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Introduction.

Let $M$ be a $2m$-dimensional almost Hermitian manifold with the almost complex
structure $J$ and the Hermitian metric $g$ . It is well-known (cf. [6], [10]) that there is a
unique linear connection $D$ of $M$ such that $Dg=0$ (metric connection) and $DJ=0$ (almost

complex connection) and that the torsion tensor $T$ is pure in the following sense:

$T(JX, Y)=T(X, JY)$ for any vector fields $X,$ $Y$ on $M$ .

This connection is called the Hermitian connection (or canonical connection) of the almost
Hermitian manifold $(M, J, g)$ . In the Hermitian case, it was introduced by S.-S. Chem
[4].

Balas [1] studied Hermitian manifolds ofconstant holomorphic sectional curvature
and obtained an example of compact non-K\"ahlerian Hermitian manifold which is
Hermitian-flat. It is still unknown whether there are compact non-K\"ahlerian Hermitian
manifolds of non-zero constant holomorphic sectional curvature.

In [11], we introduced the notion of a locally conformally Hermitian-flat manifold
as a complex analogue of a conformally flat Riemannian manifold. Then we derived a
necessary and sufficient condition for a Hermitian manifold to be locally conformally

Hermitian-flat in the case where the dimension is no less than 6, and we then constructed
a family of examples of locally conformally Hermitian-flat metrics.

In Section 1 of the present paper, we recall the Hermitian connection $D$ of an
almost Hermitian manifold by the Koszul-type formula. In Section 2, we recall the
fundamental formulas for the curvature tensor $H$ of the Hermitian connection $D$ of a
Hermitian manifold $(M, J, g)$ .

In Section 3, we derive a necessary and sufficient condition for the product of
certain normal almost contact Riemannian manifolds to be Hermitian-flat. Conse-
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quently, we obtain some examples of Hermitian-flat manifolds.
In Section 4, we recall the definition of a locally (or globally) conformally

Hermitian-flat manifold and derive a necessary and sufficient condition for a Hermitian
manifold to be locally conformally Hermitian-flat in the case where the dimension is
no less than 4. We then introduce a conformally invariant tensor $\mathfrak{B}$ which is naturally
required from the local conformal Hermitian-flatness of a Hermitian manifold. We
notice that this tensor $\mathfrak{B}$ appears in the theory of Hermitian vector bundles (see [9]).
On a locally conformally Hermitian-flat manifold, the Ricci-type tensors $Q,$ $R,$ $S$ and
the scalar curvatures $s,\hat{s}$ have the remarkable properties. We show that, if two of the
three Ricci-type tensors $Q,$ $R$ and $S$ of a locally conformally Hermitian-flat manifold
$(M, J, g)$ coinside, then $(M, J, g)$ is either Hermitian-flat or of pointwise constant
holomorphic sectional curvature and that there is no compact locally $\cdot conformally$

Hermitian-flat manifold with negative scalar curvature. Closedness of the Ricci form
of the Hermitian connection is closely related to the local conformal Hermitian-flatness
of a Hermitian manifold. Moreover, the Ricci form represents the first Chem class of
the Hermitian manifold. We hence study the Chem classes of locally conformally
Hermitian-flat manifolds and show that every Chern class of a locally conformally
Hermitian-flat manifold is power of the first Chem class up to the constant factor. In
particular, we show that all the Chem classes of a locally conformally K\"ahlerian-flat
manifold vanish.

In the Appendix, we study compact Hermitian manifolds of constant sectional
curvature and obtain some results.

PRELIMINARY REMARKS. 1) Throughout this paper, we always assume the
differentiability of class $C^{\infty}$ and assume manifolds to be connected and without
boundary. We use the real dimensions for ones of manifolds. Since every 2-dimensional
Hermitian manifold is K\"ahlerian (cf. [10]), we always assume that the dimensions of
almost Hermitian manifolds are no less than 4.

2) Given a manifold $M,$ $C^{\infty}(M)$ denotes the space of all real valued differentiable
functions on $M$ and $\mathfrak{X}(M)$ denotes the Lie algebra of all vector fields on $M$.

ACKNOWLEDGMENT. The author would like to express his sincere thanks to
Professor S. Yorozu, Professor K. Mikami and Professor F. Narita for their many
valuable suggestions in the preparation of this paper.

1. Hermitian connections of almost Hermitian manifolds.

Let $M$ be an almost complex manifold with the almost complex structure $J$ and $g$

a Hermitian metric on $M$, that is, a Riemannian metric such that $g(JX, JY)=g(X, Y)$
for any $X,$ $Y\in X(M)$ . The triple $(M, J, g)$ is called an almost Hermitian manifolds. If
the almost complex structure $J$ is integrable, then $(M, J, g)$ is called a Hermitian mani-
fold. The following theorem is well-known.
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THEOREM 1.1 (cf. [6], [10]). Every almost Hermitian manifold $(M, J, g)$ admits a
unique linear connection $D$ such that $Dg=0$ and $DJ=0$ and that the torsion tensor $T$ is
pure in the following sense:

$T(JX, Y)=T(X, JY)$ for any $X,$ $Y\in X(M)$ .

The connection $D$ is called the Hermitian connection of $(M, J, g)$ .

In our discussion of the present paper, we want the explicit expression of the
Hermitian connection $D$ so that we prove Theorem 1.1 in the different way from [7]
and [10]. We consider a mapping $\gamma;\mathfrak{X}(M)\times X(M)\rightarrow X(M)$ defined by

$\gamma(X, Y)=[JX, JY]+[X, Y]-J[X, JY]+J[JX, Y]$ (1.1)

for any $X,$ $Y\in \mathfrak{X}(M)$ . The proof of the following lemma is a straightforward calculation.

LEMMA 1.1. The mapping $\gamma$ has the following properties:

$\gamma(X\pm Y, Z)=\gamma(X, Z)\pm \mathscr{V}(Y, Z)$ , V(X, $Y\pm Z$) $=\gamma(X, Y)\pm\gamma(X, Z)$ , (1.2)

$\gamma(fX, Y)=f\gamma(X, Y)$ , $\mathscr{V}(X, fY)=f\gamma(X, Y)+2(Xf)Y+2(JXf)JY$ , (1.3)

$\gamma(JX, JY)=\gamma(X, Y)$ , $\gamma(JX, Y)=-J\parallel-(X, Y)$ , $\gamma(X, JY)=J\gamma(X, Y)$ , (1.4)

V(X, $Y$) $+\nu^{\rightarrow}(Y, X)=-2J[X, JY]+2J[JX, Y]$ , (1.5)

$\gamma(X, Y)-\mathscr{V}(Y, X)=2[JX, JY]+2[X, Y]$ (1.6)

for any $X,$ $Y,$ $Z\in \mathfrak{X}(M)$ and any $f\in C^{\infty}(M)$ .

