Tokyo J. Math. Vol. 19, No. 1, 1996

Structure of the C*-Algebras of Nilpotent Lie Groups

Takahiro SUDO

Tokyo Metropolitan University (Communicated by S. Endo)

Abstract. We show that the algebraic structure of the group C^* -algebra $C^*(G)$ of a simply connected, connected nilpotent Lie group G is described as repeating finitely the extension of C^* -algebras with T_2 -spectrums by themselves and one more extension by a commutative C^* -algebra on the fixed point space $(\mathfrak{G}^*)^G$ of \mathfrak{G}^* under the coadjoint action of G. Using this result, we show that $C^*(G)$ has no non-trivial projections.

1. Introduction.

It is generally a difficult problem to determine the algebraic structure of its C^* algebra $C^*(G)$ when a connected Lie group G is given. In the representation theory, it is hard to study the spectrum \hat{G} of G if G is a connected solvable Lie group of non-type I. However, if G is a simply connected, connected nilpotent Lie group, then it is known that \hat{G} is homeomorphic to the quotient space \mathfrak{G}^*/G of \mathfrak{G}^* under the coadjoint action of G. This is called the Kirillov-Bernat (K-B) correspondence. Therefore, the study of the representation theory of G in this case is equivalent to the analysis of \mathfrak{G}^*/G .

In this paper, we first study \mathfrak{G}^*/G more precisely. We next describe the structure of the C^* -algebra $C^*(G)$ of a simply connected, connected nilpotent Lie group G as repeating finitely the extension of C^* -algebras with T_2 -spectrums by themselves and one more extension by a commutative C^* -algebra on the fixed point space $(\mathfrak{G}^*)^G$ under the coadjoint action of G. Secondly, using this result, we prove that $C^*(G)$ has no non-trivial projections. Lastly, we comment about non-trivial projections of $C^*(G)$ in case that G is an exponential Lie group.

2. Preliminaries.

Let G be an n-dimensional simply connected, connected nilpotent Lie group, and \mathfrak{G} its Lie algebra, and \mathfrak{G}^* the real dual space of \mathfrak{G} . Let $\{\mathfrak{G}_i\}_{i=0}^{m+1}$ be the descending central sequence of \mathfrak{G} , where $\mathfrak{G}_i = [\mathfrak{G}, \mathfrak{G}_{i-1}]$ $(1 \le i \le m+1)$, $\mathfrak{G}_0 = \mathfrak{G}, \mathfrak{G}_{m+1} = 0$.

Let \mathfrak{G}_i^* be the real dual space of \mathfrak{G}_i , and \mathfrak{G}_i^{\perp} be the subspace of \mathfrak{G}^* annihilating

Received November 7, 1994

on \mathfrak{G}_i . Then we have $\mathfrak{G}^* = \mathfrak{G}_i^* \oplus \mathfrak{G}_i^{\perp}$ as a vector space. Every element ϕ in \mathfrak{G}_i^* can be identified with $\phi \oplus 0$ in \mathfrak{G}^* . Let $X_{01}^*, X_{02}^*, \dots, X_{0a_0}^*$ be a basis of \mathfrak{G}_1^{\perp} . Similarly, let $X_{i1}^*, X_{i2}^*, \dots, X_{ia_i}^*$ be a basis of $\mathfrak{G}_i^* \cap \mathfrak{G}_{i+1}^{\perp}$ $(1 \le i \le m)$ and U_i $(0 \le i \le m)$ be the subspaces of \mathfrak{G}^* spanned by them. They are naturally identified with a_i -dimensional Euclidean spaces \mathbf{R}^{a_i} $(0 \le i \le m)$. Every element ϕ in \mathfrak{G}^* can be parameterized with $\phi = (\alpha_0, \alpha_1, \alpha_2, \dots, \alpha_m), \alpha_i \in \mathbf{R}^{a_i}$ $(0 \le i \le m)$. This parameterization is essential to our Theorem 4.

Let Ad be the adjoint representation of G in Aut(\mathfrak{G}), and Ad* the coadjoint action of G in \mathfrak{G}^* defined by Ad* $(g)\phi(X) = \phi(\operatorname{Ad}(g^{-1})X)$, $(X \in \mathfrak{G}, \phi \in \mathfrak{G}^*, g \in G)$. Let $(\mathfrak{G}^*)^G$ be the fixed point space of \mathfrak{G}^* under Ad*. Using the above parameterization, put

$$V_0 = \{ \phi = (\alpha_0, 0, \cdots, 0) \in \mathfrak{G}^* \mid \alpha_0 \in \mathbf{R}^{a_0} \}.$$

Then, we can see that:

LEMMA 1. $V_0 = (\mathfrak{G}^*)^G$.

PROOF. Let ϕ be an element of V_0 . By definition, ϕ is in \mathfrak{G}_1^{\perp} . Then we have $\operatorname{Ad}^*(g)(\phi)(Y) = \phi(\operatorname{Ad}(g^{-1})Y) = \phi(\operatorname{Ad}(\exp(-X))Y)$, where $g = \exp(X)$ $= \phi(\exp(\operatorname{ad}(-X))Y)$ $= \phi\left(Y - [X, Y] + \frac{1}{2!}\operatorname{ad}(X)^2 Y - \dots + \frac{(-1)^m}{m!}\operatorname{ad}(X)^m Y\right) = \phi(Y)$

for every g in G and Y in \mathfrak{G}^* . So ϕ is in $(\mathfrak{G}^*)^G$.

