Токуо Ј. Матн. Vol. 20, No. 1, 1997

Decomposition of S^4 As a Twisted Double of a Certain Manifold

Yuichi YAMADA

University of Tokyo (Communicated by S. Suzuki)

1. Introduction.

Throughout this paper, we will work in the PL category.

DEFINITION 1 (see [L]). Let N be a compact oriented 4-manifold with a boundary. We say that S^4 decomposes as a twisted double of N if $S^4 = N \cup_{\partial} - N$.

We use the word "twisted double" because we allow that the gluing map between the boundaries is not $id|_{\partial N}$. This conception is a kind of an extension of Heegaard splitting of S^3 .

Let N_2 be a tubular neighborhood of a (+)-standard $\mathbb{R}P^2$ in S^4 ([M, P]). It is well known that the closure of $S^4 \setminus N_2$ is also homeomorphic to N_2 by an orientation reversing homeomorphism, i.e., $S^4 = N_2 \cup_{\partial} - N_2$. Thus S^4 decomposes as a twisted double of N_2 . N_2 can be characterized as a total space of a 2-disk bundle over $\mathbb{R}P^2$ whose normal Euler number is 2 ([K2, L, M, P]). The boundary of N_2 , which we call Q_2 , is a rational homology 3 sphere ([P]). It is known that the 2 covering of S^4 branched along a (-)-standard $\mathbb{R}P^2$ is $\mathbb{C}P^2$ ([K1, K2, M]).

We extend these facts to the case of a certain 2-complex X_n $(n \ge 2)$ instead of $\mathbb{R}P^2$. The main theorem will be stated as: S^4 decomposes as a twisted double of N_n , where N_n is a regular neighborhood of a standard realization of X_n in S^4 . We give the definitions of the complexes and manifolds, and state the main Theorem 1 in the next section. We prove the main Theorem 1 in section 3. In section 4, we study on Q_n the boundary of N_n , which is a Seifert rational homology 3-sphere. The author thinks Q_n as a typical example among prime 3-manifolds which can be embedded in S^4 . In section 5, we also study a covering of S^4 branched along $-X_n$.

ADDITION. Using an S^1 action on S^4 , we can construct some more Seifert 3 manifolds each of which decomposes S^4 as a twisted double. We will go into detail

Received May 9, 1995 Revised November 28, 1995 about it in another paper [Y].

2. Definitions and the main theorem.

First, we define a 2-complex X_n . For an integer $n \ (n \ge 2)$, let X_n be a 2-complex defined as follows (Figure 1):

 $X_n = D^2 / e^{2\pi\sqrt{-1}\theta} \sim e^{2\pi\sqrt{-1}(\theta + 1/n)}, \quad \text{where} \quad D^2 = \{ |z| \le 1 | z \in \mathbb{C} \}.$

FIGURE 1. 2-complex X_n

Before defining a standard realization of X_n in S^4 , we construct some subsets in S^3 . We regard S^3 as the unit sphere of \mathbb{C}^2 and S^2 as $\mathbb{C}P^1$:

$$S^{3} = \{(z_{1}, z_{2}) | |z_{1}|^{2} + |z_{2}|^{2} = 1\}, \qquad S^{2} = \mathbb{C}P^{1} = \mathbb{C} \cup \{\infty\}.$$

Let p_n be a Seifert fibering of S^3 over S^2 :

