Токуо J. Матн. Vol. 20, No. 1, 1997

Conjugate Connections and Moduli Spaces of Connections

Shoshichi KOBAYASHI and Eriko SHINOZAKI

University of California, Berkeley and International Christian University (Communicated by T. Nagano)

1. Introduction.

Let G be a Lie group with Lie algebra g, and H a closed subgroup with Lie algebra h. Let Aut(G, H) be the group of automorphisms of G leaving all elements of H fixed, and Inn(G, H) its normal subgroup consisting of inner automorphisms.

Given a principal G-bundle P, let $\mathscr{C}(P)$ be the space of connections in P and $\mathscr{G}(P)$ the group of gauge transformations of P. The main purpose of this note is to prove the following statement, (see Theorem 2 for more details).

If the structure group G of P can be reduced to H, then the group $\operatorname{Aut}(G, H)/\operatorname{Inn}(G, H)$ acts on the moduli space $\mathscr{C}(P)/\mathscr{G}(P)$, and the action is free on the generic part of $\mathscr{C}(P)/\mathscr{G}(P)$.

2. Definitions and theorems.

In our previous paper [2] we introduced the concept of conjugate connection in principal bundles. We first recall its definition.

Let P be a principal G-bundle over a manifold M with projection π . Let Q be a principal H-subbundle of P; in general, such a subbundle Q may not exist. We cover M by open sets U_i with local sections $s_i: U_i \rightarrow Q$. Then the transition functions a_{ij} are defined by

$$s_j(x) = s_i(x)a_{ij}(x)$$
 $x \in U_i \cap U_j$.

It is important to take local sections of the subbundle Q so that the a_{ij} 's are H-valued.

A connection in P is given by a family of g-valued 1-form $\{\omega_i\}$, where each ω_i is defined on U_i and the forms ω_i and ω_i are related by (see [1; Proposition 1.4 on p. 66])

(1) $\omega_j = a_{ij}^{-1} \omega_i a_{ij} + a_{ij}^{-1} da_{ij} \quad \text{on} \quad U_i \cap U_j.$

Given $\sigma \in \operatorname{Aut}(G, H)$, we set

 $\omega_i^{\sigma} = \sigma(\omega_i)$.

Received June 22, 1995

SHOSHICHI KOBAYASHI AND ERIKO SHINOZAKI

Apply σ to (1). Since a_{ij} is *H*-valued and hence invariant by σ , $\{\omega_i^{\sigma}\}$ defines a connection in *P*. We call it the σ -conjugate of the connection $\{\omega_i\}$ relative to *Q*. This defines an action of Aut(*G*, *H*) on the space $\mathscr{C}(P)$ of connections in *P*.

Given a gauge transformation $\varphi \in \mathscr{G}(P)$ and an automorphism $\sigma \in \operatorname{Aut}(G, H)$, we constructed a gauge transformation φ^{σ} so that $\operatorname{Aut}(G, H)$ acts on $\mathscr{G}(P)$ as an automorphism group. We recall the definition. A gauge transformation φ of P is a transformation of P commuting with the right action of G and inducing the identity transformation on the base space M. With respect to a local section s_i of Q we express φ by a map $\varphi_i: U_i \to G$ as follows:

(2)
$$\varphi(s_i(x)) = s_i(x)\varphi_i(x) \qquad x \in U_i.$$

Then

(4)

68

(3)
$$\varphi_j(x) = a_{ij}(x)^{-1} \varphi_i(x) a_{ij}(x) \qquad x \in U_i \cap U_j.$$

Conversely, a family $\{\varphi_i\}$ which is related by (3) defines a gauge transformation φ of *P*. Applying $\sigma \in \text{Aut}(G, H)$ to (3), we obtain

$$\sigma(\varphi_i(x)) = a_{ij}(x)^{-1} \sigma(\varphi_i(x)) a_{ij}(x) \qquad x \in U_i \cap U_j.$$

Therefore, the family $\{\sigma(\varphi_i)\}$ defines a gauge transformation of P, which we denote by φ^{σ} .

