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Abstract. We show that the algebraic structure of the group $C^{*}$-algebra $C^{*}(G)$ of a simply connected,
connected nilpotent Lie group $G$ is described as repeating finitely the extension of C’-algebras with $T_{2^{-}}$

spectrums by themselves and one more extension by a commutative $C^{*}$ -algebra on the fixed point space $(\mathfrak{G}^{*})^{G}$

of $\mathfrak{E}^{*}$ under the coadjoint action of $G$ . Using this result, we show that $C^{*}(G)$ has no non-trivial projections.

1. Introduction.

It is generally a difficult problem to determine the algebraic structure of its $C^{*}-$

algebra $C^{*}(G)$ when a connected Lie group $G$ is given. In the representation theory, it
is hard to study the spectrum $\hat{G}$ of $G$ if $G$ is a connected solvable Lie group of non-type
I. However, if $G$ is a simply connected, connected nilpotent Lie group, then it is known
that $\hat{G}$ is homeomorphic to the quotient space $\mathfrak{G}^{*}/G$ of $\mathfrak{G}^{*}$ under the coadjoint action
of $G$ . This is called the Kirillov-Bemat (K-B) correspondence. Therefore, the study of
the representation theory of $G$ in this case is equivalent to the analysis of $\mathfrak{E}^{*}/G$ .

In this paper, we first study $\mathfrak{G}^{*}/G$ more precisely. We next describe the structure
of the $C^{*}$ -algebra $C^{*}(G)$ of a simply connected, connected nilpotent Lie group $G$ as
repeating finitely the extension of $C^{*}$-algebras with $T_{2}$-spectrums by themselves and
one more extension by a commutative $C^{*}$ -algebra on the fixed point space $(\mathfrak{G}^{*})^{G}$ under
the coadjoint action of $G$ . Secondly, using this result, we prove that $C^{*}(G)$ has no
non-trivial projections. Lastly, we comment about non-trivial projections of $C^{*}(G)$ in
case that $G$ is an exponential Lie group.

2. Preliminaries.

Let $G$ be an n-dimensional simply connected, connected nilpotent Lie group, and
(& its Lie algebra, and $\mathfrak{G}^{*}$ the real dual space of (&. Let $\{\mathfrak{G}_{i}\}_{i=0}^{m+1}$ be the descending
central sequence of (&, where $\mathfrak{G}_{i}=[\mathfrak{G}, \mathfrak{G}_{i-1}](1\leq i\leq m+1),$ $\mathfrak{G}_{0}=\mathfrak{G},$ (&m+1=0.

Let $\mathfrak{G}_{i}^{*}$ be the real dual space of $\mathfrak{G}_{i}$ , and $\mathfrak{G}_{i}^{\perp}$ be the subspace of $\mathfrak{G}^{*}$ annihilating
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on $\mathfrak{G}_{i}$ . Then we have (S5* $=\mathfrak{E}_{i}^{*}\oplus \mathfrak{E}_{i}^{\perp}$ as a vector space. Every element $\phi$ in $\mathfrak{E}_{i}^{*}$ can be
identified with $\phi\oplus 0$ in (&*. Let $X_{01}^{*},$ $X_{02}^{*},$ $\cdots,$ $X_{0a_{O}}^{*}$ be a basis of $\mathfrak{G}_{1}^{\perp}$ . Similarly, let
$X_{i1}^{*},$ $X_{i2}^{*},$ $\cdots,$ $X_{ia_{i}}^{*}$ be a basis of $\mathfrak{G}_{i}^{*}\cap \mathfrak{E}_{i+1}^{\perp}(1\leq i\leq m)$ and $U_{i}(0\leq i\leq m)$ be the sub-
spaces of (%*spanned by them. They are naturally identified with $a_{i}$-dimensional
Euclidean spaces $R^{a_{i}}(0\leq i\leq m)$ . Every element $\phi$ in $\mathfrak{G}^{*}$ can be parameterized with
$\phi=(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{m}),$ $\alpha_{i}\in R^{a_{i}}(0\leq i\leq m)$ . This parameterization is essential to our
Theorem 4.

Let Ad be the adjoint representation of $G$ in Aut((&), and $Ad^{*}$ the coadjoint action
of $G$ in $\mathfrak{G}^{*}$ defined by $Ad^{*}(g)\phi(X)=\phi(Ad(g^{-1})X),$ $(X\in \mathfrak{G}, \phi\in \mathfrak{G}^{*}, g\in G)$ . Let $(\mathfrak{E}^{*})^{G}$ be
the fixed point space of $\mathfrak{E}^{*}$ under $Ad^{*}$ . Using the above parameterization, put

$V_{O}=\{\phi=(\alpha_{O}, 0, \cdots, 0)\in \mathfrak{G}^{*}|\alpha_{O}\in R^{a_{O}}\}$ .

Then, we can see that:

LEMMA 1. $V_{0}=(\mathfrak{G}^{*})^{G}$ .

PROOF. Let $\phi$ be an element of $V_{0}$ . By definition, $\phi$ is in $\mathfrak{G}_{1}^{\perp}$ . Then we have

$Ad^{*}(g)(\phi)(Y)=\phi(Ad(g^{-1})Y)=\phi(Ad(\exp(-X))Y)$ , where $g=\exp(X)$

$=\phi(\exp(ad(-X))Y)$

$=\emptyset(Y-[X, Y]+\frac{1}{2!}ad(X)^{2}Y-\cdots+\frac{(-1)^{m}}{m!}ad(X)^{m}Y)=\phi(Y)$

for every $g$ in $G$ and $Y$ in $\mathfrak{G}^{*}$ . So $\phi$ is in $(\mathfrak{G}^{*})^{G}$ .
On the contrary, let $\phi$ be an element of $(\mathfrak{G}^{*})^{G}$ . By the same calculation, we have

$\phi(Y)=\emptyset(Y-[X, Y]+\frac{1}{2!}ad(X)^{2}Y-\cdots+\frac{(-1)^{m}}{m!}ad(X)^{m}Y)$

for every $X,$ $Y$ in (&*. It implies that

$\emptyset(-[X, Y]+\frac{1}{2!}ad(X)^{2}Y-\cdots+\frac{(-1)^{m}}{m!}ad(X)^{m}Y)=0$ .