$$p_n: S^3 \to S^2$$

 $(z_1, z_2) \mapsto \frac{z_1^n}{(z_2 | z_1 |^{n-1})}$

Let D_1 be a unit disk $\{z \in \mathbb{C} \mid |z| \le 1\} \subset \mathbb{C} \subset S^2$ and V a standard solid torus $p_n^{-1}(D_1)$. $T_n = p_n^{-1}(1)$ and $T'_n = p_n^{-1}(-1)$ form a pair of parallel simple closed curves on ∂V , each of which represents $M_V + nL_V$ in $H_1(\partial V; \mathbb{Z})$ after changing its orientation if needed, where M_V , L_V are the classes of the meridian, longitude of ∂V respectively. Let Y_n and Y'_n be 2-complexes defined by $p_n^{-1}([0, 1])$, $p_n^{-1}([-1, 0])$ respectively, where we take the intervals in $\mathbb{R} \subset \mathbb{C}$. Here we note that $Y_n \cap \partial V = T_n$ and $Y'_n \cap \partial V = T'_n$. In fact, $Y_n(Y'_n, respectively)$ connects $p_n^{-1}(0)$ the core of V and $T_n(T'_n)$ in V.

Next we decompose S^2 into 4 parts: $D_{1/2}$, C_2 , A_+ and A_- , and pull back them by p_n as a decomposition of S^3 :

S^2	S^3
$D_{1/2} = \{ z \in \mathbb{C} \mid z \le 1/2 \} ,$	$V_0 = p_n^{-1}(D_{1/2})$,
$C_2 = \{z \in \mathbb{C} \mid z \ge 2\} \cup \{\infty\},\$	$V_1 = p_n^{-1}(C_2)$,
$A_{+} = \{z \in \mathbb{C} \mid 1/2 \le z \le 2, \operatorname{Re} z \ge 0\},\$	$N(T_n) = p_n^{-1}(A_+),$
$A_{-} = \{z \in \mathbb{C} \mid 1/2 \le z \le 2, \operatorname{Re} z \le 0\}.$	$N(T'_n) = p_n^{-1}(A)$.

FIGURE 2. X_n and $-X_n$ in S^4

YUICHI YAMADA

Finally we define a standard realization of X_n in S^4 . We use the standard decomposition $S^4 = B^4_- \cup_{\partial_-} S^3 \times [-1, 1] \cup_{\partial_+} B^4_+$ (see Figure 2).

$$X_n \cap B^4_- = \emptyset, \qquad X_n \cap S^3 \times [-1, -1/2] = \emptyset,$$

$$X_n \cap S^3 \times \{-1/2\} = Y_n \times \{-1/2\}, \qquad X_n \cap S^3 \times (-1/2, 1] = T_n \times (-1/2, 1],$$

$$X_n \cap B^4_+ = \{a \text{ disk } D^2_+ \subset B^4_+ \text{ such that}$$

$$D^2_+ \cap \partial B^4_+ = \partial D^2_+ = T_n \text{ and } (B^4_+, D^2_+) \cong \text{``standard ball pair''} \}.$$

Here we note that T_n is a trivial knot in S^3 (= ∂B_+^4).

Let N_n be a regular neighborhood of the standardly realized X_n in S^4 . N_n is a connected oriented 4-manifold with a boundary.

We state the main theorem.

THEOREM 1. For any n, S⁴ decomposes as a twisted double of N_n .

REMARK 1. In the case n=2, X_2 is homeomorphic to $\mathbb{R}P^2$ and the theorem is known ([K2, L, M, P]).

3. Proof of the main theorem.

We will show the decomposition explicitly. Let $-X_n \subset S^4$ be another realization of X_n in S^4 defined as follows (Figure 2):

$$-X_{n} \cap B_{-}^{4} = \{ \text{a disk } D_{-}^{2} \subset B_{-}^{4} \text{ such that} \\ D_{-}^{2} \cap \partial B_{-}^{4} = \partial D_{-}^{2} = T_{n}' \text{ and } (B_{-}^{4}, D_{-}^{2}) \cong \text{``standard ball pair''} \}, \\ -X_{n} \cap S^{3} \times [-1, 1/2] = T_{n}' \times [-1, 1/2], \qquad -X_{n} \cap S^{3} \times \{1/2\} = Y_{n}' \times \{1/2\}, \\ -X_{n} \cap S^{3} \times (1/2, 1] = \emptyset, \qquad -X_{n} \cap B_{+}^{4} = \emptyset.$$

It is casy to see that there is an orientation-reversing homeomorphism ρ of S^4 such that $\rho|_{X_n}$ is a homeomorphism from X_n to $-X_n$.

