ). Hence the geometric genus of the contraction of D vanishes.

Lemma 2.6. Let C and C^{\prime} be irreducible curves on an abelian surface [resp. a hyperelliptic surface] S. Then
(i) C^{2} is an even non-negative integer,
(ii) $C^{2}=0$ if and only if C is a non-singular elliptic curve,
(iii) if the desingularization of C is an elliptic curve, then C itself is smooth,
(iv) if $C C^{\prime}=0$, then $C^{2}=C^{\prime 2}=0$ and C and C^{\prime} are algebraically equivalent [resp. if $C C^{\prime}=0$, then $C^{2}=C^{\prime 2}=0$ and $C \equiv q C^{\prime}$ for some positive $\left.q \in Q\right]$,
(v) if C and C^{\prime} are elliptic curves, then they intersect transversally.

Proof. Since S has trivial or numerically trivial canonical sheaf, $p_{a}(C)=C^{2} / 2+1$. Moreover S contains no rational curves, whence (i) and (ii). For (iii)-(v), we first assume that S is an abelian surface. Then (iii) is a special case of [Ue, Theorem 10.3]. (iv) If $C C^{\prime}=0$, then neither C nor C^{\prime} is ample, and so $C^{2}=C^{\prime 2}=0$. Moreover C^{\prime} is a fiber of the quotient morphism $S \rightarrow S / C$. Hence C and C^{\prime} are algebraically equivalent. Finally, if two elliptic curves C and C^{\prime} intersect, then the morphism $C^{\prime} \rightarrow S / C$ is finite and
unramified, and hence (v). Suppose next that S is a hyperelliptic surface. Then there is a finite unramified covering $f: \tilde{S} \rightarrow S$ where \tilde{S} is an abelian surface. Notice that any unramified cover of an elliptic curve is a disjoint union of elliptic curves. Hence (v) is clear. (iii) Let $\tilde{C} \rightarrow C$ denote the desingularization of C. Then $\tilde{S} \times{ }_{S} \tilde{C}$ is the resolution of $f^{-1}(C)$. Since $\tilde{S} \times_{S} \tilde{C}$ is a disjoint union of non-singular elliptic curves, we see that $f^{-1}(C)$ itself is non-singular, and hence so is C. (iv) The former part is proved in the same way as in the abelian case. Moreover, $C^{2}=C^{\prime 2}=0$ and $C C^{\prime}=0$ mean that [C] and [C^{\prime}] are not linearly independent in $N S(S) \otimes Q$.

§3. Reduction to the case with only elliptic singularities.

We use the notations in $\S 2$, and assume that \bar{X} is either an abelian or a hyperelliptic surface. In this section we will prove that there exists on X no singularity with arithmetic genus greater than 1. We first notice by Lemma 2.5 that every connected component of \tilde{D} contains a non-rational curve.
(3.1) Assume that there exists in \tilde{D} an irreducible curve D_{1} with $p_{a}\left(D_{1}\right) \geq 2$. Let D denote the connected component of \tilde{D} containing D_{1} and D^{\prime} the sum of the other components: $\tilde{D}=D+D^{\prime}$. By Lemma 1.1 and 2.1 , we have $-10 \leq D^{2} \leq-8$ and the arithmetic genus of the singularity corresponding to D is equal to 2 . Hence, by Lemma 2.6 (iii), D_{1} is a non-singular curve of genus 2 and the other components of D, if exist, are all non-singular rational curves. Since $0 \geq D^{\prime 2} \geq-2$, all singular points corresponding to D^{\prime} are elliptic singularities.

Case 3.1.1. $D^{2}=-8$: Remark 1.2 says that $D=2 D_{1}$ and $D_{1}^{2}=-2$. The exact sequence

$$
0 \rightarrow \mathcal{O}_{D_{1}}\left(-D_{1}\right) \rightarrow \mathcal{O}_{2 D_{1}} \rightarrow \mathcal{O}_{D_{1}} \rightarrow 0
$$

shows

$$
h^{0}\left(\mathcal{O}_{D}\right)=h^{0}\left(\mathcal{O}_{D_{1}}\left(-D_{1}\right)\right)+h^{0}\left(\mathcal{O}_{D_{1}}\right)=h^{0}\left(\omega_{D_{1}}\right)+1=3 .
$$

Hence, by Corollary 2.4 and its proof, it follows that D^{\prime} corresponds to either one singular point with geometric genus equal to 2 or two singular points both of which have geometric genus 1. Hence $D^{\prime 2}=-2, n=5$ (Corollary 1.4 and Lemma 2.1). By Lemma 2.6, we have $\left(\mu_{*} D\right)^{2}>0$ and $\left(\mu_{*} D\right)\left(\mu_{*} D^{\prime}\right)>0$ and so there is a chain of rational curves $\Gamma_{1}, \cdots, \Gamma_{k}$ on \tilde{X} such that $\Gamma_{i} \notin \tilde{D}(1 \leq i \leq k)$ and $\Gamma_{1} D_{1}>0, \Gamma_{k} D^{\prime}>0$. Both Γ_{1} and Γ_{k} are not exceptional for π, and hence are (-1)-curves by Lemma 2.1. For $2 \leq i \leq k-1$, Γ_{i} is either a (-1)-curve or else an exceptional curve for π, i.e., a (-2)-curve. Therefore it turns out that $k=1$: there exists a (-1)-curve Γ such that $\tilde{D} \Gamma=\left(2 D_{1}+D^{\prime}\right) \Gamma \geq 3$, which contradicts Lemma 2.1.

