
TOKYO J. MATH.
VOL. 20, No. 1, 1997

A Note on the Global Solutions
of a Degenerate Parabolic System

Qing HUANG and Kiyoshi MOCHIZUKI

Tokyo Metropolitan University

1. Introduction.

In this paper, we deal with the Cauchy problem of the degenerate parabolic system

$\begin{array}{ll}u_{t}=\Delta u^{\alpha}+v^{p} & x\in R^{N} , t>0\\v_{t}=\Delta v^{\beta}+u^{q} & \end{array}$ (1)

with $u(x, 0)=u_{0}(x)\geq 0,$ $v(x, 0)=v_{0}(x)\geq 0$ .
First, we survey the recent development about this problem. M. Escobedo and M.

A. Herreo [1] studied the simplest case $\alpha=\beta=1$ . They proved that when $0<pq\leq 1$ ,
every non-trivial solution is global in time $t$ , when $1<pq\leq 1+2(\gamma+1)/N(\gamma=\max\{p, q\})$ ,
every non-trivial solution blows up in finite time, and when $pq>1+2(\gamma+1)/N$, global
solutions exist for sufficiently “small” initial functions.

Y. W. Qi and H. A. Levine [2] studied general problem (1). They proved that
when $pq>1,$ $p,$ $q\geq 1,0<\alpha,$ $\beta<1$ and $pq<\alpha\beta+2\max(\beta+p, \alpha+q)/N$, the problem (1)
has no non-trivial global solutions, and when $0<\alpha=\beta<1,$ $p,$ $q\geq 1,$ $pq>1,$ $pq>\alpha\beta+$

$2\max(\beta+p, \alpha+q)/N$, the problem (1) has both non-global and non-trivial global
solutions. They believe strongly that the latter conclusion is true even for the situation
when $\alpha\neq\beta$ and leave it as an open problem.

In this paper, we establish the following theorem about the “very fast diffusion”
case: $0<\alpha,$ $\beta<(N-2)_{+}/N$, where $(M)_{+}=\max\{M, 0\}$ .

THEOREM. When $0<\alpha,$ $\beta<(N-2)_{+}/N,$ $p,$ $q>1$ , there exist non-trivial global
solutions of the problem (1) for small initial data functions.

REMARK. When $0<\alpha,$ $\beta<(N-2)_{+}/N$, the condition $ pq>\alpha\beta+2\max(p+\beta$ ,
$q+\alpha)/N$ is satisfied automatically.

2. Preliminaries.

First we study the properties of the solutions of the equation

Received June 15, 1995



64 QING HUANG AND KIYOSHI MOCHIZUKI

$w_{t}=\Delta w^{\alpha}$ $x\in R^{N},$ $t>0$ (2)

with $0<\alpha<(N-2)_{+}/N$. It has been known in [2] that there are self-similar solutions
of the form $w(x, t)=e^{-t}v(y),$ $y=xe^{-\langle 1-\alpha)t/2}$ for equation (2). Let $z(y)=v^{\alpha}( \lambda y)$ ,
$\lambda=\alpha/(1-\alpha)$ . Then $z(y)$ satisfies the equation

$\Delta z+(\lambda z+\frac{y\nabla z}{2})z^{m}=0$ , (3)

where $ m=(1-\alpha)/\alpha$ . If we only consider the radial solution $z=z(r),$ $r=|y|$ , then we have
the initial value problem

$\{z^{\prime\prime}+\frac{N-1}{=0\prime}z^{\prime}+(\lambda z+\frac{rz^{\prime}}{>02}).z^{m}=0z^{\prime}(0),z(0)=\eta$

(4)

LEMMA 1. Let $\eta\in R$ . Then there exists a unique bounded solution $z(r, \eta)$ of (4) on
$[0, \infty)$ . In addition, if$z>0$ on $[0, R]$ , then $z^{\prime}(r)<0$ on $[0, R]$ and if $z$ is positive on $[0, \infty$ ),
$z(r)\rightarrow 0$ as $ r\rightarrow\infty$ .

The proof of this lemma can be found in [2: Lemma 1].

LEMMA 2. If$0<\lambda<(N-2)/2$ (that is $0<\alpha<(N-2)/N$) and $z(r)>0$ on $[0, R]$ , then
the function $g(r)=rz^{\prime}/2+\lambda z$ is positive on $[0, R]$ .

$PR\infty F$ . By assumptions and Lemma 1, $z^{\prime}(r)<0$ on $[0, R]$ . Since

$g^{\prime}(r)=-(\frac{N-2}{2}\lambda)z^{\prime}-\frac{r}{2}g(r)z^{m}$ ,

$weconcludethatg^{\prime}(r_{0})>0ifg(r_{0})=0forsomer_{0}\in[0, R]$ . $Thisisacontradiction$ . $\square $

Therefore, from the equation (3), we have $\Delta z\leq 0$ when $z(r)>0$ .

LEMMA 3. When $\alpha>\beta(0<\alpha, \beta<(N-2)_{+}/N)$ and $\eta$ is small enough, $\Delta v^{\alpha}(y)-$

$\Delta v^{\beta}(y)\geq 0$ .
$PR\infty F$ . We have

$\Delta v^{\alpha}(y)-\Delta v^{\beta}(y)=\frac{1}{\lambda}[\Delta z(y)-\Delta z^{\beta/\alpha}(y)]$

$=\frac{1}{\lambda}[-\frac{\beta}{\alpha}(\frac{\beta}{\alpha}-1)z^{\langle\beta/\alpha)-2}(z^{\prime})^{2}+(z^{\prime\prime}+\frac{N-1}{r}Z^{\prime)(1-\frac{\beta}{\alpha}z^{\langle\beta/\alpha)-1)]}}$ .