PROOF OF THEOREM 1.1. (Existence) For each $X,$ $Y\in X(M)$ , we define $D_{X}Y$ by
the following equation:

$4g(D_{X}Y, Z)=2Xg(Y, Z)-2JXg(JY, Z)+g(\mathscr{V}(X, Y),$ $Z$) $-g(\gamma(X, Z),$ $Y$) (1.7)

for any $Z\in X(M)$ . By (1.2) and (1.3), it is a straightforward verification that the mapping
(X, $Y$) $\rightarrow D_{X}Y$ determines a linear connection of $M$, denoted by $D$ . Since the last three
terms in the right hand side of (1.7) are skew-symmetric in $Y$ and $Z$, it is clear that
$g(D_{X}Y, Z)+g(D_{X}Z, Y)=Xg(Y, Z)$ , i.e., $Dg=0$ . To show that $DJ=0$ , it is sufficient to
prove

$D_{X}(JY)=JD_{X}Y$ for any $X,$ $Y\in \mathfrak{X}(M)$ .

This follows immediately from (1.4) and (1.7). Moreover, by (1.7) and $DJ=0$ , we have

$D_{JX}Y=D_{X}(JY)-\neq J\mathscr{V}(X, Y)$ . (1.8)

From (1.8) and (1.5), we easily obtain $T(JX, Y)=T(X, JY)$ .
(Uniqueness) It is sufficient to prove that if a linear connection $D$ satisfies $Dg=0$ ,

$DJ=0$ and $T(JX, Y)=T(X, JY)$ for any $X,$ $Y\in X(M)$ , then it satisfies the equation (1.7).

From $T(JX, Y)=T(X, JY)$ , we have
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$g(T(X, Y),$ $Z$) $+g(T(JX, JY),$ $Z$) $=0$ , (1.9)

$-g(T(X, Z),$ $Y$) $-g(T(JX, JZ),$ $Y$) $=0$ , (1.10)

$g(T(X, JY),$ $JZ$) $-g(T(JX, Y),$ $JZ$) $=0$ , (1.11)

$-g(T(X, JZ),$ $JY$) $+g(T(JX, Z),$ $JY$) $=0$ (1.12)

for any $X,$ $Y,$ $Z\in \mathfrak{X}(M)$ . Let us make the sum of the equations $(1.9)-(1.12)$ . Then, from
the definition of $T$ and $DJ=0$ , we obtain

$2g(D_{X}Y, Z)-2g(D_{X}Z, Y)+2g(D_{JX}JY, Z)+2g(D_{JX}Z, JY)$

$-g(\gamma(X, Y),$ $Z$) $+g(\gamma(X, Z),$ $Y$) $=0$ .
Furthermore, by $Dg=0$, we obtain

$4g(D_{X}Y, Z)-2Xg(Y, Z)+2JXg(JY, Z)-g(\gamma(X, Y),$ $Z$) $+g(\gamma(X, Z),$ $Y$) $=0$ .
Hence $D$ satisfies (1.7). $\square $

The expression of the Hermitian connection $D$ given by (1.7) is our requirement.

Let $\nabla$ be the Levi-Civita connection with respect to the same metric $g$ , that is, $\nabla_{X}Y$

is defined by the following Koszul formula (cf. [10]):

$2g(\nabla_{X}Y, Z)=Xg(Y, Z)+Yg(Z, X)-Zg(X, Y)$

$+g([X, Y], Z)-g([Y, Z], X)+g([Z, X], Y)$

for any $X,$ $Y,$ $Z\in \mathfrak{X}(M)$ . By using (1.8) and $Dg=0$ , we easily obtain

$2g(\nabla_{X}Y, Z)=2g(D_{X}Y, Z)-g(T(X, Y),$ $Z$) $+g(T(Y, Z),$ $X$) $-g(T(Z, X),$ $Y$). (1.13)

Thus, if $D$ is torsion-free, then (1.13) means that $\nabla=D$ . The following fact is also
well-known.

THEOREM 1.2 (cf. [10]). Let $(M, J)$ be an almost complex manifold. The almost
complex structure $J$ is integrable if and only if there exists a linear connection which is
almost complex and torsion-free.

These facts yield the following well-known theorem.

THEOREM 1.3 (cf. [6], [10]). An almost Hermitian manifold $(M, J, g)$ is a Kahlerian
manifold ifandonly ifthe Hermitian connection $D$ coincides with the Levi-Civita connection
$\nabla$ .

2. Curvature tensors.

Let $(M, J, g)$ be an almost Hermitian manifold. The curvature tensor $H$ of the
Hermitian connection $D$ of $M$ is defined by
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$H(X, Y)Z=D_{X}D_{Y}Z-D_{Y}D_{X}Z-D_{[X,Y]}Z$ for any $X,$ $Y,$ $Z\in X(M)$ .

Furthermore, we introduce a tensor of type $(0,4)$ , denoted by the same symbol $H$,
defined by

$H(X, Y, Z, W)=g(H(Z, W)Y,$ $Z$) for any $X,$ $Y,$ $Z,$ $W\in X(M)$ .

LEMMA 2.1 (cf. [10]). The curvature tensor $H$ of the Hermitian connection $D$ of
an almost Hermitian manifold $(M, J, g)$ satisfies the following equations: For any
$X,$ $Y,$ $Z,$ $W\in \mathfrak{X}(M)$ ,

$H(X, Y, Z, W)=-H(Y, X, Z, W)=-H(X, Y, W, Z)$ ,

$H(JX, JY, Z, W)=H(X, Y, Z, W)$ ,

$\mathfrak{S}\{H(X, Y)Z\}=\mathfrak{S}\{T(T(X, Y), Z)+(D_{X}T)(Y, Z)\}$ , (Bianchi’s first identity)

$\mathfrak{S}\{(D_{X}H)(Y, Z)+H(T(X, Y), Z)\}=0$ , (Bianchi’s second identity)

where $\mathfrak{S}$ denotes the cyclic sum with respect to $X,$ $Y$ and $Z$ .

By a direct computation, we have

$H(X, Y, JZ, JW)-H(X, Y, Z, W)$

$=-\neq J\mathscr{N}(Z, W)g(JX, Y)-*\mathscr{N}_{1}(X, Y, Z, W)+\not\in \mathscr{N}_{1}(Y, X, Z, W)$

for any $X,$ $Y,$ $Z,$ $W\in X(M)$ , where $\mathscr{N}$ denotes the Nijenhuis tensor of $J$, i.e.,

$\mathscr{N}(X, Y)=[JX, JY]-[X, Y]-J[X, JY]-J[JX, Y]$

and

$\mathscr{N}_{1}(X, Y, Z, W)=g(\mathscr{V}(W, \mathscr{N}(Z, X)), Y)-g(\gamma(Z, \mathscr{N}(W, X)), Y)$

$+2g(\mathscr{N}(W, [Z, X]), Y)-2g(\mathscr{N}(Z, [W, X]), Y)-2g(\mathscr{N}(JW, [JZ, X]), Y)$

$+2g(\mathscr{N}(JZ, [JW, X]), Y)-2g(\mathscr{N}([W, Z], X), Y)+2g(\mathscr{N}([JW, JZ], X), Y)$

$+4g(J[J\mathscr{N}(W, Z), X], Y)$ .