Case 3.1.2. $\quad D^{2}=-9$: Let $D=m D_{1}+Y\left(Y \nsupseteq D_{1}\right)$. Since $2=p_{a}\left(D_{1}\right)=\left(D_{1}^{2}-D_{1} D\right) / 2$ +1 ,

$$
\begin{equation*}
D_{1} D=D_{1}^{2}-2 \leq-3 . \tag{1}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
-9=D^{2}=m D_{1} D+Y D \leq m D_{1} D=m\left(D_{1}^{2}-2\right) \leq-3 m, \tag{2}
\end{equation*}
$$

and so

$$
1 \leq m \leq 3
$$

If $m=1$, then $D_{1} D=D_{1}^{2}+D_{1} Y \geq D_{1}^{2}$, which contradicts (1).
If $m=2$, then, by (1), $-3 \geq D_{1} D=2 D_{1}^{2}+D_{1} Y$ and so $D_{1}^{2} \leq-2$. Hence $D_{1}^{2}=-2$ by (2). Hence, using (1), we have

$$
D_{1} Y=D_{1} D-2 D_{1}^{2}=D_{1}^{2}-2-2 D_{1}^{2}=0 .
$$

This implies $Y=0$ and so $D^{2}=\left(2 D_{1}\right)^{2}=-8$, a contradiction.
Assume $m=3$. Then $D_{1}^{2}=-1$ by (2) and hence $D_{1} Y=D_{1} D-3 D_{1}^{2}=0$ by (1), i.e. $Y=0: D=3 D_{1}$. Therefore

$$
h^{0}\left(\mathcal{O}_{D}\right) \leq h^{0}\left(\mathcal{O}_{D_{1}}\left(-2 D_{1}\right)\right)+h^{0}\left(\mathcal{O}_{2 D_{1}}\right)=h^{0}\left(\omega_{D_{1}}\right)+h^{0}\left(\mathcal{O}_{D_{1}}\left(-D_{1}\right)\right)+h^{0}\left(\mathcal{O}_{D_{1}}\right) \leq 4 .
$$

Hence we have $D^{\prime} \neq 0, n=5$, and are led to a contradiction as in Case 3.1.1.
Case 3.1.3. $\quad D^{2}=-10$: In this case $D=\tilde{D}$ and $n=5$. We set $\tilde{D}=m D_{1}+Y$ as before, where $\tilde{D} Y=0$ and Y consists of (-2)-curves by Lemma 2.1. Note that (1) in the previous case holds as well. Hence we have

$$
-10=\tilde{D}^{2}=m D_{1} \tilde{D}=m\left(D_{1}^{2}-2\right) \leq-3 m,
$$

therefore $m=1$ or 2 .
If $m=1$, then $D_{1} \tilde{D}=-10$ and $D_{1}^{2}=-8$, which is impossible because $D_{1} \tilde{D}=$ $D_{1}^{2}+D_{1} Y \geq D_{1}^{2}$.

If $m=2$, then $D_{1} \tilde{D}=-5$ and $D_{1}^{2}=-3$, hence $\tilde{D}=2 D_{1}+Y$ and $D_{1} Y=1$. This implies that Y is a reduced irreducible (-2)-curve. But then we calculate

$$
h^{0}\left(\mathcal{O}_{\tilde{D}}\right)=h^{0}\left(\mathcal{O}_{D_{1}}\left(-D_{1}-Y\right)\right)+h^{0}\left(\mathcal{O}_{D_{1}+\boldsymbol{Y}}\right)=h^{0}\left(\omega_{D_{1}}\right)+1=3,
$$

and so get a contradiction with Corollary 2.4.
Hence we have proved with Lemma 2.6 that every non-rational component of \tilde{D} is a non-singular elliptic curve.
(3.2) Suppose that \tilde{D} has a connected component D which contains two distinct non-singular elliptic curves D_{1} and D_{2}. Then D corresponds to a singularity with $p_{a}=2$ (Lemma 1.1). We set $\tilde{D}=D+D^{\prime}$.

Case 3.2.1. $\quad D^{2}=-8$: We can show a contradiction in a similar way as in Case 3.1.1, by taking a chain of reduced curves in D connecting D_{1} and D_{2} instead of D_{1}.

Case 3.2.2. $\quad D^{2}=-9$: Set $D=m_{1} D_{1}+m_{2} D_{2}+Y, Y \nsupseteq D_{1}, D_{2}$.
From

$$
D_{i}^{2}=D_{i} D=m_{i} D_{i}^{2}+m_{j} D_{1} D_{2}+D_{i} Y
$$

we have

$$
\begin{equation*}
\left(1-m_{i}\right) D_{i}^{2}=m_{j} D_{1} D_{2}+D_{i} Y \tag{3}
\end{equation*}
$$

where $\{i, j\}=\{1,2\}$. Since D is connected, the right hand side of (3) is positive, and so $m_{i} \geq 2(i=1,2)$. Also we have

$$
\begin{equation*}
m_{1} D_{1}^{2}+m_{2} D_{2}^{2}=\left(m_{1} D_{1}+m_{2} D_{2}\right) D=D^{2}-D Y \geq D^{2}=-9 . \tag{4}
\end{equation*}
$$

