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1. Introduction.

In the paper [S2] we defined two projectively invariant metrics on a convex domain.
These metrics bear a strong resemblance to the so-called Blaschke metric that is realized
as the affine metric on a hyperbolic affine hypersphere (refer to [C]); in fact, they
coincide with the Blaschke metric when the domain is projectively homogeneous. In
this paper we deal with the case where the domain is bounded and strictly convex and
the boundary is smooth, and we complete the proof of the statement announced in
[S2]; namely, we prove that the sectional curvatures of both metrics tend to —1 at the
boundary, which is compared with the fact that the sectional curvature of the Blaschke
metric on the ball is —1 everywhere.

Let us recall the definition of the metrics. We consider an open convex domain Q
" in the affine space R” and assume that it contains no straight line. Let R, denote the
dual affine space. Then the dual domain Q* is defined as the interior of the set
{€eR,; 1+<& x> >0 for any xeQ}. The dual of the dual domain Q* is projectively
equivalent to Q. Then the characteristic function of Q is by definition

(L.1) XQ(X)=J nl(1+ <& x))™ " 1d¢
Qt
and the kernel function of Q is
(1.2) ' kn(X)=J n+ DI+ <&, xD) 720 Dy &) 1dE .
Q*

This definition of the characteristic function is a generalization of that of the char-
acteristic function on convex cones; see [V].

When the boundary 0Q is smooth, we know that yo(x)~d(x, 02)~®*1/2 and
ko(x)~d(x, 82)~ "~ ! around the boundary, where d(x, 02) denotes the distance function
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to the boundary relative to a fixed euclidean structure on R”. So both functions
v=yxqo """ and w=k, ®"* 2 have the order d(x, 0Q)'/>. We define the metrics @ and
K by

1 0% o 1 0?2 o
(1.3) w=—— Y gxidxi and k= —— W dxidxt |
v Ox'ox’ w = Ox'ox’
relative to a euclidean coordinate system {x!, - - -, x"}. They are Riemannian metrics

that are invariant under projective transformations and complete when the boundary
is smooth. We remark that each of the metrics is identical with the Hilbert metric when
the domain is a ball. Refer to [S2] for details.

In §2 and §3 we study the boundary behavior of derivatives of the functions y,
and k. The calculation of the curvature tensor in §4 is done similarly to that used in
[K], [S1].

The authors are grateful to the referee who read the manuscript carefully and
corrected several miscalculations.

2. Boundary estimates of derivatives of the function y,,.

We fix once and for all a euclidean structure on R”. Let {x!, - - -, x"} be a coordinate
system of R" and {{,, - - -, £,} the dual coordinate system of R, so that (£, x> =) & x".
Set [(&)=1+ (¢, x). For the multiindex f=(8,, - - -, B,), we write

o1l 18]

a n
xax), kg=——5kg(x), and é”=.l__llé€"-

Then

xp(X)=j (=1)"Pln+| B1IELIE) 1P~ 1ag,
o+

kﬁ(x)=f (=D'PI2n+| B+ 1)IEPLE) 2 1P =2y g £) 7 1dE .

We will calculate the boundary asymptotics of y, and kz. For this purpose we
choose a special coordinate system as follows. Assume that the domain Q is bounded
and strictly convex in R” and that the boundary 012 is smooth. In terms of the function
Ho(&)=sup{<¢&, x); xe R}, called the support function, the dual domain is written as
Q*={,eR,; Hy(—&)<1}. Since Q is strictly convex, there exists for any ¢ a unique
point ¥(£)e dQ with the property Ho(E)=<¢, (£)). Thus we get the correspondence
from 0Q* to 0Q sending & to y(&). This is the inverse of the star mapping from 02 to
0Q*; recall that the star mapping is defined on Q as the mapping sending xe Q2 to

x* = —grad xo(x)((n + Dxolx) + <grad xo(x), x>)™ ' e Q*
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and that this mapping is smoothly extended to the closure €.