Using the notations defined in the last section, we construct N_n and $-N_n$ in S^4 simultaneously as follows (Figure 3):

$$N_n = V_0 \times [-1, 0] \cup N(T_n) \times [-1, 1] \cup V_1 \times [0, 1] \cup B_+^4,$$

- $N_n = B_-^4 \cup V_1 \times [-1, 0] \cup N(T'_n) \times [-1, 1] \cup V_0 \times [0, 1].$

It is easy to verify that $X_n \subset N_n$, $-X_n \subset -N_n$ and $N_n \cup -N_n = S^4$.

Next, we show that our N_n is in fact a regular neighborhood of X_n . The first half of the decomposition of $N_n : N_n^{(1)} = V_0 \times [-1, 0] \cup N(T_n) \times [-1, 1]$, is a regular neighborhood of $X_n \cap N_n^{(1)}$.

Next, the other part $N_n^{(2)} = V_1 \times [0, 1] \cup B_+^4$ is homeomorphic to a 4-ball B^4 . Since T_n is also a trivial knot in ∂B^4 , the pair $(B^4, X_n \cap B^4) (= (B^4, D_+^2))$ homeomorphic to the standard ball pair. In particular, this part B^4 is a regular neighborhood of $X_n \cap B^4$.

FIGURE 3. N_n and $-N_n$

Finally, we see the intersection of these two parts. Let A_2 be an annulus contained in $\partial N(T_n)$ defined by $N(T_n) \cap V_1$. By the construction, $N_n^{(1)} \cap N_n^{(2)}$ is $A_2 \times [0, 1] \cup$ $N(T_n) \times \{1\}$. Clearly, it is homeomorphic to $S^1 \times D^2$ and is a regular neighborhood of $T_n \times \{1\}$, which is $X_n \cap (N_n^{(1)} \cap N_n^{(2)})$.

Thus, the union N_n of these two parts is also a regular neighborhood of X_n .

Similarly, $-N_n$ is that of $-X_n$, too. It is clear that our N_n and $-N_n$ are homeomorphic to each other by an orientation-reversing homeomorphism. We have the theorem.

4. Some calculations on N_n and ∂N_n .

In this section, we study more about the manifolds N_n and ∂N_n . We let Q_n denote ∂N_n . First, we draw the framed links representing N_n and Q_n .

PROPOSITION 1. N_n is described by the framed link $L(N_n)$ in Figure 4 and Q_n is the boundary of the 4-manifold described by the framed link $L(Q_n)$ in Figure 5.

FIGURE 4. Framed link $L(N_n)$ of N_n

FIGURE 5. Framed link $L(Q_n)$ of Q_n

PROOF. We use the construction of N_n in the last section. The part $V_0 \times [-1, 0]$ is naturally identified with $S^1 \times D^3$. It is made of one 0-handle H^0 and one 1-handle

YUICHI YAMADA

 H^1 , and it is described by an unknotted circle with a dot ([K1, p. 4]).

Let H^2 be the other part of $N_n: H^2 = N(T_n) \times [-1, 1] \cup V_1 \times [0, 1] \cup B_+^4$. Let Z_n be an annulus contained in Y_n defined by $p_n^{-1}([1/2, 1])$ which contains T_n as a component of its boundary, and let D, c denote the disk $X_n \cap H^2$ and its boundary:

$$D = Z_n \times \{-1/2\} \cup T_n \times (-1/2, 1] \cup D_+^2, \qquad c = \partial D = p_n^{-1}(1/2) \times \{-1/2\}.$$

As we have seen in the last section, H^2 itself is a regular neighborhood of D and $H^2 \cong D \times D^2$. When we let $A_{1/2}$ denote an annulus $V_0 \cap N(T_n)$,

$$H^2 \cap S^1 \times D^3 = \partial H^2 \cap \partial (S^1 \times D^3) = A_{1/2} \times [-1, 0] \quad (\cong S^1 \times D^2) .$$

Since $A_{1/2}$ contains $p_n^{-1}(1/2)$ as a center circle, it is a regular neighborhood of c in the both sides of ∂H^2 and $\partial (S^1 \times D^3)$. Thus, we can regard H^2 as a 2-handle attached to $S^1 \times D^3$. The attaching circle of H^2 is c and drawn as L_2 in the framed link in Figure 4. We have a handlebody decomposition of $N_n : N_n = H^0 \cup H^1 \cup H^2$, where H^r is an r-handle.

