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1. Introduction.

Throughout this paper, we will work in the PL category.

DErFINITION 1 (see [L]). Let N be a compact oriented 4-manifold with a boundary.
We say that S* decomposes as a twisted double of N if $*=Nu,—N.

We use the word ““‘twisted double” because we allow that the gluing map between
the boundaries is not id |aN- This conception is a kind of an extension of Heegaard
splitting of S3.

Let N, be a tubular neighborhood of a (+)-standard RP? in $* ([M, P]). It is well
known that the closure of S\ NV, is also homeomorphic to N, by an orientation reversing
homeomorphism, i.e., $*=N, U,— N,. Thus §* decomposes as a twisted double of N,.
N, can be characterized as a total space of a 2-disk bundle over RP?> whose normal
Euler number is 2 ([K2, L, M, P]). The boundary of N,, which we call Q,, is a rational
homology 3 sphere ([P]). It is known that the 2 covering of S* branched along a
(—)-standard RP? is CP? ([K1, K2, M]).

We extend these facts to the case of a certain 2-complex X, (n>2) instead of RP>.
The main theorem will be stated as: S* decomposes as a twisted double of N,, where
N, is a regular neighborhood of a standard realization of X, in S*. We give the defini-
tions of the complexes and manifolds, and state the main Theorem 1 in the next section.
We prove the main Theorem 1 in section 3. In section 4, we study on Q, the boundary
of N,, which is a Seifert rational homology 3-sphere. The author thinks Q, as a typical
example among prime 3-manifolds which can be embedded in $*. In section 5, we also
study a covering of $* branched along — X,

ADDITION. Using an S' action on S*, we can construct some more Seifert 3
manifolds each of which decomposes S* as a twisted double. We will go into detail
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about it in another paper [Y].

2. Definitions and the main theorem.

First, we define a 2-complex X,. For an integer n (n>2), let X, be a 2-complex
defined as follows (Figure 1):

Xn=D2/e21w—10~eZ1w—1(0+1/n) , where D2={|Z|S1 |Z€C} .

FIGURE 1. 2-complex X,

Before defining a standard realization of X, in S*, we construct some subsets in
S3. We regard S? as the unit sphere of C? and S? as CP!:

S3={(zy, 22|z, P +]2;2=1},  §*=CP'=Cu{o0}.

Let p, be a Seifert fibering of S3 over S
Pn: S3— 82

n
2

(z2124 |"_1)

Let D, be a unit disk {zeC||z|<1} =C < S? and V a standard solid torus p; }(D,).
T,=p,'(1) and T,=p, }(—1) form a pair of parallel simple closed curves on 0¥, each
of which represents M, +nL, in H,(0V ; Z) after changing its orientation if needed,
where M\, L, are the classes of the meridian, longitude of 0¥ respectively. Let Y, and
Y, be 2-complexes defined by p, ([0, 1), p, }([—1, 0]) respectively, where we take the
intervals in R = C. Here we note that Y,ndV=T, and Y,noV=T,. In fact, Y, (Y.,
respectively) connects p, !(0) the core of ¥V and T, (T,) in V.

Next we decompose S? into 4 parts: D, ,,, C,, 4, and 4_, and pull back them by
P. as a decomposition of S3:

(zla ZZ)H

S2 S3
D1/2={ZGC“Z|31/2}, V0=P.._1(D1/2),
C2={2€C||Z|22}U{°O}, Vi=p, (C,),

A,={zeC|1/2<|z|<2,Rez>0}, N(T,)=p, Y (A4,),
A_={zeC|12<|z|<2,Rez<0}. N(T)=p; (A_).
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FiGURE 2. X, and —X, in §*
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Finally we define a standard realization of X, in S*. We use the standard de-

composition $*=B* U, _§*x[—1, 1]u,, B} (see Figure 2).
X,nB* =0, X,nS3x[-1, -1/2)=¢F,
X,NnS3x{—12}=Y,x{—1/2}, X,n83x(—1/2,1]=T,x(—1/2,1],
X, nB% ={a disk D% = B% such that
D2 ndB% =0D% =T, and (B%, D%)=‘‘standard ball pair”} .

Here we note that T, is a trivial knot in S (=0B%).

Let N, be a regular neighborhood of the standardly realized X, in S* N, is a

connected oriented 4-manifold with a boundary.
We state the main theorem.

THEOREM 1. For any n, S* decomposes as a twisted double of N,.

REMARK 1. In the case n=2, X, is homeomorphic to RP? and the theorem is
known ([K2, L, M, P]).