Consider first the case of $D_{1} D_{2}>0$. Then $D_{1} D_{2}=1$ since $p_{a}=2$.
We first show that $D_{i}^{2} \leq-2(i=1,2)$. Assume to the contrary, say $D_{1}^{2}=-1$. Then (3) is reduced to

$$
\begin{align*}
& m_{1}-1=m_{2}+D_{1} Y, \tag{5}\\
& \left(1-m_{2}\right) D_{2}^{2}=m_{1}+D_{2} Y,
\end{align*}
$$

hence

$$
\begin{equation*}
\left(1-m_{2}\right) D_{2}^{2}=m_{2}+1+\left(D_{1}+D_{2}\right) Y \tag{6}
\end{equation*}
$$

From (5), we get $m_{1} \geq m_{2}+1$. (6) implies $D_{2}^{2} \leq-2$, but if $D_{2}^{2}=-2$, then $m_{2} \geq 3$, and so $m_{1} \geq 4$, which contradicts (4). Therefore the unique possibility is $D_{2}^{2}=-3, m_{1}=3, m_{2}=2$ and $D_{1} Y=D_{2} Y=0$, i.e. $D=3 D_{1}+2 D_{2}$ with $D_{1}^{2}=-1, D_{2}^{2}=-3$. But then we have

$$
\begin{aligned}
h^{0}\left(\mathcal{O}_{D}\right) \leq & h^{0}\left(\mathcal{O}_{D_{1}}\left(-2 D_{1}-2 D_{2}\right)\right)+h^{0}\left(\mathcal{O}_{D_{2}}\left(-2 D_{1}-D_{2}\right)\right)+h^{0}\left(\mathcal{O}_{D_{1}}\left(-D_{1}-D_{2}\right)\right) \\
& +h^{0}\left(\mathcal{O}_{D_{1}+D_{2}}\right) \leq 4 .
\end{aligned}
$$

Hence it follows $D^{\prime} \neq 0$ and $n=5$, and then a contradiction as in Case 3.1.1. Thus we obtain $D_{1}^{2}, D_{2}^{2} \leq-2$.

By (4) we have $D_{1}^{2}=D_{2}^{2}=-2, m_{1}=m_{2}=2$ and $D Y=-1$. But then (3) implies $D_{1} Y=D_{2} Y=0$ and hence $Y=0$, a contradiction.

Therefore we obtain $D_{1} D_{2}=0$, in particular $D_{1} Y>0, D_{2} Y>0$. Then, by (3),

$$
\begin{equation*}
\left(1-m_{i}\right) D_{i}^{2}=D_{i} Y \quad(i=1,2) . \tag{7}
\end{equation*}
$$

If $D_{1} Y=1$, then $m_{1}=2, D_{1}^{2}=-1$, and there exists a unique component Y_{1} of Y such that $Y_{1} D_{1}=1$ and that the multiplicity of Y_{1} in Y is 1 . Therefore

$$
\begin{aligned}
-2=Y_{1}^{2}-Y_{1} D & =Y_{1}\left(-2 D_{1}-m_{2} D_{2}-\left(Y-Y_{1}\right)\right) \\
& =-2-Y_{1}\left(m_{2} D_{2}+\left(Y-Y_{1}\right)\right)<-2 .
\end{aligned}
$$

Hence $D_{1} Y \geq 2, D_{2} Y \geq 2$.
Suppose $D_{i}^{2}=-1$. Then, since $\left(\mu_{*} D_{i}\right)^{2}=0$ (Lemma 2.6 (ii), (iii)), there exists a
unique component Y_{i} of Y such that $D_{i} Y_{i}=1$ and every other component of Y is disjoint from D_{i}. Moreover, we see from (7) that the multiplicity of Y_{i} in Y is $m_{i}-1$, and that $m_{i} \geq 3$ since $D_{i} Y \geq 2$. We note that $\left(\mu_{*} D_{1}\right)\left(\mu_{*} D_{2}\right)>0$. Hence, if furthermore $D_{1}^{2}=D_{2}^{2}=-1$, we get $m_{1}=m_{2} \geq 3$ because in this situation $Y_{1}=Y_{2}$ in the notation above. Therefore, assuming $D_{1}^{2} \geq D_{2}^{2}$ in general, we have by (4) and (7) that there are the following possibilities:

	D_{1}^{2}	D_{2}^{2}	m_{1}	m_{2}	$D Y$
(i)	-1	-1	3	3	-3
(ii)	-1	-1	4	4	-1
(iii)	-1	-2	3	2	-2
(iv)	-1	-2	3	3	0
(v)	-1	-3	3	2	0
(vi)	-1	-2	4	2	-1
(vii)	-1	-2	5	2	0
(viii)	-2	-2	2	2	-1

