Decomposition of S^{4} As a Twisted Double of a Certain Manifold

Yuichi YAMADA
University of Tokyo
(Communicated by S. Suzuki)

1. Introduction.

Throughout this paper, we will work in the $P L$ category.
Definition 1 (see [L]). Let N be a compact oriented 4-manifold with a boundary. We say that S^{4} decomposes as a twisted double of N if $S^{4}=N \cup_{\partial}-N$.

We use the word "twisted double" because we allow that the gluing map between the boundaries is not $\left.i d\right|_{\partial N}$. This conception is a kind of an extension of Heegaard splitting of S^{3}.

Let N_{2} be a tubular neighborhood of a $(+)$-standard $\mathbf{R} P^{2}$ in S^{4} ([M, P]). It is well known that the closure of $S^{4} \backslash N_{2}$ is also homeomorphic to N_{2} by an orientation reversing homeomorphism, i.e., $S^{4}=N_{2} \cup_{\partial}-N_{2}$. Thus S^{4} decomposes as a twisted double of N_{2}. N_{2} can be characterized as a total space of a 2-disk bundle over $\mathbf{R} P^{2}$ whose normal Euler number is $2([\mathrm{~K} 2, \mathrm{~L}, \mathrm{M}, \mathrm{P}])$. The boundary of N_{2}, which we call Q_{2}, is a rational homology 3 sphere ($[\mathrm{P}]$). It is known that the 2 covering of S^{4} branched along a (-)-standard $\mathbf{R} P^{2}$ is $\mathbf{C} P^{2}$ ([K1, K2, M]).

We extend these facts to the case of a certain 2-complex $X_{n}(n \geq 2)$ instead of $\mathbf{R} P^{2}$. The main theorem will be stated as: S^{4} decomposes as a twisted double of N_{n}, where N_{n} is a regular neighborhood of a standard realization of X_{n} in S^{4}. We give the definitions of the complexes and manifolds, and state the main Theorem 1 in the next section. We prove the main Theorem 1 in section 3 . In section 4 , we study on Q_{n} the boundary of N_{n}, which is a Seifert rational homology 3-sphere. The author thinks Q_{n} as a typical example among prime 3-manifolds which can be embedded in S^{4}. In section 5 , we also study a covering of S^{4} branched along $-X_{n}$.

Addition. Using an S^{1} action on S^{4}, we can construct some more Seifert 3 manifolds each of which decomposes S^{4} as a twisted double. We will go into detail

[^0]about it in another paper [Y].

2. Definitions and the main theorem.

First, we define a 2-complex X_{n}. For an integer $n(n \geq 2)$, let X_{n} be a 2-complex defined as follows (Figure 1):

$$
X_{n}=D^{2} / e^{2 \pi \sqrt{-1} \theta} \sim e^{2 \pi \sqrt{-1}(\theta+1 / n)}, \quad \text { where } \quad D^{2}=\{|z| \leq 1 \mid z \in \mathbf{C}\}
$$

Figure 1. 2-complex X_{n}
Before defining a standard realization of X_{n} in S^{4}, we construct some subsets in S^{3}. We regard S^{3} as the unit sphere of \mathbf{C}^{2} and S^{2} as $\mathbf{C} P^{1}$:

$$
S^{3}=\left\{\left.\left(z_{1}, z_{2}\right)| | z_{1}\right|^{2}+\left|z_{2}\right|^{2}=1\right\}, \quad S^{2}=\mathbf{C} P^{1}=\mathbf{C} \cup\{\infty\} .
$$

Let p_{n} be a Seifert fibering of S^{3} over S^{2} :

$$
\begin{aligned}
& p_{n}: S^{3} \rightarrow S^{2} \\
& \left(z_{1}, z_{2}\right) \mapsto \frac{z_{1}^{n}}{\left(z_{2}\left|z_{1}\right|^{n-1}\right)}
\end{aligned}
$$