3. Proof of the main theorem.

We will show the decomposition explicitly.
Let —X, = S* be another realization of X, in S* defined as follows (Figure 2):

—X,nB* ={a disk D2 = B% such that
D2 ~9B* =9D% =T, and (B*, D2)=~“standard ball pair”’},
X, ASx[—1,1/)=Tix[=1,1/2), —X,nS3x{1/2}=Y;x{1/2},
X, x(1/2,1]=g, —X,nBi=(.

It is casy to see that there is an orientation-reversing homeomorphism p of S4 such
that p|y, is a homeomorphism from X, to — X,

Using the notations defined in the last section, we construct N, and —N,, in s4
simultaneously as follows (Figure 3):

N,=Vox[—1,0]UNT,)x[—1,1]uV, x[0, 1]JUB% ,
_N,=B* UV, x[—1,0]UNT) x[—1,1]uV,x[0,1].

It is easy to verify that X, < N,, —X,< —N, and N,u —N, =S5

Next, we show that our N, is in fact a regular neighborhood of X,. The first
half of the decomposition of N,: NV=V,x[—1,0]UuN(T,) x[—1, 1], is a regular
neighborhood of X, N{.

Next, the other part N® =¥, x [0, 1]uU B% is homeomorphic to a 4-ball B*. Since
T, is also a trivial knot in dB*, the pair (B*, X, n B*)(=(B*, D%)) homeomorphic to the
standard ball pair. In particular, this part B* is a regular neighborhood of X N B*.
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FIGURE 3. N, and —N,

Finally, we see the intersection of these two parts. Let 4, be an annulus con-
tained in ON(T,) defined by N(T,) n V,. By the construction, NP AN® is 4, x [0, 1]u
N(T,) x {1}. Clearly, it is homeomorphic to S* x D? and is a regular neighborhood of
T, x {1}, which is X,n (N AN?),

Thus, the union N, of these two parts is also a regular neighborhood of X,

Similarly, — N, is that of — X, too. It is clear that our N, and — N, are homeo-
morphic to each other by an orientation-reversing homeomorphism. We have the
theorem. O

4. Some calculations on N, and 0N,

In this section, we study more about the manifolds N, and dN,. We let Q, denote
ON,,. First, we draw the framed links representing N, and Q,.

PROPOSITION 1. N, is described by the framed link L(N,) in Figure 4 and Q,, is the
boundary of the 4-manifold described by the framed link L(Q,) in Figure 5.

FIGURE 4. Framed link L(N,) of N, FIGURE 5. Framed link L(Q,) of Q,

PROOF. We use the construction of N, in the last section. The part ¥V, x[—1, 0]
is naturally identified with S! x D3. It is made of one 0-handle H° and one 1-handle




28 YUICHI YAMADA

H', and it is described by an unknotted circle with a dot ([K1, p.4]).

Let H? be the other part of N,: H*=N(T,)x[—1, 1Ju ¥V, x[0,1JUB%. Let Z,
be an annulus contained in Y, defined by p, !([1/2, 1]) which contains 7, as a com-
ponent of its boundary, and let D, ¢ denote the disk X, n H? and its boundary:

D=Z,x{—1/2}UT,x(—1/2,1]JUD%,  ¢=8D=p;'(1/2)x{~—1/2}.

As we have seen in the last section, H? itself is a regular neighborhood of D and
H?=D x D?>. When we let 4,,, denote an annulus Vo N(T,),

H>AS'xD*=0H?>Nd(S' xD¥})=A4,,x[—1,0] (=S'xD?.

Since A4, ,, contains p, '(1/2) as a center circle, it is a regular neighborhood of ¢ in the
both sides of 0H? and &(S* x D3). Thus, we can regard H? as a 2-handle attached to
S! x D3. The attaching circle of H? is ¢ and drawn as L, in the framed link in Figure
4. We have a handlebody decomposition of N,: N,=H®UH'uUH?, where H" is an
r-handle.

The most troublesome step is to calculate the framing number of L,. We can
calculate it as follows:

Let ¢’, a push-off of c in the attaching region, be p, '(3¢€*) x { —1/2}, where & (>0)
is a sufficiently small number. The linking number Ik(c, ¢’) in the framed link of S* x D3
(a dotted circle) is n.

On the other hand, since lk(c, ¢’)=n in S*( x {1/2}), the intersection number Do D’
is n, where D’ is a push-off of D in H? bounded by c'.

Thus, in the side of dH?, 0-framing of c is —n twisted ¢’ around c. But —-twisting
in the side of dH? corresponds to a +-twisting in the side of d(S* x D?), because the
attaching map is orientation reversing. Thus the framing number of L, is n+n=2n.