On the contrary, let ϕ be an element of $(\mathfrak{G}^*)^G$. By the same calculation, we have

$$\phi(Y) = \phi\left(Y - [X, Y] + \frac{1}{2!} \operatorname{ad}(X)^2 Y - \dots + \frac{(-1)^m}{m!} \operatorname{ad}(X)^m Y\right)$$

for every X, Y in \mathfrak{G}^* . It implies that

$$\phi\left(-[X, Y] + \frac{1}{2!} \operatorname{ad}(X)^2 Y - \dots + \frac{(-1)^m}{m!} \operatorname{ad}(X)^m Y\right) = 0$$

Then, replacing Y with $ad(X)^{m-1}Y$, we have that $\phi(ad(X)^mY) = 0$. Moreover, replacing Y with $ad(X)^k Y (1 \le k \le m-2)$, we have that $\phi(ad(X)^{k+1}Y) = 0 (1 \le k \le m-2)$. Therefore, we conclude that $\phi([X, Y]) = 0$ for every X, Y in \mathfrak{G}^* . So ϕ is in V_0 .

Next, put

$$V_k = \{ \phi = (\alpha_0, \alpha_1, \cdots, \alpha_k, 0, \cdots, 0) \in \mathfrak{G}^* \mid \alpha_j \in \mathbf{R}^{a_j} (0 \le j \le k-1), \alpha_k \in \mathbf{R}^{a_k} \setminus \{0\} \}$$

 $(1 \le k \le m)$. Then we can decompose \mathfrak{G}^* into

$$V_0 \cup V_1 \cup V_2 \cup \cdots \cup V_k \cup \cdots \cup V_m$$

consisting of m+1 pieces of subsets of \mathfrak{G}^* .

.

Next we can see explicitly the coadjoint orbit for every element in V_k of \mathfrak{G}^* . In the following we denote by ϕ_{α_k} the functional corresponding to $\phi = (0, \dots, 0, \alpha_k, 0, \dots, 0)$. For example, we have that:

LEMMA 2. The orbit $\operatorname{Ad}^*(G)\phi$ for an element $\phi = (\alpha_0, \alpha_1, 0, \dots, 0)$ in V_1 of \mathfrak{G}^* is given by the subset

$$\{(\alpha_0 - \mathrm{ad}^*(X)\alpha_1, \alpha_1, 0, \cdots, 0) \mid X \in \mathfrak{G}\},\$$

where $(ad^*(X)\phi_{\alpha_1})(Y) = \phi_{\alpha_1}([X, Y]), Y \in \mathfrak{G}$ when α_1 in $\mathbb{R}^{a_1} \setminus \{0\}$ is identified with ϕ_{α_1} in \mathfrak{G}^* .

PROOF. The functional corresponding to $\phi = (\alpha_0, \alpha_1, 0, \dots, 0)$ in V_1 is given by $\phi_{\alpha_0} + \phi_{\alpha_1}$. By the direct computation, we have

$$\begin{aligned} \operatorname{Ad}^{*}(g)(\phi_{\alpha_{0}} + \phi_{\alpha_{1}})(Y) &= \operatorname{Ad}^{*}(g)(\phi_{\alpha_{0}})(Y) + \operatorname{Ad}^{*}(g)(\phi_{\alpha_{1}})(Y) \\ &= \phi_{\alpha_{0}}(Y) + \phi_{\alpha_{1}}(\operatorname{Ad}(g^{-1})Y) \\ &= \phi_{\alpha_{0}}(Y) + \phi_{\alpha_{1}}\left(Y - [X, Y] + \frac{1}{2!}\operatorname{ad}(X)^{2}Y \\ &- \cdots + \frac{(-1)^{m}}{m!}\operatorname{ad}(X)^{m}Y\right), \quad \text{where } g = \exp(X) \\ &= \phi_{\alpha_{0}}(Y) + \phi_{\alpha_{1}}(Y - [X, Y]) \\ &= \phi_{\alpha_{0}}(Y) - (\operatorname{ad}^{*}(X)\phi_{\alpha_{1}})(Y) + \phi_{\alpha_{1}}(Y) . \end{aligned}$$

We next show that $ad^*(X)\phi_{\alpha_1}$ is in V_0 . By the direct computation, we have

$$\begin{aligned} \operatorname{Ad}^{*}(h)(\operatorname{ad}^{*}(X)\phi_{\alpha_{1}})(Y) &= (\operatorname{ad}^{*}(X)\phi_{\alpha_{1}})(\exp(\operatorname{ad}(-Z))Y), & \text{where } h = \exp(Z) \\ &= \left(\operatorname{ad}^{*}(X)\phi_{\alpha_{1}}\right) \left(Y - [Z, Y] + \frac{1}{2!}\operatorname{ad}(Z)^{2}Y - \dots + \frac{(-1)^{m}}{m!}\operatorname{ad}(Z)^{m}Y\right) \\ &= \phi_{\alpha_{1}}\left([X, Y] - [X, [Z, Y]] + \frac{1}{2!}\operatorname{ad}(X)\operatorname{ad}(Z)^{2}Y - \dots + \frac{(-1)^{m}}{m!}\operatorname{ad}(X)\operatorname{ad}(Z)^{m}Y\right) \\ &= \phi_{\alpha_{1}}([X, Y]) = (\operatorname{ad}^{*}(X)\phi_{\alpha_{1}})(Y). \end{aligned}$$

It then follows that $\operatorname{Ad}^*(G)(\operatorname{ad}^*(X)\phi_{\alpha_1}) = \operatorname{ad}^*(X)\phi_{\alpha_1}$, so that $\operatorname{ad}^*(X)\phi_{\alpha_1}$ is in V_0 .

