On Torus Homeomorphisms of Which Rotation Sets Have No Interior Points

Eijirou HAYAKAWA

Toyama University
(Communicated by T. Nagano)

Abstract

Let us assume that a 2-torus homeomorphism f isotopic to the identity has a segment of irrational slope as its rotation set $\rho(F)$. We prove that if the chain recurrent set $R(f)$ of f is not chain transitive, then $\rho(F)$ has a rational point realized by a periodic point.

1. Introduction.

In [6] rotation sets of torus homeomorphisms are introduced by M. Misiurewicz and K. Ziemian. For a homeomorphism f on a 2-torus T^{2} isotopic to the identity, let F be a lift of f to the universal cover $\pi: \mathbf{R}^{2} \rightarrow T^{2}$, and set $\Gamma=\left\{\left(F^{n}(x)-x\right) / n \mid x \in \mathbf{R}^{2}\right.$, $\left.n \in \mathbf{Z}_{+}\right\}$. Then the rotation set $\rho(F)$ is the set of limit points of Γ, i.e. $v \in \rho(F)$ if there exist sequences $x_{i} \in \mathbf{R}^{2}$ and $n_{i} \in \mathbf{Z}_{+}$with $\lim _{i \rightarrow \infty} n_{i}=\infty$ such that $\lim _{i \rightarrow \infty}\left(F^{n_{i}}\left(x_{i}\right)-x_{i}\right) /$ $n_{i}=v$. As a fundamental property of $\rho(F)$, it is known that $\rho(F)$ is compact and convex (see [6]). In this paper, as in [3] and [4] we call $v \in \rho(F)$ an interior point of $\rho(F)$ if there exists an open 2-disk D such that $v \in D \subset \rho(F)$, and let Int $\rho(F)$ denote the set of interior points of $\rho(F)$.

One of the most important problems on rotation sets is how rational points, i.e. points with both coordinates rational, in $\rho(F)$ are related to periodic points of f, and J. Franks [3] showed that rational points of Int $\rho(F)$ are realized by periodic points, i.e. for any $v \in \operatorname{Int} \rho(F) \cap \mathbf{Q}^{2}$, there exists an f-periodic point \bar{x} of period q such that for any lift x of $\bar{x},\left(F^{q}(x)-x\right) / q=v$. If Int $\rho(F)=\varnothing, \rho(F)$ is a single point or a closed segment. In this case, in [4] under the additional assumption that f preserves a Lebesgue measure, he also showed that any $v \in \rho(F) \cap \mathbf{Q}^{2}$ is realized by an f-periodic point.

In this paper, we will deal with this problem in the case when Int $\rho(F)=\varnothing$, but we do not assume that f preserves a Lebesgue measure. We will show the following.

Theorem. Let $f: T^{2} \rightarrow T^{2}$ be a homeomorphism isotopic to the identity, and let F be a lift of f to the universal cover. If the rotation set $\rho(F)$ is a closed segment of irrational
slope, and the chain recurrent set $R(f)$ of f is not chain transitive, then $\rho(F)$ includes a rational point which is realized by an f-periodic point.

Remark 1. For an example of f with $\rho(F)$ a closed segment of irrational slope, refer to [5].

2. Proof of Theorem.

To show the theorem, we will use the argument in [3] that uses a complete Lyapounov function. For a homeomorphism of a compact metric space $\varphi: X \rightarrow X$ a continuous function $g: X \rightarrow \mathbf{R}$ is called a complete Lyapounov function if (a) for any $x \notin R(\varphi), g(\varphi(x))<g(x)$, where $R(\varphi)$ denotes the chain recurrent set of φ, (b) for $x, y \in R(\varphi)$, the necessary and sufficient condition for the equality $g(x)=g(y)$ to hold is that x and y are in the same chain transitive component, (c) $g(R(\varphi))$ is a compact nowhere dense subset of \mathbf{R}.