Let D_{1} be a unit disk $\left\{z \in \mathbf{C}||z| \leq 1\} \subset \mathbf{C} \subset S^{2}\right.$ and V a standard solid torus $p_{n}^{-1}\left(D_{1}\right)$. $T_{n}=p_{n}^{-1}(1)$ and $T_{n}^{\prime}=p_{n}^{-1}(-1)$ form a pair of parallel simple closed curves on ∂V, each of which represents $M_{V}+n L_{V}$ in $H_{1}(\partial V ; \mathbf{Z})$ after changing its orientation if needed, where M_{V}, L_{V} are the classes of the meridian, longitude of ∂V respectively. Let Y_{n} and Y_{n}^{\prime} be 2-complexes defined by $p_{n}^{-1}([0,1]), p_{n}^{-1}([-1,0])$ respectively, where we take the intervals in $\mathbf{R} \subset \mathbf{C}$. Here we note that $Y_{n} \cap \partial V=T_{n}$ and $Y_{n}^{\prime} \cap \partial V=T_{n}^{\prime}$. In fact, $Y_{n}\left(Y_{n}^{\prime}\right.$, respectively) connects $p_{n}^{-1}(0)$ the core of V and $T_{n}\left(T_{n}^{\prime}\right)$ in V.

Next we decompose S^{2} into 4 parts: $D_{1 / 2}, C_{2}, A_{+}$and A_{-}, and pull back them by p_{n} as a decomposition of S^{3} :

\[

\]

$S^{3} \times\{-1\}$

$$
(n=2)
$$

 glue after $1 / n$ twisting in S^{3}
$S^{3} \times\{-1 / 2\}$

$$
S^{3} \times\{0\}
$$

$$
S^{3} \times\{1 / 2\}
$$

— : X_{n}^{\prime}

Figure 2. $\quad X_{n}$ and $-X_{n}$ in S^{4}

Finally we define a standard realization of X_{n} in S^{4}. We use the standard decomposition $S^{4}=B_{-}^{4} \cup_{\partial_{-}} S^{3} \times[-1,1] \cup_{\partial_{+}} B_{+}^{4}$ (see Figure 2).

$$
\begin{gathered}
X_{n} \cap B_{-}^{4}=\varnothing, \quad X_{n} \cap S^{3} \times[-1,-1 / 2)=\varnothing, \\
X_{n} \cap S^{3} \times\{-1 / 2\}=Y_{n} \times\{-1 / 2\}, \quad X_{n} \cap S^{3} \times(-1 / 2,1]=T_{n} \times(-1 / 2,1], \\
X_{n} \cap B_{+}^{4}=\left\{\text { a disk } D_{+}^{2} \subset B_{+}^{4}\right. \text { such that } \\
\left.D_{+}^{2} \cap \partial B_{+}^{4}=\partial D_{+}^{2}=T_{n} \text { and }\left(B_{+}^{4}, D_{+}^{2}\right) \cong " \text { standard ball pair" }\right\} .
\end{gathered}
$$

Here we note that T_{n} is a trivial knot in $S^{3}\left(=\partial B_{+}^{4}\right)$.
Let N_{n} be a regular neighborhood of the standardly realized X_{n} in $S^{4} . N_{n}$ is a connected oriented 4-manifold with a boundary.

We state the main theorem.
Theorem 1. For any n, S^{4} decomposes as a twisted double of N_{n}.
Remark 1. In the case $n=2, X_{2}$ is homeomorphic to $\mathbf{R} P^{2}$ and the theorem is known ([K2, L, M, P]).

3. Proof of the main theorem.

We will show the decomposition explicitly.
Let $-X_{n} \subset S^{4}$ be another realization of X_{n} in S^{4} defined as follows (Figure 2):

$$
\begin{aligned}
-X_{n} \cap B_{-}^{4}= & \left\{\text { a disk } D_{-}^{2} \subset B_{-}^{4}\right. \text { such that } \\
& \left.D^{2} \cap \partial B_{-}^{4}=\partial D_{-}^{2}=T_{n}^{\prime} \text { and }\left(B_{-}^{4}, D_{-}^{2}\right) \cong " \text { standard ball pair" }\right\}, \\
-X_{n} \cap S^{3} \times[-1,1 / 2)=T_{n}^{\prime} \times[-1,1 / 2), & -X_{n} \cap S^{3} \times\{1 / 2\}=Y_{n}^{\prime} \times\{1 / 2\}, \\
& \quad-X_{n} \cap S^{3} \times(1 / 2,1]=\varnothing, \\
& -X_{n} \cap B_{+}^{4}=\varnothing
\end{aligned}
$$

It is casy to see that there is an orientation-reversing homeomorphism ρ of S^{4} such that $\left.\rho\right|_{X_{n}}$ is a homeomorphism from X_{n} to $-X_{n}$.