In particular, we have

LEMMA 2.2 (cf. [6], [10]). The curvature tensor $H$ of the Hermitian connection $D$

of a Hermitian manifold $(M, J, g)$ satisfies
$H(X, Y, JZ, JW)=H(X, Y, Z, W)$ for any $X,$ $Y,$ $Z,$ $W\in \mathfrak{X}(M)$ .

Let $(M, J, g)$ be a Hermitian manifold of dimension $2m$ . We define three tensors
$Q,$ $R$ and $S$ which are analogous to the Ricci tensor in the Riemannian geometry. These
are defined by



504 K. MATSUO

$Q(X, Y)=\frac{1}{2}\sum_{\alpha=1}^{m}\{H(e_{a}, X, e_{\alpha}, Y)+H(Je_{\alpha}, X, Je_{\alpha}, Y)$

$+H(e_{\alpha}, Y, e_{\alpha}, X)+H(Je_{\alpha}, Y, Je_{\alpha}, X)\}$ ,

$R(X, Y)=\sum_{\alpha=1}^{m}H(e_{\alpha}, Je_{\alpha}, X, JY)$ ,

$S(X, Y)=\sum_{\alpha=1}^{m}H(X, JY, e_{\alpha}, Je_{\alpha})$

for any $X,$ $Y\in \mathfrak{X}(M)$ , where $\{e_{1}, \cdots, e_{m}, Je_{1}, \cdots, Je_{m}\}$ is a local adapted orthonormal
frame field of $(M, J, g)$ . Then, by Lemma 2.1 and Lemma 2.2, we have

LEMMA 2.3. All the Ricci-type tensor $Q,$ $R$ and $S$ defined above are symmetric and
compatible with $J$, i.e.,

$Q(X, Y)=Q(Y, X)$ , $Q(JX, JY)=Q(X, Y)$ ,

$R(X, Y)=R(Y, X)$ , $R(JX, JY)=R(X, Y)$ ,

$S(X, Y)=S(Y, X)$ , $S(JX, JY)=S(X, Y)$

for any $X,$ $Y\in \mathfrak{X}(M)$ .
We can associate 2-forms $\rho_{Q},$ $\rho_{R}$ and $\rho_{S}$ with the Ricci-type tensors $Q,$ $R$ and $S$

respectively in the usual manner:

$\rho_{Q}(X, Y)=Q(X, JY)$ , $\rho_{R}(X, Y)=R(X, JY)$ , $\rho_{S}(X, Y)=S(X, JY)$

for any $X,$ $Y\in \mathfrak{X}(M)$ . In particular, we then have

$d\rho_{R}(X, Y, Z)=+\mathfrak{S}\{(D_{X}\rho_{R})(Y, Z)+\rho_{R}(T(X, Y), Z)\}$

for any $X,$ $Y,$ $Z\in \mathfrak{X}(M)$ . Furthermore, we have

$(D_{X}\rho_{R})(Y, Z)$

$=X\rho_{R}(Y, Z)-\rho_{R}(D_{X}Y, Z)-\rho_{R}(Y, D_{X}Z)$

$=\sum_{\alpha=1}^{m}\{Xg(H(Y, JZ)Je_{\alpha}, e_{\alpha})-g(H(D_{X}Y, Z)Je_{\alpha}, e_{\alpha})-g(H(Y, D_{X}Z)Je_{\alpha}, e_{\alpha})\}$

$=\sum_{\alpha=1}^{m}\{g((D_{X}H)(Y, JZ)Je_{\alpha}, e_{\alpha})+2g(H(Y, Z)D_{X}(Je_{\alpha}), e_{\alpha})\}$ .

However, we can show that $\sum_{\alpha=1}^{m}g(H(Y, Z)D_{X}(Je_{\alpha}),$ $e_{\alpha}$) $=0$ . In fact,

$\sum_{\alpha=1}^{m}g(H(Y, Z)D_{X}(Je_{\alpha}),$ $e_{\alpha}$)
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$=\sum_{\alpha,\beta=1}^{m}\{g(H(Y, Z)e_{\beta}, e_{\alpha})g(D_{X}(Je_{\alpha}), e_{\beta})+g(H(Y, Z)Je_{\beta}, e_{\alpha})g(D_{X}(Je_{\alpha}), Je_{\beta})\}$

$=\sum_{\alpha,\beta=1}^{m}\{g(H(Y, Z)e_{\beta}, e_{\alpha})g(e_{\alpha}, D_{X}(Je_{\beta}))+g(H(Y, Z)e_{\beta}, Je_{\alpha})g(Je_{\alpha}, D_{X}(Je_{\beta}))\}$

$=\sum_{\beta=1}^{m}g(H(Y, Z)e_{\beta},$ $D_{X}(Je_{\beta}))=-\sum_{\alpha=1}^{m}g(H(Y, Z)D_{X}(Je_{\alpha}),$ $e_{\alpha}$).

Thus we have

$d\rho_{R}(X, Y, Z)=\frac{1}{3}\sum_{\alpha=1}^{m}g(\mathfrak{S}\{(D_{X}H)(Y, Z)+H(T(X, Y), Z)\}e_{\alpha}, Je_{\alpha})$ .

Hence the Bianchi’s second identity gives us the following

LEMMA 2.4 (cf. [9], [10]). The 2-form $\rho_{R}$ is closed.

The 2-form $\rho_{R}$ is called the Ricci form of the Hermitian connection $D$ .
Moreover, we define two scalar curvatures $s$ and $\hat{s}$ which are analogous to the

scalar curvature in the Riemannian geometry:

$s=2\sum_{\alpha=1}^{m}R(e_{\alpha}, e_{\alpha})=2\sum_{\alpha=1}^{m}S(e_{\alpha}, e_{\alpha})$ , $\hat{s}=2\sum_{\alpha=1}^{m}Q(e_{\alpha}, e_{\alpha})$ .

3. Hermitian-flat manifolds.

DEFINITION 3.1 ([11]). We call a Hermitian manifold $(M, J, g)$ Hermitian-flat and
$g$ a Hermitian-flat metric if the curvature tensor of the Hermitian connection with respect
to $g$ vanishes everywhere.

Balas [1] gave an example of compact non-K\"ahlerian Hermitian-flat manifolds.