Given a connection form $\{\omega_i\}$ on *P*, a gauge transformation $\varphi = \{\varphi_i\}$ induces a new connection $\{\theta_i\}$ by

$$\theta_i = \varphi_i^{-1} \omega_i \varphi_i + \varphi_i^{-1} d\varphi_i \,.$$

In [2] we proved

THEOREM 1. If two connections $\{\omega_i\}$ and $\{\theta_i\}$ in P are gauge equivalent under φ , then their σ -conjugates $\{\omega_i^{\sigma}\}$ and $\{\theta_i^{\sigma}\}$ are gauge equivalent under φ^{σ} . Thus, the group Aut(G, H) acts on the moduli space of connections $\mathscr{C}(P)/\mathscr{G}(P)$.

It was pointed out by M. Itoh that Inn(G, H) acts trivially on $\mathscr{C}(P)/\mathscr{G}(P)$. Thus Aut(G, H)/Inn(G, H) acts on $\mathscr{C}(P)/\mathscr{G}(P)$. The purpose of this note is to show that this action is generically free in the following sense.

Fix a point $u_0 \in Q$, and let Ψ_{u_0} be the holonomy group of the connection ω with respect to the reference point u_0 . We call a connection in *P* generic if its holonomy group coincides with *G*.

THEOREM 2. Let $\sigma \in \operatorname{Aut}(G, H)$ and $\{\omega_i\} \in \mathscr{C}(P)$. Assume that $\{\omega_i^{\sigma}\}$ is gauge equivalent to $\{\omega_i\}$ under a gauge transformation φ . If we define an element $a \in G$ by $\varphi(u_0) = u_0 a$, then,

$$\sigma(g) = a^{-1}ga \qquad for \quad g \in \Psi_{\mu_0}.$$

In particular, if the holonomy group is G, then σ is the inner automorphism defined by

 a^{-1} above.

As a consequence, $\operatorname{Aut}(G, H)/\operatorname{Inn}(G, H)$ acts freely on the generic part of $\mathscr{C}(P)/\mathscr{G}(P)$.

3. Proof of Theorem 2.

We shall first show that if $\sigma \in Aut(G, H)$ is inner so that

$$\sigma(g) = a^{-1}ga, \qquad g \in G,$$

then there is a gauge transformation φ_a such that a connection $\{\omega_i\}$ and its σ -conjugate $\{\omega_i^{\sigma}\}$ are gauge equivalent under φ_a .

Since σ leaves every element of H fixed, a commutes with every element of H. Define a constant map $\varphi_i: U_i \to G$ by

$$\varphi_i(x) = a , \qquad x \in U_i .$$

Then $\{\varphi_i\}$ satisfies (3) and defines a gauge transformation of P, which we call φ_a . Then from (4) it is evident that φ_a sends $\{\omega_i\}$ to $\{\omega_i^{\sigma}\}$. This proves that $\operatorname{Aut}(G, H)/\operatorname{Inn}(G, H)$ acts on $\mathscr{C}(P)/\mathscr{G}(P)$.

Before we start the proof of Theorem 2, we first need to express a connection $\{\omega_i\}$ by a globally defined **g**-valued 1-form ω on *P*. Identifying $U_i \times G$ with $\pi^{-1}(U_i)$ by

 $(x, g) \longmapsto s_i(x)g$, $x \in U_i$, $g \in G$,

we use (x, g) as a local coordinate for P. Then

(5)
$$\omega = g^{-1} \omega_i g + g^{-1} dg ,$$

so that $\omega_i = s_i^*(\omega)$.