In (i) and (ii), there is a curve Y_{1} of multiplicity $m_{1}-1 \geq 2$ in Y with $D_{1} Y_{1}=$ $D_{2} Y_{1}=1$. Note that $Y_{1}^{2} \leq-3$, since if $Y_{1}^{2}=-2$ then $0=D Y_{1} \geq 2 m_{1}+\left(m_{1}-1\right)(-2)=2$. Hence (ii) is impossible, and in (i) we have $Y_{1}^{2}=-3$ by $D Y=-3$. But then $-1=D Y_{1} \geq$ $2 m_{1}+\left(m_{1}-1\right)(-3)=0$. In (iv) and (v), all components of Y are (-2)-curves. There is a component Y_{1} with multiplicity $m_{1}-1=2$ in Y and $D_{1} Y_{1}=1$. Hence $\left(D-3 D_{1}-2 Y_{1}\right) Y_{1}=1$, and so there is a unique component Y_{2} with multiplicity 1 in Y such that $Y_{1} Y_{2}=1$. This implies $D=3 D_{1}+2 Y_{1}+Y_{2}$, which is absurd. In (vi)-(viii), where $D_{2}^{2}=-2$ and $m_{2}=2$, there is a curve Y_{2} of multiplicity 2 in Y with $D_{2} Y_{2}=1$. Since $D Y \geq-1, Y_{2}$ is a (-2)-curve. Hence there is a unique curve Y_{3} in $D-2 D_{2}-2 Y_{2}$ of multiplicity 2 in it with $Y_{2} Y_{3}=1, Y_{3}$ is a (-2)-curve if $Y_{3} \leq Y$. Proceeding in this way, we find in (vi) and (vii) an infinite sequence Y_{2}, Y_{3}, \cdots in Y; in (viii) $D=2\left(D_{2}+Y_{2}+\cdots+D_{1}\right)$, contradicting $D^{2}=-9$. Therefore it only remains the case (iii). Since then also $D_{2}^{2}=-2$ and $m_{2}=2$, we can start from D_{2} in the same way as above and deduce $D=3 D_{1}+2 Y_{1}+\cdots+2 Y_{k}+2 D_{2}$, where $k \geq 1, Y_{1}^{2}=-3, Y_{2}^{2}=\cdots$ $=Y_{k}^{2}=-2$ and $D_{1}, Y_{1}, \cdots, Y_{k}, D_{2}$ form a chain. Hence we obtain

$$
\begin{aligned}
h^{0}\left(\mathcal{O}_{D}\right) \leq & h^{0}\left(\mathcal{O}_{D_{1}}\left(-2 D_{1}-2 Y_{1}-\cdots-2 Y_{k}-2 D_{2}\right)\right) \\
& +h^{0}\left(\mathcal{O}_{D_{1}+Y_{1}+\cdots+Y_{k}+D_{2}}\left(-D_{1}-Y_{1}-\cdots-D_{2}\right)\right)+h^{0}\left(\mathcal{O}_{D_{1}+Y_{1}+\cdots+Y_{k}+D_{2}}\right) \\
\leq & 4,
\end{aligned}
$$

and so $D^{\prime} \neq 0, n=5$, hence a contradiction as in Case 3.1.1.
Case 3.2.3. $\quad D^{2}=-10$: Note first that $D=\tilde{D}$ and $n=5$. Set $\tilde{D}=m_{1} D_{1}+m_{2} D_{2}+Y$ as in Case 3.2.2. Then we have as before

$$
\begin{align*}
& \left(1-m_{i}\right) D_{i}^{2}=m_{j} D_{1} D_{2}+D_{i} Y, \quad\{i, j\}=\{1,2\}, \\
& m_{1}, m_{2} \geq 2, \tag{8}
\end{align*}
$$

and since Y consists of (-2)-curves by Lemma 2.1,

$$
\begin{equation*}
m_{1} D_{1}^{2}+m_{2} D_{2}^{2}=\left(m_{1} D_{1}+m_{2} D_{2}\right) \tilde{D}=\tilde{D}^{2}-\tilde{D} Y=\tilde{D}^{2}=-10 . \tag{9}
\end{equation*}
$$

Suppose $D_{1} D_{2}>0$. Then $D_{1} D_{2}=1$ since $p_{a}=2$, and so (8) is rewritten as

$$
\begin{align*}
& \left(1-m_{i}\right) D_{i}^{2}=m_{j}+D_{i} Y, \quad\{i, j\}=\{1,2\} \\
& m_{1}, m_{2} \geq 2 \tag{10}
\end{align*}
$$

If $D_{1}^{2}=-1$, then $m_{1}=m_{2}+1+D_{1} Y$ by (10). In particular $D_{2}^{2} \leq-2$. If furthermore $D_{2}^{2} \leq-3$, then $D_{2}^{2}=-3, m_{1}=4$ and $m_{2}=2$ by (9), which is not compatible with (10). Hence $D_{2}^{2}=-2$, and we see with (9) and (10) that only $\left(m_{1}, m_{2}\right)=(4,3)$ is possible. The case of $D_{i}^{2} \leq-2$ is easier. Then, assuming $D_{1}^{2} \geq D_{2}^{2}$, there are two possibilities:

$$
\begin{array}{lcccccc}
& D_{1}^{2} & D_{2}^{2} & m_{1} & m_{2} & D_{1} Y & D_{2} Y \\
\text { (i) } & -1 & -2 & 4 & 3 & 0 & 0 \\
\text { (ii) } & -2 & -3 & 2 & 2 & 0 & 1
\end{array}
$$