The most troublesome step is to calculate the framing number of L_2 . We can calculate it as follows:

Let c', a push-off of c in the attaching region, be $p_n^{-1}(\frac{1}{2}e^{i\varepsilon}) \times \{-1/2\}$, where ε (>0) is a sufficiently small number. The linking number lk(c, c') in the framed link of $S^1 \times D^3$ (a dotted circle) is n.

On the other hand, since lk(c, c') = n in $S^3(\times \{1/2\})$, the intersection number $D \circ D'$ is *n*, where D' is a push-off of D in H^2 bounded by c'.

Thus, in the side of ∂H^2 , 0-framing of c is -n twisted c' around c. But --twisting in the side of ∂H^2 corresponds to a +-twisting in the side of $\partial (S^1 \times D^3)$, because the attaching map is orientation reversing. Thus the framing number of L_2 is n+n=2n.

For the latter half of the theorem, see [K1, p. 7].

From the framed link $L(Q_n)$, we can calculate $\pi_1(Q_n)$ and $H_1(Q_n; Z)$:

$$\pi_1(Q_n) = \langle x, t \mid x(xt)^n x^{-1}(xt)^{-n}, (xt)^n t^{-n}, x^n(xt)^n \rangle$$
$$\cong \langle \alpha, \beta \mid \alpha^n = \beta^n = (\alpha\beta)^n \rangle,$$

where the generators x, t are drawn in Figure 5, and $\alpha = x^{-1}$, $\beta = xt$. And

$$H_1(Q_n; \mathbb{Z}) \cong \pi_1(Q_n) / [\pi_1(Q_n), \pi_1(Q_n)] \cong \mathbb{Z}/n\mathbb{Z} \langle [\alpha] \rangle \oplus \mathbb{Z}/n\mathbb{Z} \langle [\beta] \rangle.$$

Thus, Q_n is a rational homology 3-sphere.

REMARK 2. In the case n=2, it is known that $Q_2 \cong S^3/G_8$, where G_8 is the quaternion group and $\pi_1(Q_2) \cong G_8$ ([P]). $\pi_1(Q_n)$ is a finite group if and only if n=2, because its quotient group $\langle \alpha, \beta | \alpha^n = \beta^n = (\alpha\beta)^n = 1 \rangle$ is a well-known triangle group, which is infinite if $n \ge 3$.

In the rest of this section, we study more about Q_n .

28

DECOMPOSITION OF S^4

It is known that Q_2 admits a Seifert structure ([O]) whose invariants are $\{-1; (o_1, 0); (2, 1), (2, 1), (2, 1)\}$ ([P, O, p. 109]). We extend it to our 3-manifold Q_n .

PROPOSITION 2. Q_n admits a Seifert structure whose invariants are $\{-1; (o_1, 0); (n, 1), (n, 1), (n, n-1)\}$.