Then, replacing $Y$ with $ad(X)^{m}$
‘

$1Y$, we have that $\phi(ad(X)^{m}Y)=0$ . Moreover, replacing
$Y$ with $ad(X)^{k}Y(1\leq k\leq m-2)$ , we have that $\phi(ad(X)^{k+1}Y)=0(1\leq k\leq m-2)$ . Therefore,
we conclude that $\phi([X, Y])=0$ for every $X,$ $Y$ in $\mathfrak{G}^{*}$ . So $\phi$ is in $V_{0}$ . $\square $

Next, put

$V_{k}=\{\phi=(\alpha_{0}, \alpha_{1}, \cdots, \alpha_{k}, 0, \cdots, 0)\in \mathfrak{G}^{*}|\alpha_{j}\in R^{a_{j}}(0\leq j\leq k-1), \alpha_{k}\in R^{a_{lc}}\backslash \{0\}\}$ ,

$(1 \leq k\leq m)$ . Then we can decompose $\mathfrak{G}^{*}$ into

$V_{0}\cup V_{1}\cup V_{2}\cup\cdots uV_{k}\cup\cdots\cup V_{m}$
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consisting of $m+1$ pieces of subsets of $\mathfrak{G}^{*}$ .
Next we can see explicitly the coadjoint orbit for every element in $V_{k}$ of $\mathfrak{G}^{*}$ . In the

following we denote by $\phi_{\alpha_{k}}$ the functional corresponding to $\phi=(0, \cdots, 0, \alpha_{k}, 0, \cdots, 0)$ .
For example, we have that:

LEMMA 2. The orbit $Ad^{*}(G)\phi$ for an element $\phi=(\alpha_{0}, \alpha_{1},0, \cdots, 0)$ in $V_{1}$ of $\mathfrak{G}^{*}$ is
given by the subset

$\{(\alpha_{0}-ad^{*}(X)\alpha_{1}, \alpha_{1},0, \cdots, 0)|X\in \mathfrak{G}\}$ ,

where $(ad^{*}(X)\phi_{\alpha_{1}})(Y)=\phi_{\alpha_{1}}([X, Y]),$ $Y\in \mathfrak{G}$ when $\alpha_{1}$ in $R^{a_{1}}\backslash \{0\}$ is identified with $\phi_{\alpha_{1}}$ in $\mathfrak{G}^{*}$ .

PROOF. The functional corresponding to $\phi=(\alpha_{0}, \alpha_{1},0, \cdots, 0)$ in $V_{1}$ is given by
$\phi_{\alpha_{O}}+\phi_{\alpha_{1}}$ . By the direct computation, we have

$Ad^{*}(g)(\phi_{\alpha_{0}}+\phi_{\alpha_{1}})(Y)=Ad^{*}(g)(\phi_{\alpha_{0}})(Y)+Ad^{*}(g)(\phi_{\alpha_{1}})(Y)$

$=\phi_{\alpha_{O}}(Y)+\phi_{\alpha_{1}}(Ad(g^{-1})Y)$

$=\phi_{\alpha_{0}}(Y)+\emptyset_{\alpha_{1}}(Y-[X, Y]+\frac{1}{2!}ad(X)^{2}Y$

-. . . $+\frac{(-1)^{m}}{m!}ad(X)^{m}Y)$ , where $g=\exp(X)$

$=\phi_{\alpha_{O}}(Y)+\phi_{\alpha_{1}}(Y-[X, Y])$

$=\phi_{\alpha_{O}}(Y)-(ad^{*}(X)\phi_{\alpha_{1}})(Y)+\phi_{\alpha_{1}}(Y)$ .
We next show that $ad^{*}(X)\phi_{\alpha_{1}}$ is in $V_{O}$ . By the direct computation, we have

$Ad^{*}(h)(ad^{*}(X)\phi_{\alpha_{1}})(Y)=(ad^{*}(X)\phi_{\alpha_{1}})(\exp(ad(-Z))Y)$ , where $h=\exp(Z)$

$=(ad^{*}(X)\phi_{\alpha_{1}})(Y-[Z, Y]+\frac{1}{2!}ad(Z)^{2}Y-\cdots+\frac{(-1)^{m}}{m!}ad(Z)^{m}Y)$

$=\emptyset_{\alpha_{1}}([X, Y]-[X, [Z, Y]]+\frac{1}{2!}ad(X)ad(Z)^{2}Y-\cdots+\frac{(-1)^{m}}{m!}ad(X)ad(Z)^{m}Y)$

$=\phi_{\alpha_{1}}([X, Y])=(ad^{*}(X)\phi_{\alpha_{1}})(Y)$ .