For the latter half of the theorem, see [K1, p.7]. O

From the framed link L(Q,), we can calculate n,(Q,) and H,(Q, ; Z):
7,(Q,) = {x, t| x(xt)"x ™ 1(xt) ™", (xt)"t ™", x"(xt)">
=<{a, Bla"=B"=(B)">,
where the generators x, ¢ are drawn in Figure 5, and a=x"1, f=xt. And
H(Q,; Z)=m,(Q,)/[7:1(Qn), (@] =Z/nZ{[o]) & Z/nZ[B]) .

Thus, Q, is a rational homology 3-sphere.

REMARK 2. In the case n=2, it is known that Q,=~S3/Gg, where Gy is the
quaternion group and 7,(Q,)=~Gg ([P]). n,(Q,) is a finite group if and only if n=2,
because its quotient group {«, ﬁ|oc"=ﬁ"=(ocﬁ)"= 1> is a well-known triangle group,
which is infinite if n> 3.

In the rest of this section, we study more about Q,.
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It is known that Q, admits a Seifert structure ([O]) whose invariants are {—1;
(01,0); (2, 1) (2, 1) (2, D} ([P, O, p. 109]). We extend it to our 3-manifold Q,.

PROPOSITION 2. @, admits a Seifert structure whose invariants are {—1; (04, 0);
(na 1) (n’ 1) (n’ h— 1)}'

PROOF (see [Y]). At the beginning of the construction of N, in section 2, we used
a Seifert fibering p, of S over S%. The Seifert invariants of p, are {0; (0, 0); (n, 1)}
and its singular fiber is p, !(0) the core of V,. The map p,xid: S>x[—1, 1]— S2 x
[—1, 1] defines a Seifert fibering of S x [—1, 1] whose singular fiber lies over {0} x
[—1, 1]. By the construction of N, in section 3 (see Figure 3), Q,= 0N, is contained in
§*x[—1,1]<=S$*and Q, is a union of fibers of p, x id. Thus the restriction (p, x id)|g,
is a fibration. It is not hard to verify that the base space (p, x idXQ,) is homeomorphic
to S? which intersects {0} x [— 1, 1] at 3 points. Thus the fibration of Q, has 3 singular
fibers: p, '(0)x {—1, 1, 0}. Because the neighborhood of each fiber is equivalent to
p,,|,,0 : Vo— D,,,, the singular types of the first two are both (n, 1), since the orientation
of the neighborhood agrees with that of V,. On the other hand, the singular type of
the third is (n, — 1), because the orientation induced as a boundary of N, is opposite
to that of V. After normalizing the Seifert invariants, we have the lemma:

{05 (01, 0), (na 1) (n’ 1) (n3 - 1)} g{_ 1 5 (01’ O)a (na 1) (n’ 1) (n9 n'—l)} I:I

5. Branched covering.

In this section, we study about a covering of S$* branched along — X,. The reason
why we choose — X, will become clear soon.

In the case n=2, — X, = §* is pairwise homeomorphic to the (—)-standard em-
bedding of RP? into S*, and its 2-fold branched covering is CP? (see [K1, K2, M]).
Here we note that the normal Euler number of the (—)-standard embedding is —2.

In the case n>2, — X, is not a manifold and has an S!-singularity y. Thus we
consider a branched covering with the singularity removed, i.e., a covering of the
exterior S} =S*\int N(y) branched along — X, S?, where N(y) is an open tubular
neighborhood of y in §*. As we will see below, m,(S¢\ — X, N S*)=Z/nZ. In this paper
we only study an n-fold cyclic branched covering associated to it. It is a connected
oriented 4-manifold with a boundary.

From Theorem 1: $*=N,uU — N, and a handlebody decomposition of N, : H°u
H'U H?, we have a non-trivial handlebody decomposition

S*=N,u—N,=H% UHY UH% U(H2)* UHL)* U(H)*,
where (H')* is a dual (4 —r)-handle. If we regard (H.)* U(H%)* as N(y), we have a
handlebody decomposition of S3=S*\int N(y):
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S¢=H% UHY UH3 U(H%)* (=S*xD?.
LEMMA 1. S} is described by the framed link in Figure 6.

FIGURE 6. Framed link of S#

PROOF. We use the construction of N, and its framed link which we have seen in
the previous section:

N,=Vox[—1,0]UNMT,)x[—1,1]u ¥, x[0, 1]JUB% ,
(H2)*=B* UV, x[—1,0]UN(T) x[—1,1].