EXAMPLE 3.1 ([1], [11]). The Iwasawa mamfold $M$ is defined by $ M=G/\Gamma$ , where

$G=\{\left(\begin{array}{lll}1 & z^{1} & z^{2}\\0 & 1 & z^{3}\\0 & 0 & 1\end{array}\right)$ : $z^{i}\in C\}$ , $\Gamma=\{\left(\begin{array}{lll}1 & \alpha^{1} & \alpha^{2}\\0 & l & \alpha^{3}\\0 & 0 & 1\end{array}\right)$ : $\alpha^{i}\in Z+\sqrt{-1}Z|$ .

Since $M$ is the quotient space of a complex Lie group $G$ by a discrete subgroup $\Gamma$ , it
is a complex manifold. And it is also well-known that this manifold is compact. The
holomorphic l-form $\varphi=dz^{2}-z^{3}dz^{1}$ defined on $G$ is invariant under the action of $\Gamma$ .
Thus $\varphi$ is identified with a l-form on $M$. Moreover we have that $d\varphi=-dz^{3}\wedge dz^{1}\neq 0$ .
Hence $M$ does not admit any K\"ahlerian metrics. The following Hermitian metric $ds^{2}$

on $G$ is a Hermitian-flat metric invariant under the action of $\Gamma$ . Hence $ds^{2}$ induces a
Hermitian-flat metric on the Iwasawa manifold $M$ .
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$ds^{2}=A_{1}dz^{1}d\overline{z}^{1}+A_{2}(dz^{2}-z^{3}dz^{1})(d\overline{z}^{2}-\overline{z}^{3}d\overline{z}^{1})+A_{3}dz^{3}d\overline{z}^{3}$

$+A_{4}dz^{1}(d\overline{z}^{2}-\overline{z}^{3}d\overline{z}^{1})+A_{4}(dz^{2}-z^{3}dz^{1})d\overline{z}^{1}$

$+A_{5}(dz^{2}-z^{3}dz^{1})d\overline{z}^{3}+A_{5}dz^{3}(d\overline{z}^{2}-\overline{z}^{3}d\overline{z}^{1})$

$+A_{6}dz^{3}d\overline{z}^{1}+A_{6}dz^{1}d\overline{z}^{3}$ ,

where $A_{i}(i=1, \cdots, 6)$ are real numbers satisfying

$A_{2}>0$ , $A_{1}A_{2}-A_{4}^{2}>0$ , $(A_{1}A_{2}-A_{4}^{2})A_{3}-A_{1}A_{5}^{2}-A_{2}A_{6}^{2}+2A_{4}A_{5}A_{6}>0$ .
Next we shall give examples of non-compact Hermitian-flat manifolds which are

the products of certain normal almost contact Riemannian manifolds. Let $M$ be an
almost contact Riemannian manifold with the structure tensors $(\phi, \xi, \eta, g)$ . Then we
have the following relations:

$\phi\xi=0$ , $\eta(\phi X)=0$ , $\eta(\xi)=1$ , $\phi^{2}X=-X+\eta(X)\xi$ ,

$g(X, \xi)=\eta(X)$ , $g(\phi X, \phi Y)=g(X, Y)-\eta(X)\eta(Y)$

for any $X,$ $Y\in \mathfrak{X}(M)$ . Moreover, it is well-known that an almost contact structure $(\phi, \xi, \eta)$

is normal if and only if $[\phi, \phi]+2d\eta\otimes\xi=0$ , where $[\phi, \phi]$ denotes the Nijenhuis tensor
of $\phi$ , i.e.,

$[\phi, \phi](X, Y)=[\phi X, \phi Y]+\phi^{2}[X, Y]-\phi[X, \phi Y]-\phi[\phi X, Y]$

for any $X,$ $Y\in \mathfrak{X}(M)$ .
Let $M$ and $N$ be two normal almost contact Riemannian manifolds with the

structure tensors $(\phi_{M}, \xi_{M}, \eta_{M}, g_{M})$ and $(\phi_{N}, \xi_{N}, \eta_{N}, g_{N})$ respectively. On the product
manifold $M\times N$, we define an almost complex structure $J$ as follows: Identifying
$T_{\{x,y)}(M\times N)$ with $T_{x}M\oplus T_{y}N$, we may express $X\in X(M\times N)$ as $X=X_{1}+X_{2}$ , where
$X_{1}\in X(M)$ and $X_{2}\in \mathfrak{X}(N)$ . We also consider a function on $M$ (resp. $N$) as a function
on $M\times N$ as usual. Then an almost complex structure $J$ is defined by Morimoto [12] as

$JX=\phi_{M}X_{1}-\eta_{N}(X_{2})\xi_{M}+\phi_{N}X_{2}+\eta_{M}(X_{1})\xi_{N}$ (3.1)

for any $X\in \mathfrak{X}(M\times N)$ . This almost complex structure $J$ is integrable because both $M$

and $N$ are normal. Next we consider the product metric $g=g_{M}+g_{N}$ on the complex
manifold $(M\times N, J)$ . Then $g$ is compatible with $J$, that is, $(M\times N, J, g)$ is a Hermitian
manifold.

Kenmotsu [8] studied a class of almost contact Riemannian manifolds which satisfy
the following two conditions:

$(\nabla_{X}\phi)Y=g(\phi X, Y)\xi-\eta(Y)\phi X$ , $\nabla_{X}\xi=X-\eta(X)\xi$ .
Such manifolds are called Kenmotsu mamfolds. Kenmotsu manifolds are normal
because of $[\phi, \phi]=0$ and $d\eta=0$ . Moreover, Kenmotsu manifolds are non-compact
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because of div $\xi=\dim M-1$ . A warped product space $R\times {}_{f}C^{p}$ is an example of
Kenmotsu manifolds, where $f(t)=ce^{t}$ ( $c$ : positive constant) is a function on R. Here
the metrics on $R$ and $C^{p}$ are the standard flat metrics. We notice that this Kenmotsu
manifold $R\times {}_{J}C^{p}$ has constant sectional curvature $-1$ .

Janssens and Vanhecke [7] introduced the notion of an $\alpha$-Kenmotsu manifold,
which is a generalization of a Kenmotsu manifold. An $\alpha$-Kenmotsu manifold $M$ is an
almost contact Riemannian manifold whose structure tensors $(\phi, \xi, \eta, g)$ satisfy the
following two conditions:

$(\nabla_{X}\phi)Y=\alpha\{g(\phi X, Y)\xi-\eta(Y)\phi X\}$ , $\nabla_{X}\xi=\alpha\{X-\eta(X)\xi\}$ ,

where $\alpha$ is non-zero constant. $\alpha$-Kenmotsu manifolds are also normal and non-compact.
Using the 9-homothetic deformation defined by

$g^{\prime}(X, Y)=\alpha^{-1}g(X, Y)+\alpha^{-1}(\alpha^{-1}-1)\eta(X)\eta(Y)$ , $\alpha>0$ ,

on a Kenmotsu manifold $(M, \phi, \xi, \eta, g)$ , we obtain an $\alpha$-Kenmotsu manifold with $\alpha>0$ .
By starting with $(M, -\phi, -\xi, -\eta, g)$ we obtain a $(-\alpha)$-Kenmotsu manifold with
$-\alpha<0$ . We notice that, using the 9-homothetic deformation above for the Kenmotsu
manifold $R\times {}_{f}C^{p}$ , we obtain an $\alpha$-Kenmotsu manifold with constant sectional curvature
$-\alpha^{2}$ .