It then follows that $Ad^{*}(G)(ad^{*}(X)\phi_{\alpha_{1}})=ad^{*}(X)\phi_{\alpha_{1}}$ , so that $ad^{*}(X)\phi_{\alpha_{1}}$ is in $V_{0}$ . $\square $

In general, the orbit $Ad^{*}(G)\phi$ for an element $\phi=(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}, 0, \cdots, 0)$ in $V_{k}$

of $\mathfrak{G}^{*}$ is given by the subset

$\{(\alpha_{0}-ad^{*}(X)\alpha_{1}+(2!)^{-1}ad^{*}(X)^{2}\alpha_{2}+\cdots+(-1)^{k}(k!)^{-1}ad^{*}(X)^{k}\alpha_{k}$ ,
$\alpha_{1}-ad^{*}(X)\alpha_{2}+\cdot\cdot\vee+(-1)^{k-1}((k-1)!)^{-1}ad^{*}(X)^{k-1}\alpha_{k}$ ,

$\alpha_{2}-ad^{*}(X)\alpha_{3}+\cdots+(-1)^{k-2}((k-2)!)^{-1}ad^{*}(X)^{k-2}\alpha_{k}$ ,
. . . . . . , $\alpha_{k-1}-ad*(X)\alpha_{k},$ $\alpha_{k},$ $0,$ $\cdots,$

$0$) $|X\in \mathfrak{E}$ }
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where $\alpha_{i}$ is identified with $\phi_{\alpha_{i}}$ in $\mathfrak{G}^{*}(i=0,1, \cdots, k)$ .
In the subsets $V_{0},$ $V_{1},$ $\cdots,$ $V_{m}$ of $\mathfrak{G}^{*}$ , the coadjoint action of $G$ effects to parameters

on the left side of a non-zero parameter on the right end. Furthermore, we decompose
$V_{1}$ into the subsets $\{V_{1i}\}_{i=1}^{3^{a_{1}}-1}$ of $\mathfrak{G}^{*}$ , which are combinationally defined by whether
each of the parameters $\{l_{1i}\}_{i=1}^{a_{1}}$ about $\{X_{1i}^{*}\}_{i=1}^{a_{1}}$ is zero, greater than zero or less than
zero. For example, $V_{11}$ is given by the subset

$\{(\alpha_{0}, \alpha_{1},0, \cdots, 0)|\alpha_{O}\in R^{a_{O}}, \alpha_{1}=(l_{11},0, \cdots, 0), l_{11}>0\}$ ,

and $V_{12}$ is given by the subset

$\{(\alpha_{O}, \alpha_{1},0, \cdots, 0)|\alpha_{O}\in R^{a_{0}}, \alpha_{1}=(l_{11},0, \cdots, 0), l_{11}<0\}$ ,

and $V_{13}$ is given by the subset

$\{(\alpha_{0}, \alpha_{1},0, \cdots, 0)|\alpha_{0}\in R^{a_{O}}, \alpha_{1}=(0, l_{12},0, \cdots, 0), l_{12}>0\}$ .

More generally, $V_{1i}$ for some $i$ is given by the subset

$\{(\alpha_{0}, \alpha_{1},0, \cdots, 0)|\alpha_{0}\in R^{a_{O}},$ $\alpha_{1}=(l_{11}, l_{12}, l_{13}, \cdots, l_{1j}, 0, \cdots, 0)$ ,

$l_{11}>0,$ $l_{12}=0,$ $l_{13}<0,$ $\cdots,$ $l_{1j}>0$}.

Furthermore, we decompose $V_{k}(k=2, \cdots, m)$ into the subsets $\{V_{ki}\}_{i=1}^{3^{a}\downarrow 3^{a_{2}}\cdots 3^{a_{k- 1}}\langle 3^{a_{k}}-1)}$

of $\mathfrak{G}^{*}$ , which are combinationally defined by whether each of the parameters $\{l_{ji}\}_{i=1}^{a_{j}}$

$(1\leq j\leq k)$ about $\{X_{ji}^{*}\}_{i=1}^{a_{j}}(1\leq j\leq k)$ is zero, greater than zero or less than zero. Therefore
we can decompose $\mathfrak{G}^{*}$ into $1+(3^{a_{1}}-1)+3^{a_{1}}(3^{a_{2}}-1)+\cdots+3^{a_{1}}3^{a_{2}}\cdots 3^{a_{k- 1}}(3^{a_{k}}-1)+$

. . . $+3^{a_{1}}3^{a_{2}}\cdots 3^{a_{m- 1}}(3^{a_{m}}-1)$ (say l) pieces of subsets of (&*.

Then, letting $q$ be the quotient map from $\mathfrak{E}^{*}$ to $\mathfrak{E}^{*}/G$ , we consider the subsets $q(V_{0})$

and $\{q(V_{ki})\}_{i=1}^{3^{a_{1}}3^{a_{2}}\cdots 3^{a_{k- 1}}\{3^{a_{k}}-1)}(1\leq k\leq m)$ of $\mathfrak{G}^{*}/G$ . And let $\Omega_{0},$ $\Omega_{1},$ $\cdots,$
$\Omega_{i}$ be those

subsets of $\mathfrak{G}^{*}/G$ . Note that it happens that $\Omega_{i}=\Omega_{j}$ for $i<j$. In this case let $\Omega_{i}=\{\emptyset\}$ .
Under this setup, using Lemma 3.1 in [4] and Theorem 10.5.4 in [2], which are stated
later as Theorems 1 and 2 respectively, we prove our main theorems in the next section.
Before further study, we give an example here for the convenience of understanding.

