A Note on the Global Solutions of a Degenerate Parabolic System

Qing HUANG and Kiyoshi MOCHIZUKI

Tokyo Metropolitan University

1. Introduction.

In this paper, we deal with the Cauchy problem of the degenerate parabolic system

$$
\left\{\begin{array}{l}
u_{t}=\Delta u^{\alpha}+v^{p} \quad x \in \mathbf{R}^{N}, t>0 \tag{1}\\
v_{t}=\Delta v^{\beta}+u^{q}
\end{array}\right.
$$

with $u(x, 0)=u_{0}(x) \geq 0, v(x, 0)=v_{0}(x) \geq 0$.
First, we survey the recent development about this problem. M. Escobedo and M. A. Herreo [1] studied the simplest case $\alpha=\beta=1$. They proved that when $0<p q \leq 1$, every non-trivial solution is global in time t, when $1<p q \leq 1+2(\gamma+1) / N(\gamma=\max \{p, q\})$, every non-trivial solution blows up in finite time, and when $p q>1+2(\gamma+1) / N$, global solutions exist for sufficiently "small" initial functions.
Y. W. Qi and H. A. Levine [2] studied general problem (1). They proved that when $p q>1, p, q \geq 1,0<\alpha, \beta<1$ and $p q<\alpha \beta+2 \max (\beta+p, \alpha+q) / N$, the problem (1) has no non-trivial global solutions, and when $0<\alpha=\beta<1, p, q \geq 1, p q>1, p q>\alpha \beta+$ $2 \max (\beta+p, \alpha+q) / N$, the problem (1) has both non-global and non-trivial global solutions. They believe strongly that the latter conclusion is true even for the situation when $\alpha \neq \beta$ and leave it as an open problem.

In this paper, we establish the following theorem about the "very fast diffusion" case: $0<\alpha, \beta<(N-2)_{+} / N$, where $(M)_{+}=\max \{M, 0\}$.

THEOREM. When $0<\alpha, \beta<(N-2)_{+} / N, p, q>1$, there exist non-trivial global solutions of the problem (1) for small initial data functions.

Remark. When $0<\alpha, \beta<(N-2)_{+} / N$, the condition $p q>\alpha \beta+2 \max (p+\beta$, $q+\alpha) / N$ is satisfied automatically.

2. Preliminaries.

First we study the properties of the solutions of the equation

$$
\begin{equation*}
w_{t}=\Delta w^{\alpha} \quad x \in \mathbf{R}^{N}, t>0 \tag{2}
\end{equation*}
$$

with $0<\alpha<(N-2)_{+} / N$. It has been known in [2] that there are self-similar solutions of the form $w(x, t)=e^{-t} v(y), y=x e^{-(1-\alpha) t / 2}$ for equation (2). Let $z(y)=v^{\alpha}(\sqrt{\lambda} y)$, $\lambda=\alpha /(1-\alpha)$. Then $z(y)$ satisfies the equation

$$
\begin{equation*}
\Delta z+\left(\lambda z+\frac{y \nabla z}{2}\right) z^{m}=0 \tag{3}
\end{equation*}
$$

where $m=(1-\alpha) / \alpha$. If we only consider the radial solution $z=z(r), r=|y|$, then we have the initial value problem

$$
\left\{\begin{array}{l}
z^{\prime \prime}+\frac{N-1}{r} z^{\prime}+\left(\lambda z+\frac{r z^{\prime}}{2}\right) z^{m}=0 \tag{4}\\
z^{\prime}(0)=0, \quad z(0)=\eta>0 .
\end{array}\right.
$$

Lemma 1. Let $\eta \in \mathbf{R}$. Then there exists a unique bounded solution $z(r, \eta)$ of (4) on $[0, \infty)$. In addition, if $z>0$ on $[0, R]$, then $z^{\prime}(r)<0$ on $[0, R]$ and if z is positive on $[0, \infty)$, $z(r) \rightarrow 0$ as $r \rightarrow \infty$.