In (i) we get $Y=0: \tilde{D}=4 D_{1}+3 D_{2}$. But then \tilde{D} can not be obtained from \bar{X} by more than 3 blow-ups (Lemma 2.2 and Lemma 2.6 (ii), (iii)). In (ii) Y is a reduced irreducible (-2)-curve since $D_{2} Y=1$ and $m_{2}=2$. This implies

$$
h^{0}\left(\mathcal{O}_{\tilde{D}}\right)=h^{0}\left(\mathcal{O}_{D_{1}+D_{2}}\left(-D_{1}-D_{2}-Y\right)\right)+h^{0}\left(\mathcal{O}_{D_{1}+D_{2}+Y}\right)=h^{0}\left(\omega_{D_{1}+D_{2}}\right)+1=3,
$$

which is impossible by Corollary 2.4.
This proves $D_{1} D_{2}=0$ and so by (8)

$$
\left(1-m_{i}\right) D_{i}^{2}=D_{i} Y \quad(i=1,2)
$$

Then we have, as in Case 3.2.2, $m_{i} \geq 2 ; m_{i} \geq 3$ if $D_{i}^{2}=-1 ; m_{1}=m_{2}$ if $D_{1}^{2}=D_{2}^{2}=-1$. We may assume that $D_{1}^{2} \geq D_{2}^{2}$ and that $m_{1} \leq m_{2}$ if $D_{1}^{2}=D_{2}^{2}$. Then, by (9), the possibilities are as follows:

	D_{1}^{2}	D_{2}^{2}	m_{1}	m_{2}
(i)	-1	-1	5	5
(ii)	-1	-2	4	3
(iii)	-1	-2	6	2
(iv)	-1	-3	4	2
(v)	-2	-2	2	3
(vi)	-2	-3	2	2

For (i), (ii) and (iv), let $Y_{0}=D_{1}, Y_{1}, \cdots, Y_{k}, Y_{k+1}=D_{2}$ denote the chain of curves in \tilde{D} connecting D_{1} and $D_{2}(k \geq 1)$, and l_{j} the multiplicity of Y_{j} in \tilde{D}. Since $D_{1}^{2}=-1$, $l_{1}=m_{1}-1$. Moreover, since Y_{j} is a (-2)-curve for $1 \leq j \leq k$, we have $l_{j}-1 \geq l_{j+1}$ for $0 \leq j \leq k$, and so $m_{1}-k-1 \geq m_{2}$. Hence (i) and (ii) are impossible. In (iv) we have $k=1$, hence $\tilde{D}=4 D_{1}+3 Y_{1}+2 D_{2}$. But then there exists a (-1)-curve Γ on \tilde{X} such that $\Gamma Y_{1}>0$ and so $\tilde{D} \Gamma=3$, which contradicts Lemma 2.1. Replace D_{1} and D_{2} in (iii). Then for
each of the remaining cases we notice that $D_{1}^{2}=-2$ and $m_{1}=2$. Let $Y_{0}, Y_{1}, \cdots, Y_{k}, Y_{k+1}$ be as above. Then we have $\tilde{D}=2 D_{1}+2 Y_{1}+\cdots+2 Y_{k}+2 D_{2}+Y^{\prime}$, where Y^{\prime} consists of (-2)-curves and is disjoint from $D_{1}, Y_{1}, \cdots, Y_{k}$. Hence only the case (vi) can occur. Since $D_{2} \tilde{D}=-3, D_{2} Y^{\prime}=1$, i.e., Y^{\prime} is reduced and irreducible. But then there exists a (-1)-curve Γ on \tilde{X} such that $Y^{\prime} \Gamma=1$, hence $\tilde{D} \Gamma$ is odd, contradicting Lemma 2.1.
(3.3). By what we have proved, every connected component D of \tilde{D} is the union of an elliptic curve and some exceptional rational curves for μ. Let F be a non-trivial effective divisor on \tilde{X} with $\operatorname{supp} F \cong \operatorname{supp} D$. Then $F=\mu^{*} \bar{F}+\sum_{i=1}^{n} a_{i} E_{i}$ where $\bar{F}=\mu_{*} F$ and $a_{i} \in Z(1 \leq i \leq n)$. Therefore

$$
\begin{aligned}
p_{a}(F) & =\frac{1}{2}\left(\mu^{*} \bar{F}+\sum_{i=1}^{n} a_{i} E_{i}\right)\left(\mu^{*} \bar{F}+\sum_{i=1}^{n} a_{i} E_{i}+\sum_{i=1}^{n} E_{i}\right)+1 \\
& =\frac{1}{2} \bar{F}^{2}+1-\frac{1}{2} \sum_{i=1}^{n} a_{i}\left(a_{i}+1\right)
\end{aligned}
$$

Here \bar{F} is a multiple of an elliptic curve and so $\bar{F}^{2}=0$ by Lemma 2.6. Moreover $a(a+1) \geq 0$ for any integer a. Hence $p_{a}(F) \leq 1$, and so the singularity corresponding to D is elliptic.

§4. The case with elliptic singularities.

We continue to use the notations in $\S 2$ and assume that \bar{X} is either an abelian or a hyperelliptic surface. To complete our proof of the Theorem, we will deduce a contradiction under the assumption that every connected component D of \tilde{D} corresponds to an elliptic singularity. Recall that then D consists of a non-singular elliptic curve and possibly some rational curves.
(4.1) Assume that there exists a connected component D of \tilde{D} which contains a rational curve. This is equivalent to that X has a singularity with $p_{g} \geq 2$. Set $\tilde{D}=D+D^{\prime}$ and let D_{1} denote the unique elliptic curve in D. Then D_{1} is the minimal elliptic cycle of D. In general, we note that $\mu_{*} \tilde{D}$ is numerically equivalent to $\mu_{*} \tilde{H}$, and hence is connected and ample. In particular $D^{\prime} \neq 0$.