EXAMPLE 1. Let $G$ be the simply connected, connected nilpotent Lie group defined
by all $4\times 4$ upper triangular real matrices with 1 on the diagonal. Then the Lie algebra
(& of $G$ is defined by all $4\times 4$ upper triangular matrices with $0$ on the diagonal. Then
the real dual space $\mathfrak{E}^{*}$ of (! is defined by all $4\times 4$ lower triangular matrices with $0$ on
the diagonal. In our setting, every element $\phi=(l_{ij})_{1\leq i,j\leq 4}$ in $\mathfrak{G}^{*}$ is parameterized with
$\phi=(\alpha_{0}, \alpha_{1}, \alpha_{2})$ where $\alpha_{0}=(l_{21}, l_{32}, l_{43}),$ $\alpha_{1}=(l_{31}, l_{42}),$ $\alpha_{2}=l_{41}$ . The coadjoint action of
$G$ on $\mathfrak{E}^{*}$ is defined by $Ad^{*}(g)\phi(X)=\phi(Ad(g^{-1})X)=Tr(Ad(g^{-1})X\phi)$ where $g\in G,$ $X\in \mathfrak{G}$ ,

and Tr is the natural trace on $M_{4}(R)$ . Then computing this, we have

$Ad^{*}(g)\phi=(\beta_{0}, \beta_{1}, \beta_{2})$ ,

where
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$\beta_{0}=(l_{21}-x_{23}l_{31}+(-x_{24}+(2!)^{-1}x_{23}x_{34})l_{41},$ $x_{12}l_{31}-x_{12}x_{34}l_{41}+l_{32}-x_{34}l_{42}$ ,

$(x_{13}+(2!)^{-1}x_{12}x_{23})l_{41}+x_{23}l_{42}+l_{43})$ , $\beta_{1}=(l_{31}-x_{34}l_{41}, x_{12}l_{41}+l_{42})$ , $\beta_{2}=l_{41}$ ,

for $g^{-1}=\exp(X)$ and $X=(x_{ij})_{1\leq i,j\leq 4}$ in $\mathfrak{G}$ . Then $\Omega_{0}$ is identified with $R^{3}$ , and $\Omega_{k}(1\leq k\leq 4)$

are identified with $R\times(O, \infty)$ , where representatives of $\Omega_{k}$ have the form $(\alpha_{0}, l_{31}, l_{42},0)$

with either $l_{31}=0$ or $l_{42}=0$ , and the closures $\overline{\Omega_{k}}(1\leq k\leq 4)$ are equal to $\Omega_{0}\cup\Omega_{k}$ . The
sets $\Omega_{k}(5\leq k\leq 8)$ are identified with $R\times(O, \infty)\times(0, \infty)$ , where representatives of $\Omega_{k}$

have the form $(\alpha_{O}, l_{31}, l_{42},0)$ with $l_{31}\neq 0$ and $l_{42}\neq 0$ , and the closure $\overline{\bigcup_{k=5}^{8}\Omega_{k}}$ contains
$\bigcup_{i=0}^{4}\Omega_{i}$ . The sets $\Omega_{9},$ $\Omega_{10}$ are identified with $R\times(O, \infty)$ , where representatives of $\Omega_{k}$

$(9\leq k\leq 10)$ have the form $(\alpha_{O}, \alpha_{I}, l_{41})$ with $l_{41}\neq 0$ , and the closure $\Omega_{9}\cup\Omega_{10}$ are equal
to $\mathfrak{G}^{*}/G$ .

3. Main theorems.

In this section we prove that the $C^{*}$-algebra $C^{*}(G)$ of a simply connected, con-
nected nilpotent Lie group $G$ is obtained by repeating finitely the extension of $C^{*}-$

algebras with $T_{2}$-spectrum by themselves and one more extension by a commutative
$C^{*}$ -algebra on a Euclidean space. Using this result, we prove that $C^{*}(G)$ has no non-
trivial projections.

First of all, we prove the following lemma which is stated in [4]:

LEMMA 3 [4]. The image $\Omega_{0}$ of the fixed point space $(\mathfrak{G}^{*})^{G}$ is a locally compact
$T_{2}$-space in the relative topology of $\Omega_{0}$ and closed in (&*/G.

PROOF. First, it is known that $\hat{G}$ is locally compact, which can be found in [1].

Using K-B correspondence we have that $\mathfrak{E}^{*}/G$ is locally compact. So $\Omega_{0}$ is locally
compact with its relative topology.

Next, let $[\phi_{1}],$ $[\phi_{2}]$ be two distinct points in $\Omega_{0}$ . Then $q^{-1}([\phi_{1}])=\{\phi_{1}\},$ $q^{-1}([\phi_{2}])=$

$\{\phi_{2}\}$ are also two distinct points in $t5^{*}$ . Since $\mathfrak{G}^{*}$ is a $T_{2}$ -space, there exist two open
neighborhoods $U_{1},$ $U_{2}$ of $\phi_{1},$ $\phi_{2}$ respectively such that $ U_{1}\cap U_{2}=\emptyset$ . Since $q(U_{1}),$ $q(U_{2})$

are open in $\mathfrak{G}^{*}/G,$ $q(U_{1})\cap\Omega_{0},$ $q(U_{2})\cap\Omega_{0}$ are two disjoint open neighborhoods of $[\phi_{1}]$ ,
$[\phi_{2}]$ respectively in $\Omega_{0}$ .

Lastly, let $\{[\phi_{n}]\}$ be a sequence of $\Omega_{O}$ . Suppose that $[\phi]$ is in $\mathfrak{G}^{*}/G$ and $[\phi_{n}]$

converges to $[\phi]$ . If $[\phi]$ is not in $\Omega_{0}$ , then $ q^{-1}([\phi])\cap(\mathfrak{G}^{*})^{G}=\emptyset$ . Since $\hat{G}$ is a $T_{1}$ -space,
$\{[\phi]\}$ is closed in $\mathfrak{G}^{*}/G$ so that $q^{-1}([\phi])$ is closed in $\mathfrak{G}^{*}$ . By normality of $\mathfrak{G}^{*}$ , there
exists an open set $O$ of $\mathfrak{G}^{*}$ such that $q^{-1}([\phi])\subset O$ and $ O\cap(\mathfrak{G}^{*})^{G}=\emptyset$ . It follows that
$q(O)$ is an open neighborhood of $[\phi]$ in $\mathfrak{G}^{*}/G$ and $ q(O)\cap\Omega_{0}=\emptyset$ , which contradicts
our assumption. $\square $

From this result, we can consider the $C^{*}$-algebra $C_{0}(\Omega_{0})$ consisting of all complex
valued continuous functions on $\Omega_{0}$ vanishing at infinity.