Fix a point y € 6Q and choose coordinates (x*, - - -, x") so that y=(0, - - - -, 0, 1) and
dky, 0Q2)=d(ky, y)=1—k for ke(0, 1) sufficiently near 1. Let =y* denote the image
of y by the star mapping and choose coordinates (&,, - - -, &,) so that n=(0, - --,0, —1)
and the boundary 0Q* around # is written as

n—1
(2.0) L=—1+ Y € +0(¢'P).
i=0
We use notations x'=(x", - -, x"71), &'=(&y, -, &,-1), and B'=(By, -+, B,—y). Set

I(&)=1(E)=14y,é>=1+¢&, and we use the coordinates (£, 7) instead of ¢ where
t=1+¢&,=1(). Let x=(0, - - -, 0, k)=ky, so that [(§)=kl(¢)+ (1 —k). Then

Xp(x)=jb(— D'+ BN — Dokt + (1= k)"~ "Bl 4p(1)at
o .
where b=max, o{(/(¢)) and

Ag(t)= EFQE .

2 n{l=t}

We expand / restricted to dQ* into a Taylor series

n—1
(2.1) I= % (5,-)2+| IZ a, &5+ 0(1 & 12N .
i—1 a’'|=3
Here N, is a sufficiently large integer which may depend on f’; it will be specified later.
Let (r, ®)=(r,0,, - - -, 0,_,) be the polar coordinate system for "
(2.2) &i=rfi(0), l<i<n-—1,

where f;(@) is specified as follows:
f1(@)=cosb, ,

i—1
23) f,-(@)=<j];]1 sm0j) cosf, (i=2, --,n=2),

n—2
fu—1(@)= ]] sinb;.
i=1
Then the boundary surface 0Q* N {{=1¢} can be written as

2.4) r=r@)= t1/2(1 + Y o7+ O(tN°)> ,

p=1

where the coefficient ¢, is a polynomial of f; and a,; the degree of each monomial
relative to f; is equal to p modulo 2. Define J, by
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(2.5 ,.(@)n+lﬂ’ -1 _ jnt]p'|= 1)/2( Z 5pt”/2 + O(tN°)>

p=0

and set /% =[]Z] (f;)". Then

r®)
Ap(t)= fd@ f r'8\ 8 pn=2gy
0

8’
=Y t(n+|ﬂ'|—1+p)/2f Spf d@ + O(1™*1F'1= 12+ Noy
pz0 n+|p'|—1

Note that 6,=1 and J, (p=>1) is a polynomial of f; and its degree is equal to p modulo
2. We set

(2.6) AP=J;%”£1—_I¢1@,
(2.7) bi(ﬂ)=(—1)'”"(n+|ﬁl)!p+;j=i(—l)j(lj.">Ap-
Then
xo(x) = iétob,.(ﬂ) b(kt+(1—k))—N—lefdt+r(kt+(1 — k)N 1O+ 181 = D2+ Noy gy
where 0 O
Nentlfl. M= n+|ﬁ’2l—1+i |

Because of d(x, 02)=d(x, y)=1—k, a simple calculation shows
b
f (kt+(1 —k))~N—1¢Migy
0

B(M;+1, N—M) Y e, ,d(x, 0™ N*it0(1) if N>M,,

=1 —logd(x, 02)+ O(1) if N=M,;,
o(1) if N<M,,
where B(p, q) denotes the beta function, y;=[N—M;—1] and
1 =
(2.8) em:{ - ({ 0)
AT, Mi+K)  (j#0).

Hence we have the following lemma.

LEMMA 1. The derivative yg4(x) has the following expansion on Q.
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n+|B 1+2Bn

(2.9) 1= Y cB)d(x, Q)11+ 28t 12442

—bpt 151+ 28,+1(B) logd(x, 0Q)+ O(1) ,
where c,(B) is given by

(2.10) af= 2 b(B)e;;B(M;+1, N— M) .

i+2j=k
By a simple calculation, we see
I(n+|8'1+1)/2+2p+q)/2L(n+]B'1+1)/2+ B, —(2p+9)/2)
I((n+|B'1+1)/2—(2p+9)/2)

g i I(n+|p'1+1)/2—(2j+49)/2)
j=o0 I'(p—j+1)

@11) c3pug=(=1)""

A2j+q s

where g takes the value 0 or 1.