Suppose first that the rational components of D are not connected. Then $D_{1}^{2} \leq-2$ and there are exactly two connected components of rational curves because the number of blow-ups n is bounded by 5 (Lemma 2.1). If one of them has length ≥ 2, then the equality holds, the other has length 1 , and every rational curve in D is a (-2)-curve. It follows that D can not be contracted to a numerically Gorenstein singularity (Theorem 1.3 (ii)). Hence we have that $D=2 D_{1}+Y_{1}+Y_{2}$, where Y_{i} is a rational curve with $D_{1} Y_{1}=D_{1} Y_{2}=1, Y_{1} Y_{2}=0$ and $D_{1}^{2}=-2$, and that the corresponding singularity has a geometric genus equal to 2 (Theorem 1.3 (i), (iii)). Hence the sum of the geometric genera of singularities corresponding to D^{\prime} is equal to 3 (Lemma 2.3). Moreover, if
$Y_{1}^{2} \leq-3$, then $n=5$, which contradicts Lemma 2.1. Hence we have $Y_{1}^{2}=Y_{2}^{2}=-2$, and so there exist rational curves Γ_{1} and Γ_{2} such that $Y_{i} \Gamma_{j}=\delta_{i j}$. If $n=4$, then Γ_{1} and Γ_{2} are (-1)-curves. There is on \tilde{X} no rational curve other than Y_{1}, Y_{2}, Γ_{1} and Γ_{2}, and so D^{\prime} consists of three disjoint elliptic curves: $D^{\prime}=D_{2}+D_{3}+D_{4}$, each of which meets either Γ_{1} or Γ_{2}. We may assume that $D_{2} \Gamma_{1}>0$ and $D_{3} \Gamma_{1}>0$. But then $\mu_{*} D_{2}$ intersects $\mu_{*} D_{3}$ tangentially, contradicting Lemma 2.6 (v). If $n=5$, then Γ_{1} and Γ_{2} are also (-1)-curves by Lemma 2.1. There is another (-1)-curve Γ_{3} which is disjoint from D, Γ_{1} and Γ_{2}. Moreover $D^{\prime}=D_{2}+D_{3}+D_{4}$ as before. Since $\tilde{D} \Gamma_{j}=2$ and $D_{i} \Gamma_{j} \leq 1$ ($1 \leq i \leq 4,1 \leq j \leq 3$) by Lemma 2.1 and 2.6 (iii), we can assume that the dual graph of $D_{1}, \cdots, D_{4}, Y_{1}, Y_{2}, \Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ is as follows:

But then we obtain $\left(\mu_{*} D_{2}+\mu_{*} D_{3}\right)^{2}>0,\left(\mu_{*} D_{4}\right)^{2}=0$ and $\left(\mu_{*} D_{2}+\mu_{*} D_{3}\right)\left(\mu_{*} D_{4}\right)=0$, a contradiction to Hodge Index Theorem. It follows that there is a unique rational component Y_{1} in D which intersects D_{1}.

Suppose that there is a rational curve in D which intersects more than two other components in D. From Lemma 2.1, we can deduce that the dual graph of D is one of the following:

In (ii) we have $n=5$. Hence all rational components of D are (-2)-curves (Lemma 2.1), and so there is a unique rational curve Γ, which is a (-1)-curve, except the components of $D . \Gamma$ intersects Y_{1} or Y_{2}, and also every elliptic curve D_{i} in D^{\prime}. Therefore $\mu_{*} D_{1}$ and $\mu_{*} D_{i}$ can not intersect transversally, which contradicts Lemma 2.6 (v). In (i), if $n=4$, then there is a (-1)-curve Γ, which plays a similar role as Γ in (ii), and we are led to a contradiction. Assume $n=5$. Then every rational component in \tilde{D} is a (-2)-curve, hence again there is a unique (-1)-curve Γ_{1} which intersects Y_{1} or Y_{2}. If $D^{\prime} \Gamma_{1}>0$, we get a contradiction as in (ii). If $D^{\prime} \Gamma_{1}=0$, then there is another (-1)-curve Γ_{2} such that $D_{1} \Gamma_{2}>1, D^{\prime} \Gamma_{2}>0$. But the multiplicity of D_{1} in D is greater than 1 (Theorem 1.3), and so we have $D \Gamma_{2} \geq 2$, hence $\tilde{D} \Gamma_{2} \geq 3$, which contradicts Lemma 2.1. Therefore we conclude that D consists of a chain $D_{1}, Y_{1}, \cdots, Y_{m}(m \geq 1)$ of an elliptic curve D_{1} and rational curves \boldsymbol{Y}_{i}.