We proved the following theorem in [4], which was considered as the first key
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lemma for our main theorems. We prepare the notation for this theorem.
Now, let $\Phi$ be the Kirillov-Bernat mapping from the coadjoint orbit space $\mathfrak{G}^{*}/G$ to

the spectrum $\hat{G}$ of $G$ . Put $\Phi([\phi])=\chi_{\phi}$ for every element $[\phi]$ in $\Omega_{0}$ , where $[\phi]$ is identified
with $\phi$ in $\mathfrak{G}^{*}$ , and $\chi_{\phi}$ is defined by $\chi_{\phi}(\exp(X))=e^{i\phi\langle X)}$ for every $X$ in $\mathfrak{G}$ . Let $\tilde{\chi}_{\phi}$ be the
element in spectrum $C^{*}(G)$ of $C^{*}(G)$ corresponding to $\chi_{\phi}$ . Let $ker(\tilde{\chi}_{\phi})$ be the kemel of
$\tilde{\chi}_{\phi}$ . Let $\mathfrak{J}_{0}=\bigcap_{[\phi]\in\Omega_{O}}ker(\tilde{\chi}_{\phi})$ be the intersection of those kemels for every element $[\phi]$

in $\Omega_{0}$ . Then it is clear that $\mathfrak{J}_{0}$ is a two-sided closed ideal of $C^{*}(G)$ . Then, the following
theorem holds:

THEOREM 1 [4]. The quotient $C^{*}$-algebra $C^{*}(G)/3_{O}$ of $C^{*}(G)$ by the ideal $3_{0}$ is
isomorphic to $C_{O}(\Omega_{0})$ .

Next we investigate the difference space $(\mathfrak{G}^{*}/G)\backslash \Omega_{0}$ corresponding to the spectrum
$\hat{\mathfrak{J}}_{0}$ of $\mathfrak{J}_{0}$ . Then the following lemma holds:

LEMMA 4. The subsets $\Omega_{i}(1\leq i\leq l)$ of $\mathfrak{G}^{*}/G$ are all non compact connected $T_{2^{-}}$

spaces in the relative topology of $\Omega_{i}$ , and closed in $(\mathfrak{G}^{*}/G)\backslash (\cup:_{=0}^{-1}\Omega_{j})$ .
$PR\infty F$ . We can take the subset $V_{kj}$ of $\mathfrak{G}^{*}$ for some $k,$ $j$ such that $q(V_{kj})=\Omega_{i}$ .

Each element of $V_{kj}$ can be parameterized with $(\alpha_{0},$ $l_{11},$ $\cdots,$ $l_{1a_{1}},$ $\cdots,$ $l_{k1},$ $\cdots,$ $l_{ka_{k}}$ ,
$0,$ $\cdots,$

$0$). Put $W_{i}=V_{kj}$ . Since $W_{i}$ is connected, $\Omega_{i}$ which is the continuous image of $W_{i}$

by $q$ is also connected.
We next show that $\Omega_{i}$ is non compact. $LetU(r_{1}, \cdots, r_{k})betheopensubsetsofV_{k}$

defined by the product spaces

$R^{a_{O}}\times U(r_{1})\times\cdots\times U(r_{k-1})\times(U(r_{k})\backslash \{0\})\times\{0\}\times\cdots\times\{0\}$

where $U(r_{j})$ is the open ball in $R^{a_{j}}$ with the radius $r_{j}$ in $N$ and center $0(j=1, \cdots, k)$ .
Since $q$ is an open map and $q(U(r_{1}, \cdots, r_{k})\cap W_{i})=q(U(r_{1}, \cdots, r_{k}))\cap\Omega_{i}$ , the family
$\{q(U(r_{1}, \cdots, r_{k})\cap W_{i})\}_{\langle r_{1},\cdots,r_{k})\in N^{k}}$ is an open covering of $\Omega_{i}$ with respect to the relative
topology. It is clear that every finite subcovering does not contain $\Omega_{i}$ . Therefore, $\Omega_{i}$ is
non compact.

We next show that $\Omega_{i}$ is closed in $(\mathfrak{G}^{*}/G)\backslash (\bigcup_{j=0}^{i-1}\Omega_{j})$ . Suppose that a sequence
$([\phi_{n}])_{n\in N}$ of $\Omega_{i}$ converges to $[\phi]$ in $(\mathfrak{E}^{*}/G)\backslash (\bigcup_{j=0}^{i-1}\Omega_{j})$ . We show that $[\phi]$ is in $\Omega_{i}$ . If
not so, say $[\phi]\in\Omega_{j}(j>i)$, there exists $\psi\in W_{j}$ such that $q(\psi)=[\phi]$ , where $q(W_{j})=\Omega_{j}$ as
before. We can take a small open neighborhood $U$ of $\psi$ such that $ U\cap W_{i}=\emptyset$ since $\psi$

has a nonzero G-invariant parameter $l_{st}$ such that $l_{st}$ is zero for every element in $W_{i}$ , or
$\psi$ has $l_{st}>0(<0)$ such that $l_{st}<0(>0)$ for every element in $W_{i}$ respectively. Then
consider G-invariant open subset $Ad^{*}(G)(U)$ of $\mathfrak{G}^{*}$ , where $Ad^{*}(G)(U)$ means the union
$\bigcup_{g\in G}Ad^{*}(g)(U)$ of open subsets $Ad^{*}(g)(U)$ in $\mathfrak{G}^{*}$ . Then we have $Ad^{*}(GXU)\cap W_{i}=\emptyset$

since every element in $U$ has a G-invariant parameter $l_{uv}$ such that $l_{uv}$ is zero for every
element in $W_{i}$ , or $l_{uv}>0(<0)$ such that $l_{uv}<0(>0)$ for every element in $W_{i}$ respectively.
It then follows that $ q(Ad^{*}(GXU))\cap\Omega_{i}=\emptyset$ , which is a contradiction.