PROOF (see [Y]). At the beginning of the construction of N_n in section 2, we used a Seifert fibering p_n of S^3 over S^2 . The Seifert invariants of p_n are $\{0; (o_1, 0); (n, 1)\}$ and its singular fiber is $p_n^{-1}(0)$ the core of V_0 . The map $p_n \times id: S^3 \times [-1, 1] \to S^2 \times$ [-1, 1] defines a Seifert fibering of $S^3 \times [-1, 1]$ whose singular fiber lies over $\{0\} \times$ [-1, 1]. By the construction of N_n in section 3 (see Figure 3), $Q_n = \partial N_n$ is contained in $S^3 \times [-1, 1] \subset S^4$ and Q_n is a union of fibers of $p_n \times id$. Thus the restriction $(p_n \times id)|_{Q_n}$ is a fibration. It is not hard to verify that the base space $(p_n \times id)(Q_n)$ is homeomorphic to S^2 which intersects $\{0\} \times [-1, 1]$ at 3 points. Thus the fibration of Q_n has 3 singular fibers: $p_n^{-1}(0) \times \{-1, 1, 0\}$. Because the neighborhood of each fiber is equivalent to $p_n|_{V_0}: V_0 \to D_{1/2}$, the singular types of the first two are both (n, 1), since the orientation of the neighborhood agrees with that of V_0 . On the other hand, the singular type of the third is (n, -1), because the orientation induced as a boundary of N_n is opposite to that of V_0 . After normalizing the Seifert invariants, we have the lemma:

 $\{0; (o_1, 0); (n, 1) (n, 1) (n, -1)\} \cong \{-1; (o_1, 0); (n, 1) (n, 1) (n, n-1)\}$

5. Branched covering.

In this section, we study about a covering of S^4 branched along $-X_n$. The reason why we choose $-X_n$ will become clear soon.

In the case $n=2, -X_2 \subset S^4$ is pairwise homeomorphic to the (-)-standard embedding of $\mathbb{R}P^2$ into S^4 , and its 2-fold branched covering is $\mathbb{C}P^2$ (see [K1, K2, M]). Here we note that the normal Euler number of the (-)-standard embedding is -2.

In the case n>2, $-X_n$ is not a manifold and has an S^1 -singularity γ . Thus we consider a branched covering with the singularity removed, i.e., a covering of the exterior $S_{\gamma}^4 = S^4 \setminus \operatorname{int} N(\gamma)$ branched along $-X_n \cap S_{\gamma}^4$, where $N(\gamma)$ is an open tubular neighborhood of γ in S^4 . As we will see below, $\pi_1(S_{\gamma}^4 \setminus -X_n \cap S_{\gamma}^4) \cong \mathbb{Z}/n\mathbb{Z}$. In this paper we only study an *n*-fold cyclic branched covering associated to it. It is a connected oriented 4-manifold with a boundary.

From Theorem 1: $S^4 = N_n \cup -N_n$ and a handlebody decomposition of $N_n : H^0 \cup H^1 \cup H^2$, we have a non-trivial handlebody decomposition

$$S^{4} = N_{n} \cup -N_{n} = H^{0}_{+} \cup H^{1}_{+} \cup H^{2}_{+} \cup (H^{2}_{-})^{\perp} \cup (H^{1}_{-})^{\perp} \cup (H^{0}_{-})^{\perp},$$

where $(H^r)^{\perp}$ is a dual (4-r)-handle. If we regard $(H_{-}^1)^{\perp} \cup (H_{-}^0)^{\perp}$ as $N(\gamma)$, we have a handlebody decomposition of $S_{\gamma}^4 = S^4 \setminus \operatorname{int} N(\gamma)$:

 $S_{\nu}^{4} = H^{0}_{+} \cup H^{1}_{+} \cup H^{2}_{+} \cup (H^{2}_{-})^{\perp} \quad (\cong S^{2} \times D^{2}) .$

LEMMA 1. S_{y}^{4} is described by the framed link in Figure 6.

