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1. Introduction.

Let £ be a number field and K/k a finite Galois extension with Galois group
G =Gal(K/k). For a number field N, oy denotes the ring of integers in N. Let S be a
finite set of prime ideals of o, that contains all prime ideals which are wildly ramified
in K/k. For a finite extension N/k, we simply denote by oy(S) the ring of elements a in
N with ordg(a)>0 for all prime ideals P of oy, not lying above S. The field K can be
regarded as a module over the group ring kG of G over k by the action a*=>__. a0’
for aeK and A=) __,a,s€kG. We say that a ring extension 0(S)/0,(S) has a normal
basis if 0g(S) is a free 0,(S)[G]-module, that is, there exists some « in og(S) such that
{o'}se 18 a free o, (S)-basis of oi(S). The extension ox(S)/0,(S) is called ramified if there
exists some prime ideal of o,, not belonging to S, which is ramified in K/k (this means
that such prime ideal of o, is ramified in the Dedekind ring extension og/o;, as usual).
If not so, then it is called unramified.

We remark the following fact on the existence of normal bases of extensions of
the rings of S-integers which was pointed out by H. Suzuki and whose proof is due to
him. It says that we can take a sufficiently large set U U S, keeping the ramification of
primes outside S, such that o (U U S)/o(U U S) has a normal basis.

PROPOSITION 1.1. Let the notations be as above and T(# ) a finite set of prime
ideals of o, that contains all prime ideals, not belonging to S, which are ramified in K/k.
Then there exists a finite set U of prime ideals of o, such that UnT= & and og(U L S)/
o (U U S) has a normal basis.

PrOOF. Let V:=ok—UpeTp be a multiplicative subset of o, and V ~!o, a ring
of quotients of o,. Then V "o, is a semi-local ring with maximal ideals {p - (V "'o)},c 1
and V " log is a (V" '0,)[G]-module. Since all primes in T are tamely ramified, there
exists some « in og such that 1 ® « is a free generator of o, &, 0, over o, G for each
peT (Cf. [8, Lemma 2.6]), where o, denotes the valuation ring of the completion of
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k with respect to p. Therefore a is also a free generatbr of ¥V ~log over (V "0, )[G]. Put
M :=0y/(0,G - a). Then M has a finite number of generators over o,, say m,," -, m,.
Since ¥V ~"!M =0, there is some u; in V for each i such that u;m;=0. If we put u=
H:= , 4> then we have (u> " *M =0 where {(u) denotes a multiplicative subset of o,
generated by u. Let U be a set of prime divisors of . Then U N T=J and 0(U) ® , M =
0 (U) @ (yy- 10, <UD~ 1M =0. So 0(U)=0,(U)[G] - a. This proves our proposition. []

From now on, assume that K/k is abelian and let G be the group of characters of
G. In the previous paper [8], for each y€G, an ideal b(y) was defined by resolvents
of elements of K (for its definition, see Section 2) and we gave a necessary and sufficient
condition for 04(S)/0,(S) to have a normal basis in terms of these ideals. Since resolvents
are connected with Gauss sums, Stickelberger’s theorem gives an information on ideals
b(y). For this, we study a property of b(xy) in Section 2. After Section 3, we assume
that k is a totally real number field or a CM-field, i.e., a totally imaginary quadratic
extension of a totally real number field. In comparison with Proposition 1.1, we can
give also sequences {S,} of finite sets of prime ideals of o, with S, &S, , such that
0x(S,)/0,(S,) does not have a normal basis for each positive integer n (Propositions 4.3
and 4.5). This fact follows from results of Section 3 (Proposition 3.3 and Lemma 3.5)
and a sufficient condition for the non-existence of normal basis of ramified ring exten-
sion 0,(S)/0,(S) which is given in Section 4 (Theorem 4.1). In Section 5, let K be an
abelian field with prime conductor over the field Q of rational numbers. Then using
Proposition 4.3, we discuss a normal basis of o /o, (S= ) (Theorem 5.3). When K is
the pth cyclotomic field, p being an odd prime, and [K : k] is a prime, a normal basis of
ox /0, was studied by Cougnard [4, 5] and Brinkhuis [2]. Theorem 5.3 generalizes their
result. It should be noted that our results in Section 4, 5 are a development of Brinkhuis’
idea [2].

Throughout this paper, the above and following notations are used. For a number
field N and each ye G, N(x) denotes the field generated by the values of x on G over
N. For a ring R and a group I', we denote by RI" (or R[I']) the group ring of I' over
R and by R* the group of units in R. For a set R, | R| denotes the cardinal of R. For
a positive integer n, {, denotes a primitive nth root of unity. We denote by Z and R
the ring of rational integers and the field of real numbers, respectively. For a number
field N, we denote by N* the maximal real subfield of N: N* :=N nR. For an integral
divisor n of k, k(n) denotes the ray class field of £ modn. Specially k:=k(1) is the
Hilbert class field of k. Let 1, and n,, denote the finite and infinite components of n,
respectively.

ACKNOWLEDGMENTS. The author would like to thank Dr. Suzuki for pointing out
Proposition 1.1 and a certain person for his/her useful suggestion to Section 2.
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2. Properties of ideals b(y).

For ae K and each yeG, we define the resolvent of « with values in K(x) by

<oy x> =<0, Xxpm = ZGX(S_l)“s .
For each yeG, let L(x) be the O p(S)-module of rank one generated by all <a, x> with
a€0g(S). Let feog be a free generator of K over kG. Then there exists a fractional
ideal b(x) of 0,(,,(S) such that

(2.1) L)=b(0)<B, x> »
and we have
(2.2) b(x*)=b(0)*,

for all we Gal(k(y)/k), where we define y“(s) : = x(s)® for each se G so that y?eG.