In general, the orbit $\operatorname{Ad}^*(G)\phi$ for an element $\phi = (\alpha_0, \alpha_1, \alpha_2, \cdots, \alpha_k, 0, \cdots, 0)$ in V_k of \mathfrak{G}^* is given by the subset

$$\{(\alpha_{0} - \mathrm{ad}^{*}(X)\alpha_{1} + (2!)^{-1}\mathrm{ad}^{*}(X)^{2}\alpha_{2} + \dots + (-1)^{k}(k!)^{-1}\mathrm{ad}^{*}(X)^{k}\alpha_{k}, \alpha_{1} - \mathrm{ad}^{*}(X)\alpha_{2} + \dots + (-1)^{k-1}((k-1)!)^{-1}\mathrm{ad}^{*}(X)^{k-1}\alpha_{k}, \alpha_{2} - \mathrm{ad}^{*}(X)\alpha_{3} + \dots + (-1)^{k-2}((k-2)!)^{-1}\mathrm{ad}^{*}(X)^{k-2}\alpha_{k}, \dots, \alpha_{k-1} - \mathrm{ad}^{*}(X)\alpha_{k}, \alpha_{k}, 0, \dots, 0) | X \in \mathfrak{G}\}$$

where α_i is identified with ϕ_{α_i} in \mathfrak{G}^* $(i=0, 1, \dots, k)$.

In the subsets V_0, V_1, \dots, V_m of \mathfrak{G}^* , the coadjoint action of G effects to parameters on the left side of a non-zero parameter on the right end. Furthermore, we decompose V_1 into the subsets $\{V_{1i}\}_{i=1}^{3^{a_1}-1}$ of \mathfrak{G}^* , which are combinationally defined by whether each of the parameters $\{l_{1i}\}_{i=1}^{a_1}$ about $\{X_{1i}^*\}_{i=1}^{a_1}$ is zero, greater than zero or less than zero. For example, V_{11} is given by the subset

$$\{(\alpha_0, \alpha_1, 0, \cdots, 0) \mid \alpha_0 \in \mathbf{R}^{a_0}, \alpha_1 = (l_{11}, 0, \cdots, 0), l_{11} > 0\},\$$

and V_{12} is given by the subset

$$\{(\alpha_0, \alpha_1, 0, \cdots, 0) \mid \alpha_0 \in \mathbf{R}^{a_0}, \alpha_1 = (l_{11}, 0, \cdots, 0), l_{11} < 0\},\$$

and V_{13} is given by the subset

$$\{(\alpha_0, \alpha_1, 0, \cdots, 0) \mid \alpha_0 \in \mathbf{R}^{a_0}, \alpha_1 = (0, l_{12}, 0, \cdots, 0), l_{12} > 0\}.$$

More generally, V_{1i} for some *i* is given by the subset

$$\{(\alpha_0, \alpha_1, 0, \cdots, 0) \mid \alpha_0 \in \mathbf{R}^{a_0}, \alpha_1 = (l_{11}, l_{12}, l_{13}, \cdots, l_{1j}, 0, \cdots, 0), \\ l_{11} > 0, l_{12} = 0, l_{13} < 0, \cdots, l_{1j} > 0\}.$$

Furthermore, we decompose V_k $(k=2, \dots, m)$ into the subsets $\{V_{ki}\}_{i=1}^{3^{a_1}3^{a_2}\dots 3^{a_{k-1}}(3^{a_k-1})}$ of \mathfrak{G}^* , which are combinationally defined by whether each of the parameters $\{l_{ji}\}_{i=1}^{a_j}$ $(1 \le j \le k)$ about $\{X_{ji}^*\}_{i=1}^{a_j}$ $(1 \le j \le k)$ is zero, greater than zero or less than zero. Therefore we can decompose \mathfrak{G}^* into $1 + (3^{a_1} - 1) + 3^{a_1}(3^{a_2} - 1) + \dots + 3^{a_1}3^{a_2} \dots 3^{a_{k-1}}(3^{a_k} - 1) + \dots + 3^{a_k}3^{a_k} \dots + 3^$

Then, letting q be the quotient map from \mathfrak{G}^* to \mathfrak{G}^*/G , we consider the subsets $q(V_0)$ and $\{q(V_{ki})\}_{i=1}^{a_1 3^{a_2 \cdots 3^{a_{k-1}}(3^{a_k-1})}$ $(1 \le k \le m)$ of \mathfrak{G}^*/G . And let $\Omega_0, \Omega_1, \cdots, \Omega_l$ be those subsets of \mathfrak{G}^*/G . Note that it happens that $\Omega_i = \Omega_j$ for i < j. In this case let $\Omega_i = \{\emptyset\}$. Under this setup, using Lemma 3.1 in [4] and Theorem 10.5.4 in [2], which are stated later as Theorems 1 and 2 respectively, we prove our main theorems in the next section. Before further study, we give an example here for the convenience of understanding.