Let us compute the coefficients c,(f) more concretely. Note that the value of 4,
depends on the parity of f; because of the integral formula:

n—1 n+|k'|—1 n—1F . | |
;+1)/2) when k;, 1<i<n—1, are even;

fl—[ (fHdO =1 I'(n+|k'|+1)/2) il_=]1 (( )/2)
i=1

10 : otherwise .

Hence, we divide the consideration into three cases:
(@) every B; (i=1, ---,n—1) is even,
(b) at least one of f; (i=1, ---,n—1) is odd, and | B’| is odd,
(c) atleast one of B; (i=1, ---,n—1) is odd, and | §’| is even.
Then we get
case (@) do=T((n+|f'[+1)/2)"* x [1;2; T(Bi+1)/2), 42141 =0,
case (b) 4,;=0,
case (¢) 4,=0, 4,;,,=0.
Therefore, by (2.11) we see that
case (a) co(B)=I((n+|B'|+1)/2)~ x [Ti2{ T'(Bi+1)/2), ci+1(B)=0,
case (b) c,(f)=0,
case (¢) ¢o(f)=0, cz41(B)=0.
We have proved the following theorem.

THEOREM 1. Assume that the domain is strictly convex and the boundary is smooth.
Then the derivatives yz of the characteristic function have the following expansions near
the boundary according to the parity of the index B defined above.
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>v(ﬂ,n)
case (a) xp(x)=d(x, 0Q)~ " +1#1*26n* D2 'Z ¢2:(B)d(x, 0Q) + Eg ,(d(x, 0Q))

i=0
¥(B,n)
case (b) yu(x)=d(x, 0Q)~*1F1+28/2 .Zo C2i+1(B)d(x, 0Q) + Ep (d(x, 0Q)),

B.n)—1

case (&) 1) =d(x, 0Q)~ "1+ 202 S (B, 0Q) + Ep o(d(x, 09)

i=0
The constant y(B, n) and the function E, (d(x, 0€)) are given by

WB, n)= [ﬁ—'ﬂ—'] +8,,

2
o(1) if n+|B'|is even,
—’bn+|p'|+2p,.+1(ﬁ)108d(X, 0Q)+0(1) if n+|p'|is odd.

ReMARK 1. Each coefficient c,(f) is a smooth function around the boundary and
its value at the boundary is a polynomial of the coefficients a, given in (2.1); hence, by
the star mapping, c,(f) can be written as a polynomial of the coeflicients b, when the
boundary is written as the graph

Eg (d(x, 0Q))= {

n—1
y=1— Y (xP+ Y bx*+0(x|*").
i=1

la|=3

As for the number N, given in (2.1), which is not fixed yet explicitly, it is enough to
take (8, n)+ 1 for each .

3. The boundary estimates of the derivatives of the function k,,.

We can obtain similarly the estimate of k; as follows. Fix yeQ and choose the
coordinates as before. For a point x=ky, we have

kﬂ(x)=J (=D +| B+ DIEF U~ 1Pkl +(1 = k)~ 2"~ 2Py o)~ dC"dl
o+

=jb(— DAI2n+ | B+ D(ke+(1 —k))~ 2 Blm2 (s — 1)""Bﬁ.(t)dt ,
(]
where

Bﬂ’(t)= f'ﬂ'X:r(f)_ldf’ .