FIGURE 6. Framed link of S_v^4

PROOF. We use the construction of N_n and its framed link which we have seen in the previous section:

$$N_n = V_0 \times [-1, 0] \cup N(T_n) \times [-1, 1] \cup V_1 \times [0, 1] \cup B_+^4,$$

$$(H_-^2)^{\perp} = B_-^4 \cup V_1 \times [-1, 0] \cup N(T'_n) \times [-1, 1].$$

From now on, we regard $V_0 \times [0, 1] \cup N(T'_n) \times [-1, 1]$ as $N(\gamma)$. On the other hand, it is easy to check that $\overline{N}_n = N_n \cup V_1 \times [-1, 0]$ is homeomorphic to N_n and that \overline{N}_n can be described by the same framed link $L(N_n)$. Consequently, the only thing we must do is attaching B^4_- to \overline{N}_n . When we let \overline{V}_0 denote $V_0 \cup N(T_n) \cup N(T'_n) \subset S^3$, $B^4_- \cap \overline{N}_n = \overline{V}_0 \times$ $\{-1\}$, which is a tubular neighborhood of a circle $l_3 = p_n^{-1}(0) \times \{-1\}$ in the both sides ∂B^4_- and $\partial \overline{N}_n$. Since \overline{V}_0 is a standard solid torus in ∂B^4_- , we can regard B^4_- as a 2-handle attached to \overline{N}_n along \overline{V}_0 .

In the framed link $L(N_n)$ (Figure 4), we can see that the part drawn as the exterior of L_1 is the side of $\overline{V}_0 \times \{-1\}$, by considering orientation. It is clear that the attaching circle l_3 is drawn as L_3 and its framing number is 0. We have the lemma.

Before stating the next proposition, we introduce some notations and remarks. Let C_n be a complex algebraic curve in $\mathbb{C}P^2$ of degree *n* defined by

$$\{[z_0: z_1: z_2] \in \mathbb{C}P^2 \mid z_0^n + z_1^n + z_2^n = 0\}.$$

 C_n is a closed connected oriented surface of genus $\frac{1}{2}(n-1)(n-2)$, since C_n is an *n*-fold cyclic covering of $\mathbb{C}P^1(=S^2)$ branched at *n* points in the equator of $\mathbb{C}P^1$:

$$C_n \to \mathbb{C}P^1$$
$$[z_0:z_1:z_2] \mapsto [z_1:z_2]$$

Let $\hat{\omega}_n$ be an *n*-periodic self-homeomorphism of C_n defind as follows:

$$\hat{\omega}_n \colon C_n \to C_n$$

$$[z_0 \colon z_1 \colon z_2] \mapsto [z_0 \colon z_1 \colon e^{2\pi\sqrt{-1}(1/n)} z_2].$$

PROPOSITION 3. Let M_n be the n-fold cyclic covering of S^4 branched along $-X_n$ with singularity removed.

(1) $-\partial M_n$ is a C_n -bundle over S^1 with monodromy $\hat{\omega}_n$.

(2) M_n is described by the framed link in Figure 7, which is a torus link T(n, -n) each of whose components has framing number n-1.

FIGURE 7. Framed link of M_n

PROOF. (1) We see ∂M_n from the side of $N(\gamma)$. ∂M_n is an *n*-fold cyclic covering of $\partial N(\gamma)$ branched along $\partial N(\gamma) \cap X_n$. Each of $\partial N(\gamma)$ and $\partial N(\gamma) \cap X_n$ is simultaneously regarded as a total space of a fibre bundle over S^1 with monodromy ω_n as follows:

$$\partial N(\gamma) = \partial D^3 \times [0, 1]/(x, 1) \sim (\omega_n(x), 0) : \partial D^3$$
-bundle,

 $\partial N(\gamma) \cap X_n = \{n \text{ points}\} \times [0, 1]/(x, 1) \sim (\omega_n(x), 0) : \{n \text{ points}\}\text{-bundle},\$

where

$$D^{3} = \{(z, t) \in \mathbf{C} \times \mathbf{R} \mid |z|^{2} + t^{2} \le 1\},\$$

 $\{n \text{ points}\} = \{(z, t) \in D^3 \mid z^n = 1, t = 0\} \subset \text{the equator of } \partial D^3,$

 ω_n is a $(2\pi/n)$ -rotation of D^3 along *t*-axis and \sim' is a restriction of \sim in the definition of the $\partial N(\gamma)$.