In [8], we have chosen f e oy such that 1 ® f is a free generator of 0, ®,, Ok over
0,,G for each prime ideal p of o, dividing the order of G and not belonging to S. Then
we have proved that o,(S)/0,(S) has a normal basis if and only if for each ye G, b(y)
(depending on this f) is a principal ideal of o,,(S) and its generators satisfy some
congruence conditions and some conditions (as in (2.2)) for Galois actions (See [8,
Theorem 2.10 and Remark 2.11]). We have to use these results in this paper. In this
section, we study the properties of these ideals in the ramified case (For the unramified
case, see [8, Lemma 3.2]).

Let g=g, be the order of y in G and a(x) the module generated by the products
1—[?= , % With o;€ L() so that a(y) is an ideal of o,,,(S) and it follows from (2.1) that

(2.3) (KB, 207)0,(S) = a()b(x) ~** .

Let V(x) be the one dimensional k(x)-vector space of elements « of K(y) with of = y(s)a
for all se Gal(K(x)/k(x)) = G. Let L(y) := V(x) M ogy(S) so that this is also a o,,(S)-
module of rank one. Therefore there exists a fractional ideal B(y) of Dy(p»(S) such that
L) =b(x)<B, x>- Similarly we define an ideal @(y) of Ok »(S). Then the formulas (2.2)
and (2.3) for these also hold. Since b(y) = b(x), there exists an ideal c(x) of 0,,)(S)
such that

(2.4) b)) =B(0e(n) -

Now we consider the gap ¢(y) between b(x) and b(y) and it gives a position of b(y) in
the decomposition (2.3) of a resolvent into ideals (See Proposition 2.1, Example 2.2
and Proposition 2.3). It follows from (2.4) and the formulas (2.3) for L(y) and L(y) that
a(x)=a0)c(x)’. Let f(x) be the Artin conductor of y in K/k which is an ideal of 0.
By Fréhlich’s result, L(x)L(x)={(x), where let 7:=x"' (See [8, Lemma 3.1]), hence
a(x)a(x) =§(x)*. So,
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2.5) GCOEED{ D} =T 0rr(S) -

From now on, let x be a non-trivial character of G and k, the fixed field of Ker y
in K/k so that k,/k is a cyclic extension of degree g. Let

I=1, =Lk 0 : k()] (>1)

so that [ | g- Recall that k,(x)/k(y) is a cyclic Kummer extension of degree ! with primitive
element {B, x> (See [8, Section 3]). So there are an /-power free ideal 4, and an ideal
B, of 0,,,(S) such that

(2.6) (B> D)0k (S)=A,B; .

Since () is g-power free by [8, Lemma 2.8, (i)], it follows from the formula (2.3) for
L(y) that

2.7 =47 G '=B).

Let { be a fixed primitive gth root of unity and Q =, : = Gal(k(x)/k). Then there exists
a group injection 1 from Q into (Z/gZ)* such that

(o =p@ forall weQ.

If 1<d | g, we write 1, for the composition of 1 and the canonical quotient map
(Z/gZ)* - (Z/dZ)*. For each we Q/Ker,, let t,(w) be the integer satisfying

1(w)=1)(w) modd, 0<t(w)<d,
and put
(2.8) 0:=) 1, (@,
wef

which is in ZQ. As k,(x)/k is an abelian extension, AL ~" is the /th power of a fractional
ideal of o,,,(S) for each we Q. Hence

2.9) ordg(A4,) =ordge(A4y) = t(w) ordg=(4,) (mod),
for any prime ideal B of o, ,), not lying above S, and any we Q.

DEeFINITION.  For a prime ideal p of o,, we denote by e, and Z, the ramification
index and the decomposition group of p in k(x)/k respectively. Let % =%, be the set
of prime ideals of o;, not belonging to S, which are ramified in k,/k, and ¥"=7", the
set of prime ideals p of o,, not belonging to S, such that ‘B|p and ‘B|Ax with some
prime ideal B of o,,,.

We claim that ¥ < %. If pe ¥, then 2B|p and ‘B|Ax with some prime ideal P of
O(y)- Since A4, is l-power free, P is ramified in k,(x)/k(x). Therefore p is ramified in &, /k
so that p e . Next we claim that
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(2.10) aam=11 11 =,

PpeEY weR/Z,
where B is any prime ideal of o,,, lying above p. By (2.7) and noting that / =L =1, it
is sufficient to prove that

(2.11) AA;=11 I P*-.

PeEY we/Z,

This is equivalent to the three statements: for all prime ideals B of o,,,, not lying
above S,

(2.12) ordg(A4,47)=0 or [,
(2.13) ordg(4,47)>0 = Vo e Q : ordge(4,47)>0,
(2.14) ¥ ={Pk|P is a prime divisor of 4,4} .

It follows from (2.6) for y and for j that
A, 4;=B, x><B, 1B, 'B; 1) .
Since <{B, x>{B, i is in k(x) (Cf. [8, Lemma 2.3, (iv)]), we have
I|(ordg(A4,)+ordg(45)) -
So the fact that 4, and A4; are /-power free implies (2.12) and also that
(2.15) ordg(4,)>0 <= ordg(4,47)>0.

It follows from (2.9) that ordg(4,)>0=>ordg«(4,)>0. This fact, together with (2.15)
for B and for P, gives (2.13). (2.14) follows from (2.15) and the definition of ¥. Thus
we have proved the claim (2.11), hence (2.10). By the definition of Artin conductors,
f(x) becomes the Artin conductor of the character of Gal(k,/k) associated with . So by
the assumed tameness outside S,

(2.16) foS)= 11 ».

peXU
By the definition of e, and Z,, we have p=[] __, 1z, B Hence (2.5), (2.10) and (2.16) '
yield the following proposition:

PROPOSITION 2.1. Let Beog be a free generator of K over kG and y(#1)eG. Let
the ideal c«(x) of 0,,)(S) be as in (2.4). Then under the above notations, we have

ep—1
= T o T ( 11 w)""
pE U — Yy PEY y \wel,/Z,

where P is any prime ideal of oy, lying above p € ¥. In particular, if %,= & or k contains
a primitive g,th root of unity (i.e., k=k(y), therefore U,=%, and e,=1 for all p in ¥7),
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then we have ¢(x)=(1) so that b(x)="0(y) and a(x)=a(y).