We next show that $\Omega_{i}$ is a $T_{2}$-space with respect to the relative topology. Let $[\phi]$
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and $[\psi]$ be two distinct points in $\Omega_{i}$ . Then the preimages $q^{-1}([\phi])$ and $q^{-1}([\psi])$ are
disjoint. Let $\phi=(\alpha_{0},0, \cdots, \alpha_{i_{1}},0, \cdots, \alpha_{i_{k}}, 0, \cdots, 0)$ and $\psi=(\beta_{0},0,$ $\cdots,$ $\beta_{i_{1}},0,$ $\cdots,$ $\beta_{i_{k}}$ ,
$0,$ $\cdots,$

$0$) be two arbitrary points of $q^{-1}([\phi])\cap W_{i}$ and $q^{-1}([\psi])\cap W_{i}$ respectively. Since
$[\phi]$ and $[\psi]$ are two distinct points in $\Omega_{i}$ , there exists a term such that $\alpha_{i_{j}}\neq\beta_{i_{j}}$ where
$\alpha_{i_{j}}=(l_{i_{j}1}, \cdots, l_{i_{j}a_{t_{j}}}),$ $\beta_{i_{j}}=(m_{i_{j}1}, \cdots, m_{i_{j}a_{i_{J}}})$ with respect to $X_{i_{j}1}^{*},$ $\cdots,$ $X_{i_{j}a_{t_{j}}}^{*}$ , such that $l_{i_{t}s}=$

$m_{i_{t}s}$ for G-invariant parameters $l_{i_{t}s}$ and $m_{i_{t}s}$ of $\alpha_{i_{t}}$ and $\beta_{i_{t}}$ respectively, if necessary,
replacing the basis $\{X_{i_{t}s}^{*}\}_{s=1}^{a:_{t}}(j<t\leq k)$ , and there exists a G-invariant parameter $l_{i_{j}u}\neq m_{i_{J}u}$

of $\alpha_{i_{j}}$ and $\beta_{i_{j}}$ , if necessary, replacing the basis $\{X_{i_{j}t}^{*}\}_{t1}^{a_{\underline{\lrcorner}}}$ . Since $t5^{*}$ is of course $T_{2}$ -space,
let $U_{\phi}$ and $U_{\psi}$ be two disjoint open neighborhoods of $\phi$ and $\psi$ respectively, separating $l_{i_{j}u}$

and $m_{i_{j}u}$ . Now put $S_{i}=q^{-1}((\mathfrak{G}^{*}/G)\backslash (\bigcup_{j=0}^{i-1}\Omega_{j}))$ . Then we can consider two G-invariant
open subsets $Ad^{*}(G)(U_{\phi})\cap S_{i}$ and $Ad^{*}(G)(U_{\psi})\cap S_{i}$ of $\mathfrak{G}^{*}$ . Then put $T_{\phi}=Ad^{*}(G)(U_{\phi})\cap S_{i}$

and $T_{\psi}=Ad^{*}(G)(U_{\psi})\cap S_{i}$ . Then $q(T_{\phi})$ and $q(T_{\psi})$ are two open neighborhoods in $\mathfrak{G}^{*}/G$

since $q$ is an open map. They are also open in $(\mathfrak{G}^{*}/G)\backslash (\bigcup_{j=0}^{i-1}\Omega_{j})$ . Then $q(T_{\phi})\cap\Omega_{i}$ and
$q(T_{\psi})\cap\Omega_{i}$ are disjoint and open in $\Omega_{i}$ . Therefore, $\Omega_{i}$ is a $T_{2}$-space, as desired. $\square $

Using this lemma, we can consider the decreasing sequence $\{\mathfrak{J}_{j}\}_{j=0}^{l}(\mathfrak{J}_{j}\supset \mathfrak{J}_{j+1})$ ,
$3_{l}=\{0\}$ of $C^{*}$-subalgebras of $C^{*}(G)$ corresponding to subsets $(\mathfrak{G}^{*}/G)\backslash (\bigcup_{i=0}^{j}\Omega_{i})(0\leq$

$j\leq l)$ of $\mathfrak{G}^{*}/G$ . Since $C^{*}(G)$ is liminal, so are its $C^{*}$-subalgebras $\{3_{j}\}_{j=0}^{l-1}$ . Let $\{\mathscr{C}_{j}\}\}^{-2}=0$

be the quotient $C^{*}$-algebras $3_{j}/\mathfrak{J}_{j+1}$ of $3_{j}$ by $3_{j+1}$ , which are also liminal. Then the
spectrum $\hat{\mathscr{C}}_{i}$ of $\mathscr{C}_{i}$ is equal to $\Omega_{i+1}$ .

In general, the following holds. We need this result to prove our theorems:

THEOREM 2 [2]. Let $\mathfrak{U}$ be a liminal $C^{*}$ -algebra with the $T_{2}$ -spectrum $\Phi$ . Let $\mathfrak{F}=$

$((\mathfrak{U}/ker(\pi))_{[\pi]\in \mathfrak{U}}, \Theta)$ be a continuous field of elementary $C^{*}$ -algebras over $\mathfrak{U}$ defined
by $\mathfrak{U}$ . Let $\mathfrak{U}$ be the $C^{*}$ -algebra defined by $\mathfrak{F}$ . Then the correspondence from $a$ in $\mathfrak{U}$ to
$\tilde{a}$ in $\mathfrak{U}$ gives an isomorphism from $\mathfrak{U}$ to $\mathfrak{U}$ , where $\tilde{a}$ is an element in $\Theta$ defined by
$\tilde{a}([\pi])=a+ker(\pi)$ .