Using the notations defined in the last section, we construct N_{n} and $-N_{n}$ in S^{4} simultaneously as follows (Figure 3):

$$
\begin{aligned}
N_{n} & =V_{0} \times[-1,0] \cup N\left(T_{n}\right) \times[-1,1] \cup V_{1} \times[0,1] \cup B_{+}^{4}, \\
-N_{n} & =B_{-}^{4} \cup V_{1} \times[-1,0] \cup N\left(T_{n}^{\prime}\right) \times[-1,1] \cup V_{0} \times[0,1] .
\end{aligned}
$$

It is easy to verify that $X_{n} \subset N_{n},-X_{n} \subset-N_{n}$ and $N_{n} \cup-N_{n}=S^{4}$.
Next, we show that our N_{n} is in fact a regular neighborhood of X_{n}. The first half of the decomposition of $N_{n}: N_{n}^{(1)}=V_{0} \times[-1,0] \cup N\left(T_{n}\right) \times[-1,1]$, is a regular neighborhood of $X_{n} \cap N_{n}^{(1)}$.

Next, the other part $N_{n}^{(2)}=V_{1} \times[0,1] \cup B_{+}^{4}$ is homeomorphic to a 4-ball B^{4}. Since T_{n} is also a trivial knot in ∂B^{4}, the pair $\left(B^{4}, X_{n} \cap B^{4}\right)\left(=\left(B^{4}, D_{+}^{2}\right)\right)$ homeomorphic to the standard ball pair. In particular, this part B^{4} is a regular neighborhood of $X_{n} \cap B^{4}$.

Figure 3. N_{n} and $-N_{n}$
Finally, we see the intersection of these two parts. Let A_{2} be an annulus contained in $\partial N\left(T_{n}\right)$ defined by $N\left(T_{n}\right) \cap V_{1}$. By the construction, $N_{n}^{(1)} \cap N_{n}^{(2)}$ is $A_{2} \times[0,1] \cup$ $N\left(T_{n}\right) \times\{1\}$. Clearly, it is homeomorphic to $S^{1} \times D^{2}$ and is a regular neighborhood of $T_{n} \times\{1\}$, which is $X_{n} \cap\left(N_{n}^{(1)} \cap N_{n}^{(2)}\right)$.

Thus, the union N_{n} of these two parts is also a regular neighborhood of X_{n}.
Similarly, $-N_{n}$ is that of $-X_{n}$, too. It is clear that our N_{n} and $-N_{n}$ are homeomorphic to each other by an orientation-reversing homeomorphism. We have the theorem.

4. Some calculations on N_{n} and ∂N_{n}.

In this section, we study more about the manifolds N_{n} and ∂N_{n}. We let Q_{n} denote ∂N_{n}. First, we draw the framed links representing N_{n} and Q_{n}.

Proposition 1. N_{n} is described by the framed link $L\left(N_{n}\right)$ in Figure 4 and Q_{n} is the boundary of the 4-manifold described by the framed link $L\left(Q_{n}\right)$ in Figure 5.