ExaMpPLE 2.2. We shall give an abelian extension K/k with ¥, &%, for a certain
x in G. Then we have ¢(x) #(1) by Proposition 2.1 so that b(y) #b(y). Let p,, p, be odd
prime numbers such that p,=1 mod p,. Let K be a subfield of Q({,,,,) with Q({,)) =K
and [K: Q({,,)]>1 and k the unique subfield of Q({,,) with [Q({,,) : k]=p,. Assume
that the set S does not contain any prime ideal of o, lying above p, or p,. Let F be
the unique subfield of Q({,) with [F: Q]=[K: Q({,,)], so that Gal(K/Q({,,)=
Gal(Fk/k)=~ Gal(F/Q). Let , be a non-trivial character of Gal(Fk/k) of order m and
¥, a character of Gal(Q((,,)/k) of order p,. Let x be the character of G corresponding
to (¥, ¥,) by the canonical isomorphism:

G = Gal(Fk/k) x Gal(Q(¢,,)/k) ,

so that g, =mp, by (p;, m)=1. Since (p,, mp,)=1, we have kn Q() = Q. Also Q¢,,) <=
k, < K, [k, : Q(,,)]=m. Therefore

U ={p; prime in o, ; p|p, or p|p,}.

Since a prime ideal of o,,, lying above p, is the only ramified ideal in k,(0)/k(x) and
it is tamely ramified, a prime divisor of the ideal 4, divides p,. Hence

¥ ={p; prime in o, ; p|p,} .
So ¥" <. (Note that e,=1 for all p in ¥ now.)
The following proposition is a generalization of Sodaigui [9, Théoréme 2.2]:

PROPOSITION 2.3. Let B, x be as in Proposition 2.1 and b(y) (resp. a(y)) a fractional
ideal of 0,)(S) depending on B as in (2.1) (resp. (2.3)). Suppose that Uy # .

(1) Assume that (A1): peU,=p {’gx. Then a(y) is g,-power free.

(i) Assume that the map 1 is an isomorphism (i.e., k 0 Q(x) = Q) and (A2): for all
p in U, p is totally ramified in k, /k. Then any p in U, is completely decomposed in k(y)/k
and we have

KB, 1) 0u(S)= T Bb(x)~*,

pe
where B is some prime ideal of v, lying above p and 0 is defined in (2.8).

REMARK 2.4. If g, is a prime power, then the assumption (A1) holds, because
any p in % is tamely ramified in k, /k.

PROOF OF PROPOSITION 2.3. (i) By (Al), we have e,=1 for all pe%. Let pe%
and B be a prime ideal of o,,, with B | p. Since e, =1, Pis ramified in k,(x)/k(x). Also P {’ L
Therefore by Kummer theory, B|4, so that pe¥. Thus % =7, Hence c(x)=(1) by
Proposition 2.1. So by (2.4), b(x) =b(x) so that a(y) = d(x). This proves the assertion ().
(i) By (A2), the assumption (A1) holds so that the assertion (i) is true. For pe %,
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since e, =1 and p is totally ramified, we have k, N k(x) =k, therefore I=g. Consequently
a(y)=da(y)=4, by (2.7). We define a subset 7] of ¥~ by

v, :={Pnk | B is a prime ideal of o,,, with ordg(4,)=1}.

Claim that #=7]. Let pe#% and B be a prime ideal of o,,, with P|p. Then i:=
ordg(4,)>1 (i.e., pe¥’) as seen above. Since g is the ramification index of P in
k,()/k(x), we have g=g/(i, g) from Kummer theory ([3, p. 92]). So (i, g)=1. Since 1 is
surjective, there is some  in Q such that i=t,(w), therefore 1=1¢,(w~')i=ordge(4,)
modg by (2.9). As O0<ordge(4,)<g, we have ordg«(4,)=1. Hence p=P°nke¥].
Thus % =¥,. For pe, let we Z, and B a prime ideal of o,,, with ‘Blp. Since P=P
and pe¥i, 1=t,(w) modg by (2.9), therefore w=1; p is completely decomposed in
k(x)/k. Since % =¥7, we can define a square free ideal C of 0,,,(S) by C': =1_[p ca B,
where P is some prime ideal of o, with ‘B|p and ordg(4,)=1. Then (2.9) and the
assumption that 1 is surjective imply 4,=C®. Thus the assertion (ii) is proved. O

3. Decomposition of prime ideals.

In this section, suppose that k is a totally real number field or a CM-field. Let /
be an odd prime or /=4, and p a prime ideal of o, such that p {/. We assume that

3.1 k/Q is Galois and F:=kn Q) <k,

so that k/F is Galois and F is totally réal. Since / is an odd prime or /=4, Gal(Q({))/F)
is cyclic. By p J( I, p N og is unramified in Q({;)/F. Now we wish to discuss the following
problem:

(#): For any prime ideal B of o,,, with ‘!‘B]p, P is not decomposed in
k(KD T ?

So we need the following proposition:

PrOPOSITION 3.1. Let F be a totally real number field and K,/F (i=1, 2) a finite
Galois extension with Galois group G; such that K, n K, =F. Assume that K, is a totally
real number field or a CM-field, and K, is a CM-field, so that | G,|> 1. Suppose that G,
has only an element of order two (For example, this is true when G, is cyclic). Put
L :=K,K, which is a CM-field. Let ‘B be a prime ideal of o, p; :=PBnog, (i=1,2) and
p =B N og. Suppose that p is unramified in K, [F. f; (i=1, 2) denotes the residue degree
of p in K;|F. Then we have the following:

(I) The case where K, is totally real.

B is not decomposed in L/L* <>ord,(f,)+1<ord,(f,).
(II) The case where K, is a CM-field.
(i) If p, is decomposed in K;/K;, then B is decomposed in L/L".
(ii) If p, is ramified in K, /K, then B is not decomposed in L|L™ <>ord,(f,)+1<
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ord,(f ).
(ili) If p, is inert in K /K{, then B is not decomposed in L/L* <>ord,(f,)=ord,(f,)
(>0).