2>*n{l=y

Choose & with t=1[(&) sufficiently small so that d(&, 02*) is attained by a unique point
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{€dQ*. The point {=({’, {,) is given by

=&+ (1~

L=1(&).
Then, by a simple argument, we get the following approximate identities:

|¢—=C1=| tfl(C’)|<1+ 2 aiC’“+0(IC’|2"‘)>,

|a]=2

d¢'=d¢’(1+ > az, ’“lt~l(C’)I"'+O(IC'I2”‘)+0(It—l(C’)lNl))’

la|,m>1

ffﬂ'=g'ﬂ'<1 + T ali—IC)I"+ 01~ 1¢) |"1)) :

m>1

YO=20)+ Y ail=+0(L' M),

lal=1

where y({) denotes the Gauss curvature of 9Q* at { and N 1 1s a sufficiently large integer
greater than the following integer N,. The characteristic function x(¢) has the asymptotic
expansion:

20~ 112¢4(0)

V()

where co(0)=TI(1/2)""'I'((n+1)/2) and N, =[n/2]; see [S2]. Since y(0)=2""1 by (2.0), we
can see that &'#'y(£)1d¢’ is equal to

{7 =1 I"'“”z(l + X agul =) "+ 0L P+ Ol 1~ 1L IN2)>dC’ :

lal,m=>1

d(s, C)"‘"“”z(l + X and(E, "+ O(d(E, C)N2)> ;

mz1

co(0)

Let us put P, = Zm al,l’*, where P, () is a homogeneous polynomial of
{’of degree ¢ and P, ,=1. Then the estimate of B,(r) is obtained by computing the
integral

1

CPP () = 1) It 2y

co(0) Jon AO<IC) <t}

Relative to the polar coordinates {;=rf;(®) we have

l(z_:')=r2<1 + Y spr”+0(r2N°)),

p=1

as we did before. Note that N, is a sufficiently large integer greater than N,. Further
we set /({')=rtu?, introducing a new variable ». Then we have

r=/t u<1 + X vt +o(/t u)N")) ,
p=1
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where v, is determined by ¢,; its degree with respect to f;is pmodulo 2. From the fact that

dr=/t (1 + Y (p+ St +0(/ 1 u)No))du ,

pz1

we can get
r"*'”"+"_2dr=(\/7u)“+'ﬂ'“'"_z\/T(l + Y (p+Dp S tup+ 0((ﬁu)N°)>du ,

where the degree modulo 2 of u, with respect to f; is also p. With this notation, the
integral is equal to

1 3 1B —1+q+ , ,
pzl - (0) B(n-;— +m, n Iﬁ | 5 q p)t(2n+|ﬁ |+q+p+2m)/2jlq,m(@)upf/p de ,
2 0

where 4,,.(0)= P, ,((f'(©)). Hence the summation implies

1 z jak f/ﬁ’B(n+3 +m’ n+!ﬂll_1+k)t(2n+|ﬁ’|+k+2m)/2d@+0(tN2),
260(0) k,m " 2 2

where ak,m=zp +q=k*q.m(©)p, Whose degree modulo 2 is equal to k and a4 o=1.
Furthermore, we can write

- Bg(t)=

By()= 3, tCrt181+12 fxif""dmoam),

i20

where

1 3 "|-1+k
e 2 ak,,,B(” o, AHIEZ1Y )
2CO(O) k+2m=i 2 2

The summation ranges up to certain finite number so that the remaining term is of
order N, with respect to ¢. Note that the degree of A; modulo 2 is equal to i and 4,=1.
Now the argument in §2 can be repeated to yield the next lemma.
LEMMA 2. The derivatives of the kernel function have the following expansions on €.

2N,—-1
kﬂ(x)= Z Ek(ﬁ)d(x, aQ)—(2n+|ﬂ’|+2ﬂ,.+2)/2+k/2+O(d(x, aQ)—(2n+|ﬁ'|+2ﬂ,,+2)/2+N2) ,
k=0

where
I(@n+B'1+2)/2+Q2p+q)/2)I (2n+| B’ | +2)/2+ B,—(2p+q)/2)
r(2n+|B'1+2)/2—-2p+9)/2)

o § T@n+151+22-Cj+a)2)
j=0 I'(p—j+1)

é..‘2p+q=(-_ l)lﬂll

Drjeaf " dO .

Note that q takes the value 0 or 1.
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A similar argument depending on the parity of § as in §2 implies the following
theorem.