EXAMPLE 1. Let G be the simply connected, connected nilpotent Lie group defined by all 4×4 upper triangular real matrices with 1 on the diagonal. Then the Lie algebra \mathfrak{G} of G is defined by all 4×4 upper triangular matrices with 0 on the diagonal. Then the real dual space \mathfrak{G}^* of \mathfrak{G} is defined by all 4×4 lower triangular matrices with 0 on the diagonal. In our setting, every element $\phi = (l_{ij})_{1 \le i,j \le 4}$ in \mathfrak{G}^* is parameterized with $\phi = (\alpha_0, \alpha_1, \alpha_2)$ where $\alpha_0 = (l_{21}, l_{32}, l_{43}), \alpha_1 = (l_{31}, l_{42}), \alpha_2 = l_{41}$. The coadjoint action of G on \mathfrak{G}^* is defined by $\mathrm{Ad}^*(g)\phi(X) = \phi(\mathrm{Ad}(g^{-1})X) = \mathrm{Tr}(\mathrm{Ad}(g^{-1})X\phi)$ where $g \in G, X \in \mathfrak{G}$, and Tr is the natural trace on $\mathrm{M}_4(\mathbb{R})$. Then computing this, we have

$$\operatorname{Ad}^{*}(g)\phi = (\beta_{0}, \beta_{1}, \beta_{2}),$$

where

$$\beta_0 = (l_{21} - x_{23}l_{31} + (-x_{24} + (2!)^{-1}x_{23}x_{34})l_{41}, x_{12}l_{31} - x_{12}x_{34}l_{41} + l_{32} - x_{34}l_{42}, (x_{13} + (2!)^{-1}x_{12}x_{23})l_{41} + x_{23}l_{42} + l_{43}), \quad \beta_1 = (l_{31} - x_{34}l_{41}, x_{12}l_{41} + l_{42}), \quad \beta_2 = l_{41}$$

for $g^{-1} = \exp(X)$ and $X = (x_{ij})_{1 \le i,j \le 4}$ in \mathfrak{G} . Then Ω_0 is identified with \mathbb{R}^3 , and Ω_k $(1 \le k \le 4)$ are identified with $\mathbb{R} \times (0, \infty)$, where representatives of Ω_k have the form $(\alpha_0, l_{31}, l_{42}, 0)$ with either $l_{31} = 0$ or $l_{42} = 0$, and the closures $\overline{\Omega_k}$ $(1 \le k \le 4)$ are equal to $\Omega_0 \cup \Omega_k$. The sets Ω_k $(5 \le k \le 8)$ are identified with $\mathbb{R} \times (0, \infty) \times (0, \infty)$, where representatives of Ω_k have the form $(\alpha_0, l_{31}, l_{42}, 0)$ with $l_{31} \ne 0$ and $l_{42} \ne 0$, and the closure $\bigcup_{k=5}^8 \Omega_k$ contains $\bigcup_{i=0}^4 \Omega_i$. The sets Ω_9 , Ω_{10} are identified with $\mathbb{R} \times (0, \infty)$, where representatives of Ω_k $(9 \le k \le 10)$ have the form $(\alpha_0, \alpha_1, l_{41})$ with $l_{41} \ne 0$, and the closure $\overline{\Omega_9 \cup \Omega_{10}}$ are equal to \mathfrak{G}^*/G .

3. Main theorems.

In this section we prove that the C^* -algebra $C^*(G)$ of a simply connected, connected nilpotent Lie group G is obtained by repeating finitely the extension of C^* -algebras with T_2 -spectrum by themselves and one more extension by a commutative C^* -algebra on a Euclidean space. Using this result, we prove that $C^*(G)$ has no non-trivial projections.

First of all, we prove the following lemma which is stated in [4]:

LEMMA 3 [4]. The image Ω_0 of the fixed point space $(\mathfrak{G}^*)^G$ is a locally compact T_2 -space in the relative topology of Ω_0 and closed in \mathfrak{G}^*/G .

PROOF. First, it is known that \hat{G} is locally compact, which can be found in [1]. Using K-B correspondence we have that \mathfrak{G}^*/G is locally compact. So Ω_0 is locally compact with its relative topology.

Next, let $[\phi_1]$, $[\phi_2]$ be two distinct points in Ω_0 . Then $q^{-1}([\phi_1]) = \{\phi_1\}, q^{-1}([\phi_2]) = \{\phi_2\}$ are also two distinct points in \mathfrak{G}^* . Since \mathfrak{G}^* is a T_2 -space, there exist two open neighborhoods U_1, U_2 of ϕ_1, ϕ_2 respectively such that $U_1 \cap U_2 = \emptyset$. Since $q(U_1), q(U_2)$ are open in $\mathfrak{G}^*/G, q(U_1) \cap \Omega_0, q(U_2) \cap \Omega_0$ are two disjoint open neighborhoods of $[\phi_1]$, $[\phi_2]$ respectively in Ω_0 .