For fundamental results of chain recurrent sets and complete Lyapounov functions, refer to [1] and [2]. Especially for any homeomorphism of a compact metric space, there exists a complete Lyapounov function, and moreover we need the following.
(1.6) Theorem [3]. Let $\varphi: X \rightarrow X$ be a homeomorphism of a compact metric space, and let $\Lambda_{1}, \Lambda_{2}, \cdots, \Lambda_{n}$ be δ-transitive components of $R(\varphi)$ for any $\delta>0$. Then there are a complete Lyapounov function g for φ and $c_{0}<c_{1}<\cdots<c_{n}$ such that $\Lambda_{i}=R(\varphi) \cap$ $g^{-1}\left(\left(c_{i-1}, c_{i}\right)\right)$ for $1 \leq i \leq n$.

Proof of Theorem. Since $R(f)$ is not chain transitive, there is $\delta>0$ such that $R(f)$ is decomposed into two or more δ-transitive components $\Lambda_{1}, \Lambda_{2}, \cdots, \Lambda_{n}$. By (1.6) Theorem, one has a complete Lyapounov function g with values $c_{0}<c_{1}<\cdots<c_{n}$ such that $\Lambda_{i}=R(f) \cap g^{-1}\left(\left(c_{i-1}, c_{i}\right)\right)$. One can choose a smooth approximation g_{0} of g such that c_{i} are regular values of g_{0}, and $M_{i}=g_{0}{ }^{-1}\left(\left(-\infty, c_{i}\right]\right)$ satisfy $f\left(M_{i}\right) \subset \operatorname{Int} M_{i}$ and $\Lambda_{i} \subset M_{i}-M_{i-1}$.

As the proof of (3.1) Proposition [3], we will also show that all circles of $g_{0}^{-1}\left(\left\{c_{0}, c_{1}, \cdots, c_{n}\right\}\right)$ are inessential. Suppose by contradiction that there exists an essential circle γ. Then γ is a boundary component of M_{j} for some j, and M_{j} is the disjoint union of essential annuli $A_{r}, 1 \leq r \leq \bar{r}$, possibly with holes and, possibly, components $D_{s}, 1 \leq s \leq \bar{s}$, included in disks in T^{2}. Since any A_{r} cannot be mapped into D_{s} by f, one can find A_{r} and a positive integer k with $f^{k}\left(A_{r}\right) \subset A_{r}$. Let us take a lift F_{k} of f^{k} such that for each component \tilde{A}_{r} of $\pi^{-1}\left(A_{r}\right), F_{k}\left(\tilde{A}_{r}\right) \subset \tilde{A}_{r}$. Since $\rho\left(F_{k}\right)$ is obtained by translating $\rho\left(F^{k}\right)$ by a rational vector and by Proposition 2.1[6] $\rho\left(F^{k}\right)=k \rho(F)$, $\rho\left(F_{k}\right)$ is a segment of irrational slope, too.

Let v_{0}, v_{1} be the end points of $\rho\left(F_{k}\right)$. Then by Theorem $3.5[6]$ and the ergodic theorem, there exist points $x_{0}, x_{1} \in \mathbf{R}^{2}$ with $\lim _{m \rightarrow \infty}\left(F_{k}^{m}\left(x_{0}\right)-x_{0}\right) / m=v_{0}$, $\lim _{m \rightarrow \infty}\left(F_{k}^{m}\left(x_{1}\right)-x_{1}\right) / m=v_{1}$. Since the slope of \tilde{A}_{r} is rational and F_{k} preserves each
of them, v_{0} and v_{1} are in a line of the same rational slope as \tilde{A}_{r}, but this contradicts that the slope of $\rho\left(F_{k}\right)$ is irrational.