Figure 4. Framed link $L\left(N_{n}\right)$ of N_{n}

Figure 5. Framed link $L\left(Q_{n}\right)$ of Q_{n}

Proof. We use the construction of N_{n} in the last section. The part $V_{0} \times[-1,0]$ is naturally identified with $S^{1} \times D^{3}$. It is made of one 0 -handle H^{0} and one 1 -handle
H^{1}, and it is described by an unknotted circle with a dot ([K1, p.4]).
Let H^{2} be the other part of $N_{n}: H^{2}=N\left(T_{n}\right) \times[-1,1] \cup V_{1} \times[0,1] \cup B_{+}^{4}$. Let Z_{n} be an annulus contained in Y_{n} defined by $p_{n}^{-1}([1 / 2,1])$ which contains T_{n} as a component of its boundary, and let D, c denote the disk $X_{n} \cap H^{2}$ and its boundary:

$$
D=Z_{n} \times\{-1 / 2\} \cup T_{n} \times(-1 / 2,1] \cup D_{+}^{2}, \quad c=\partial D=p_{n}^{-1}(1 / 2) \times\{-1 / 2\}
$$

As we have seen in the last section, H^{2} itself is a regular neighborhood of D and $H^{2} \cong D \times D^{2}$. When we let $A_{1 / 2}$ denote an annulus $V_{0} \cap N\left(T_{n}\right)$,

$$
H^{2} \cap S^{1} \times D^{3}=\partial H^{2} \cap \partial\left(S^{1} \times D^{3}\right)=A_{1 / 2} \times[-1,0] \quad\left(\cong S^{1} \times D^{2}\right) .
$$

Since $A_{1 / 2}$ contains $p_{n}^{-1}(1 / 2)$ as a center circle, it is a regular neighborhood of c in the both sides of ∂H^{2} and $\partial\left(S^{1} \times D^{3}\right)$. Thus, we can regard H^{2} as a 2-handle attached to $S^{1} \times D^{3}$. The attaching circle of H^{2} is c and drawn as L_{2} in the framed link in Figure 4. We have a handlebody decomposition of $N_{n}: N_{n}=H^{0} \cup H^{1} \cup H^{2}$, where H^{r} is an r-handle.

The most troublesome step is to calculate the framing number of L_{2}. We can calculate it as follows:

Let c^{\prime}, a push-off of c in the attaching region, be $p_{n}^{-1}\left(\frac{1}{2} e^{i \varepsilon}\right) \times\{-1 / 2\}$, where $\varepsilon(>0)$ is a sufficiently small number. The linking number $l k\left(c, c^{\prime}\right)$ in the framed link of $S^{1} \times D^{3}$ (a dotted circle) is n.

On the other hand, since $l k\left(c, c^{\prime}\right)=n$ in $S^{3}(\times\{1 / 2\})$, the intersection number $D \circ D^{\prime}$ is n, where D^{\prime} is a push-off of D in H^{2} bounded by c^{\prime}.

Thus, in the side of $\partial H^{2}, 0$-framing of c is $-n$ twisted c^{\prime} around c. But -twisting in the side of ∂H^{2} corresponds to a + -twisting in the side of $\partial\left(S^{1} \times D^{3}\right)$, because the attaching map is orientation reversing. Thus the framing number of L_{2} is $n+n=2 n$.

For the latter half of the theorem, see [K1, p. 7].
From the framed link $L\left(Q_{n}\right)$, we can calculate $\pi_{1}\left(Q_{n}\right)$ and $H_{1}\left(Q_{n} ; Z\right)$:

$$
\begin{aligned}
\pi_{1}\left(Q_{n}\right) & =\left\langle x, t \mid x(x t)^{n} x^{-1}(x t)^{-n},(x t)^{n} t^{-n}, x^{n}(x t)^{n}\right\rangle \\
& \cong\left\langle\alpha, \beta \mid \alpha^{n}=\beta^{n}=(\alpha \beta)^{n}\right\rangle,
\end{aligned}
$$

where the generators x, t are drawn in Figure 5 , and $\alpha=x^{-1}, \beta=x t$. And

$$
H_{1}\left(Q_{n} ; \mathbf{Z}\right) \cong \pi_{1}\left(Q_{n}\right) /\left[\pi_{1}\left(Q_{n}\right), \pi_{1}\left(Q_{n}\right)\right] \cong \mathbf{Z} / n \mathbf{Z}\langle[\alpha]\rangle \oplus \mathbf{Z} / n \mathbf{Z}\langle[\beta]\rangle
$$

Thus, Q_{n} is a rational homology 3-sphere.
Remark 2. In the case $n=2$, it is known that $Q_{2} \cong S^{3} / G_{8}$, where G_{8} is the quaternion group and $\pi_{1}\left(Q_{2}\right) \cong G_{8}([\mathrm{P}]) . \pi_{1}\left(Q_{n}\right)$ is a finite group if and only if $n=2$, because its quotient group $\left\langle\alpha, \beta \mid \alpha^{n}=\beta^{n}=(\alpha \beta)^{n}=1\right\rangle$ is a well-known triangle group, which is infinite if $n \geq 3$.