From now on, we regard V, x [0, 1]U N(T,) x[—1, 1] as N(y). On the other hand,
it is easy to check that N,=N,u ¥V, x[—1, 0] is homeomorphic to N, and that N, can
be described by the same framed link L(N,). Consequently, the only thing we must do
is attaching B* to N,. When we let ¥, denote V,u N(T,)UN(T,) = 83, B* "N,=V, x
{—1}, which is a tubular neighborhood of a circle /;=p, (0) x { —1} in the both sides
0B* and 0N, Since V, is a standard solid torus in dB*, we can regard B* as a 2-handle
attached to N, along V. ‘

In the framed link L(N,) (Figure 4), we can see that the part drawn as the exterior
of L, is the side of ¥, x {—1}, by considering orientation. It is clear that the attaching
circle /5 is drawn as L5 and its framing number is 0. We have the lemma. O

Before stating the next proposition, we introduce some notations and remarks.
Let C, be a complex algebraic curve in CP? of degree n defined by

{[zo: 2z, : 2,]€CP?| 23+ 2% + 23 =0} .

C, is a closed connected oriented surface of genus §(n— 1)(n—2), since C, is an n-fold
cyclic covering of CP'(=S?) branched at n points in the equator of CP!:

c, - Cp!
[20:21:2,) > [2,:2,].

Let @, be an n-periodic self-homeomorphism of C, defind as follows:
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w,: C,—>C,
[2o:2y: 2,0 [20: 2, 1 €2 1Mz, ],
PROPOSITION 3. Let M, be the n-fold cyclic covering of S* branched along —X,
with singularity removed.
(1) —0M, is a C,-bundle over S* with monodromy ®,.

(2) M, is described by the framed link in Figure 7, which is a torus link T(n, —n)
each of whose components has framing number n— 1.

1 0
M, puncCP?1452% x D?

Singular fibre
of “type IV”

S

M3 _M3

FIGURE 7. Framed link of M,

Proor. (1) We see dM, from the side of N(y). 0M, is an n-fold cyclic covering
of dN(y) branched along dN(y) " X,. Each of dN(y) and ON(y)n X, is simultaneously
regarded as a total space of a fibre bundle over S' with monodromy w, as follows:

ON(y) =D x [0, 11/(x, 1)~ (w,(x), 0) : dD3-bundle ,
ON(y) n X,,={n points} x [0, 1]/(x, 1) ~'(w,(x), 0) : {n points}-bundle,
where
D3={(z, )eCxR||z|*+* <1},
{n points} ={(z, t)e D* | z"=1, =0} = the equator of dD>,
w, is a (2n/n)-rotation of D3 along t-axis and ~' is a restriction of ~ in the definition

of the ON(y).
From the previous remark on C,, it is clear that dM, is the total space of the

C,-bundle over S! with monodromy w,.

(2) First, we construct n-fold cyclic unbranched covering N, of N,. Since a gen-
erator of n,(N,) (=Z/nZ) is represented by a circle which goes around the dotted
circle once, N, is described by the framed link in Figure 8. The matrix added to the
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1
L.| 1 ’ bl 1 -1
Ly,| 1 1 n+1 :
: : : -1
Ly, \ 1 1 oo 1 n+l
FIGURE 8. Framed link of N”
L, 0 | 1 1 1
L, 1 0 1 1
L,| 1 1 n+1 :
: : : .o
L, \ 1 1 o1 n+l
- Handle slides
‘ 2= —(Lz.i—Ls)
L, K\\\\\\\\\ L, [ 0| 0 0
L,,| o -1 n—=1 "-.
@///// N
) Ly, \ 0 -1 R T |

Handle cancelation
(L, and L,)

FiGURE 9. Kirby calculus on M,
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figure is the linking matrix. The action of the transformation group is easily shown.
Next, we will attach a 2-handle (HZ:)l to N, Z/nZ-equivariantly. Since the co-
core of the 2-handle (H2)": X,n(H%)" is a branched locus, the attaching circle of
(H2)* is the same as that of (H2)" in the previous claim and drawn as L, in the first
figure of Figure 9.
Finally, using Kirby calculus, we cancel the 1-handle L,. Those processes are left
to the reader (Figure 9). We have the proposition. O

REMARK 3. It is pointed out by Professor Y. Matsumoto that — M, is diffeo-

morphic to a neighborhood of a singular fiber at 0 of Fermat-type surface V,,, of

degree n+1: V. ={[z0:2,: 2, 123]6CP3|Z'c'>“—2'i“=2'5“—2'5“},

Pn1: Va1 — CP1=CU{°O}

[zo:21:25:2 ]‘—’{23/26 if zo=z, and z,=z;,
O . - . .
P (zo—2)/(z2—23) otherwise

and —M,=p,}(D,,), where D, ,={zeC||z|<e} and £>0 is a sufficiently small
number. See also [A] for the case n=4.
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