Let $M$ (resp. $N$) be an $\alpha$-Kenmotsu (resp. a $\beta$-Kenmotsu) manifold with the structure
tensors $(\phi_{M}, \xi_{M}, \eta_{M}, g_{M})$ (resp. $(\phi_{N},$ $\xi_{N},$

$\eta_{N},$ $g_{N})$). On the product manifold $M\times N$, we
consider the almost complex structure $J$ defined by (3.1) and the product metric $g=$

$g_{M}+g_{N}$ . Then $(M\times N, J, g)$ is a Hermitian manifold because both $(M, \phi_{M}, \xi_{M}, \eta_{M}, g_{M})$

and $(N, \phi_{N}, \xi_{N}, \eta_{N}, g_{N})$ are normal. The Hermitian connection $D$ of $M\times N$ relates to
the Levi-Civita connections of $M$ and $N$ as follows:

$D_{X}Y=^{M}\nabla_{X_{1}}Y_{1}+^{N}\nabla_{X_{2}}Y_{2}-\alpha\{\eta_{M}(Y_{1})X_{1}-\eta_{N}(X_{2})\phi_{M}Y_{1}-g_{M}(X_{1}, Y_{1})\xi_{M}\}$

$-\beta\{\eta_{N}(Y_{2})X_{2}+\eta_{M}(X_{1})\phi_{N}Y_{2}-g_{N}(X_{2}, Y_{2})\xi_{N}\}$ ,

where $ M\nabla$ (resp. $ N\nabla$) denotes the Levi-Civita connection of $M$ (resp. $N$). The curvature
tensor $H$ of $D$ satisfies

$H(X, Y, Z, W)=K_{M}(X_{1}, Y_{1}, Z_{1}, W_{1})+K_{N}(X_{2}, Y_{2}, Z_{2}, W_{2})$

$+\alpha^{2}\{g_{M}(X_{1}, Z_{1})g_{M}(Y_{1}, W_{1})-g_{M}(X_{1}, W_{1})g_{M}(Y_{1}, Z_{1})\}$

$+\beta^{2}\{g_{N}(X_{2}, Z_{2})g_{N}(Y_{2}, W_{2})-g_{N}(X_{2}, W_{2})g_{N}(Y_{2}, Z_{2})\}$ ,

where $K_{M}$ (resp. $K_{N}$) denotes the curvature tensor of $ M\nabla$ (resp. $ N\nabla$). Evidently we obtain
the following

THEOREM 3.1. The product of an $\alpha$-Kenmotsu manifold $M$ and a $\beta$-Kenmotsu
manifold $N$ is Hermitian-flat $\iota f$ and only if $M$ and $N$ have constant sectional curvature
$-\alpha^{2}and-\beta^{2}$ respectively.
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Since Kenmotsu manifolds are l-Kenmotsu manifolds, we obtain the following

COROLLARY 3.1. Theproduct oftwo Kenmotsu manifolds $M$ andN is $ Hermitian- fla\iota$

$\iota f$ and only $\iota f$ both $M$ and $N$ have constant sectional curvature $-1$ .

Let $N=R$ be the real line and let $(\phi_{N}, \xi_{N}, \eta_{N}, g_{N})=(0, d/dt, dt, dt^{2})$ , where $t$ is the
coordinate in R. Then we may consider that $(N, \phi_{N}, \xi_{N}, \eta_{N}, g_{N})$ is a normal almosl
contact Riemannian manifold. Furthermore, we easily see that $N\nabla\phi_{N}=^{N}\nabla\xi_{N}=0$ . Thus.
for the sake of the convenience, let us consider that $(N, \phi_{N}, \xi_{N}, \eta_{N}, g_{N})$ is a O-Kenmotsu
manifold. Then, by Theorem 3.1, we have

COROLLARY 3.2. The product of an $\alpha$-Kenmotsu manifold $M$ and the real line $Ri_{L}|$

Hermitian-flat $\iota f$ and only if $M$ has constant sectional curvature $-\alpha^{2}$ .
REMARK. In [15], Vaisman showed that a compact locally conformally K\"ahlerian

manifold with $H=0$ is K\"ahlerian. This fact does not hold in the non-compact case. This
follows from Corollary 3.2 and the fact [13] that the product ofan $\alpha$-Kenmotsu manifold
and the real line is locally conformally K\"ahlerian and not K\"ahlerian.

4. Locally conformaUy Hermitian-flat manifolds.

In this section, we study Hermitian manifolds which are locally conformal tc
Hermitian-flat manifolds.

DEFINITION 4.1 ([11]). A Hermitian manifold $(M, J, g)$ is locally conformally
Hermitian-flat if every $x\in M$ has an open neighborhood $U$ with a differentiable function
$\sigma:U\rightarrow R$ such that $g^{\prime}=e^{-\sigma}g_{|U}$ is a Hermitian-flat metric on $U$. In particular, we call
$(M, J, g)$ a globally conformally Hermitian-flat manifold if we can take $U=M$ .

EXAMPLE 4.1. Every Hermitian-flat manifold is locally conformally Hermitian.
flat.

Vaisman [16] studied a class of locally conformally K\"ahlerian manifolds whose
local K\"ahlerian metrics are flat, which are called locally conformally Kahlerian-flat
manifolds. They are automatically examples of locally conformally Hermitian-flal
manifolds.