In the rest of this section, we study more about Q_{n}.

It is known that Q_{2} admits a Seifert structure ([O]) whose invariants are $\{-1$; $\left.\left(o_{1}, 0\right) ;(2,1)(2,1)(2,1)\right\}([\mathrm{P}, \mathrm{O}, \mathrm{p} .109])$. We extend it to our 3-manifold Q_{n}.

Proposition 2. Q_{n} admits a Seifert structure whose invariants are $\left\{-1 ;\left(o_{1}, 0\right)\right.$; $(n, 1)(n, 1)(n, n-1)\}$.

Proof (see [Y]). At the beginning of the construction of N_{n} in section 2, we used a Seifert fibering p_{n} of S^{3} over S^{2}. The Seifert invariants of p_{n} are $\left\{0 ;\left(o_{1}, 0\right) ;(n, 1)\right\}$ and its singular fiber is $p_{n}^{-1}(0)$ the core of V_{0}. The map $p_{n} \times i d: S^{3} \times[-1,1] \rightarrow S^{2} \times$ $[-1,1]$ defines a Seifert fibering of $S^{3} \times[-1,1]$ whose singular fiber lies over $\{0\} \times$ $[-1,1]$. By the construction of N_{n} in section 3 (see Figure 3), $Q_{n}=\partial N_{n}$ is contained in $S^{3} \times[-1,1] \subset S^{4}$ and Q_{n} is a union of fibers of $p_{n} \times i d$. Thus the restriction $\left.\left(p_{n} \times i d\right)\right|_{Q_{n}}$ is a fibration. It is not hard to verify that the base space $\left(p_{n} \times i d\right)\left(Q_{n}\right)$ is homeomorphic to S^{2} which intersects $\{0\} \times[-1,1]$ at 3 points. Thus the fibration of Q_{n} has 3 singular fibers: $p_{n}^{-1}(0) \times\{-1,1,0\}$. Because the neighborhood of each fiber is equivalent to $\left.p_{n}\right|_{V_{0}}: V_{0} \rightarrow D_{1 / 2}$, the singular types of the first two are both $(n, 1)$, since the orientation of the neighborhood agrees with that of V_{0}. On the other hand, the singular type of the third is $(n,-1)$, because the orientation induced as a boundary of N_{n} is opposite to that of V_{0}. After normalizing the Seifert invariants, we have the lemma:

$$
\left\{0 ;\left(o_{1}, 0\right) ;(n, 1)(n, 1)(n,-1)\right\} \cong\left\{-1 ;\left(o_{1}, 0\right) ;(n, 1)(n, 1)(n, n-1)\right\}
$$

5. Branched covering.

In this section, we study about a covering of S^{4} branched along $-X_{n}$. The reason why we choose $-X_{n}$ will become clear soon.

In the case $n=2,-X_{2} \subset S^{4}$ is pairwise homeomorphic to the (-)-standard embedding of $\mathbf{R} P^{2}$ into S^{4}, and its 2-fold branched covering is $\mathbf{C} P^{2}$ (see [K1, K2, M]). Here we note that the normal Euler number of the $(-)$-standard embedding is -2 .

In the case $n>2,-X_{n}$ is not a manifold and has an S^{1}-singularity γ. Thus we consider a branched covering with the singularity removed, i.e., a covering of the exterior $S_{\gamma}^{4}=S^{4} \backslash$ int $N(\gamma)$ branched along $-X_{n} \cap S_{\gamma}^{4}$, where $N(\gamma)$ is an open tubular neighborhood of γ in S^{4}. As we will see below, $\pi_{1}\left(S_{\gamma}^{4} \backslash-X_{n} \cap S_{\gamma}^{4}\right) \cong \mathbf{Z} / n \mathbf{Z}$. In this paper we only study an n-fold cyclic branched covering associated to it. It is a connected oriented 4-manifold with a boundary.