Let $\tilde{D}=\tilde{D}_{1}+\cdots+\tilde{D}_{s}$ be the decomposition of \tilde{D} into its connected components with $\tilde{D}_{1}=D$. Let p_{i} denote the geometric genus of the singularity corresponding to \tilde{D}_{i}, D_{i} the unique elliptic curve in \tilde{D}_{i}. We note that $D_{i}^{2}=-1$ if $p_{i} \geq 2$ (Corollary 1.5 (i)), and that $D_{i}^{2} \geq-3$ if $p_{i}=1$, since then $\tilde{D}_{i}=D_{i}$ is to be contracted to a simple elliptic hypersurface singularity ([Sa]). Set $C_{i}=\mu_{*} D_{i}$, then C_{i} is also a non-singular elliptic curve. Recall that $C_{1}+\cdots+C_{s}$ is connected and ample. In particular $s \geq 2$ and there exists i
($2 \leq i \leq s$) such that $C_{1} C_{i}>0$. Since $D_{1}^{2}=-1$, we see that $C_{1} C_{i}=1$. We may assume that the point $P_{1}=C_{1} \cdot C_{i}$ is the center of the first blow-up μ_{1}. By our assumption, the proper transform Y_{1} on \tilde{X} of $\mu_{1}^{-1}\left(P_{1}\right)$ is a component of D, and so $D_{i}^{2} \leq-2$, and hence $p_{i}=1$. Suppose that some $p_{j}(2 \leq j \leq s)$ is greater than 1 . Then we have $C_{1} C_{j}=0$, and so $C_{i} C_{j}>0$ for any i such that $C_{1} C_{i}>0$, since $C_{1}+C_{i}$ is ample (or by Lemma 2.6 (iv)). Hence our assumption that $p_{j} \geq 2$ implies $D_{i}^{2} \leq-4$, which is impossible. Therefore we have $p_{i}=1$ for $2 \leq i \leq s$, and so $p_{1}+s-1=5$ (Lemma 2.3). We may assume that $P_{1} \in C_{i}\left(1 \leq i \leq s_{1}\right)$ and $P_{1} \notin C_{i}\left(s_{1}+1 \leq i \leq s\right)$ for some $s_{1}\left(2 \leq s_{1} \leq s\right)$. Since $C_{s_{1}+1}, \cdots, C_{s}$ are disjoint from C_{1}, they are also disjoint from each other. Hence $C_{2} \cap\left(\sum_{i=s_{1}+1}^{s} C_{i}\right)$ consists of greater than or equal to $s-s_{1}$ distinct points. This proves, with Corollary 1.5 (ii), $-3 \leq D_{2}^{2} \leq-p_{1}-\left(s-s_{1}\right)=s_{1}-6$. On the other hand, if $p_{1} \geq 3$, then $Y_{1}^{2}=-2$ by Corollary 1.5 (ii), and so $s_{1}=2$ (cf. Lemma 2.6 (v)), which is impossible. Hence we obtain $p_{1}=2, s=4$ and $3 \leq s_{1} \leq 4$. The last inequality implies $Y_{1}^{2} \leq-3$ and hence $n \leq 4$ (Lemma 2.1). If $s_{1}=3$, then we have by Theorem $1.3 \tilde{D}_{1}=2 D_{1}+Y_{1}$ with $Y_{1}^{2}=-3$, $D_{2}^{2}=D_{3}^{2}=-3$ and $D_{4}^{2}=-1$:

If $s_{1}=4$, then $\tilde{D}_{1}=2 D_{1}+Y_{1}$ with $Y_{1}^{2}=-4$ and $D_{2}^{2}=D_{3}^{2}=D_{4}^{2}=-2$:

In both cases we obtain $\tilde{D}^{2}=-10$, contradictory to Lemma 2.1.
Thus we proved that \tilde{D} has no rational components.
(4.2) Finally let us consider the case where \tilde{D} consists of disjoint non-singular elliptic curves. Lemma 2.3 implies that \tilde{D} has five components. Set $\tilde{D}=\sum_{i=1}^{5} D_{i}$ and $C=\mu_{*} D=\sum_{i=1}^{5} C_{i}$ where $C_{i}=\mu_{*} D_{i} . C_{i}$ and D_{i} are non-singular elliptic curves ($1 \leq i \leq 5$), D_{i} 's are disjoint, but C is connected. Let $P_{i}(1 \leq i \leq n)$ denote the center of the blow-up μ_{i}. Then, by Lemma 2.2 and $2.6(\mathrm{v}), P_{1}, \cdots, P_{n}$ are not infinitely near each other, hence
we may regard them as distinct points on \bar{X}. Set $k_{i}=\operatorname{mult}_{P_{i}} C$. Then k_{i} is equal to the number of curves C_{j} which pass through P_{i}. Lemma 2.2 says $k_{i} \geq 2(1 \leq i \leq n)$, and we may assume $5 \geq k_{1} \geq k_{2} \geq \cdots \geq k_{n} \geq 2$.

With these notations we have first from Lemma 2.1

$$
\begin{equation*}
\sum_{i=1}^{n} k_{i}=n+5 \tag{11}
\end{equation*}
$$

since $-n-5=\tilde{D}^{2}=\sum_{j=1}^{5} D_{j}^{2}=\sum_{j=1}^{5} C_{j}^{2}-\sum_{i=1}^{n} k_{i}=-\sum_{i=1}^{n} k_{i}$. Next, let us show that $C_{i} C_{j}>0$ for any $i, j(i \neq j)$. Let s denote the maximal number of components in C, which are disjoint each other. We may assume that C_{1}, \cdots, C_{s} are disjoint. Lemma 2.6 (iv) implies $C_{j} \equiv q_{j} C_{1}$ for $2 \leq j \leq s$, where q_{j} are some positive rational numbers. Hence we obtain by (11)

$$
\begin{aligned}
s(5-s) & \leq\left(\sum_{j=1}^{s} C_{j}\right)\left(\sum_{j=s+1}^{5} C_{j}\right) \\
& =\sum_{i ; P_{i} \in \bigcup_{U_{j}^{s}=1} C_{j}}\left(k_{i}-1\right) \leq \sum_{i=1}^{n}\left(k_{i}-1\right)=5,
\end{aligned}
$$

and so $s=1,4$ or 5 . If $s=5$, then C is not connected, which is excluded. If $s=4$, then C_{5} meets C_{1}, C_{2}, C_{3} and C_{4}, and hence $D_{5}^{2} \leq-4$, which is impossible since D_{5} corresponds to a simple elliptic hypersurface singularity. Therefore $s=1$ as required.