Lastly, let $\{[\phi_n]\}$ be a sequence of Ω_0 . Suppose that $[\phi]$ is in \mathfrak{G}^*/G and $[\phi_n]$ converges to $[\phi]$. If $[\phi]$ is not in Ω_0 , then $q^{-1}([\phi]) \cap (\mathfrak{G}^*)^G = \emptyset$. Since \hat{G} is a T_1 -space, $\{[\phi]\}$ is closed in \mathfrak{G}^*/G so that $q^{-1}([\phi])$ is closed in \mathfrak{G}^* . By normality of \mathfrak{G}^* , there exists an open set O of \mathfrak{G}^* such that $q^{-1}([\phi]) \subset O$ and $O \cap (\mathfrak{G}^*)^G = \emptyset$. It follows that q(O) is an open neighborhood of $[\phi]$ in \mathfrak{G}^*/G and $q(O) \cap \Omega_0 = \emptyset$, which contradicts our assumption.

From this result, we can consider the C*-algebra $C_0(\Omega_0)$ consisting of all complex valued continuous functions on Ω_0 vanishing at infinity.

We proved the following theorem in [4], which was considered as the first key

lemma for our main theorems. We prepare the notation for this theorem.

Now, let Φ be the Kirillov-Bernat mapping from the coadjoint orbit space \mathfrak{G}^*/G to the spectrum \hat{G} of G. Put $\Phi([\phi]) = \chi_{\phi}$ for every element $[\phi]$ in Ω_0 , where $[\phi]$ is identified with ϕ in \mathfrak{G}^* , and χ_{ϕ} is defined by $\chi_{\phi}(\exp(X)) = e^{i\phi(X)}$ for every X in \mathfrak{G} . Let $\tilde{\chi}_{\phi}$ be the element in spectrum $\widehat{C^*(G)}$ of $C^*(G)$ corresponding to χ_{ϕ} . Let $\ker(\tilde{\chi}_{\phi})$ be the kernel of $\tilde{\chi}_{\phi}$. Let $\mathfrak{I}_0 = \bigcap_{[\phi] \in \Omega_0} \ker(\tilde{\chi}_{\phi})$ be the intersection of those kernels for every element $[\phi]$ in Ω_0 . Then it is clear that \mathfrak{I}_0 is a two-sided closed ideal of $C^*(G)$. Then, the following theorem holds:

THEOREM 1 [4]. The quotient C*-algebra $C^*(G)/\mathfrak{I}_0$ of C*(G) by the ideal \mathfrak{I}_0 is isomorphic to $C_0(\Omega_0)$.

Next we investigate the difference space $(\mathfrak{G}^*/G)\setminus\Omega_0$ corresponding to the spectrum \mathfrak{I}_0 of \mathfrak{I}_0 . Then the following lemma holds:

LEMMA 4. The subsets Ω_i $(1 \le i \le l)$ of \mathfrak{G}^*/G are all non compact connected T_2 -spaces in the relative topology of Ω_i , and closed in $(\mathfrak{G}^*/G) \setminus (\bigcup_{i=0}^{i-1} \Omega_i)$.

PROOF. We can take the subset V_{kj} of \mathfrak{G}^* for some k, j such that $q(V_{kj}) = \Omega_i$. Each element of V_{kj} can be parameterized with $(\alpha_0, l_{11}, \dots, l_{1a_1}, \dots, l_{k1}, \dots, l_{ka_k}, 0, \dots, 0)$. Put $W_i = V_{kj}$. Since W_i is connected, Ω_i which is the continuous image of W_i by q is also connected.

We next show that Ω_i is non compact. Let $U(r_1, \dots, r_k)$ be the open subsets of V_k defined by the product spaces

$$\mathbf{R}^{a_0} \times U(r_1) \times \cdots \times U(r_{k-1}) \times (U(r_k) \setminus \{0\}) \times \{0\} \times \cdots \times \{0\}$$

where $U(r_j)$ is the open ball in \mathbb{R}^{a_j} with the radius r_j in N and center 0 $(j=1, \dots, k)$. Since q is an open map and $q(U(r_1, \dots, r_k) \cap W_i) = q(U(r_1, \dots, r_k)) \cap \Omega_i$, the family $\{q(U(r_1, \dots, r_k) \cap W_i)\}_{(r_1, \dots, r_k) \in \mathbb{N}^k}$ is an open covering of Ω_i with respect to the relative topology. It is clear that every finite subcovering does not contain Ω_i . Therefore, Ω_i is non compact.

We next show that Ω_i is closed in $(\mathfrak{G}^*/G) \setminus (\bigcup_{j=0}^{i-1} \Omega_j)$. Suppose that a sequence $(\llbracket \phi_n \rrbracket)_{n \in \mathbb{N}}$ of Ω_i converges to $\llbracket \phi \rrbracket$ in $(\mathfrak{G}^*/G) \setminus (\bigcup_{j=0}^{i-1} \Omega_j)$. We show that $\llbracket \phi \rrbracket$ is in Ω_i . If not so, say $\llbracket \phi \rrbracket \in \Omega_j$ (j > i), there exists $\psi \in W_j$ such that $q(\psi) = \llbracket \phi \rrbracket$, where $q(W_j) = \Omega_j$ as before. We can take a small open neighborhood U of ψ such that $U \cap W_i = \emptyset$ since ψ has a nonzero G-invariant parameter l_{st} such that l_{st} is zero for every element in W_i , or ψ has $l_{st} > 0$ (<0) such that $l_{st} < 0$ (>0) for every element in W_i respectively. Then consider G-invariant open subset $\operatorname{Ad}^*(G)(U)$ of \mathfrak{G}^* , where $\operatorname{Ad}^*(G)(U)$ means the union $\bigcup_{g \in G} \operatorname{Ad}^*(g)(U)$ of open subsets $\operatorname{Ad}^*(g)(U)$ in \mathfrak{G}^* . Then we have $\operatorname{Ad}^*(G)(U) \cap W_i = \emptyset$ since every element in U has a G-invariant parameter l_{uv} such that l_{uv} is zero for every element in W_i respectively. It then follows that $q(\operatorname{Ad}^*(G)(U)) \cap \Omega_i = \emptyset$, which is a contradiction.