PrOOF. Let o; (i=1, 2) be a Frobenius automorphism of p; in K;/F, and T; and
Z; the inertia and decomposition groups of p; in K;/F, respectively. Let 6 be a Frobenius
automorphism of B in L/F, and T and Z the inertia and decomposition groups of P
in L/F, respectively. As K, n K, =F, Gal(L/F) is identified with G, x G,. Since | T|=| T, |
by T,={1}, T< T, x T, implies T=T, x {1}. If 6, (i=1, 2) is the restriction of 6 to K,
then 6=(0,, 0,) and 0, is a Frobenius automorphism of p; in K;/F. Therefore 6,T, =
o,T, and furthermore 6,=0, by T,={1}. Hence

(3.2) z={J)o"T={) (o, 0™ (T, x{1}),

where m ranges over all integers. Let p; (i=1, 2) be the restriction of the complex
conjugation to K;. Since F is real, p;€ G; and furthermore the order of p, in G, is two
since K, is a CM-field. Let H:=<{(p,, p,)), where note that p, =1 when K, is real.
Then L™ is the fixed field of H in L/F. So,

3.3) P is not decomposed in L/LY <= Hc< Z,

because Hn Z is the decomposition group of P in L/L*. If P is not decomposed in
L/L*, then p;eZ, from (3.3) and Z < Z, x Z,, so that {p,>nZ, =<{p,), hence p, is
not decomposed in K,/K{. This proves the assertion (II-i). For each i=1,2, let
t; :=ord,(f).

The cases (I) and (II-ii). Since {p,> N T, is the inertia group of p, in K,/K{, p,
is ramified in K,/K{ <>p,€T;. So p,T, =T, by the assumptions. By (3.2) and (3.3),
we may show that ¢; + 1 <¢, <>there exists an integer m such that T, =¢7T, and p, =0o7.
If such m exists, then we have f |m, f, is even, (f,/2)|m and m/(f,/2) is odd, because
f1 is the order of 6,7, in Z,/T; and f, is the order of ¢, in G,. Let a be the least
common multiple of f; and f,/2. Since a|m, we have

Max(ty, t, —1)=ord,(a)<ord,(m)=ord,(f,/2)=t,—1.

Therefore ¢; +1<t¢,. Conversely, assume that this holds. So f, is even. Let a be the
same meaning as above. Then T, =¢{T,. Since ¢, <t,—1, ord,(a)=ord,(f,/2) so that
the order of ¢4 is two. Since G, has only an element of order two, we have p,=a%.
This proves the assertions.

The case (II-iii). Now the order of p, in G, is two. Since p, is inert in K, /K],
1,>0,{p;>nZ,={pyand {p,>NT;={1}. So p,€Z, and p, ¢ T,. Therefore p, T, is
the element of order two in the cyclic group Z,/T,. By (3.2) and (3.3), we may show
that t, =¢,<>there exists an integer m such that p,T,=067T; and p,=0c%. This is
similarly proved as in the above cases (e.g., let a be the least common multiple of f; /2
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and f,/2 in this case). Ol

Return to the situation as before Proposition 3.1. Considering (II-i) of its pro-
position, we distinguish two cases:

(C1) k is totally real or “k is a CM-field and p is ramified in k/k*”.

(C2) kis a CM-field and p is inert in k/k*.
Let p:=pnZ. We denote by a and b the residue degrees of p in k/Q and Q({)/Q,
respectively. Let f, f; and f, be the residue degrees of p nog in F/Q, k/F and Q({))/F,
respectively. So a=ff,, b=ff,, therefore

(3.4) ord,(a)=ord,(f)+ord,(f,), ord,(b)=ord,(f)+ordy(f>) .
Note that F=Q, a=f; and b=f, hold under the assumption (3.1) when /=4.

LEMMA 3.2. Let [ be an odd prime or |=4, and p a prime ideal of v, such that p +’ L
Put Np :=|0,/p|. Then under the assumption (3.1) and the above notations, we have

(i) If lis an odd prime and | |(Np — 1), then (%) does not hold in the case (C1).

(i) When =4, (#) holds<>Np=3 mod4 in the case (Cl), and “ord,(a)=1 and
p=3 mod4” in the case (C2).

Proor. (i) By /|[(Np—1), p*=Np=1 mod/ Since b is the order of p mod/,
we have b|a so that ord,(b)<ord,(a). It follows from (3.4) that ord,(f,)<ord,(f,)<
ord,(f,)+ 1. Hence (#) does not hold by Proposition 3.1, (I), (II-ii) (more precisely, any
prime ideal B of o, with ‘B|p is decomposed in k()/k() ™).

(ii) Now Q()=Q(/—1) and p is an odd prime. So,

p=1 mod4<p is decomposed in Q({)/Q<>b=1<0rd,(b)=0,
p=3 mod4<>p is inert in Q({;})/Q<b=2<>0rd,(b)=1.
Hence ord,(a)+ 1 =(<)ord,(b)<>“p=3 mod 4 and ord,(a)=0"<>Np=p?=3 mod 4. In
(C2), we have ord,(a)>0. Since ord,(b)<1, ord,(a)=ord,(b)<>ord,(a)=1 and p=3
mod 4. Now the assertions follow from Proposition 3.1. O

For a prime ideal p of o, with p{’l, putting p:=pnZ, let a, (resp. b;) be the
residue degree of p in k/Q (resp. Q({)/Q). When [/ is an odd prime (resp. /=4), we
define the sets of prime ideals of o, as follows.

S, ,:={p|p ¥/ and ord,(a,)+1<ord,(b,) (resp. Np=3 mod 4)},
if k is totally real, and |
S,1.0:={p | p{L p is ramified in k/k* and
ord,(a,)+ 1 <ord,(b,) (resp. Np=3 mod 4)},

Sazu:={p|p¥L pis inert in k/k* and
ord,(a,)=ord,(b,) (resp. ord,(a,)=1 and p=3 mod 4)},
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if k is a CM-field. Then Proposition 3.1 and Lemma 3.2, (ii) yield:

PROPOSITION 3.3. Let I be an odd prime or I=4. Under the above notations and
the assumption (3.1), suppose that S is a subset of the set &, , (resp. S,, ;U S5, if k
is totally real (resp. a CM-field). Then for any prime ideal B of Oy Lying above S, P is
not decomposed in k(})/k(¢)*.