The proof of this lemma can be found in [2: Lemma 1].
Lemma 2. If $0<\lambda<(N-2) / 2$ (that is $0<\alpha<(N-2) / N)$ and $z(r)>0$ on $[0, R]$, then the function $g(r)=r z^{\prime} / 2+\lambda z$ is positive on $[0, R]$.

Proof. By assumptions and Lemma $1, z^{\prime}(r)<0$ on $[0, R]$. Since

$$
g^{\prime}(r)=-\left(\frac{N-2}{2}-\lambda\right) z^{\prime}-\frac{r}{2} g(r) z^{m},
$$

we conclude that $g^{\prime}\left(r_{0}\right)>0$ if $g\left(r_{0}\right)=0$ for some $r_{0} \in[0, R]$. This is a contradiction.
Therefore, from the equation (3), we have $\Delta z \leq 0$ when $z(r)>0$.
Lemma 3. When $\alpha>\beta\left(0<\alpha, \beta<(N-2)_{+} / N\right)$ and η is small enough, $\Delta v^{\alpha}(y)-$ $\Delta v^{\beta}(y) \geq 0$.

Proof. We have

$$
\begin{aligned}
& \Delta v^{\alpha}(y)-\Delta v^{\beta}(y)=\frac{1}{\lambda}\left[\Delta z(y)-\Delta z^{\beta / \alpha}(y)\right] \\
& \quad=\frac{1}{\lambda}\left[-\frac{\beta}{\alpha}\left(\frac{\beta}{\alpha}-1\right) z^{(\beta / \alpha)-2}\left(z^{\prime}\right)^{2}+\left(z^{\prime \prime}+\frac{N-1}{r} z^{\prime}\right)\left(1-\frac{\beta}{\alpha} z^{(\beta / \alpha)-1}\right)\right] .
\end{aligned}
$$

It is clear that

$$
-\frac{\beta}{\alpha}\left(\frac{\beta}{\alpha}-1\right) z^{(\beta / \alpha)-2}\left(z^{\prime}\right)^{2}>0 .
$$

If $z(0)=\eta<(\alpha / \beta)^{\alpha /(\beta-\alpha)}$, then $z(r) \leq(\alpha / \beta)^{\alpha /(\beta-\alpha)}$. Therefore we can get

$$
1-\frac{\beta}{\alpha} z^{\beta / \alpha-1}<0 .
$$

On the other hand, Lemma 2 implies that

$$
z^{\prime \prime}+\frac{N-1}{r} z^{\prime}<0 .
$$

Hence $\Delta v^{\alpha}(y)-\Delta v^{\beta}(y) \geq 0$.
Lemma 4. If $w(x, t)=e^{-t} v(y)$ is the solution of the equation $w_{t}=\Delta w^{\alpha}$, then $w(x, t)$ is a super-solution of the equation $w_{t}=\Delta w^{\beta}$ when $\alpha>\beta$.

Proof. The assertion is clear since we have

$$
w_{t}-\Delta w^{\beta}=e^{-\alpha t}\left[\Delta v^{\alpha}(y)-e^{(\alpha-\beta) t} \Delta v^{\beta}(y)\right] \geq 0 .
$$

3. The proof of Theorem.

Now we consider the equations (1). Let

$$
\begin{aligned}
& U(t, x)=\Phi^{1 / \alpha}(t) w\left(x, \int_{0}^{t} \Phi^{(\alpha-1) / \alpha}(s) d s\right) \\
& V(t, x)=\Phi^{\mu}(t) w\left(x, \int_{0}^{t} \Phi^{(\alpha-1) / \alpha}(s) d s\right)
\end{aligned}
$$

Here $\Phi(t)$ is the function to be determined, $w(x, t)$ is the solution of the equation $w_{t}=\Delta w^{\alpha}$ and $\mu=((1-\alpha) /(1-\beta))(1 / \alpha)$ as we will see later.