Applying this to the quotients $\{\mathscr{C}_{j}\}_{j=0}^{l-2}$ in exact sequences, and using the above
results, we have the following theorem:

THEOREM 3. The $C^{*}$-algebra $C^{*}(G)$for every simply connected, connected nilpotent
Lie group $G$ can be obtained by repeatingfinitely the extension of the $C^{*}$-algebras defined
by a continuousfield of elementary $C^{*}$ -algebras over $\Omega_{i}(1\leq i\leq l)$ by themselves, and one
more extension by $C_{0}(\Omega_{0})$ with spectrum homeomorphic to $R^{a_{0}}$ . Moreover, $\Omega_{i}$ is homotopic
to Euclidean space $R^{k_{i}}$ for some $k_{i}(1\leq i\leq l)$ .

PROOF. Using Theorem 1 and Lemma 4, we have the following exact sequences:

$0\rightarrow 3_{0}\rightarrow^{\iota_{0}}C^{*}(G)\rightarrow^{q_{0}}C_{0}(\Omega_{0})\rightarrow 0$

$0\rightarrow 3_{J}\rightarrow^{l_{j}}3_{j-1}\rightarrow^{q_{j}}\mathfrak{J}_{j-1}/\mathfrak{J}_{j}(=\mathscr{C}_{j-1})\rightarrow 0$ ,
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where $1\leq j\leq l-1$ . The quotient $\mathscr{C}_{j}(0\leq j\leq l-2)$ in this exact sequence has the spectrum
which is identified with $\Omega_{j+1}$ . Also, the ideal $3_{l-1}$ in the last exact sequence has
the spectrum which is identified with $\Omega_{l}$ . Since $\mathscr{C}_{j}(0\leq j\leq l-2)$ and $\mathfrak{J}_{l-1}$ are liminal
$C^{*}$-algebras with $T_{2}$-spectrums, we apply Theorem 2 to them. Hence, those can be
considered as the $C^{*}$-algebras of continuous vector fields of continuous fields. This
shows that $C^{*}(G)$ is obtained by the extension of $\mathfrak{J}_{l-1}$ with this property by $\mathscr{C}_{l-2}$ with
this one and repeating the extension by $\mathscr{C}_{j}(0\leq j\leq l-3)$ with this one, and one more
extension by $C_{0}(\Omega_{0})$ .

We next show that $\Omega_{i}$ is homotopic to $R^{j}$ for some $j$ . Let $W_{i}$ be the subset of $\mathfrak{G}^{*}$

corresponding to $\Omega_{i}$ as considered in Lemma 4. Suppose that $W_{i}$ is a subset of $V_{k}$ . We
can pick up G-invariant non-zero parameters for all elements in $W_{i}$ . Let $(\beta_{0},$ $\beta_{1},$ $\cdots$ ,
$\beta_{k},$ $0,$ $\cdots,$

$0$) be the parametrization of them. We denote by $S_{i}$ the set of all elements
of this form. Then, we can consider the strong retraction $r$ from $W_{i}$ to the subset $S_{t}$ of
$\mathfrak{G}^{*}$ defined by $r;W_{i}\times I\rightarrow \mathfrak{G}^{*}$ ,

$r((\alpha_{0}, \alpha_{1}, \cdots, \alpha_{k}, 0, \cdots, 0), t)=(t\alpha_{0}, t\alpha_{1}, \cdots, t\alpha_{k}, 0, \cdots, 0)$

$+((1-t)\beta_{0}, (1-t)\beta_{1},$ $\cdots,$ $(1-t)\beta_{k},$ $0,$ $\cdots,$
$0$) ,

where $I$ means the interval $[0,1]$ and $t\in I$ , and $t\alpha_{0}$ means the pointwise multiplication.
Then, it is clear that $r$ induces the strong retraction from $\Omega_{i}$ to $q(S_{i})$ . We can also show
that $q(S_{i})$ is homeomorphic to $R^{j}$ for some $j$. Therefore, $\Omega_{i}$ is homotopic to $R^{j}$ for some $j$.

$\square $

REMARK 1. $\mathscr{C}_{j}(0\leq j\leq l-2)$ and $3_{l-1}$ are written as
$\{\tilde{a}:\Omega_{j+1}\rightarrow\bigcup_{[\phi]\in\Omega_{j+1}}\mathscr{C}_{j}/ker(\pi_{\phi}), \Vert\tilde{a}(\cdot)\Vert\in C_{0}(\Omega_{j+1})\}$ $(0\leq j\leq l-2)$

and

$\{\tilde{a}:\Omega_{l}\rightarrow\bigcup_{[\phi]\in\Omega_{l}}\mathfrak{J}_{l-1}/ker(\pi_{\phi}), ||\tilde{a}(\cdot)\Vert\in C_{0}(\Omega_{l})\}$ ,

where $\pi_{\phi}$ is an irreducible representation corresponding to $[\phi]$ , and 1 $\tilde{a}(\cdot)\Vert$ maps $[\phi]$

to $\Vert\tilde{a}([\phi])\Vert$ . Since $\mathscr{C}_{j}(0\leq j\leq l-2)$ and $3_{l-1}$ are liminal, $\mathscr{C}_{j}/ker(\pi_{\phi})$ and $\mathfrak{J}_{l-1}/ker(\pi_{\psi})$

are isomorphic to $K(H_{\pi_{\phi}})$ and $K(H_{\pi\psi})$ respectively. It is unclear whether or not those
continuous fields satisfies Fell’s condition. If so, the above continuous fields may be
written as $C_{0}(\Omega_{j+1})\otimes K(H),$ $(0\leq j\leq l-1)$ for a Hilbert space $H$. Then, homotopy
equivalence of $\Omega_{j}$ to $R^{n}$ for some $n$ may be useful to the calculation in K-theory for
the above exact sequences.