Every element $u \in P$ is of the form $u = s_i(x)g$, $g \in G$. Given $\sigma \in Aut(G, H)$, define a transformation h_{σ} of P by

(6)
$$h_{\sigma}(s_i(x)g) = s_i(x)\sigma(g) , \qquad g \in G .$$

As a transformation of $U_i \times G$, h_σ is given by

(7)
$$h_{\sigma}: (x, g) \longmapsto (x, \sigma(g))$$

We note that $\sigma(\omega)$ is not, in general, a connection in *P*, let alone the σ -conjugate of ω . The σ -conjugate ω^{σ} of ω is given by

(8)
$$\omega^{\sigma} = (h_{\sigma}^{-1})^*(\sigma(\omega)) = \sigma(((h_{\sigma}^{-1})^*\omega)).$$

In fact, by (5) and (7)

$$\omega^{\sigma} = g^{-1} \sigma(\omega_i) g + g^{-1} dg = (h_{\sigma}^{-1})^* (\sigma(g^{-1} \omega_i g + g^{-1} dg)) = (h_{\sigma}^{-1})^* (\sigma(\omega))$$

We quickly recall the definition of the holonomy group. Fix points x_0 in M and $u_0 \in Q \subset P$ such that $\pi(u_0) = x_0$. Given a curve x(t), $0 \le t \le 1$, in M with $x(0) = x_0$, the

parallel displacement of u_0 along x(t) is a curve u(t) in P such that

- (a) $\pi(u(t)) = x(t)$ for $0 \le t \le 1$,
- (b) The velocity vector u'(t) of u(t) is horizontal, i.e., $\omega(u'(t))=0$,
- (c) $u(0) = u_0$.

A curve u(t) satisfying (a) and (b) is called a horizontal lift of x(t).

Assume that c = x(t), $0 \le t \le 1$, is a closed curve, i.e., $x(0) = x(1) = x_0$. Let $\tilde{c} = u(t)$ be the parallel displacement of u_0 along x(t). Then $u(0) = u_0$ and u(1) are in the same fiber of P. So, there is a unique element τ_c of G such that $u(1) = u_0 \tau_c$. Consider all piecewise smooth closed curves c starting from and ending at x_0 . Then the set of all τ_c forms a subgroup of G. This group, denoted by Ψ_{u_0} , is the holonomy group with reference to u_0 .

LEMMA 1. Let $\sigma \in \operatorname{Aut}(G, H)$. If a curve u(t) in P is horizontal with respect to a connection ω , i.e., $\omega(u'(t)) = 0$, then $h_{\sigma}(u(t))$ is horizontal with respect to ω^{σ} .

PROOF. By (8),

$$\omega^{\sigma}(h_{\sigma}(u'(t))) = ((h_{\sigma}^{-1})^{*}(\sigma(\omega))(h_{\sigma}(u'(t))) = (\sigma(\omega))(h_{\sigma}^{-1}(h_{\sigma}(u'(t))))$$
$$= (\sigma(\omega))(u'(t)) = \sigma(\omega(u'(t))) = 0.$$

The following two lemmas are even more trivial.

LEMMA 2. Let φ be the gauge transformation of P. If a curve u(t) is horizontal with respect to ω , then the curve $\varphi^{-1}(u(t))$ is horizontal with respect to $\varphi^*\omega$, i.e., $(\varphi^*\omega)(\varphi^{-1}(u(t)))=0$.

LEMMA 3. If two curves v(t) and w(t) of P are horizontal lifts of a curve x(t) in M with respect to a connection θ , then there is a constant element $a \in G$ such that

$$w(t) = v(t)a$$
 for all t .

Using these lemmas we shall now complete the proof of Theorem 2.

Assuming that ω^{σ} is gauge equivalent to ω under φ , we set $\theta = \omega^{\sigma} = \varphi^* \omega$. Let $c = x(t), \ 0 \le t \le 1$, be a closed curve in M. Let u(t) be the horizontal lift of x(t) with respect to ω such that $u(0) = u_0 \in Q$.

Then, by Lemma 2, $(\varphi^{-1}(u(t)))$ is horizontal with respect to θ , and by Lemma 1, $h_{\sigma}(u(t))$ is horizontal with respect to θ . Since $\varphi^{-1}(u(t))$ and $h_{\sigma}(u(t))$ are lifts of x(t),

$$h_{\sigma}(u(t)) = \varphi^{-1}(u(t))a(t)$$
 with $a(t) \in G$.