It is clear that
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$-\frac{\beta}{\alpha}(\frac{\beta}{\alpha}1)z^{\langle\beta/\alpha)-2}(z^{\prime})^{2}>0$ .

If $z(O)=\eta<(\alpha/\beta)^{\alpha/\langle\beta-\alpha)}$ , then $z(r)\leq(\alpha/\beta)^{\alpha/\langle\beta-\alpha)}$ . Therefore we can get

$1-\frac{\beta}{\alpha}z^{\beta/\alpha-1}<0$ .

On the other hand, Lemma 2 implies that

$z^{\prime\prime}+\frac{N-1}{r}z^{\prime}<0$ .

Hence $\Delta v^{\alpha}(y)-\Delta v^{\beta}(y)\geq 0$ . $\square $

LEMMA 4. If $w(x, t)=e^{-t}v(y)$ is the solution of the equation $w_{t}=\Delta w^{\alpha}$ , then $w(x, t)$

is a super-solution of the equation $w_{t}=\Delta w^{\beta}$ when $\alpha>\beta$ .

PROOF. The assertion is clear since we have
$w_{t}-\Delta w^{\beta}=e^{-\alpha t}[\Delta v^{\alpha}(y)-e^{\langle\alpha-\beta)t}\Delta v^{\beta}(y)]\geq 0$ . $\square $

3. The proof of Theorem.

Now we consider the equations (1). Let

$U(t,x)=\Phi^{1/\alpha}(t)w(x,$ $\int_{0}^{t}\Phi^{\langle\alpha-1)/\alpha}(s)ds)$ ,

$V(t, x)=\Phi^{\mu}(t)w(x,$ $\int_{0}^{t}\Phi^{\langle\alpha-1)/\alpha}(s)ds)$ .

Here $\Phi(t)$ is the function to be determined, $w(x, t)$ is the solution of the equation $w_{t}=\Delta w^{\alpha}$

and $\mu=((1-\alpha)/(1-\beta))(1/\alpha)$ as we will see later.

LEMMA 5. In order that $(U, V)$ be the super-solution of (1), it is sufficient that

$\left\{\begin{array}{l}(\Phi^{1/\alpha})_{t}\geq\Phi^{\mu p}w^{p}w^{-1}\\(\Phi^{\mu})_{t}\geq\Phi^{q/\alpha}w^{q}w^{-1}\end{array}\right.$ (5)

PROOF. If $(U, V)$ is a pair of super-solutions of (1), then we have

$U_{t}=(\Phi^{1/\alpha})_{t}w+\Phi^{1/\alpha}w_{t}\Phi^{1-1/\alpha}\geq\Phi\Delta w^{\alpha}+\Phi^{\mu p}w^{p}$ .
Therefore, $(\Phi^{1/\alpha})_{t}\geq\Phi^{\mu p}w^{p-1}$ . Similarly

$V_{t}=(\Phi^{\mu})_{t}w+\Phi^{\mu}w_{t}\Phi^{1-1/\alpha}\geq\Phi^{\mu\beta}\Delta w^{\beta}+\Phi^{q/\alpha}w^{q}$ .

Since $w(x, t)$ is a super-solution of $w_{t}=\Delta w^{\beta}$ and $\mu$ is selected as above, the above
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inequatily is true if

$(\Phi^{\mu})_{t}\geq\Phi^{q/\alpha}w^{q}w^{-1}$ $\square $

$PR\infty F$ OF THEOREM. Let $w(x, t)=e^{-t}v(y)$ . Then, since

$w^{M}(x, t)w^{-1}(x, t)\leq C\exp[-(M-1)t]$ ,

we easily see that the inequalities (5) are satisfied if

$\{(\Phi^{1/\alpha})_{t}\geq C\Phi^{\mu p}\exp(-(p-1)\int_{)(\Phi^{\mu})_{t}\geq C\Phi^{q/\alpha}\exp(-(q-1)\int ot}0t)\Phi^{(\alpha-1)/\alpha}(s)d_{S}\Phi^{\langle\alpha-1)/\alpha}(s)ds$

.
(6)

We put $\Phi^{1/\alpha}=\xi+\xi(1-(1+t)^{-M})$ . Then we see $\xi<\Phi^{1/a}<2\xi,$ $(\Phi^{1/\alpha})^{\prime}=$

$\xi M(1+t)^{-M-1}$ . The left part of (6) is a ratio function and the right part of (6) is an
exponential function with negative exponents. Therefore there exists $t_{0}>0$ such that
the inequalities in (6) hold for all $t>t_{0}$ . Therefore we finally can find the super-solution
$(U(t+t_{0}, x),$ $V(t+t_{0}, x))$ of the equations (1).

As in [2], using the comparison theorem about parabolic systems (cf. [3] and [4]),

we get the existence of global solutions of problem (1) for initial data satisfying
$0\leq u_{0}\leq U(t_{0},x)$ and $0\leq v_{0}\leq V(t_{0},x)$ .
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