Lemma 5. In order that (U, V) be the super-solution of (1), it is sufficient that

$$
\left\{\begin{array}{l}
\left(\Phi^{1 / \alpha}\right)_{t} \geq \Phi^{\mu p} w^{p} w^{-1} \tag{5}\\
\left(\Phi^{\mu}\right)_{t} \geq \Phi^{q / \alpha} w^{q} w^{-1} .
\end{array}\right.
$$

Proof. If (U, V) is a pair of super-solutions of (1), then we have

$$
U_{t}=\left(\Phi^{1 / \alpha}\right)_{t} w+\Phi^{1 / \alpha} w_{t} \Phi^{1-1 / \alpha} \geq \Phi \Delta w^{\alpha}+\Phi^{\mu p} w^{p}
$$

Therefore, $\left(\Phi^{1 / \alpha}\right)_{t} \geq \Phi^{\mu p} w^{p-1}$. Similarly

$$
V_{t}=\left(\Phi^{\mu}\right)_{t} w+\Phi^{\mu} w_{t} \Phi^{1-1 / \alpha} \geq \Phi^{\mu \beta} \Delta w^{\beta}+\Phi^{q / \alpha} w^{q} .
$$

Since $w(x, t)$ is a super-solution of $w_{t}=\Delta w^{\beta}$ and μ is selected as above, the above
inequatily is true if

$$
\left(\Phi^{\mu}\right)_{t} \geq \Phi^{q / \alpha} w^{q} w^{-1}
$$

Proof of Theorem. Let $w(x, t)=e^{-t} v(y)$. Then, since

$$
w^{M}(x, t) w^{-1}(x, t) \leq C \exp [-(M-1) t],
$$

we easily see that the inequalities (5) are satisfied if

$$
\left\{\begin{array}{l}
\left(\Phi^{1 / \alpha}\right)_{t} \geq C \Phi^{\mu p} \exp \left(-(p-1) \int_{0}^{t} \Phi^{(\alpha-1) / \alpha}(s) d s\right) \tag{6}\\
\left(\Phi^{\mu}\right)_{t} \geq C \Phi^{q / \alpha} \exp \left(-(q-1) \int_{0}^{t} \Phi^{(\alpha-1) / \alpha}(s) d s\right)
\end{array}\right.
$$

We put $\Phi^{1 / \alpha}=\xi+\xi\left(1-(1+t)^{-M}\right)$. Then we see $\xi<\Phi^{1 / \alpha}<2 \xi$, $\left(\Phi^{1 / \alpha}\right)^{\prime}=$ $\xi M(1+t)^{-M-1}$. The left part of (6) is a ratio function and the right part of (6) is an exponential function with negative exponents. Therefore there exists $t_{0}>0$ such that the inequalities in (6) hold for all $t>t_{0}$. Therefore we finally can find the super-solution ($U\left(t+t_{0}, x\right), V\left(t+t_{0}, x\right)$) of the equations (1).

As in [2], using the comparison theorem about parabolic systems (cf. [3] and [4]), we get the existence of global solutions of problem (1) for initial data satisfying $0 \leq u_{0} \leq U\left(t_{0}, x\right)$ and $0 \leq v_{0} \leq V\left(t_{0}, x\right)$.

References

[1] M. Escobedo and M. A. Herrero, Boundedness and blow up for a semilinear reaction-diffussion system, J. Differential Equations 89 (1991), 176-202.
[2] Yuan-Wei Qi and H. A. Levine, The critical exponent of degenerate parabolic systems, Z. Angew. Math. Phys. 44 (1993), 249-265.
[3] M. H. Protter and H. F. Weinberger, Maximum principles in differential equations, Springer (1984).
[4] J. Bebernes and D. Eberly, Mathematical problems from combustion theory, Springer (1989).

Present Address:

Department of Mathematics, Tokyo Metropolitan University, Minami-Ohsawa, Hachiojl-shi, Tokyo, 192-03 Japan.

