Токуо Ј. Матн. Vol. 19, No. 2, 1996

On Torus Homeomorphisms of Which Rotation Sets Have No Interior Points

Eijirou HAYAKAWA

Toyama University (Communicated by T. Nagano)

Abstract. Let us assume that a 2-torus homeomorphism f isotopic to the identity has a segment of irrational slope as its rotation set $\rho(F)$. We prove that if the chain recurrent set R(f) of f is not chain transitive, then $\rho(F)$ has a rational point realized by a periodic point.

1. Introduction.

In [6] rotation sets of torus homeomorphisms are introduced by M. Misiurewicz and K. Ziemian. For a homeomorphism f on a 2-torus T^2 isotopic to the identity, let F be a lift of f to the universal cover $\pi: \mathbb{R}^2 \to T^2$, and set $\Gamma = \{(F^n(x) - x)/n \mid x \in \mathbb{R}^2, n \in \mathbb{Z}_+\}$. Then the rotation set $\rho(F)$ is the set of limit points of Γ , *i.e.* $v \in \rho(F)$ if there exist sequences $x_i \in \mathbb{R}^2$ and $n_i \in \mathbb{Z}_+$ with $\lim_{i\to\infty} n_i = \infty$ such that $\lim_{i\to\infty} (F^{n_i}(x_i) - x_i)/n_i = v$. As a fundamental property of $\rho(F)$, it is known that $\rho(F)$ is compact and convex (see [6]). In this paper, as in [3] and [4] we call $v \in \rho(F)$ an interior point of $\rho(F)$ if there exists an open 2-disk D such that $v \in D \subset \rho(F)$, and let $\operatorname{Int} \rho(F)$ denote the set of interior points of $\rho(F)$.

One of the most important problems on rotation sets is how rational points, *i.e.* points with both coordinates rational, in $\rho(F)$ are related to periodic points of f, and J. Franks [3] showed that rational points of $\operatorname{Int}\rho(F)$ are realized by periodic points, *i.e.* for any $v \in \operatorname{Int}\rho(F) \cap \mathbb{Q}^2$, there exists an f-periodic point \bar{x} of period q such that for any lift x of \bar{x} , $(F^q(x)-x)/q=v$. If $\operatorname{Int}\rho(F) = \emptyset$, $\rho(F)$ is a single point or a closed segment. In this case, in [4] under the additional assumption that f preserves a Lebesgue measure, he also showed that any $v \in \rho(F) \cap \mathbb{Q}^2$ is realized by an f-periodic point.

In this paper, we will deal with this problem in the case when $\operatorname{Int} \rho(F) = \emptyset$, but we do not assume that f preserves a Lebesgue measure. We will show the following.

THEOREM. Let $f: T^2 \to T^2$ be a homeomorphism isotopic to the identity, and let F be a lift of f to the universal cover. If the rotation set $\rho(F)$ is a closed segment of irrational

Received January 30, 1995

Revised March 16, 1995

EIJIROU HAYAKAWA

slope, and the chain recurrent set R(f) of f is not chain transitive, then $\rho(F)$ includes a rational point which is realized by an f-periodic point.

REMARK 1. For an example of f with $\rho(F)$ a closed segment of irrational slope, refer to [5].

2. Proof of Theorem.

To show the theorem, we will use the argument in [3] that uses a complete Lyapounov function. For a homeomorphism of a compact metric space $\varphi: X \to X$ a continuous function $g: X \to \mathbb{R}$ is called a *complete Lyapounov function* if (a) for any $x \notin R(\varphi)$, $g(\varphi(x)) < g(x)$, where $R(\varphi)$ denotes the chain recurrent set of φ , (b) for $x, y \in R(\varphi)$, the necessary and sufficient condition for the equality g(x) = g(y) to hold is that x and y are in the same chain transitive component, (c) $g(R(\varphi))$ is a compact nowhere dense subset of \mathbb{R} .

For fundamental results of chain recurrent sets and complete Lyapounov functions, refer to [1] and [2]. Especially for any homeomorphism of a compact metric space, there exists a complete Lyapounov function, and moreover we need the following.

(1.6) THEOREM [3]. Let $\varphi: X \to X$ be a homeomorphism of a compact metric space, and let $\Lambda_1, \Lambda_2, \dots, \Lambda_n$ be δ -transitive components of $R(\varphi)$ for any $\delta > 0$. Then there are a complete Lyapounov function g for φ and $c_0 < c_1 < \dots < c_n$ such that $\Lambda_i = R(\varphi) \cap$ $g^{-1}((c_{i-1}, c_i))$ for $1 \le i \le n$.

PROOF OF THEOREM. Since R(f) is not chain transitive, there is $\delta > 0$ such that R(f) is decomposed into two or more δ -transitive components $\Lambda_1, \Lambda_2, \dots, \Lambda_n$. By (1.6) Theorem, one has a complete Lyapounov function g with values $c_0 < c_1 < \dots < c_n$ such that $\Lambda_i = R(f) \cap g^{-1}((c_{i-1}, c_i))$. One can choose a smooth approximation g_0 of g such that c_i are regular values of g_0 , and $M_i = g_0^{-1}((-\infty, c_i])$ satisfy $f(M_i) \subset \operatorname{Int} M_i$ and $\Lambda_i \subset M_i - M_{i-1}$.