From Theorem 1: $S^{4}=N_{n} \cup-N_{n}$ and a handlebody decomposition of $N_{n}: H^{0} \cup$ $H^{1} \cup H^{2}$, we have a non-trivial handlebody decomposition

$$
S^{4}=N_{n} \cup-N_{n}=H_{+}^{0} \cup H_{+}^{1} \cup H_{+}^{2} \cup\left(H_{-}^{2}\right)^{\perp} \cup\left(H_{-}^{1}\right)^{\perp} \cup\left(H_{-}^{0}\right)^{\perp},
$$

where $\left(H^{r}\right)^{\perp}$ is a dual $(4-r)$-handle. If we regard $\left(H_{-}^{1}\right)^{\perp} \cup\left(H_{-}^{0}\right)^{\perp}$ as $N(\gamma)$, we have a handlebody decomposition of $S_{\gamma}^{4}=S^{4} \backslash$ int $N(\gamma)$:

$$
S_{\gamma}^{4}=H_{+}^{0} \cup H_{+}^{1} \cup H_{+}^{2} \cup\left(H_{-}^{2}\right)^{\perp} \quad\left(\cong S^{2} \times D^{2}\right)
$$

Lemma 1. $\quad S_{\gamma}^{4}$ is described by the framed link in Figure 6.

Figure 6. Framed link of S_{γ}^{4}
Proof. We use the construction of N_{n} and its framed link which we have seen in the previous section:

$$
\begin{gathered}
N_{n}=V_{0} \times[-1,0] \cup N\left(T_{n}\right) \times[-1,1] \cup V_{1} \times[0,1] \cup B_{+}^{4}, \\
\left(H_{-}^{2}\right)^{\perp}=B_{-}^{4} \cup V_{1} \times[-1,0] \cup N\left(T_{n}^{\prime}\right) \times[-1,1] .
\end{gathered}
$$

From now on, we regard $V_{0} \times[0,1] \cup N\left(T_{n}^{\prime}\right) \times[-1,1]$ as $N(\gamma)$. On the other hand, it is easy to check that $\bar{N}_{n}=N_{n} \cup V_{1} \times[-1,0]$ is homeomorphic to N_{n} and that \bar{N}_{n} can be described by the same framed link $L\left(N_{n}\right)$. Consequently, the only thing we must do is attaching B_{-}^{4} to \bar{N}_{n}. When we let \bar{V}_{0} denote $V_{0} \cup N\left(T_{n}\right) \cup N\left(T_{n}^{\prime}\right) \subset S^{3}, B_{-}^{4} \cap \bar{N}_{n}=\bar{V}_{0} \times$ $\{-1\}$, which is a tubular neighborhood of a circle $l_{3}=p_{n}^{-1}(0) \times\{-1\}$ in the both sides ∂B_{-}^{4} and $\partial \bar{N}_{n}$. Since \bar{V}_{0} is a standard solid torus in ∂B_{-}^{4}, we can regard B_{-}^{4} as a 2-handle attached to \bar{N}_{n} along \bar{V}_{0}.

In the framed link $L\left(N_{n}\right)$ (Figure 4), we can see that the part drawn as the exterior of L_{1} is the side of $\bar{V}_{0} \times\{-1\}$, by considering orientation. It is clear that the attaching circle l_{3} is drawn as L_{3} and its framing number is 0 . We have the lemma.