THEOREM 2. Assume that the domain is strictly convex and the boundary is smooth.
Then the derivatives kg of the kernel function have the following expansions according to
the parity of the index B that is defined in section 2.

case (a) kg(x)=d(x, 0Q)~Cr+IF1+26.+2)/2 ( Nzi 1 &,:(B)d(x, 0Q) + O(d(x, 69)”2)) ,

i=0

. Ny~-1
case (b) kyx)=d(x 59)"2”'”"””"“’”( S s a(Bx, 00 + 0, asz)Nr”z)),
i=0

case (¢) ky(x)=d(x, 59)"2"+'”"+2”"”2<N2i25zi+z(l3)d(x, 0Q) + O(d(x, 69)""‘)) :
i=0

REMARK 2. The coefficient ¢;(B) is a smooth function on the closure of Q and its
value at the boundary is determined by the local geometric data of the boundary in the
sense stated in Remark 1.

4. Sectional curvature.

We have defined two metrics @ and x in Introduction. The aim of this section is
to study the boundary behavior of the curvature tensor of these metrics. We carry out
the calculation for the case w. Set w=)7 ,_, g;;dx’dx’ and define an auxiliary function
@ by o= —y~%®*D_Then

1 1 Qi | P
= - d*/—e), gij=—2—('——1+—2j>'
N

The curvature tensor R;;, of the metric of this form is given by

prq

4.1) Riju=—(9a95—9ugn)+ Z

. —2—(;2— ((Ppit Pyjk— (Ppik(qut) >
p.q=

see [S1]. Here the matrix (g?9) is the inverse of the matrix (g;;) and ¢, denote the third
derivatives of ¢. So it is necessary to obtain the boundary estimate of derivatives of ¢.
For this purpose, the explicit calculation of the second term of the expansion of the y,
is necessary. Fixing a boundary point y and choosing coordinates as before, we continue
the calculation in §2.

We write ‘

G R (G I ()
oaxt T axiaxd T T gxioxiaxt

and assume that n>2. In the following estimate, the first (n—1) components of f and

and d=d(x,09?),
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the last component B, play the different roles; we write =(8’; 8,). By (2.11) we have
n+|p'|+2B8,+1—i

4.2 ci(B’s B+ 1)= 5 (B’ B
(43) co(ﬂl’ B ﬁi+2s T ﬁn—l;ﬁn)
_ (n+|B'[+2B,+ 1)Bi+ 1)

4 ColBrs =5 B~ s Baz1s Br) -

Moreover, we need not to make any distinction among the first (n— 1) components; we
use the abbreviation (p; q) for denoting f=(p, 0, - - -, 0; q). By (4.2) and (4.3) we see that

w0 )="T 0, ;=" ),

o0 =TI ), =210,
a2 =0 ), e p="2L 50,
et;2=0ED) o) 0= 0,

(0 2= 7V ) 3= VDB G

8

On the other hand, making use of the expansion in Lemma 1, we get the following
expansions:

x=d~ " V2{c (0)+ Od)} ,
X=d" e (L0)+0@)},  xa=d " co(0; 1)+¢,(0; 1)d+0(d?)}
X1 =d~ OV (2 0)+cy(2; 0)d+O0W@D},  x12=0d "+ V2),

Xa=d "I (L D+ 0@}, Awm=d "I {co(0; 2)+¢,(0; 2)d+ O(d?)}
X111=0d""TI2) g1, =0d TR,
X123=0d™C"32) |y 1a=d 7TV 2{c(2; 1)+ Od)}
X12.=0d™""2) |y m=d 70T 2 (15 2)+ O(d)}

Xnnn=d ="+ 2{c((0; 3)+ ¢,(0; 3)d+ O(d?)} .