As the proof of (3.1) Proposition [3], we will also show that all circles of $g_0^{-1}(\{c_0, c_1, \dots, c_n\})$ are inessential. Suppose by contradiction that there exists an essential circle γ . Then γ is a boundary component of M_j for some j, and M_j is the disjoint union of essential annuli A_r , $1 \le r \le \bar{r}$, possibly with holes and, possibly, components D_s , $1 \le s \le \bar{s}$, included in disks in T^2 . Since any A_r cannot be mapped into D_s by f, one can find A_r and a positive integer k with $f^k(A_r) \subset A_r$. Let us take a lift F_k of f^k such that for each component \tilde{A}_r of $\pi^{-1}(A_r)$, $F_k(\tilde{A}_r) \subset \tilde{A}_r$. Since $\rho(F_k)$ is obtained by translating $\rho(F^k)$ by a rational vector and by Proposition 2.1[6] $\rho(F^k) = k\rho(F)$, $\rho(F_k)$ is a segment of irrational slope, too.

Let v_0 , v_1 be the end points of $\rho(F_k)$. Then by Theorem 3.5[6] and the ergodic theorem, there exist points x_0 , $x_1 \in \mathbb{R}^2$ with $\lim_{m \to \infty} (F_k^m(x_0) - x_0)/m = v_0$, $\lim_{m \to \infty} (F_k^m(x_1) - x_1)/m = v_1$. Since the slope of \tilde{A}_r is rational and F_k preserves each

366

of them, v_0 and v_1 are in a line of the same rational slope as \tilde{A}_r , but this contradicts that the slope of $\rho(F_k)$ is irrational.

By the result of the previous paragraph, $g_0^{-1}(c_{n-1})$ is the disjoint union of finite inessential circles, and note that $g_0^{-1}(c_{n-1}) \neq \emptyset$ because $g_0^{-1}(c_{n-1})$ separates Λ_n from $\Lambda_j, j \leq n-1$. From disks bounded by circles $\subset g_0^{-1}(c_{n-1})$, let us choose the ones that are not included in others, and let us denote them by D_1, D_2, \dots, D_k . Set $N_0 = T^2 - \bigcup_{i=1}^k \operatorname{Int} D_i$. Assume that N_0 is a connected component of M_{n-1} . Then M_{n-1} is the disjoint union of N_0 and, possibly, components which lie in $\bigcup_{i=1}^k \operatorname{Int} D_i$. Since $f(M_{n-1}) \subset M_{n-1}$ and since N_0 cannot be mapped into a disk by f, one has that $f(N_0) \subset N_0$. This implies that there exist a disk D_i and a positive integer q with $f^{-q}(D_i) \subset D_i$, and thus one obtains a periodic point \bar{x}_* of period q. Obviously for any lift x_* of \bar{x}_* we have that $v = \lim_{m \to \infty} (F^m(x_*) - x_*)/m = (F^q(x_*) - x_*)/q \in \rho(F) \cap \mathbb{Q}^2$. This shows the theorem in this case.

Let us investigate the rest case, *i.e.* the case when N_0 is not a connected component of M_{n-1} . In this case, obviously $f(\bigcup_{i=1}^k D_i) \subset \bigcup_{i=1}^k D_i$, and one can find a disk D_i and q > 0 such that $f^q(D_i) \subset D_i$. Therefore we obtain a periodic point again, and this finishes the proof of the theorem. \Box

REMARK 2. If R(f) is chain transitive, we can only show that $R(f) = T^2$ as a special case of the following general result.

PROPOSITION. Let φ be a homeomorphism of a compact metric space X. If $R(\varphi)$ is chain transitive, then $R(\varphi) = X$.

PROOF. Suppose by contradiction that $R(\varphi) \neq X$. Let g be a complete Lyapounov function for φ . Note that by the assumption that $R(\varphi)$ is chain transitive, g is constant on $R(\varphi)$, and let $a_0 = g(R(\varphi))$. On all of X, however, g is not constant because $g(\varphi(x)) < g(x)$ for $x \notin R(\varphi)$. Since $R(\varphi) = R(\varphi^{-1})$, passing to φ^{-1} , if necessary, we may assume that g has the minimum value a_1 not equal to a_0 . Let us choose $x_1 \in X$ with $g(x_1) = a_1$. Then since $x_1 \notin R(\varphi)$, we have that $g(\varphi(x_1)) < g(x_1)$, but this is impossible. This completes the proof. \Box

References

- [1] J. FRANKS, Recurrence and fixed points of surface homeomorphisms, Ergod. Th. Dynam. Sys. 8* (1988), 99-107.
- [2] —, A variation on the Poincaré-Birkhoff theorem, Hamiltonian Dynamics, Contemp. Math. 81 (1988), 111–117.
- [3] ——, Realizing rotation vectors for torus homeomorphisms, Trans. Amer. Math. Soc. 311 (1989), 107–115.
- [4] -----, The rotation set and periodic points for torus homeomorphisms, preprint.
- [5] J. FRANKS and M. MISIUREWICZ, Rotation sets of toral flows, Proc. Amer. Math. Soc. 109 (1990), 243-249.
- [6] M. MISIUREWICZ and K. ZIEMIAN, Rotation sets for maps of tori, J. London Math. Soc. 40 (1989),

EIJIROU HAYAKAWA

490-506.

Present Address: FACULTY OF ENGINEERING, TOYAMA UNIVERSITY, GOFUKU, TOYAMA, 930 JAPAN. *e-mail*: hayakawa@eng1.eng.toyama-u.ac.jp

368