Before stating the next proposition, we introduce some notations and remarks.
Let C_{n} be a complex algebraic curve in $\mathbf{C} P^{2}$ of degree n defined by

$$
\left\{\left[z_{0}: z_{1}: z_{2}\right] \in \mathbf{C} P^{2} \mid z_{0}^{n}+z_{1}^{n}+z_{2}^{n}=0\right\} .
$$

C_{n} is a closed connected oriented surface of genus $\frac{1}{2}(n-1)(n-2)$, since C_{n} is an n-fold cyclic covering of $\mathbf{C} P^{1}\left(=S^{2}\right)$ branched at n points in the equator of $\mathbf{C} P^{1}$:

$$
\begin{aligned}
C_{n} & \rightarrow \mathbf{C} \boldsymbol{P}^{1} \\
{\left[z_{0}: z_{1}: z_{2}\right] } & \mapsto\left[z_{1}: z_{2}\right] .
\end{aligned}
$$

Let $\hat{\omega}_{n}$ be an n-periodic self-homeomorphism of C_{n} defind as follows:

$$
\begin{aligned}
\hat{\omega}_{n}: C_{n} & \rightarrow C_{n} \\
{\left[z_{0}: z_{1}: z_{2}\right] } & \mapsto\left[z_{0}: z_{1}: e^{2 \pi \sqrt{ }-1(1 / n)} z_{2}\right] .
\end{aligned}
$$

Proposition 3. Let M_{n} be the n-fold cyclic covering of S^{4} branched along $-X_{n}$ with singularity removed.
(1) $-\partial M_{n}$ is a C_{n}-bundle over S^{1} with monodromy $\hat{\omega}_{n}$.
(2) M_{n} is described by the framed link in Figure 7, which is a torus link $T(n,-n)$ each of whose components has framing number $n-1$.

Figure 7. Framed link of M_{n}

Proof. (1) We see ∂M_{n} from the side of $N(\gamma) . \partial M_{n}$ is an n-fold cyclic covering of $\partial N(\gamma)$ branched along $\partial N(\gamma) \cap X_{n}$. Each of $\partial N(\gamma)$ and $\partial N(\gamma) \cap X_{n}$ is simultaneously regarded as a total space of a fibre bundle over S^{1} with monodromy ω_{n} as follows:

$$
\begin{gathered}
\partial N(\gamma)=\partial D^{3} \times[0,1] /(x, 1) \sim\left(\omega_{n}(x), 0\right): \partial D^{3} \text {-bundle }, \\
\partial N(\gamma) \cap X_{n}=\{n \text { points }\} \times[0,1] /(x, 1) \sim^{\prime}\left(\omega_{n}(x), 0\right):\{n \text { points }\} \text {-bundle },
\end{gathered}
$$

where

$$
\begin{gathered}
D^{3}=\left\{(z, t) \in \mathbf{C} \times\left.\mathbf{R}| | z\right|^{2}+t^{2} \leq 1\right\}, \\
\{n \text { points }\}=\left\{(z, t) \in D^{3} \mid z^{n}=1, t=0\right\} \subset \text { the equator of } \partial D^{3},
\end{gathered}
$$

ω_{n} is a $(2 \pi / n)$-rotation of D^{3} along t-axis and \sim^{\prime} is a restriction of \sim in the definition of the $\partial N(\gamma)$.

From the previous remark on C_{n}, it is clear that ∂M_{n} is the total space of the C_{n}-bundle over S^{1} with monodromy ω_{n}.
(2) First, we construct n-fold cyclic unbranched covering \tilde{N}_{n} of N_{n}. Since a generator of $\pi_{1}\left(N_{n}\right)(\cong \mathbf{Z} / n \mathbf{Z})$ is represented by a circle which goes around the dotted circle once, \tilde{N}_{n} is described by the framed link in Figure 8. The matrix added to the

Figure 8. Framed link of \hat{N}^{n}

$$
\begin{gathered}
L_{1} \\
L_{3} \\
L_{2,1} \\
\vdots \\
L_{2, n} \\
\\
1
\end{gathered}\left(\begin{array}{c|cccc}
0 & 1 & 1 & \cdots & 1 \\
\hline 1 & 0 & 1 & \cdots & 1 \\
1 & \vdots & n+1 & \ddots & \vdots \\
& 1 & \cdots & \ddots & 1 \\
& & & n+1
\end{array}\right)
$$