The x; for 2<i<n—1 is not listed because it has the same expansion as y,; similarly
for xi;, Xin» and so on. When n>4, we have a more precise estimate:

x=d V2 (0)+ c,(0)d+ O(d?)} .
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Hence, by setting ¢; =¢;(1; 0)/co(0), ¢, =1c,(0)/co(0), we get the following lemma.
LEMMA 3. Assume n>2. Then we have

Xn _n+l

£ —e,+04), d~'+0(1),
X
Xi1 _ n+1 d-1+0(), X12 —o(1),
X 4
Xin _ n+1 cid-1+0(1), Xnm _ (n+1)n+3) d-2+0d-Y) .
X 2 X 4

X111 —0d Y, X112 —0d™ Y, X123 —0dY,
X X X

X11n _ (n+1)(n+3) d-

X 8

o _OEDOED oy oy, o ORDOEIED) s oy
X X

2+0(d_1), X12n=0(d—1)’
X

When n>4, we have estimates of higher order:

X h+1

d——l_cz_'__o(d)’ Xnnz(n+1)(n+3) d_

2 _(n+1c,d 1+ 0(1),
» > » 1 (n+1)c, (1)

Yomn _ (14 1)(n+3)n+5)
X 8

These estimates imply the boundary regularity of the function ¢ as follows.

d‘3—%(n+ )(n+3)c,d 2+0d™Y).

PROPOSITION 1. Assume n>2. Then the function ¢ is C*-differentiable on Q and
the derivatives of ¢ up to third order have finite continuous values on 0Q except @,,, that
is of order d(x, 9Q)™' at most. If n>4, then the function ¢ is C3-differentiable on Q.

ProOOF. By definition of ¢, we see that

_ Do x _ ey _ %y n+3 uoxy
20 X 2¢ X on+l oy ox’
Do m n+3 <xi,- £+ﬁ£+ﬂﬁ>+ A1+ +3) n 1y W
X 1 x 1 x x m+1)*  x x x

2¢ X n+1
Since ¢ has the same order as d(x, dQ), we have only to see that the right hand sides
are at most of order d(x, 62) " ! when n>4, and that they are at most of order d(x, 02) !
except @,,, when n>2. We can examine this fact by making use of Lemma 3. The
values at the boundary are dependent only on y and define smooth functions on Q.
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(see Proof of Theorem 1.)

Now the boundary estimates of (g;;) and the inverse (g??) follow from Proposition 1:

PROPOSITION 2. The fundamental tensor (g;;) has the form

d(x, 9Q)* O(d(x, 0Q)~!
0Q1)

4 o(1)
d(x,0Q)"  0(d(x,09Q)™")
0d(x,d2)7Y) -+ 0d(x,02)~") d(x,02)7?

whose inverse (g*9) is equal to

d(x, 6Q) 0(d(x, 99)%)
0d(x, 62)?)

4 ow, 09
d(x,0Q) O0@d(x, 4Q)?)

0d(x,09Q)?) --- O0@(x,02)?) d(x,0Q)*
Proor. For simplicity we set d=d(x, 0€2). Since

g {Xff_””ﬁﬁ}
Y n+l Ly n+l oy x )’

Lemma 3 implies
1
911=7d '+00), g12=0(1),

1 1
— d-1+0(1), =—d24+0dY).
2t 1) ¢y (1) =4 +0d™"%)

From the fact that det(g;;)=4""d" "~ !, we have
gll =(4n—1dn)(4ndn+l)=4d s g12=(4n—10(dn— 1))(4ndn+ 1)= O(dz) ,
g1n=(4n—10(dn—1))(4ndn+ 1)=0(d2) , gnn=(4n—1dn—1)(4ndn+ 1)=4d2 .

gdin=

This proves the proposition.
With these propositions we can conclude the next theorem.

THEOREM 3. Assume n>?2. Then the curvature tensor of the metric w tends to that
of constant negative sectional curvature —1 at the boundary.
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PROOF. "I“.he sec.tional curvature K;;=K(8/0x’, 0/0x’) is given by K;;= Ry;;;/(g:9;;—
(9:;)%)- Proposition 1 implies

(Pp12(pq12 - ¢p1 1(pq22 = 0(1) ’ (ppln(pqln— (Ppl 1¢qnn= O(d(xs aQ)— 1) ’

and Proposition 2 shows

1
911922 —(912)? =F d(x, 0Q)~ 2+ 0(d(x, o)™,

1
9119m—(91n)" =4z d(x, 02)7>+0(d(x, 0)~?),

gPi=0(d(x, 09)) .
Since ¢ is of the same order as d(x, 02), the equation (4.1) proves the result.

