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Abstract. Let us assume that a 2-torus homeomorphism $f$ isotopic to the identity has a segment of
irrational slope as its rotation set $\rho(F)$ . We prove that if the chain recurrent set $R(f)$ of $f$ is not chain
transitive, then $\rho(F)$ has a rational point realized by a periodic point.

1. Introduction.

In [6] rotation sets of torus homeomorphisms are introduced by M. Misiurewicz
and K. Ziemian. For a homeomorphism $f$ on a 2-torus $T^{2}$ isotopic to the identity, let
$F$ be a lift of $f$ to the universal cover $\pi:R^{2}\rightarrow T^{2}$ , and set $\Gamma=\{(F^{n}(x)-x)/n|x\in R^{2}$ ,
$n\in Z_{+}\}$ . Then the rotation set $\rho(F)$ is the set of limit points of $\Gamma$ , i.e. $v\in\rho(F)$ if there
exist sequences $x_{i}\in R^{2}$ and $n_{i}\in Z_{+}$ with $\lim_{i\rightarrow\infty}n_{i}=\infty$ such that $\lim_{i\rightarrow\infty}(F^{n_{i}}(x_{i})-x_{i})/$

$n_{i}=v$ . As a fundamental property of $p(F)$ , it is known that $\rho(F)$ is compact and convex
(see [6]). In this paper, as in [3] and [4] we call $v\in\rho(F)$ an interior point of $\rho(F)$ if
there exists an open 2-disk $D$ such that $v\in D\subset\rho(F)$ , and let Int $\rho(F)$ denote the set
of interior points of $\rho(F)$ .

One of the most important problems on rotation sets is how rational points, i.e.
points with both coordinates rational, in $\rho(F)$ are related to periodic points of $f$, and
J. Franks [3] showed that rational points of Int $\rho(F)$ are realized by periodic points,
i.e. for any $v\in Int\rho(F)\cap Q^{2}$ , there exists an $f$-periodic point $\overline{x}$ of period $q$ such that
for any lift $x$ of $\overline{x},$ $(F^{q}(x)-x)/q=v$ . If Int $\rho(F)=\emptyset,$ $\rho(F)$ is a single point or a closed
segment. In this case, in [4] under the additional assumption that $f$preserves a Lebesgue
measure, he also showed that any $v\in p(F)\cap Q^{2}$ is realized by an $f$-periodic point.

In this paper, we will deal with this problem in the case when Int $\rho(F)=\emptyset$ , but
we do not assume that $f$ preserves a Lebesgue measure. We will show the following.

THEOREM. Let $f:T^{2}\rightarrow T^{2}$ be a homeomorphism isotopic to the identity, and let $F$

be a lift off to the universal cover. If the rotation set $\rho(F)$ is a closed segment of irrational
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slope, and the chain recurrent set $R(f)$ of$f$ is not chain transitive, then $\rho(F)$ includes a
rational point which is realized by an f-periodic point.

REMARK 1. For an example of $f$ with $\rho(F)$ a closed segment of irrational slope,
refer to [5].

2. Proof of Theorem.

To show the theorem, we will use the argument in [3] that uses a complete
Lyapounov function. For a homeomorphism of a compact metric space $\varphi:X\rightarrow X$ a
continuous function $g:X\rightarrow R$ is called a complete Lyapounov function if (a) for any
$x\not\in R(\varphi),$ $g(\varphi(x))<g(x)$ , where $R(\varphi)$ denotes the chain recurrent set of $\varphi,$ $(b)$ for
$x,y\in R(\varphi)$ , the necessary and sufficient condition for the equality $g(x)=g(y)$ to hold
is that $x$ and $y$ are in the same chain transitive component, (c) $g(R(\varphi))$ is a compact
nowhere dense subset of R.

For fundamental results ofchain recurrent sets and complete Lyapounov functions,
refer to [1] and [2]. Especially for any homeomorphism of a compact metric space,
there exists a complete Lyapounov function, and moreover we need the following.

(1.6) THEOREM [3]. Let $\varphi:X\rightarrow X$ be a homeomorphism ofa compact metric space,
and let $\Lambda_{1},$ $\Lambda_{2},$ $\cdots,$ $\Lambda_{n}$ be $\delta$-transitive components of $R(\varphi)$ for any $\delta>0$ . Then there are
a complete Lyapounov function $g$ for $\varphi$ and $c_{0}<c_{1}<\cdots<c_{n}$ such that $\Lambda_{i}=R(\varphi)\cap$

$g^{-1}((c_{i-1}, c_{i}))$ for $1\leq i\leq n$ .
$PR\infty F$ OF THEOREM. Since $R(f)$ is not chain transitive, there is $\delta>0$ such that $R(f)$

is decomposed into two or more $\delta$-transitive components $\Lambda_{1},$ $\Lambda_{2},$ $\cdots,$ $\Lambda_{n}$ . By (1.6)
Theorem, one has a complete Lyapounov function $g$ with values $c_{O}<c_{1}<\cdots<c_{n}$ such
that $\Lambda_{i}=R(f)\cap g^{-1}((c_{i-1}, c_{i}))$ . One can choose a smooth approximation $g_{0}$ of $g$ such
that $c_{i}$ are regular values of $g_{0}$ , and $M_{i}=g_{0}^{-1}((-\infty, c_{i}$]) satisfy $f(M_{i})\subset IntM_{i}$ and
$\Lambda_{i}\subset M_{i}-M_{i-1}$ .