We next show that Ω_i is a T_2 -space with respect to the relative topology. Let $[\phi]$

and $[\psi]$ be two distinct points in Ω_i . Then the preimages $q^{-1}([\phi])$ and $q^{-1}([\psi])$ are disjoint. Let $\phi = (\alpha_0, 0, \dots, \alpha_{i_1}, 0, \dots, \alpha_{i_k}, 0, \dots, 0)$ and $\psi = (\beta_0, 0, \dots, \beta_{i_1}, 0, \dots, \beta_{i_k}, 0, \dots, 0)$ be two arbitrary points of $q^{-1}([\phi]) \cap W_i$ and $q^{-1}([\psi]) \cap W_i$ respectively. Since $[\phi]$ and $[\psi]$ are two distinct points in Ω_i , there exists a term such that $\alpha_{i_j} \neq \beta_{i_j}$ where $\alpha_{i_j} = (l_{i_j1}, \dots, l_{i_{ja_i_j}}), \beta_{i_j} = (m_{i_j1}, \dots, m_{i_{ja_i_j}})$ with respect to $X_{i_{j1}}^*, \dots, X_{i_{ja_{i_j}}}^*$, such that $l_{i_{ts}} = m_{i_{ts}}$ for G-invariant parameters $l_{i_{ts}}$ and $m_{i_{ts}}$ of α_{i_t} and β_{i_t} respectively, if necessary, replacing the basis $\{X_{i_ts}^*\}_{s=1}^{a_{i_t}} (j < t \le k)$, and there exists a G-invariant parameter $l_{i_j \mu} \neq m_{i_j \mu}$ of α_{i_j} and β_{i_j} , if necessary, replacing the basis $\{X_{i_tj}^*\}_{s=1}^{a_{i_t-1}}$. Since \mathfrak{G}^* is of course T_2 -space, let U_{ϕ} and U_{ψ} be two disjoint open neighborhoods of ϕ and ψ respectively, separating $l_{i_j \mu}$ and $m_{i_j \mu}$. Now put $S_i = q^{-1}((\mathfrak{G}^*/G) \setminus (\bigcup_{j=0}^{i-1} \Omega_j))$. Then we can consider two G-invariant open subsets $\mathrm{Ad}^*(G)(U_{\phi}) \cap S_i$ and $\mathrm{Ad}^*(G)(U_{\psi}) \cap S_i$ of \mathfrak{G}^* . Then put $T_{\phi} = \mathrm{Ad}^*(G)(U_{\phi}) \cap S_i$ and $q(T_{\psi})$ are two open neighborhoods in \mathfrak{G}^*/G since q is an open map. They are also open in $(\mathfrak{G}^*/G) \setminus (\bigcup_{j=0}^{i-1} \Omega_j)$. Then $q(T_{\phi}) \cap \Omega_i$ and $q(T_{\psi}) \cap \Omega_i$ are disjoint and open in Ω_i . Therefore, Ω_i is a T_2 -space, as desired. \Box

Using this lemma, we can consider the decreasing sequence $\{\mathfrak{I}_j\}_{j=0}^l (\mathfrak{I}_j \supset \mathfrak{I}_{j+1}),$ $\mathfrak{I}_l = \{0\}$ of C*-subalgebras of C*(G) corresponding to subsets $(\mathfrak{G}^*/G) \setminus (\bigcup_{i=0}^j \Omega_i) \ (0 \le j \le l)$ of \mathfrak{G}^*/G . Since C*(G) is liminal, so are its C*-subalgebras $\{\mathfrak{I}_j\}_{j=0}^{l-1}$. Let $\{\mathscr{C}_j\}_{j=0}^{l-2}$ be the quotient C*-algebras $\mathfrak{I}_j/\mathfrak{I}_{j+1}$ of \mathfrak{I}_j by \mathfrak{I}_{j+1} , which are also liminal. Then the spectrum $\hat{\mathscr{C}}_i$ of \mathscr{C}_i is equal to Ω_{i+1} .

In general, the following holds. We need this result to prove our theorems:

THEOREM 2 [2]. Let \mathfrak{A} be a liminal C*-algebra with the T_2 -spectrum \mathfrak{A} . Let $\mathfrak{F} = ((\mathfrak{A}/\ker(\pi))_{[\pi] \in \mathfrak{A}}, \Theta)$ be a continuous field of elementary C*-algebras over \mathfrak{A} defined by \mathfrak{A} . Let \mathfrak{A} be the C*-algebra defined by \mathfrak{F} . Then the correspondence from a in \mathfrak{A} to \tilde{a} in \mathfrak{A} gives an isomorphism from \mathfrak{A} to \mathfrak{A} , where \tilde{a} is an element in Θ defined by $\tilde{\mathfrak{a}}([\pi]) = a + \ker(\pi)$.