By the result of the previous paragraph, $g_{0}^{-1}\left(c_{n-1}\right)$ is the disjoint union of finite inessential circles, and note that $g_{0}^{-1}\left(c_{n-1}\right) \neq \varnothing$ because $g_{0}^{-1}\left(c_{n-1}\right)$ separates Λ_{n} from $\Lambda_{j}, j \leq n-1$. From disks bounded by circles $\subset g_{0}^{-1}\left(c_{n-1}\right)$, let us choose the ones that are not included in others, and let us denote them by $D_{1}, D_{2}, \cdots, D_{k}$. Set $N_{0}=T^{2}-$ $\bigcup_{i=1}^{k} \operatorname{Int} D_{i}$. Assume that N_{0} is a connected component of M_{n-1}. Then M_{n-1} is the disjoint union of N_{0} and, possibly, components which lie in $\bigcup_{i=1}^{k} \operatorname{Int} D_{i}$. Since $f\left(M_{n-1}\right) \subset M_{n-1}$ and since N_{0} cannot be mapped into a disk by f, one has that $f\left(N_{0}\right) \subset N_{0}$. This implies that there exist a disk D_{i} and a positive integer q with $f^{-q}\left(D_{i}\right) \subset D_{i}$, and thus one obtains a periodic point \bar{x}_{*} of period q. Obviously for any lift x_{*} of \bar{x}_{*} we have that $v=\lim _{m \rightarrow \infty}\left(F^{m}\left(x_{*}\right)-x_{*}\right) / m=\left(F^{q}\left(x_{*}\right)-x_{*}\right) / q \in \rho(F) \cap \mathbf{Q}^{2}$. This shows the theorem in this case.

Let us investigate the rest case, i.e. the case when N_{0} is not a connected component of M_{n-1}. In this case, obviously $f\left(\bigcup_{i=1}^{k} D_{i}\right) \subset \bigcup_{i=1}^{k} D_{i}$, and one can find a disk D_{i} and $q>0$ such that $f^{q}\left(D_{i}\right) \subset D_{i}$. Therefore we obtain a periodic point again, and this finishes the proof of the theorem.

Remark 2. If $R(f)$ is chain transitive, we can only show that $R(f)=T^{2}$ as a special case of the following general result.

Proposition. Let φ be a homeomorphism of a compact metric space X. If $R(\varphi)$ is chain transitive, then $R(\varphi)=X$.

Proof. Suppose by contradiction that $R(\varphi) \neq X$. Let g be a complete Lyapounov function for φ. Note that by the assumption that $R(\varphi)$ is chain transitive, g is constant on $R(\varphi)$, and let $a_{0}=g(R(\varphi))$. On all of X, however, g is not constant because $g(\varphi(x))<g(x)$ for $x \notin R(\varphi)$. Since $R(\varphi)=R\left(\varphi^{-1}\right)$, passing to φ^{-1}, if necessary, we may assume that g has the minimum value a_{1} not equal to a_{0}. Let us choose $x_{1} \in X$ with $g\left(x_{1}\right)=a_{1}$. Then since $x_{1} \notin R(\varphi)$, we have that $g\left(\varphi\left(x_{1}\right)\right)<g\left(x_{1}\right)$, but this is impossible. This completes the proof.

References

[1] J. Franks, Recurrence and fixed points of surface homeomorphisms, Ergod. Th. Dynam. Sys. 8* (1988), 99-107.
[2] , A variation on the Poincaré-Birkhoff theorem, Hamiltonian Dynamics, Contemp. Math. 81 (1988), 111-117.
[3] , Realizing rotation vectors for torus homeomorphisms, Trans. Amer. Math. Soc. 311 (1989), 107-115.
[4] , The rotation set and periodic points for torus homeomorphisms, preprint.
[5] J. Franks and M. Misiurewicz, Rotation sets of toral flows, Proc. Amer. Math. Soc. 109 (1990), 243-249.
[6] M. Misiurewicz and K. Ziemian, Rotation sets for maps of tori, J. London Math. Soc. 40 (1989),

490-506.

Present Address:

Faculty of Engineering, Toyama University, Gofuku, Toyama, 930 Japan.
e-mail: hayakawa@eng1.eng.toyama-u.ac.jp