As the proof of (3.1) Proposition [3], we will also show that all circles of
$g_{\overline{0}^{1}}(\{c_{0}, c_{1}, \cdots, c_{n}\})$ are inessential. Suppose by contradiction that there exists an
essential circle $\gamma$ . Then $\gamma$ is a boundary component of $M_{j}$ for some $j$, and $M_{j}$ is the
disjoint union of essential annuli $A_{r},$ $1\leq r\leq\overline{r}$, possibly with holes and, possibly,
components $D_{s},$ $1\leq s\leq\overline{s}$, included in disks in $T^{2}$ . Since any $A_{r}$ cannot be mapped into
$D_{s}$ by $f$, one can find $A_{r}$ and a positive integer $k$ with $f^{k}(A_{r})\subset A_{r}$ . Let us take a lift $F_{k}$

of $f^{k}$ such that for each component $\tilde{A}_{r}$ of $\pi^{-1}(A_{r}),$ $F_{k}(\tilde{A}_{r})\subset\tilde{A}_{r}$ . Since $\rho(F_{k})$ is obtained
by translating $\rho(F^{k})$ by a rational vector and by Proposition 2.1[6] $\rho(F^{k})=k\rho(F)$ ,
$\rho(F_{k})$ is a segment of irrational slope, too.

Let $v_{0},$ $v_{1}$ be the end points of $\rho(F_{k})$ . Then by Theorem 3.5[6] and the
ergodic theorem, there exist points $x_{0},$ $x_{1}\in R^{2}$ with $\lim_{m\rightarrow\infty}(F_{k}^{m}(x_{0})-x_{O})/m=v_{0}$ ,
$\lim_{m\rightarrow\infty}\langle F_{k}^{m}(x_{1})-x_{1})/m=v_{1}$ . Since the slope of $\tilde{A}_{r}$ is rational and $F_{k}$ preserves each
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of them, $v_{0}$ and $v_{1}$ are in a line of the same rational slope as $\tilde{A}_{r}$ , but this contradicts
that the slope of $\rho(F_{k})$ is irrational.

By the result of the previous paragraph, $g_{0}^{-1}(c_{n-1})$ is the disjoint union of finite
inessential circles, and note that $ g_{0}^{-1}(c_{n-1})\neq\emptyset$ because $g_{0}^{-1}(c_{n-1})$ separates $\Lambda_{n}$ from
$\Lambda_{j},j\leq n-1$ . From disks bounded by $circles\subset g_{\overline{0}^{1}}(c_{n-1})$ , let us choose the ones that
are not included in others, and let us denote them by $D_{1},$ $D_{2},$ $\cdots,$ $D_{k}$ . Set $N_{0}=T^{2}-$

$U_{i=1}^{k}$ Int $D_{i}$ . Assume that $N_{0}$ is a connected component of $M_{n-1}$ . Then $M_{n-1}$ is
the disjoint union of $N_{0}$ and, possibly, components which lie in $\bigcup_{i=1}^{k}$ Int $D_{i}$ . Since
$f(M_{n-1})\subset M_{n-1}$ and since $N_{0}$ cannot be mapped into a disk by $f$, one has that
$f(N_{O})\subset N_{0}$ . This implies that there exist a disk $D_{i}$ and a positive integer $q$ with
$f^{-q}(D_{i})\subset D_{i}$ , and thus one obtains aperiodic point $\overline{x}_{*}$ of period $q$ . Obviously for any
lift $x_{*}$ of $\overline{x}_{*}$ we have that $v=\lim_{m\rightarrow\infty}(F^{m}(x_{*})-x_{*})/m=(F^{q}(x_{*})-x_{*})/q\in\rho(F)\cap Q^{2}$ .
This shows the theorem in this case.

Let us investigate the rest case, i.e. the case when $N_{0}$ is not a connected component
of $M_{n-1}$ . In this case, obviously $f(\bigcup_{i=1}^{k}D_{i})\subset\bigcup_{i=1}^{k}D_{i}$ , and one can find a disk $D_{i}$ and
$q>0$ such that $f^{q}(D_{i})\subset D_{i}$ . Therefore we obtain a periodic point again, and this finishes
the proof of the theorem. $\square $

REMARK 2. If $R(f)$ is chain transitive, we can only show that $R(f)=T^{2}$ as a
special case of the following general result.

PROPOSITION. Let $\varphi$ be a homeomorphism of a compact metric space X. If $R(\varphi)$ is
chain transitive, then $R(\varphi)=X$.

$PR\infty F$ . Suppose by contradiction that $R(\varphi)\neq X$. Let $g$ be a complete Lyapounov
function for $\varphi$ . Note that by the assumption that $R(\varphi)$ is chain transitive, $g$ is constant
on $R(\varphi)$ , and let $a_{0}=g(R(\varphi))$ . On all of $X$, however, $g$ is not constant because
$g(\varphi(x))<g(x)$ for $x\not\in R(\varphi)$ . Since $R(\varphi)=R(\varphi^{-})$ , passing to $\varphi^{-1}$ , if necessary, we may
assume that $g$ has the minimum value $a_{1}$ not equal to $a_{0}$ . Let us choose $x_{1}\in X$ with
$g(x_{1})=a_{1}$ . Then since $x_{1}\not\in R(\varphi)$ , we have that $g(\varphi(x_{1}))<g(x_{1})$ , but this is impossible.
This completes the proof. $\square $
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