From the previous remark on C_n , it is clear that ∂M_n is the total space of the C_n -bundle over S^1 with monodromy ω_n .

(2) First, we construct *n*-fold cyclic unbranched covering \tilde{N}_n of N_n . Since a generator of $\pi_1(N_n)$ ($\cong \mathbb{Z}/n\mathbb{Z}$) is represented by a circle which goes around the dotted circle once, \tilde{N}_n is described by the framed link in Figure 8. The matrix added to the

YUICHI YAMADA

FIGURE 8. Framed link of \hat{N}^n

FIGURE 9. Kirby calculus on M_n

DECOMPOSITION OF S^4

figure is the linking matrix. The action of the transformation group is easily shown.

Next, we will attach a 2-handle $(H_{-}^{\tilde{z}})^{\perp}$ to $\tilde{N}_n \mathbb{Z}/n\mathbb{Z}$ -equivariantly. Since the cocore of the 2-handle $(H_{-}^2)^{\perp} : X_n \cap (H_{-}^2)^{\perp}$ is a branched locus, the attaching circle of $(H_{-}^{\tilde{z}})^{\perp}$ is the same as that of $(H_{-}^2)^{\perp}$ in the previous claim and drawn as L_3 in the first figure of Figure 9.

Finally, using Kirby calculus, we cancel the 1-handle L_1 . Those processes are left to the reader (Figure 9). We have the proposition.

REMARK 3. It is pointed out by Professor Y. Matsumoto that $-M_n$ is diffeomorphic to a neighborhood of a singular fiber at 0 of Fermat-type surface V_{n+1} of degree n+1: $V_{n+1} = \{ [z_0 : z_1 : z_2 : z_3] \in \mathbb{C}P^3 | z_0^{n+1} - z_1^{n+1} = z_2^{n+1} - z_3^{n+1} \},$

 $p_{n+1}: V_{n+1} \to \mathbb{C}P^1 = \mathbb{C} \cup \{\infty\}$ $[z_0: z_1: z_2: z_3] \mapsto \begin{cases} z_2^n / z_0^n & \text{if } z_0 = z_1 \text{ and } z_2 = z_3, \\ (z_0 - z_1) / (z_2 - z_3) & \text{otherwise} \end{cases}$

and $-M_n \cong p_{n+1}^{-1}(D_{0,\varepsilon})$, where $D_{0,\varepsilon} = \{z \in \mathbb{C} \mid |z| \le \varepsilon\}$ and $\varepsilon > 0$ is a sufficiently small number. See also [A] for the case n = 4.

ACKNOWLEDGEMENT. The author would like to express his gratitude to the referee for his much valuable advice.

References

- [A] K. AHARA, On the topology of Fermat type surface of degree 5 and the numerical analysis of algebraic curves, Tokyo J. Math. 16 (1993), 321-340.
- [K1] R. C. KIRBY, The Topology of 4-Manifolds, Lecture Notes in Math. 1374 (1989), Springer.
- [K2] N. KUIPER, The quotient space of CP(2) by complex conjugation is the 4-sphere, Math. Ann. 208 (1974), 175–177.
- [L] T. LAWSON, Splitting S(4) on **R**P(2) via the branched cover of **C**P(2) over S(4), Proc. Amer. Math. Soc. **86** (1982), 328-330.
- [M] W. MASSAY, Imbeddings of projective planes and related manifolds in spheres, Indiana Univ. Math. J. 23 (1973), 791-812.
- [O] P. ORLICK, Seifert Manifolds, Lecture Notes in Math. 291 (1972), Springer.
- [P] T. PRICE, Homeomorphisms of quaternionic space and projective planes in four spaces, J. Austral. Math. Soc. Ser A 23 (1977), 112–128.
- [Y] Y. YAMADA, Some Seifert 3-manifolds which decompose S^4 as a twisted double, preprint.

Present Address:

GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, UNIVERSITY OF TOKYO, KOMABA, MEGURO-KU, TOKYO, 153 JAPAN.