Next we give a sketch of the calculation for the metric k. Set k=)7 _, h;dx'dx]
and define the auxiliary function Y by y = —k~V@*1D_The curvature tensor R is

given by

5 n Pa
4.4) Riju= —(hyhjy—hyhy) + MZ= . ?l/;T

(‘/’pil ‘/’qjk - l/Ipikl//qjl) .

By definition we have

2n+|p'|+2B,+2—i

4.5) G(B; Bat )= > &(B’; B »
(46) é‘:O(Bla B ﬁi+2, "'9ﬂn—1;ﬁn)
_ @n+|B'1+28,+2)Bi+ 1)

. 60(ﬁla”'aBb”'aBn—l;ﬁn)'

By a similar calculation, we have the following propositions.

PROPOSITION 3. Assume n>2. Then the function § is C*-differentiable on Q and
the derivatives of W up to third order have finite continuous values on 0Q except Yopps V1i1ms
¥ 1. that are of order d(x, Q)™ '/* at most and Y ,,, that is of order d(x, 0Q)~ 32 at most.
If n>4, then the function y is C 2_differentiable on Q and the derivatives of Y up to third
order have finite continuous values on 0 except ., that is of order d(x, 0Q)~ 12 gt most.
If n>6, then the function Y is C3-differentiable on Q.
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PROPOSITION 4.  The fundamental tensor (h;;) has the form

d(x, Q)1 O(d(x, 02)™)
0(1)

2 o(1) ' ’
d(x,0Q)~! O@d(x, 092)~ 1)
od(x,02)~YH --- O(d(x, 0Q)~ 1) d(x, 69)_2

whose inverse (h?9) is equal to

d(x, Q) 0(d(x, 09)?)
O(d(x, 6Q)?)

0(d(x, 4Q)?)
d(x,0Q)  0@d(x, 6Q)?
0d(x, 0902 -+ O0@d(x, Q)% d(x, 0Q)>

With these propositions we have the next theorem.

THEOREM 4. Assume n>2. Then the curvature tensor of the metric i« tends to that
of constant negative sectional curvature —1 at the boundary.

PROOF. The sectional curvature K;;= K(8/0x", 6/0x7) s given by ;= R, i/(hihy;—
(h;;)%). We divide the consideration into four cases:

() @i, ))=(1,n) and g=n,

B) G j)=(,n) and g+#n,

G j)=(,2)and p=g+#n,

0  Gj)=(1,2) and {p#q or p=g=n}.
Proposition 3 implies

(a) l//plnlpnln'_lﬁpl 1¢nnn=0(d _2) s

(ﬁ) lppln'/’qln_'!//pl II/’qnn=O(d_1) s

() '/’p12‘/’p12_'/’p11'//p22=0(1) >

(%) ‘ﬁplz*/’qlz—‘//pu'//qu:O(d_l) .
Proposition 4 shows

1
@ iy —hiy=—7d 7+ 0@ and K"=0(d?),

1
B h“h,,,,——hf,,=4—2 d *+0(d"? and hP1=0(d),

1
» h11h22—hf2=F d7?+0d~") and A"=0(d),
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(%) hllhzz—hf2=—l—d’2+0(d‘1) and h"=0(d?).
42

Since ¥ is of the same order as d(x, 6Q), the equation (4.4) proves the result.

REMARK 3. Repeating the arguments in Appendex B of [S1], we can see that
(2, w)and (R, x) are complete Riemannian manifolds of asymptotically negative constant
curvature. Roughly speaking, along any divergent geodesic y(z), the sectional curvature
is K;(y(£))~ —1+ce™ ", for some positive constants ¢ and c’. Therefore the integral

J " Ky () + 11t

is finite. Refer to [S1] for the precise definition and the property of such a Riemannian
metric.
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