REMARK 2. $\mathscr{C}_{j}(0\leq j\leq l-2)$ and $\mathfrak{J}_{l-1}$ have no non-trivial projections. Let $\mathfrak{U}$ be
one of them. Suppose that $p$ is a non-trivial projection in $\mathfrak{U}$ . Let $\tilde{p}$ be the continuous
vector field corresponding to $p$ . Then, $\tilde{p}([\pi])$ is a non-trivial projection in $\mathfrak{U}/ker(\pi)$ for
some $[\pi]$ in et so that the norm of $\tilde{p}([\pi])$ is one. If the inverse image $\Vert\tilde{p}(\cdot)\Vert^{-1}(0)$ of $0$

is non-empty, then $\Vert\tilde{p}(\cdot)\Vert^{-1}(0),$ $\Vert\tilde{p}(\cdot)\Vert^{-1}(1)$ are non-empty clopen sets, and $\Omega_{j}=$

$\Vert\tilde{p}(\cdot)\Vert^{-1}(0)\cup\Vert\tilde{p}(\cdot)\Vert^{-1}(1)$ , which is impossible by the connectivity of $\Omega_{j}$ . So $\Omega_{j}=$
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$\Vert\tilde{p}(\cdot)\Vert^{-1}(1)$ . Hence, $\tilde{p}$ does not vanish at infinity, which is a contradiction. Therefore,
$\mathfrak{U}$ has no non-trivial projections.

As a consequence of Theorem 3, the following theorem is verified:

THEOREM 4. The $C^{*}$-algebra $C^{*}(G)$ of every simply connected, connected nilpotent
Lie group $G$ has no non-trivial projections.

PROOF. Suppose that $C^{*}(G)$ has a non-trivial projection $p$ . We use the structure
theorem of $C^{*}(G)$ . Remember exact sequences in the proof of Theorem 3. Now, if $p$ is
not in $\mathfrak{J}_{0}$ , then $q_{0}(p)$ is a non-trivial projectiom in $C_{0}(\Omega_{O})$ , but $C_{o}(\Omega_{0})$ has no non-trivial
projections, which is a contradiction. So $p$ is in $3_{0}$ . Similarly, if $p$ is not in $3_{1}$ , then we
have a contradiction. So $p$ is in $\mathfrak{J}_{1}$ . Repeating this process finitely, we have that $p$ is in
$\mathfrak{J}_{l-1}$ , but $\mathfrak{J}_{l-1}$ has no non-trivial projections, which is a contradiction. Therefore, we
conclude that $C^{*}(G)$ has no non-trivial projections. $\square $

REMARK 3. In Theorem 4, if $G$ is commutative, this result is evident since $C^{*}(G)$

is isomorphic to $C_{0}(\hat{G})$ and $\hat{G}$ is homeomorphic to the Euclidean space $R^{n}$ where $n$ is
the dimension of $G$ . Also, if $G$ is an exponential Lie group, this result is false in general.
For example, if $G$ is a real $ax+b$ group, then $C^{*}(G)$ has the direct sum $K\oplus K$ as a
closed ideal where $K$ is the $C^{*}$ -algebra consisting of all compact operators on a countably
infinite dimensional Hilbert space. Therefore, $C^{*}(G)$ has a non-trivial projection. On
the other hand, let $E$ be an exponential Lie group and $N$ a simply-connected, connected
nilpotent Lie group and $G=N\times E$ . Then $C^{*}(G)$ is isomorphic to $C^{*}(N)\otimes C^{*}(E)$ . From
the above structure theorem of $C^{*}(N)$ , we have that $C^{*}(G)$ has no non-trivial projections.

REMARK 4. As an example of connected solvable Lie groups of non-type I, let $G$

be the 5-dimensional Mautner group. It is of the form $C^{2}>\triangleleft_{\alpha}R$ where $\alpha$ is defined by
$\alpha_{t}(z_{1}, z_{2})=(e^{it}z_{1}, e^{it\theta}z_{2}),$ $t\in R,$ $z_{1},$ $z_{2}\in C,$ $\theta\in R\backslash Q$ . Then it is known that $C^{*}(G)$ has a non-
trivial projection.

Now, let $G$ be a semi-simple Lie group and $Ad(G)$ the adjoint group defined by
the quotient of $G$ by its center $Z$ . We can consider the existence problem of non-trivial
projections of $C^{*}(G)$ . Then the following result is known:

THEOREM 5 [5]. Let $G$ be a real connected semisimple Lie group withfinite center
Z. Then the following statements are equivalent:

(1) The tensor product $C^{*}(G)\otimes K$ has no non-trivial projections.
(2) $C^{*}(G)$ has no non-trivial minimal projections.
(3) $Ad(G)$ has at least one simple factor which is isomorphic to the Lorentz group

$SO_{0}(2n+1,1)$ for some $n\geq 1$ .

From Remarks 3, 4 and Theorem 5, the next problems may be of independent
interest:
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PROBLEM. Let $G$ be an exponential Lie group. Then describe the necessary and
sufficient condition that $C^{*}(G)$ has no non-trivial projections in terms of the inner
structure of $G$ , and study the same thing in the case of type I Lie groups.
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