EXAMPLE 4.2 ([16]). Let $\alpha$ be any non-zero complex number with $|\alpha|\neq 1$ and
fixed. The quotient space $H_{\alpha}^{m}=(C^{m}-\{O\})/G_{\alpha},$ $m\geq 2$ , is a complex manifold of dimension
$2m$ , where $G_{\alpha}$ is the infinite cyclic group generated by the transformation $(z^{1}, \cdots, z^{m})\rightarrow$

$(\alpha z^{1}, \cdots, \alpha z^{m})$ of $C^{m}-\{0\}$ . This manifold $H_{\alpha}^{m}$ is called a (homogeneous) Hopfmamfold
Because $H_{\alpha}^{m}$ is diffeomorphic to $S^{1}\times S^{2m-1},$ $H_{\alpha}^{m}$ is compact. Here $S^{1}$ (resp. $S^{2m-1}$ )
denotes the standard 1 (resp. $(2m-1)$)-dimensional sphere. On $C^{m}-\{0\}$ , we consideI
a Hermitian metric
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$ds^{2}=\frac{2}{\Vert z\Vert^{2}}\sum_{i=1}^{m}dz^{i}d\overline{z}^{i}$ , (4.1)

where $\Vert z\Vert^{2}=\sum_{i=1}^{m}z^{i}\overline{z}^{i}$ . Since this metric is invariant under the action of $G_{\alpha}$ , it induces
a Hermitian metric on $H_{\alpha}^{m}$ . The Hopf manifold $H_{\alpha}^{m}$ with the metric (4.1) is a locally
conformally K\"ahlerian-flat manifold.

In [11], we gave an example of the family of locally conformally Hermitian-flat
metrics on the non-compact complex manifold $R^{m-1}\times T^{m+1}$ , where $T^{m+1}$ denotes the
$(m+1)$-dimensional torus.

EXAMPLE 4.3 ([11]). Let $W$ be the m-times $(m\geq 2)$ direct product of $C^{*}=C-\{0\}$ ,
i.e., $W=C^{*}\times\cdots\times C^{*}$ and $\alpha$ any fixed non-zero complex number with $|\alpha|\neq 1$ . Consider
the transformation $g_{\alpha}$ of $W$defined by $g_{\alpha}(z^{1}, \cdots, z^{m})=(\alpha z^{1}, \cdots, \alpha z^{m})$ . The infinite cyclic
group $G_{\alpha}$ generated by $g_{\alpha}$ acts on $W$ freely and properly discontinuously. Thus $M_{\alpha}=W/G_{\alpha}$

is a complex manifold of dimension $2m$ . Moreover we can easily show that $M_{\alpha}$ is
diffeomorphic to $R^{m-1}\times T^{m+1}$ . Then we can construct the family $\{ds_{q}^{2}\}$ of locally
conformally Hermitian-flat metrics on $M_{\alpha}$ which are neither K\"ahlerian nor locally
conformally K\"ahlerian:

$ds_{q}^{2}=\frac{2}{\Vert z\Vert^{2q}}\sum_{i}A_{i}|z^{\mu(i)}|^{2\langle q-1)}dz^{i}d\overline{z}^{i}$ (4.2)

for each $(A_{1}, \cdots, A_{m})\in(^{+}R)^{m},$ $\mu\in \mathfrak{S}_{m}-\{Id\}$ and $q\in R-\{0,1\}$ , where $\mathfrak{S}_{m}$ is the per-
mutation group of $\{1, \cdots, m\}$ .

Let $(M, J, g)$ be a Hermitian manifold of dimension $2m$ . Consider a conformal
change $g^{\prime}=e^{-\sigma}g$ ofmetric $g$ where $\sigma\in C^{\infty}(M)$ . Denoting by $D^{\prime},$ $H^{\prime}$ and $\rho_{R’}$ the Hermitian
connection, the curvature tensor and the Ricci form of $g^{\prime}$ respectively, we have

$D_{\acute{X}}Y=D_{X}Y-\frac{1}{2}d\sigma(X)Y-\frac{1}{2}d^{c}\sigma(X)JY$ , (4.3)

$H^{\prime}=e^{-\sigma}(H-\Omega\otimes dd^{c}\sigma)$ , (4.4)

$\rho_{R’}=\rho_{R}-mdd^{c}\sigma$ , (4.5)

where $\Omega$ denotes the fundamental form of $(M, J, g)$ , i.e., $\Omega(X, Y)=g(X, JY)$ for any
$X,$ $Y\in \mathfrak{X}(M)$ and $d^{c}$ is a differential operator (see [3]) as follows: For any $r(\geq 0)$-form
$\varphi$ on $M$, we define

$ J\varphi=\varphi$ for $r=0$ ,
$J\varphi(X_{1}, \cdots, X_{r})=(-1)^{r}\varphi(JX_{1}, \cdots, JX_{r})$ for $r>0$ ,

where $X_{1},$ $\cdots,$ $X_{r}\in X(M)$ . The operator $d^{c}$ is defined by

$ d^{c}\phi=-J^{-1}dJ\varphi=(-1)^{r}JdJ\varphi$ for any r-form $\varphi$ on $M$ .
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From (4.4) and (4.5), we have

$H^{\prime}-\frac{1}{m}\Omega^{\prime}\otimes\rho_{R^{\prime}}=e^{-\sigma}(H-\frac{1}{m}\Omega\otimes\rho_{R})$ . (4.6)

Thus we naturally obtain a tensor field $\mathfrak{B}$ defined by

$\mathfrak{B}=H-\frac{1}{m}\Omega\otimes\rho_{R}$ . (4.7)

Furthermore, we introduce a tensor of type $(1, 3)$ , denoted by the same symbol $\mathfrak{B}$ ,
defined by $g(\mathfrak{B}(X, Y)Z,$ $W$) $=\mathfrak{B}(W, Z, X, Y)$ . Then we have

THEOREM 4.1. The tensor $\mathfrak{B}$ of type $(1, 3)$ is conformally invariant.

REMARK. This tensor $\mathfrak{B}$ coincides with the tensor introduced by Kobayashi [9]
which concems projective flatness of Hermitian vector bundle.

We are interested in locally conformally Hermitian-flat manifolds. Since the
equations $(4.3)-(4.6)$ are valid for a local conformal change $g^{\prime}=e^{-\sigma}g_{|U}$ , we have that,
if $H^{\prime}=0$ , then $\mathfrak{B}=0$ . We claim that the converse is also true. That is, we can prove the
following

THEOREM 4.2. A Hermitian manifold $(M, J, g)$ is locally conformally Hermitian-flat
$\iota f$ and only if the tensor $\mathfrak{B}$ vanishes everywhere on $M$.

$PR\infty F$ . Since the Ricci form $\rho_{R}$ isaclosed2-form of type $(1, 1)$ $(seeLemma2.3$

and Lemma 2.4), it is well-known (cf. [3]) that, on a neighborhood $U$ of every point
of $M$, there exists a differentiable function $\sigma$ such that $\rho_{R}=mdd^{c}\sigma$ . By means of this
function $\sigma$ , we consider a local conformal change $g^{\prime}=e^{-\sigma}g_{|U}$ . Assume that $\mathfrak{B}$ vanishes
everywhere on $M$. Then we have $\mathfrak{B}^{\prime}=0$ on $U$. Thus we obtain

$H^{\prime}=\frac{1}{m}\Omega^{\prime}\otimes\rho_{R’}=\frac{e^{-\sigma}}{m}\Omega\otimes(\rho_{R}-mdd^{c}\sigma)=0$ on $U$ .