By Lemma 3, a(t) is a constant element, say a, of G. Hence,

$$h_{\sigma}(u(t)) = \varphi^{-1}(u(t))a.$$

Setting t=0, 1, we have

$$h_{\sigma}(u(0)) = \varphi^{-1}(u(0))a,$$

$$h_{\sigma}(u(1)) = \varphi^{-1}(u(1))a.$$

70

Let $\tau_c \in G$ be the holonomy element defined by c, i.e., $u(1) = u(0)\tau_c$. Since $u(0) = u_0 \in Q$ is fixed by h_{σ} , we have

$$h_{\sigma}(u(1)) = h_{\sigma}(u(0)\tau_c) = u(0)\sigma(\tau_c) .$$

On the other hand, since the gauge transformation φ^{-1} commutes with the right action of G, we have

$$u(0)\sigma(\tau_c) = h_{\sigma}(u(1)) = \varphi^{-1}(u(1))a = \varphi^{-1}(u(0)\tau_c)a$$
$$= (\varphi^{-1}(u(0)))\tau_c a = h_{\sigma}(u(0))a^{-1}\tau_c a = u(0)a^{-1}\tau_c a .$$

Hence, $\sigma(\tau_c) = a^{-1}\tau_c a$. Since every element g of Ψ_{u_0} is of the form τ_c for some c, we have $\sigma(g) = a^{-1}ga$ for all $g \in \Psi_{u_0}$, completing the proof of Theorem 2.

4. Example.

Consider the symmetric pair $(SO(r), SO(p) \times SO(q)), p+q=r$, which defines the Grassmann manifold of oriented *p*-planes in an *r*-dimensional real vector space. Since the case *p* or *q* is 2 is a little exceptional in that the Grassmann manifold is a hyperquadric and a Hermitian symmetric space, we assume that neither *p* nor *q* is 2. Then Aut(SO(r), $SO(p) \times SO(q)$) consists of two elements, namely, the identity and the symmetry σ given by

$$\sigma: X \longmapsto I_{p,q}^{-1} X I_{p,q},$$

where

$$I_{p,q} = \begin{pmatrix} I_p & 0 \\ 0 & -I_q \end{pmatrix}.$$

The automorphism σ of SO(r) is inner if at least one of p, q is even. (If p is even and q is odd, use $-I_{p,q} \in SO(r)$ to define σ .)

We shall show that it is not inner if both p and q are odd. Let X be an element of the Lie algebra so(r). Since r is even, $det(X) = p(X)^2$, where p(X) is the Pfaffian of X. We have

$$p(\sigma(X)) = p({}^{t}I_{p,q}XI_{p,q}) = \det(I_{p,q})p(X) = -p(X)$$

If σ is an inner automorphism given by some element $A \in SO(r)$, then

$$p(\sigma(X)) = p(^{t}AXA) = \det(A)p(X) = p(X) ,$$

which is a contradiction.

Thus, if P is an SO(r)-bundle that is reducible to an $SO(p) \times SO(q)$ -subbundle Q, then the group \mathbb{Z}_2 acts on the moduli space $\mathscr{C}(P)/\mathscr{G}(P)$ in such a way that its action on the generic part is free.

As we pointed out in [2], Aut(G, H) acts also on the moduli space of Yang-Mills

SHOSHICHI KOBAYASHI AND ERIKO SHINOZAKI

connections, and the statement above holds also as an action on the moduli space of Yang-Mills connections.

References

- [1] S. KOBAYASHI and K. NOMIZU, Foundations of Differential Geometry, vol. 1, Wiley (1963).
- [2] S. KOBAYASHI and E. SHINOZAKI, Conjugate connections in principal bundles, Geometry and Topology of Submanifolds, VII, (in honor of K. Nomizu), World Scientific Publ., to appear.

Present Addresses: Shoshichi Kobayashi Department of Mathematics, University of California, Berkeley, Berkeley, CA 94720, USA.

Eriko Shinozaki Division of Natural Sciences, International Christian University, Mitaka, Tokyo, 181 Japan.

72