Now we discuss the cardinal of sets &, ; and S,,,.

LEMMA 3.4. Let |l be an odd prime and e :=ord,(I—1)(>1). For a prime p such
that p J( I, let b, be the residue degree of p in Q((,)/Q. Then for each i (1<i<e), there are
infinitely many primes p such that i=ord,(b,) and p J( l

PROOF. Let r be a primitive root mod / and ¢ a divisor of (/— 1)/2¢. By Dirichlet’s
density theorem, there are infinitely many primes p such that

(3.5) p=r*""mod/.

For such primes p, we have b,=(/—1)/(2°c), therefore i =ord,(b,). This proves our
lemma. OJ

LeEMMA 3.5. Let [ be an odd prime or |=4. Assume that k/Q is an abelian extension
with the discriminant d. Then under the above notations, we have

(1) [k: Q] is not a power of 2 and (d,)=1=|S, ||=o0.

(ii) /=1mod4 and (d,)=1=|S ,|=c0.

(iii)) Let k be a CM-field. If we put

S,,:={p|p is inert in k/k* and p*'*= —1 mod I,
then ©,,cS,,,and | S, ,|= 0.

Proor. (i) Since [k: Q] is not a power of 2, there is an element o of Gal(k/Q)
of odd prime order. By Tchebotarev’s density theorem, there are infinitely many primes
Po With p, {’ d, whose Frobenius automorphism in k/Q is equal to . Take such a prime
Po- Let m(e Z) be the conductor of k/Q so that Gal(k/Q) is isomorphic to the quotient
group of (Z/mZ)*. Since (d, )=1, (m, )=1. By Dirichlet’s density theorem, there are
infinitely many primes p such that p=p, mod m, and (3.5) for i=1 (resp. p=3 mod 4)
holds if / is odd (resp. /=4). Let p be a prime ideal of o, lying above such a prime
p. Then ord,(b;,)=1 by Lemma 3.4 and the proof of Lemma 3.2, (ii). Furthermore
ord,(a,)=0, because o is also the Frobenius automorphism of p in k/Q and a, is the
order of . Hence pe &, ;. This proves the assertion.

(i) Now /is odd and, by (i), we may assume that [k : Q] is a power of 2. So
there is an element o of Gal(k/Q) of order two. Then the same argument as in (i) proves
the assertion. (Since /=1 mod4, use (3.5) for i=2. Then we obtain ord,(b,) =2,
ord,(a,)=1.)

(iii) Let pe&,,. Since b, is the order of p mod!/ and p*?>= —1 mod /, we have
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ord,(a,) =ord,(b,) (resp. ord,(a,)=1 and p=3 mod 4) when /is odd (resp. /=4). Hence
peS,,, so that S, ;= S,, ;. By Dirichlet’s density theorem, there are infinitely many
primes p such that p=—1 modml. Let p be a prime ideal of o, lying above such a
prime p. Since p= — 1 mod m, the complex conjugation p (#1) on k is the Frobenius
automorphism of p in k/Q. So a,=2 and p is inert in k/k*. Hence p € &, ;. This proves
our lemma. ' O

4. A sufficient condition for the non-existence.

We assume that £/Q is a Galois extension of even degree and K/k is a finite abelian
extension with conductor m. And we write the finite component m, of m as the form
mgy =m, m,, satisfying that “p|{m; =ord (m,)=1" and “p|m2 =ord,(my)=>2". Let [ be
a fixed odd prime such that kN Q({)=Q. Put S,: =S, (resp. S,,,VS;, ), when k
is totally real (resp. a CM-field), where the set S, ; is defined before Proposition 3.3.
Suppose that S=S, is a finite subset of S, such that {p; p|m2} < S. So S contains all
prime ideals of o, which are wildly ramified in K/k, by the conductor-discriminant
theorem. For a prime ideal p of o,, e, denotes the ramification index of p in k/Q. We
define the finite set of prime ideals of o, as follows.

zl :={P 5 2Iep’ ordz(bp)=0} ’

where b, is the residue degree of pnZ in Q({;)/Q. Then note that T, S, ;=T;n
Cs21,1=@-

THEOREM 4.1. Under the above assumptions and notations, suppose that Gal(K
k/k) is a 2-group and that there exists some p with p {’ 2 in I,, not belonging to S, such
that | |[Knk(p) : k1. Then ox(S)/0,(S) does not have a normal basis.

REMARK 4.2. As seen below, note that p J(l. And note that / |[k(p) : k]=(Np—
Dhy/w,, where wy, :=| (o, +p)/p| and &, c=[k: k).

PrOOF OF THEOREM 4.1. Let L:=Knk(p). Since [ |[L : k], there exists some yx
in Gal(L/k) such that g, =1. Let k, be the fixed field of Ker y in L/k. Then p is ramified
in k, /k. If not so, then k, < k so that k, = Kn k. This contradicts that Gal(K n k/k) is
a 2-group. Consequently since k, < k(p), p is tamely ramified in k,/k so that p {’ 9y

Assume that 0,(S)/0,(S) has a normal basis; therefore so does 0,(S)/0,(S). By the
assumed tameness in K/k outside S, there is some y in o,(S) such that Trp,(y)=
<y, 1> =1. This yields that there is some « in o,(S) such that « is a generator of normal
basis of 0,(S)/0,(S) with {a, 1>=1. If b(y) is the fractional ideal of o,,(S) depending
on « as in (2.1), then we have b(y)=(1) by [8, Lemma 2.8, (ii)]. Furthermore p is totally
ramified in k,/k and kN Q(x) =Q by the assumption. So by Proposition 2.3, (ii),

4.1) (Ko, X% 0 (S) = PBe,
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where 0 is defined in (2.8) and P is some prime ideal of Dy, lying above p. Put p :=
pnQand P:=PnQ(x). Let b:=b, and ¢ be the cardinal of Doy /P so that g=p® and
0o P is identified with the field F, of g elements. Let T be the trace map from F, to
F,. Define

V:F,—C*,  yx)={"®.