Handle slides
$L_{2, i}^{\prime}=-\left(L_{2, i}-L_{3}\right)$
L_{1}
L_{3}
$L_{2,1}^{\prime}$
\vdots
$L_{2, n}^{\prime}$$\left(\begin{array}{c|cccc}0 & 1 & 0 & \cdots & 0 \\ \hline 1 & 0 & -1 & \cdots & -1 \\ 0 & -1 & n-1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & -1 \\ 0 & -1 & \cdots & -1 & n-1\end{array}\right)$

Handle cancelation (L_{1} and L_{3})

Figure 7

Figure 9. Kirby calculus on M_{n}
figure is the linking matrix. The action of the transformation group is easily shown.
Next, we will attach a 2-handle $\left(H_{-}^{\tilde{2}}\right)^{\perp}$ to $\tilde{N}_{n} \mathbf{Z} / n \mathbf{Z}$-equivariantly. Since the cocore of the 2 -handle $\left(H_{-}^{2}\right)^{\perp}: X_{n} \cap\left(H_{-}^{2}\right)^{\perp}$ is a branched locus, the attaching circle of $\left(H_{-}^{\tilde{2}}\right)^{\perp}$ is the same as that of $\left(H_{-}^{2}\right)^{\perp}$ in the previous claim and drawn as L_{3} in the first figure of Figure 9.

Finally, using Kirby calculus, we cancel the 1 -handle L_{1}. Those processes are left to the reader (Figure 9). We have the proposition.

Remark 3. It is pointed out by Professor Y. Matsumoto that $-M_{n}$ is diffeomorphic to a neighborhood of a singular fiber at 0 of Fermat-type surface V_{n+1} of degree $n+1: V_{n+1}=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \mathbf{C} P^{3} \mid z_{0}^{n+1}-z_{1}^{n+1}=z_{2}^{n+1}-z_{3}^{n+1}\right\}$,

$$
\begin{aligned}
p_{n+1}: V_{n+1} & \rightarrow \mathbf{C} P^{1}=\mathbf{C} \cup\{\infty\} \\
{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] } & \mapsto \begin{cases}z_{2}^{n} / z_{0}^{n} & \text { if } z_{0}=z_{1} \text { and } z_{2}=z_{3}, \\
\left(z_{0}-z_{1}\right) /\left(z_{2}-z_{3}\right) & \text { otherwise }\end{cases}
\end{aligned}
$$

and $-M_{n} \cong p_{n+1}^{-1}\left(D_{0, \varepsilon}\right)$, where $D_{0, \varepsilon}=\{z \in \mathbf{C}| | z \mid \leq \varepsilon\}$ and $\varepsilon>0$ is a sufficiently small number. See also [A] for the case $n=4$.

Acknowledgement. The author would like to express his gratitude to the referee for his much valuable advice.

References

[A] K. Ahara, On the topology of Fermat type surface of degree 5 and the numerical analysis of algebraic curves, Tokyo J. Math. 16 (1993), 321-340.
[K1] R. C. Kirby, The Topology of 4-Manifolds, Lecture Notes in Math. 1374 (1989), Springer.
[K2] N. Kuiper, The quotient space of $\mathbf{C P}(2)$ by complex conjugation is the 4 -sphere, Math. Ann. 208 (1974), 175-177.
[L] T. Lawson, Splitting $S(4)$ on $\mathbf{R P}(2)$ via the branched cover of $\mathbf{C P}(2)$ over $S(4)$, Proc. Amer. Math. Soc. 86 (1982), 328-330.
[M] W. Massay, Imbeddings of projective planes and related manifolds in spheres, Indiana Univ. Math. J. 23 (1973), 791-812.
[O] P. Orlick, Seifert Manifolds, Lecture Notes in Math. 291 (1972), Springer.
[P] T. Price, Homeomorphisms of quaternionic space and projective planes in four spaces, J. Austral. Math. Soc. Ser A 23 (1977), 112-128.
[Y] Y. Yamada, Some Seifert 3-manifolds which decompose S^{4} as a twisted double, preprint.

Present Address:

Graduate School of Mathematical Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo, 153 Japan.

[^0]: Received May 9, 1995
 Revised November 28, 1995