Applying this to the quotients $\{\mathscr{C}_j\}_{j=0}^{l-2}$ in exact sequences, and using the above results, we have the following theorem:

THEOREM 3. The C*-algebra C*(G) for every simply connected, connected nilpotent Lie group G can be obtained by repeating finitely the extension of the C*-algebras defined by a continuous field of elementary C*-algebras over Ω_i $(1 \le i \le l)$ by themselves, and one more extension by $C_0(\Omega_0)$ with spectrum homeomorphic to \mathbf{R}^{a_0} . Moreover, Ω_i is homotopic to Euclidean space \mathbf{R}^{k_i} for some k_i $(1 \le i \le l)$.

PROOF. Using Theorem 1 and Lemma 4, we have the following exact sequences:

$$0 \longrightarrow \mathfrak{I}_0 \xrightarrow{\iota_0} C^*(G) \xrightarrow{q_0} C_0(\Omega_0) \longrightarrow 0$$

$$0 \longrightarrow \mathfrak{J}_{j} \xrightarrow{l_{j}} \mathfrak{J}_{j-1} \xrightarrow{q_{j}} \mathfrak{J}_{j-1}/\mathfrak{J}_{j} (= \mathscr{C}_{j-1}) \longrightarrow 0,$$

where $1 \le j \le l-1$. The quotient \mathscr{C}_j $(0 \le j \le l-2)$ in this exact sequence has the spectrum which is identified with Ω_{j+1} . Also, the ideal \mathfrak{I}_{l-1} in the last exact sequence has the spectrum which is identified with Ω_l . Since \mathscr{C}_j $(0 \le j \le l-2)$ and \mathfrak{I}_{l-1} are liminal C^* -algebras with T_2 -spectrums, we apply Theorem 2 to them. Hence, those can be considered as the C^* -algebras of continuous vector fields of continuous fields. This shows that $C^*(G)$ is obtained by the extension of \mathfrak{I}_{l-1} with this property by \mathscr{C}_{l-2} with this one and repeating the extension by \mathscr{C}_j $(0 \le j \le l-3)$ with this one, and one more extension by $C_0(\Omega_0)$.

We next show that Ω_i is homotopic to \mathbb{R}^j for some *j*. Let W_i be the subset of \mathfrak{G}^* corresponding to Ω_i as considered in Lemma 4. Suppose that W_i is a subset of V_k . We can pick up *G*-invariant non-zero parameters for all elements in W_i . Let $(\beta_0, \beta_1, \cdots, \beta_k, 0, \cdots, 0)$ be the parametrization of them. We denote by S_i the set of all elements of this form. Then, we can consider the strong retraction *r* from W_i to the subset S_i of \mathfrak{G}^* defined by r; $W_i \times I \to \mathfrak{G}^*$,

$$r((\alpha_0, \alpha_1, \dots, \alpha_k, 0, \dots, 0), t) = (t\alpha_0, t\alpha_1, \dots, t\alpha_k, 0, \dots, 0) + ((1-t)\beta_0, (1-t)\beta_1, \dots, (1-t)\beta_k, 0, \dots, 0),$$

where I means the interval [0, 1] and $t \in I$, and $t\alpha_0$ means the pointwise multiplication. Then, it is clear that r induces the strong retraction from Ω_i to $q(S_i)$. We can also show that $q(S_i)$ is homeomorphic to \mathbf{R}^j for some j. Therefore, Ω_i is homotopic to \mathbf{R}^j for some j.

REMARK 1. \mathscr{C}_{i} $(0 \le j \le l-2)$ and \mathfrak{I}_{l-1} are written as

$$\{\tilde{a}: \Omega_{j+1} \to \bigcup_{[\phi] \in \Omega_{j+1}} \mathscr{C}_j / \ker(\pi_{\phi}), \, \|\tilde{a}(\cdot)\| \in C_0(\Omega_{j+1})\} \qquad (0 \le j \le l-2)$$

and

$$\left\{\tilde{a}: \Omega_l \to \bigcup_{[\phi] \in \Omega_l} \mathfrak{I}_{l-1} / \ker(\pi_{\phi}), \|\tilde{a}(\cdot)\| \in C_0(\Omega_l)\right\},\$$

where π_{ϕ} is an irreducible representation corresponding to $[\phi]$, and $\|\tilde{a}(\cdot)\|$ maps $[\phi]$ to $\|\tilde{a}([\phi])\|$. Since \mathscr{C}_j $(0 \le j \le l-2)$ and \mathfrak{J}_{l-1} are liminal, $\mathscr{C}_j/\ker(\pi_{\phi})$ and $\mathfrak{T}_{l-1}/\ker(\pi_{\psi})$ are isomorphic to $\mathbf{K}(H_{\pi_{\phi}})$ and $\mathbf{K}(H_{\pi_{\psi}})$ respectively. It is unclear whether or not those continuous fields satisfies Fell's condition. If so, the above continuous fields may be written as $C_0(\Omega_{j+1}) \otimes \mathbf{K}(H)$, $(0 \le j \le l-1)$ for a Hilbert space H. Then, homotopy equivalence of Ω_j to \mathbf{R}^n for some n may be useful to the calculation in K-theory for the above exact sequences.