Let (%) be the g,th power residue symbol mod P in Q(x). Define the Gauss sum

ti=— ¥ (i>_1¢(x).

xeFq P gx
Let Q :=Gal(k(x)/k). Since p{’ g,, note that there is a canonical isomorphism:

Q=Gal(Q(x)/Q)=Gal(Q(L,)()/Q(,) .
By Stickelberger’s theorem,

4.2) (19%) gy = P° .

Now we establish some relation between Gauss sum 7 and the resolvent <o, x>. As
D J( g, p is unramified in Q(x)/Q. So e :=e¢, is the ramification index of B in k(x)/Q(x).
Let Z be the decomposition group of P in k(x)/Q(x) and put 4 : = Gal(k(y)/Q(x)). Then
elements of 2 and ¢ are commutative. So by (4.2) and (4.1),

(z9%) Dk(x)(S)=( H “Ba) e= H (B

ocec¥Y/Z ce¥9/Z

4.3)
=< H {a, X>g’ea)°k(x)(s) .

ce¥/Z
As g, is odd, there is some w in Q such that {*={2, where { is a primitive g, th root
of unity. Let J:=12"% (Jacobi sum) in Q(x). Then we have

JI=q, J=—1mod (-1),

where the bar denotes the complex conjugation. Let 4 :=<a, x>>~? in k(x) where &
is an extension of w to L(yx), and put B:=]—[aeg/2 A°. Then since {a, x)=<{a, 1)>=
1 mod({—1), we have B=1 mod({—1). Furthermore it follows from (4.3) that
(J)04(S) = (B°) 0,)(S). Hence there exists some ¢ in O»(S) ™ such that

(4.4) Be=¢J .

By the definition of S and Proposition 3.3, the complex conjugation acts trivially on
S; therefore &€ 0,,,(S)* implies &€ 0,,,(S)* and ordg(e/€) =0 for any prime ideal B of
0,y lying above S. Since k is a totally real number field or a CM-field, k() is a CM-field.
Hence ¢/¢ is a root of unity by the generalized Dirichlet’s unit theorem. Let 2°w be the
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number of roots of unity in k(y) where w is odd. Since J/J=J?/q, it follows from
(4.4) that

(B/B)"=(J"/q"")* - (¢/e)" .
Since e is even, there is some 2-power root of unity & such that
(B/B)**? = +J*/(@"?¢) .
It follows from B=1, J=—1 mod({—1) and (g, g,)=1 that
4.5 g"*é=+1mod((—-1).

Let F:=Q(x)(q"?, &). As b is odd, we have ¢*/> ¢ Q. Since (29, g,) =1, Gal(Q(¢"'?, £)/Q)
is identified with Gal(F/Q(x)). Therefore by (2, g)=1, there is an isomorphism ¢ of
F/Q(y) such that ¢(&)=¢ and @(q'/?)= —q'/2. Applying ¢ to (4.5), since w is odd, we
have 1= —1 mod ({—1), hence /=g, =2. This is a contradiction. Thus our theorem is
proved. O

PROPOSITION 4.3. Assume that Qckc K< Q({,), p being an odd prime, and
[k : Q] is even. Suppose that there exists an odd prime [ such that | |[K : k]. Then for
any finite subset S (or S= ) of S,, 0x(S)/0(S) does not have a normal basis.

REMARK 4.4. If we assume that /=1 mod 4 in the case where k is totally real and’
[k : Q] is a power of 2, then the set S, is always infinite by Lemma 3.5.

PROOF OF PROPOSITION 4.3. By(p, )=1, we have k" Q({;)=Q. Let p be the unique
prime ideal of o, lying above p. Since p is totally ramified in K/k, we have K nk=k.
Furthermore since p is tamely ramified and only a prime ideal of o, which is ramified
in K/k, the conductor of K/k is of the form pm_, (therefore m,=1). So /|[K nk(p): k],
because [k(pm,): k(p)] is a power of 2 by class field theory. Now e,=[k: Q]=2]e,
and p=1 mod/=b,=1; therefore ord,(b,)=0, so that peT,. Claim that p¢S. This
follows from I, S, ;=& when k is totally real. When k is a CM-field, if p€ S, then
we have pe S,,, ("IN S,, =), so that p is inert in k/k™. This contradicts that p
is totally ramified in k/Q. Hence 0,(S)/0,(S) does not have a normal basis by Theorem
4.1. O

PROPOSITION 4.5. Let k be a quadratic field such that [k : k] is a power of 2 and
p a prime ideal of o, which is ramified in k/Q. Put p :=p nZ. Suppose that there exists
an odd prime | such that | |(( p—1)/w,), where w, is defined in Remark 4.2. Then for any
finite subset S (or S= &) of S,, 04, (S)/0,(S) does not have a normal basis.

REMARK 4.6. By Lemma 3.5, the set &, is always infinite, if we assume that
/=1 mod 4 and !/ is prime to the discriminant of k/Q when k is a real quadratic field.

PROOF OF PROPOSITION 4.5. Now e,=2, Np=p and b,=1 hold. Since p#I, kn
Q(,)=Q. And we have p¢ S by the same reason as in the proof of Proposition 4.3.
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Hence Theorem 4.1 implies our assertion. O

5. Normal integral bases in abelian fields with prime conductors.

Let p be an odd prime. In this section, we let K be a subfield of the pth cyclotomic
field Q({,), and k a subfield of K. Let n:=[K: k](>1) and m :=[k: Q]. If m=1, then
it is well known that o, /o, has a normal basis. So we assume that m>1 throughout
this section. Our goal is Theorem 5.3.

Let I' : =Gal(K/Q). Since I is cyclic, so is the group I’ of its characters; let y, be
a fixed generator of I. There exists a natural surjective group homomorphism:

f—*GA, !ﬁ}_’le.