Hence $(M, J, g)$ is locally conformally Hermitian-flat. The converse was claimed. $\square $

COROLLARY 4.1. A locally conformally Hermitian-flat mamfold is globally con-
formally Hermitian-flat $\iota f$ and only $\iota f$ the Ricci form is $dd^{c}$-exact.

On a K\"ahlerian manifold or a Hermitian-flat manifold, the Ricci-type tensors $Q$ ,
$R$ and $S$ coincide. We shall study the Ricci-type tensors $Q,$ $R,$ $S$ and the scalar curvatures
$s,\hat{s}$ of a locally conformally Hermitian-flat manifold. We first prove

THEOREM 4.3. Let $(M, J, g)$ be a locally conformally Hermitian-flat mamfold. If
two of the three Ricci-type tensors $Q,$ $R$ and $S$ coincide, then $(M, J, g)$ is either
Hermitian-flat or ofpointwise constant holomorphic sectional curvature.
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PROOF. Since $(M, J, g)$ is locally conformally Hermitian-flat, the curvature tensor
$H$ has, by Theorem 4.2, the form $H=(1/m)\Omega\otimes\rho_{R}$ , where $m=\dim M/2$ . Then we have

$R=mQ,$ $S=(s/2m)g,$ $s=m\hat{s}$ . IfR $=Q$ , then we obtainR $=0$ , i.e., $H=0becauseofm\geq 2$ .
If $S=Q$ , then we have $s=\hat{s}$ . Since $m\geq 2$ , we obtain $s=0$ , i.e., $0=S=Q=R$ . Hence $H=0$ .
If $R=S$, then $R=(s/2m)g$ , i.e., $\rho_{R}=(s/2m)\Omega$ . Thus $H$ satisfies $ H=(s/2m^{2})\Omega\otimes\Omega$ . Then

the holomorphic sectional curvature $\kappa(X)$ at a unit vector $X$ satisfies

$\kappa(X)=H(X, JX, X, JX)=\frac{s}{2m^{2}}g(X, J^{2}X)g(X, J^{2}X)=\frac{s}{2m^{2}}$ ,

that is, $(M, J, g)$ is of pointwise constant holomorphic sectional curvature. $\square $

By the proof of Theorem 4.3, we have

COROLLARY 4.2. A locally conformally Hermitian-flat manifold with $Q=R=S$ is

Hermitian-fla $t$ .
COROLLARY 4.3. Every locally conformally Hermitian-flat Kahlerian manifold is

flat.
Moreover, if $(M, J, g)$ is of pointwise constant sectional curvature, then, by (A.12)

of Appendix, we have $s=-((m-1)/(2m-1))\hat{s}$ . Since $s=m\hat{s}$ and $m\geq 2$ , we obtain $\hat{s}=0$ ,

and also $s=0$ . Thus, by $R=mQ$ , (A. 11) and (A.12), we have $Q=R=S=0$ . Hence, by

Corollary 5.2, we obtain

COROLLARY 4.4. A locally conformally Hermitian-flat manifold of pointwise

constant sectional curvature is Hermitian-flat.
Next we shall prove non-existence of compact locally conformally Hermitian-flat

manifolds with negative scalar curvature. On a locally conformally Hermitian-flat
manifold $(M, J, g),$ $s=m\hat{s}$ holds. If $s$ (resp. $\hat{s}$ ) is negative, then $\hat{s}$ (resp. s) is also negative.

Thus we have $s-\hat{s}=(m-1)\hat{s}<0$ . Assume that $M$ is compact. Then by integrating this

inequality, we have

$\int_{M}(s-\hat{s})dV<0$ ,

where $dV$ is the volume form of $M$. However, on a compact Hermitian manifold
$(M, J, g)$ , the following Gauduchon’s inequality holds ([5], see also Proposition A.1

of Appendix):

$\int_{M}(s-\hat{s})dV\geq 0$ .

Hence we obtain
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THEOREM 4.4. There is no compact locally conformally Hermitian-flat mamfold
with negative scalar curvature $s$ (or $\hat{s}$).

Finally, since the Ricci form of the Hermitian connection represents the first Chem
class of the Hermitian manifold, we shall study the Chem classes oflocally conformally
Hermitian-flat manifolds. The closed $2k$-forms $\gamma_{k}$ representing the k-th Chem class
$c_{k}(M)(1\leq k\leq m)$ of a Hermitian manifold $(M, J, g)$ , called the k-th Chem forms, can
be written as follows:

$\gamma_{k}=\frac{(\sqrt{-.1})^{k}}{(2\pi)^{k}k!}\sum\delta_{i_{1}\cdot i_{k}}^{j_{1}\cdot.\cdot.\cdot j_{k}}\Psi_{j}^{i}:\wedge\cdots\wedge\Psi_{j_{k}^{k}}^{i}$ ,

where $\Psi=(\Psi_{j}^{i})$ denotes the curvature form of the Hermitian connection of $(M, J, g)$

(cf. [10]). In $te$rms of a complex local coordinate system $z^{1},$
$\cdots,$

$z^{m}$ , the components
$\Psi_{j}^{i}$ are given by

$\Psi_{j}^{i}=\sum_{k,i=1}^{m}H_{jk\overline{i}}^{i}dz^{k}\wedge d\overline{z}^{i}$ ,

where $\sum_{i=1}^{m}H_{J^{X\overline{i}}}^{i}\partial/\partial z^{i}=H(\partial/\partial z^{k}, \partial/\partial\overline{z}^{i})\partial/\partial z^{j}$ . The computation of the Chem forms is
essentially that of the $2k$-forms $\psi_{k}(1\leq k\leq m)$ defined by

$\psi_{k}=trace\Psi^{k}$ , $\Psi^{k}=\Psi\wedge\cdots\wedge\Psi$ (k-times).

The curvature form $\Psi$ of a locally conformally Hermitian-flat manifold is, by Theorem
4.2, of the form $\Psi=(\sqrt{-1}/m)I_{m}\otimes\rho_{R}$ , where $I_{m}$ denotes the identity matrix of degree
$m$ . Thus we have

$\psi_{k}=trace(\frac{\sqrt{-1}}{m}I_{m}\otimes\rho_{R})^{k}=trace(I_{m}\otimes(\frac{\sqrt{-1}}{m}\rho_{R})^{k})=\frac{1}{m^{k-1}}\psi_{1}^{k}$

because of $\psi_{1}=\sqrt{-1}\rho_{R}$ . Therefore we have

THEOREM 4.5. Every Chem class of a locally conformally Hermitian-flat manifold
is power of the first Chem class up to the constant factor.