REMARK 2. $\mathscr{C}_j \ (0 \le j \le l-2)$ and \mathfrak{I}_{l-1} have no non-trivial projections. Let \mathfrak{A} be one of them. Suppose that p is a non-trivial projection in \mathfrak{A} . Let \tilde{p} be the continuous vector field corresponding to p. Then, $\tilde{p}([\pi])$ is a non-trivial projection in $\mathfrak{A}/\ker(\pi)$ for some $[\pi]$ in \mathfrak{A} so that the norm of $\tilde{p}([\pi])$ is one. If the inverse image $\|\tilde{p}(\cdot)\|^{-1}(0)$ of 0 is non-empty, then $\|\tilde{p}(\cdot)\|^{-1}(0)$, $\|\tilde{p}(\cdot)\|^{-1}(1)$ are non-empty clopen sets, and $\Omega_j = \|\tilde{p}(\cdot)\|^{-1}(0) \cup \|\tilde{p}(\cdot)\|^{-1}(1)$, which is impossible by the connectivity of Ω_j . So $\Omega_j =$

 $\|\tilde{p}(\cdot)\|^{-1}(1)$. Hence, \tilde{p} does not vanish at infinity, which is a contradiction. Therefore, \mathfrak{A} has no non-trivial projections.

As a consequence of Theorem 3, the following theorem is verified:

THEOREM 4. The C*-algebra $C^*(G)$ of every simply connected, connected nilpotent Lie group G has no non-trivial projections.

PROOF. Suppose that $C^*(G)$ has a non-trivial projection p. We use the structure theorem of $C^*(G)$. Remember exact sequences in the proof of Theorem 3. Now, if p is not in \mathfrak{T}_0 , then $q_0(p)$ is a non-trivial projection in $C_0(\Omega_0)$, but $C_0(\Omega_0)$ has no non-trivial projections, which is a contradiction. So p is in \mathfrak{T}_0 . Similarly, if p is not in \mathfrak{T}_1 , then we have a contradiction. So p is in \mathfrak{T}_1 . Repeating this process finitely, we have that p is in \mathfrak{T}_{l-1} , but \mathfrak{T}_{l-1} has no non-trivial projections, which is a contradiction. Therefore, we conclude that $C^*(G)$ has no non-trivial projections.

REMARK 3. In Theorem 4, if G is commutative, this result is evident since $C^*(G)$ is isomorphic to $C_0(\hat{G})$ and \hat{G} is homeomorphic to the Euclidean space \mathbb{R}^n where n is the dimension of G. Also, if G is an exponential Lie group, this result is false in general. For example, if G is a real ax + b group, then $C^*(G)$ has the direct sum $\mathbb{K} \oplus \mathbb{K}$ as a closed ideal where \mathbb{K} is the C*-algebra consisting of all compact operators on a countably infinite dimensional Hilbert space. Therefore, $C^*(G)$ has a non-trivial projection. On the other hand, let E be an exponential Lie group and N a simply-connected, connected nilpotent Lie group and $G = N \times E$. Then $C^*(G)$ is isomorphic to $C^*(N) \otimes C^*(E)$. From the above structure theorem of $C^*(N)$, we have that $C^*(G)$ has no non-trivial projections.

REMARK 4. As an example of connected solvable Lie groups of non-type I, let G be the 5-dimensional Mautner group. It is of the form $\mathbb{C}^2 \rtimes_{\alpha} \mathbb{R}$ where α is defined by $\alpha_t(z_1, z_2) = (e^{it}z_1, e^{it\theta}z_2), t \in \mathbb{R}, z_1, z_2 \in \mathbb{C}, \theta \in \mathbb{R} \setminus \mathbb{Q}$. Then it is known that $C^*(G)$ has a non-trivial projection.

Now, let G be a semi-simple Lie group and Ad(G) the adjoint group defined by the quotient of G by its center Z. We can consider the existence problem of non-trivial projections of $C^*(G)$. Then the following result is known:

THEOREM 5 [5]. Let G be a real connected semisimple Lie group with finite center Z. Then the following statements are equivalent:

- (1) The tensor product $C^*(G) \otimes \mathbf{K}$ has no non-trivial projections.
- (2) $C^*(G)$ has no non-trivial minimal projections.
- (3) Ad(G) has at least one simple factor which is isomorphic to the Lorentz group $SO_0(2n+1, 1)$ for some $n \ge 1$.

From Remarks 3, 4 and Theorem 5, the next problems may be of independent interest:

PROBLEM. Let G be an exponential Lie group. Then describe the necessary and sufficient condition that $C^*(G)$ has no non-trivial projections in terms of the inner structure of G, and study the same thing in the case of type I Lie groups.

ACKNOWLEDGEMENT. The author expresses his deep gratitude to Professor H. Takai for many valuable discussions, and warm encouragement.

References

- [1] J. DIXMIRE, Sur le dual d'un groupe de Lie nilpotent, Bull. Sci. Math. (2) 90 (1966), 113-118.
- [2] —, C*-Algebras, North-Holland (1977).
- [3] A. A. KIRILLOV, Unitary representations of nilpotent Lie groups, Russian Math. Surveys 17 (1962), 53-104.
- [4] T. SUDO and H. TAKAI, Stable rank of the C*-algebras of nilpotent Lie groups, to appear in Internat. J. Math.
- [5] A. VALETTE, Projections in full C*-algebras of semisimple Lie groups, Math. Ann. 294 (1992), 277-287.

Present Address: Department of Mathematics, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji-shi, Tokyo, 192–03 Japan.