For a positive integer i, we put y; : =y and y; :=t//,-|G. Let /; : =(i/d, m) where d=d, is
the greatest common divisor of i and n. Then

m
(5.1) Gvi=9 >

l;
where g,, (resp. g,,) is the order of ¥; (resp. x) in I’ (resp. G). For a number field N
and each Y eI’, N(i) denotes the field generated by the value of Y on I' over N. Let
Q; :=Gal(k(y,)/k) and ¢&; be a fixed primitive g, th root of unity. Since k" Q(y;)=Q by
(p, g4,) =1, there exists a group isomorphism 1; of Q; into (Z/g,,Z)* such that &P = &
for all we Q. For each weQ,, let #(w) be the integer satisfying 1(w)=1(w) modg,,,
0<t(w)<gy, and put

nii= ), Lit{w)/g, Jo™ 1,

we N

where [x] denotes the greatest integer <x as usual for a real number x. For each y eI,
we define the group homomorphism det,, by

det, : kI'* — k()™ , Y, ast— Y Y(s)a,.
sel’

sel

PROPOSITION 5.1. Let Beog be a free generator of K over kG. Then there exists
some A in kI'’* such that for any positive integer i with i#0 mod n, we have

(5.2) b(x) ™! = (dety, (AP},

where B, is some prime ideal of v, lying above p and, taking S= &, b(y,) is the fractional
ideal of oy, depending on B as in (2.1).

PROOF. Let a:=Trg¢,,x({,)- Since a is a free generator of K over QI', we can
prove the following in the same way as in Frohlich [7, Lemma 6.2 and Theorem 25,
(i1) of Chapter III]: there exists some A in kI'* such that
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(5.3) (B, Yledkn=dety(D<e, Yig »

for all Yy eI'. Let ; be the character of Gal(Q((,)/Q) of order g,,, defined by Vis):=
Y(s|g) for all se Gal(Q({,)/Q). Then it follows from the definition of « that

o, Yidkie= Z '/7:'(-5'— I)C; .
s€ Gal(Q(p)/Q)
Let P be any prime ideal of 04, lying above p. Since p=1 modg,,, p is completely
decomposed in Q(¥;)/Q so that g, /P is identified with the field F, of p elements.

Since i#0 modn, g,,>1 so that g,,>1. Let (%) be the g,,th power residue symbol

Iv;

mod P in Q(y;) which can be regarded as a character of F’ of order g,,. Since Gal(Q({,)/
Q) is identified with F', Y, is also a character of F, of order g,,. Consequently there

~ é
is some J in Q,=(Z/g,,Z)* such that 1/1i=<?> . Define the Gauss sum

gy
-1
X
Ti=— ), <—> (48
xeFp P gu,

As(p, gy,) =1, 2; can be identified with Gal(Q({,)(¥,)/Q({,)). Hence we have {a, ¥;> ko=
—1%. Since P is totally ramified in k(/,)/Q(y;), P=P™ with some prime ideal P of 0,,).
Let B, : =P°. Then we have by Stickelberger’s theorem

(o Y% = I,

where we put 6;:=)" t(w)w ™. Hence it follows from (5.3) that

weN;
(5.4) (KB, x:>%0) = (det,, (A7) P .

Let p be the unique prime ideal of o, lying above p. Since p }g,,, we have by (2.3) and
Proposition 2.3, (i),

(5.5) KB, x i’j;() =a(x:)b(x;) "=
and a(y,) is a g, -power free ideal of o,,,. Hence (5.2) follows from (5.1), (5.4), (5.5)
and the definition of #,. This proves our proposition. a

PROPOSITION 5.2. Let i be a positive integer with i¥0 modn and B, b(y;) as in
Proposition 5.1. Under the above notations, assume that (I;, g,)=1, I;>1 and one of the
Jollowing conditions is satisfied:

(i) liisoddandg, >2,

(i) [ is even, ;>4 and “I;#6 or g,,#5”.

Then b(y,) is not a principal ideal of oy,

PrOOF. Since l,-lm, there exists the unique subfield F of k£ with [k: F]=I,. Let
9 :=Gal(k(y)/F(y;)) and B, be as in Proposition 5.1. Assume that b(y;) is a principal
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ideal of 0,(,,. So by Proposition 5.1, there is some 4 in k(y;,)* such that P} =(A4). Let
o € Q; such that £2o=¢; 1, Since P; is totally ramified in k(f;)/Q(y,), we have B,;= Pge
so that P =Pr?°, since k(y,)/Q is abelian, where the bar denotes the complex con-
jugation. It is easy to see that n,—mwo=) .o {2[4tiw)/g,,1+1—m}w™'. Hence we
have

(5.6) ordg (4/A)=2[;/g,]+1—m .

For a Dedekind domain o, we denote by P(o) the group of principal ideals of o.
The group P(og,,) can be regarded as a subgroup of P(o,,,) by the extension of ideals.
Then P(0;,)°/P(0F,) is isomorphic to the cohomology group H!(%, oy,,), where
P(0,,)? denotes the group of elements of P(0,,), fixed by 4. Furthermore since ¥ is
cyclic, this cohomology group is isomorphic to N(Orw )/ (0’ ~ ', where o is a gener-
ator of 9, (04, :={ueoyy,|Nu)=1} and N is the norm map from k(y,) to F(J,).
Let (x) € P(04,)?. Then under this group isomorphism, the class of (x) corresponds to
the class of x°~ 1, and the class of (x/X) corresponds to the class of x°~!/x°~ !, since
k() is a CM-field.