Now we shall derive a contradiction for each $n(1 \leq n \leq 5$ by Lemma 2.1) from what we have proved.
$n=1$: Clear since then $5 \geq k_{1}=n+5=6$.
$n=2$: We have two possibilities: (i) $k_{1}=5, k_{2}=2$; (ii) $k_{1}=4, k_{2}=3$. In (i), all C_{i} pass through P_{1} and we may assume that $P_{2} \in C_{1}, C_{2}$ and $P_{2} \notin C_{3}, C_{4}, C_{5}$. Then the intersection form of C_{1}, \cdots, C_{5} is as follows:

$$
\left(C_{i} C_{j}\right)=\left(\begin{array}{lllll}
0 & 2 & 1 & 1 & 1 \\
2 & 0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 & 0
\end{array}\right),
$$

which is clearly non-degenerate. But the Picard number of \bar{X} is not greater than 4 since \bar{X} is an abelian or a hyperelliptic surface, and so we get a contradiction. In (ii), we may assume that $P_{1} \notin C_{1}$, but then C_{1} must meet every $C_{i}(2 \leq i \leq 5)$ away from P_{1}, that is at P_{2}, a contradiction.
$n=3$: There are two possibilities: (i) $k_{1}=4, k_{2}=k_{3}=2$; (ii) $k_{1}=k_{2}=3, k_{3}=2$. In both cases we may assume $P_{1} \notin C_{1}$, and hence C_{1} meets every $C_{i}(2 \leq i \leq 5)$ at P_{2} or P_{3}, which is impossible for $k_{2}, k_{3}<5$ and $k_{2}+k_{3}<6$.
$n=4$: We have $k_{1}=3, k_{2}=k_{3}=k_{4}=2$. Assuming $P_{1} \notin C_{1}$, we see that C_{1} should meet every $C_{i}(2 \leq i \leq 5)$ at either P_{2}, P_{3} or P_{4}, which is also impossible.
$n=5: \quad$ In this last case, we have $k_{1}=\cdots=k_{5}=2$ and so the five curves C_{1}, \cdots, C_{5} should meet each other at only five points P_{1}, \cdots, P_{5} with multiplicity 2 , which is absurd.

Thus we have completed our proof of the Main Theorem.

References

[A] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math. 88 (1966), 129-136.
[B-W] J. W. Bruce and C. T. C. Wall, On the classification of cubic surfaces, J. London Math. Soc. (2) 19 (1979), 245-256.
[H-W] F. Hidaka and K. Watanabe, Normal Gorenstein surfaces with ample anti-canonical divisor, Tokyo J. Math. 4 (1981), 319-330.
[I] M. Ishida, On surfaces defined by a sum of four monomials, Proceedings of Symposium on Algebraic Geometry, Kinosaki 1982, 163-184 (in Japanese).
[K] Y. Kım, On normal quintic Enriques surfaces, Thesis, Univ. of Michigan (1991).
[L] H. LaUFER, On minimally elliptic singularities, Amer. J. Math. 99 (1977), 1257-1295.
[Sa] K. Sarro, Einfach-elliptische Singularitäten, Invent. Math. 23 (1974), 289-325.
[St] E. Stagnaro, Constructing Enriques surfaces from quintics in P_{K}^{3}, Algebraic Geometry-Open
[T] Problems, Ravello 1982 (eds. C. Ciliberto et al.), Lecture Notes in Math. 997 (1983), Springer.
M. Tomari, A p_{g}-formula and elliptic singularities, Publ. R. I. M. S. Kyoto Univ. 21 (1985), 297-354.
[Ue] K. Ueno, Classification Theory of Algebraic Varieties and Compact Complex Spaces, Lecture Notes in Math. 439 (1975) Springer.
[Uml] Y. Umezu, On normal projective surfaces with trivial dualizing sheaf, Tokyo J. Math. 4 (1981), 343-354.
[Um2] Y. Umezu, Normal quintic surfaces which are birationally Enriques surfaces, preprint.
[Um3] Y. Umezu, On birational models of Enriques surfaces in P^{3}, Proc. Japan Acad. 70 (1994), 137-139.
[Um4] Y. Umezu, Normal quintic surfaces with Kodaira dimension one (preprint).
[Um5] Y. Umezu, Irregularity of quintic surfaces of general type, Tokyo J. Math. 17 (1994), 181-186.
[W] P. Wagreich, Elliptic singularities of surfaces, Amer. J. Math. 92 (1970), 419-454.
[Yan] J.-G. Yang, Characterizations of normal quintic K-3 surfaces, Trans. Amer. Math. Soc. 313 (1989), 737-751.
[Yau] S. S.-T. Yau, On maximally elliptic singularities, Trans. Amer. Math. Soc. 257 (1980), 269-329.

Present Addresses:
Iku Nakamura
Department of Mathematics, Hokkaido University,
Sapporo, 060 Japan.
Yumiko Umezu
Department of Mathematics, School of Medicine, Toho University, Omori-nishi, Ota-ku, Tokyo, 143 Japan.

[^0]: Received April 7, 1994