In particular, on a locally conformally K\"ahlerian-flat manifold $(M, J, g)$ , we have
$\rho_{R}=md\theta$ , where $\theta$ is a global l-form on $M$ defined by $\theta=J\omega$ , where $\omega$ is the Lee form
of $(M, J, g)$ (cf. [14]) which is a globally defined d-closed l-form such that $ d\Omega=\omega\wedge\Omega$ .
Thus, every locally conformally K\"ahlerian-flat manifold has the vanishing first Chem
class. Thereby, as a corollary of Theorem 4.5, we obtain

COROLLARY 4.5. All the Chem classes of a locally conformally Kahlerian-flat
manifold vanish.
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Appendix. Hermitian manifolds of pointwise constant sectional curvature.

In [1], Balas studied Hermitian manifolds $(M, J, g)$ of constant (Hermitian)
holomorphic sectional curvature. Then he introduced the tensor field $K$ of type $(0,4)$

on $M$, called the Kahlerian symmetric part of the curvature tensor $H$ of Hermitian
connection. $K$ is given by

$K(X, Y, Z, W)=\neq\{H(X, Y, Z, W)+H(Z, W, X, Y)$

$+H(X, W, Z, Y)+H(Z, Y, X, W)\}$ (A. 1)

for any $X,$ $Y,$ $Z,$ $W\in \mathfrak{X}(M)$ . Then $K$ satisfies the following equations:

$K(X, Y, Z, W)=K(Y, X, W, Z)$ , $K(X, Y, Z, W)=K(Z, W, X, Y)$ ,

$K(X, Y, Z, W)+K(X, Z, W, Y)+K(X, W, Y, Z)=0$ .

Using this tensor $K$, Balas [1] derived a necessary and sufficient condition for $(M, J, g)$

to be of constant holomorphic sectional curvature.
Now, let us consider the (Hermitian) sectional curvature of $(M, J, g)$ . For each plane

$p$ in the tangent space $T_{x}M$, the (Hermitian) sectional curvature $\kappa(p)$ for $p$ is defined
by $\kappa(p)=H(X, Y, X, Y)$ , where $X,$ $Y$ is an orthonormal basis for $p$ . It is easy to see that
the sectional curvature $\kappa(p)$ is independent of the choice of an orthonormal basis $X,$ $Y$

for $p$ . If $\kappa(p)$ is a constant for all planes $p$ in $T_{x}M$ at every point $x\in M$, then $(M, J, g)$

is said to be ofpointwise constant sectional curvature. Moreover, if $\kappa(p)$ is a constant
for all points $x\in M$, then $(M, J, g)$ is said to be of constant sectional curvature.

We introduce a tensor field $L$ of type $(0,4)$ on $M$ defined by

$L(X, Y, Z, W)=\frac{2}{3}\{K(X, Y, Z, W)-K(Y, X, Z, W)\}$ (A.2)

for any $X,$ $Y,$ $Z,$ $W\in X(M)$ . Then $L$ satisfies the following equations:

$L(X, Y, Z, W)=-L(Y, X, Z, W)=-L(X, Y, W, Z)$ , (A.3)

$L(X, Y, Z, W)=L(Z, W, X, Y)$ , (A.4)

$L(X, Y, Z, W)+L(X, Z, W, Y)+L(X, W, Y, Z)=0$ . $(A.5)$

Moreover, we have

$L(X, Y, X, Y)=H(X, Y, X, Y)$ (A.6)

for any $X,$ $Y\in \mathfrak{X}(M)$ . We set

$H_{0}(X, Y, Z, W)=g(X, Z)g(Y, W)-g(X, W)g(Y, Z)$ . (A.7)

Then $H_{0}$ satisfies all the equations $(A.3)-(A.5)$ .
Assume that $(M, J, g)$ is of pointwise constant sectional curvature $k$ . Then, for any

orthonormal vectors $X$ and $Y$ of $T_{x}M$,
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$kH_{0}(X, Y, X, Y)=k\{g(X, X)g(Y, Y)-g(X, Y)g(Y, X)\}=k=H(X, Y, X, Y)$ . (A.8)

From (A.6), (A.8) and the well-known fact (Proposition 1.2 of Chapter V in [10]), we
obtain that $L=kH_{0}$ . Thus we conclude

THEOREM A. 1. A Hermitian mamfold $(M, J, g)$ is of pointwise constant sectional
curvature $k\iota f$ and only if

$L(X, Y, Z, W)=k\{g(X, Z)g(Y, W)-g(X, W)g(Y, Z)\}$

for any $X,$ $Y,$ $Z,$ $W\in \mathfrak{X}(M)$ .

We shall consider the Ricci-type contractions $L_{1},$ $L_{2}$ of $L$ defined by

$L_{1}(X, Y)=\sum_{\alpha=1}^{m}\{L(e_{\alpha}, X, e_{\alpha}, Y)+L(Je_{a}, X, Je_{\alpha}, Y)\}$ , (A.9)

$L_{2}(X, Y)=\sum_{\alpha=1}^{m}L(e_{\alpha}, Je_{a}, X, JY)$ (A.10)

for any $X,$ $Y\in \mathfrak{X}(M)$ , where $m=\dim M/2$ and $\{e_{1}, \cdots, e_{m}, Je_{1}, \cdots, Je_{m}\}$ a local adapted
orthonormal frame field of $(M, J, g)$ . Then we have $L_{1}=Q,$ $L_{2}=+(Q+R+S)$ . Assume
again that $(M, J, g)$ is of pointwise constant sectional curvature $k$ . Then we have
$L_{1}=(2m-1)kg,$ $L_{2}=kg$ . Thus we have

$Q=(2m-1)kg$ , $+(Q+R+S)=kg$ . (A. 11)

Therefore we obtain

$\hat{s}=2m(2m-1)k$ , (A.12)

$*(\hat{s}+2s)=2mk$ .
From these equations, we obtain

$s=-\frac{m-2}{2m-1}\hat{s}$ . (A.13)

On a compact Hermitian manifold $(M, J, g)$ , it is known [5] that

$s-\hat{s}=\delta\tau+\Vert\tau\Vert^{2}$ , (A.14)

where $\tau$ denotes the torsion l-form defined by $\tau(X)=trace(Y\rightarrow T(X, Y))$ and $\delta$ denotes
the codifferential, i.e., $\delta=-*d*$ . This equation gives us the following

PROPOSITION A. 1 ([5]). On a compact Hermitian manifold $(M, J, g)$ ,

$\int_{M}(s-\hat{s})dV\geq 0$ ,
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with equality holding if and only if $\tau=0$ .

Let $(M, J, g)$ be a compact Hermitian manifold of pointwise constant positive
sectional curvature $k$ . Then, by (A.12) and (A.13), we have $s-\hat{s}=-(3(m-1)/$

$(2m-1))\hat{s}<0$ . Hence we have

THEOREM A.2. There exists no compact Hermitian manifold ofpointwise constant
positive sectional curvature.
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