Since B; is totally ramified in k(y;)/F(y;) and k(y,)/F is abelian, P? is now fixed
by 9. So (A)€ P(0,y,)°. We claim that (4/A) belongs to P(og,) if /; is odd, and to
((\/Z ) mod P(og,)> if [; is even, where \/Z (ae F(y;)™) is a primitive element of the
quadratic subextension of k(y;)/F(y;). Put indeed u := A4° . Since k(y;) is a CM-field,
u/u is a root of unity by Dirichlet’s unit theorem. As k< Q((,), the group of roots of
unity in k(y;) is generated by +¢&;. So u/u=(—¢;)° with some integer v. Taking the
norm N, we see 1=(—¢&)*", therefore 2g,,|vl;. Since (I, g,,)=1, we have 2g,, |v (resp.
gl,,ilv), hence u/ii=1 (resp. 1) when /; is odd (resp. even). Thus our claim is proved
since \/; ?~1=—1. Hence there are some ¢ in o, and some b in F(y;)* such that
A/A=./abe, where j=0 or 1, and if /; is odd, then we put j=0. So

ordg(A4/A)= j%ordpi(a) mod /;,
where let P; : =P, F(y;). It follows from (5.6) that
(5.7 2[L/g9,1+1 Ej%ord,,i(a) mod /; .

(i) The case where /; is odd. As g,,>2, 2[/;/g, 1+ 1<2(;—1)/2+ 1=1;. So it fol-
lows from j=0 and (5.7) that 2[/;/g,, 1+ 1=1;. Since (/;, g,,)=1, we can write /;=g,q+7r
with some non-negative integer ¢ and 0<r<g,,. Therefore (2—g,)g=r—1, so g=0,
r=1. Hence we have /;=1. This is a contradiction.

(i1) The case where /; is even. Then it follows from (5.7) that j (=1), I;/2 and
ordp(a) are all odd. So we have 2[/;/g, 1+ 1=1;/2 mod ;. Since (/;,g,)=1 and g,,>1,
we have g,,>2, hence 2[/;/g, ]+ 1=1;/2. We write [;=g, g+r with some non-negative
integer ¢ and 0 <r<g,,. Then
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(5.8) 4—g,)g=r—-2.

If r>2, then g,,<4 from (5.8). Since g,, is odd, g,,=3 so that 2<r<3. This is a
contradiction. Therefore r=1 or 2. If r=2, then ¢=0 by (5.8) so that /;=2. This
contradicts /;>4. If r=1, then g,,=5 and /;=6 from (5.8). This is a contradiction.
Thus our proposition is proved. O

THEOREM 5.3. Under the above notations, we have the following:

(I) ok/o, does not have a normal basis, except for the following four cases:
(1) m is even and not a power of 2, and n=2.
(ii) m and n are both powers of 2.
(iii) m is a power of q and n is a power of q or 2 x (a power of q), with some odd prime q.
(iv) m is odd and n=2.

(I1) In the case (I-iv), og /o, has a normal basis. (For the other cases, see the remark
below.)

PrOOF. Let feog be a free generator of o, @, o, over o, G for each prime ideal
p of o,, dividing the order of G.

(I) By Proposition 4.3, we need prove when (A): m is even and n is a power of
2, or (B): m is odd.

The case (A). Let v:=ord,(m) and i :=m/2°. Then [;=i, g,,=n/(i, n)=n so that
(> 94 =1 by (5.1). Since we make exceptions of the cases (ii) and (i), we have /;>1 so
that g, > 2. Therefore it follows from Proposition 5.2, (i) that b(y;) is not a principal
ideal of o,,,. Hence ok /o, does not have a normal basis by [8, Theorem 2.10, (ii)].

The case (B). If n is not a power of 2, then there is some odd prime g with qln.
Let v:=ord(m)(=0). When m/q°>1, putting i:=mn/q"" ! we have [,=m/q°>1,
9,.,=49>2, (I;, g, )=1 so that b(y,) is not principal by Proposition 5.2, (i). When m=g°,
let w:=ordy(n) and i:=¢""". Then ,=m>1, g,,=n/q", (I, g,)=1. Since we make
exception of the case (iii), n/g”>2 so that g,,>2. Hence b(y;) is not principal by
Proposition 5.2, (i). If n is a power of 2, then we put i:=m. So j=m>1, g, =n,
(I g,)=1. Since we make exception of the case (iv), n>2 so that g,,>2. Hence b(x,)
is not principal by Proposition 5.2, (i). Thus og/o, does not have a normal basis by [8,
Theorem 2.10, (ii)].

(II) Let i:=m. Then g,,=g,,=2, =m, ;={1}. So G={1,y}. Put n:=
Nog,yul1—{,) so that B, =(n). As n,=(m—1)/2, it follows from (5.2) that

b(x) ™ =(n"" D2 det, (1)) .

From (5.3), <B, 1>k =det,(1) TrQ(;p)/Q(Cp)= —det, (4). Since b(1)~* = (<8, 1>kn) by [8,
Remark 2.12], we have

b(1) ™! =(det,(4)) .
It follows from the definition of f and [8, Lemma 2.8, (ii)] that any prime divisor of
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b(1) and b(y;) does not divide two. Let u:={,+{, ! which is a unit in Q({,)*. Since m
is odd, k= Q((,)*. As u=Nge,y¢,+(1—{,) mod2, we have Ng¢,+x#)=n mod2.
Let & :=Ng,)+ xw) ™™~ Y?e0; . So we have en™~ 2 =1 mod 2. Since det,(4) =det, (1)
mod 2 by g,,=2,

det, (1) —en™" f’/ 2 det, (A)=0mod?2.

Hence by [8, Remark 2.11], ox /o, has a normal basis. Thus our theorem is proved. []

REMARK 5.4. Let K:=Q({,) and k:=Q({,)" with p=1 mod4. So n=2 and m
is even. Then it is well known that {, is a generator of normal basis of og/o, (in the
cases (I-i, ii)). In the case (I-ii), if n=2, then we can prove that og/o, has a normal
basis. In the case (I-iii), og /o, does not have a normal basis by Brinkhuis [1, Theorem
4.1], because a sequence of Galois extension Q < k£ = K does not split and [k: Q] is
odd. The question is still open as to other cases.

Let S be any finite set of prime ideals of o, which contains the unique prime ideal
of o, lying above p and assume that (m, n)=1. Then it is easy to see that 0g(S)/0,(S) has
a normal basis.
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