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1. Introduction.

Throughout this paper, we will work in the $PL$ category.

DEFINITION 1 (see [L]). Let $N$ be a compact oriented 4-manifold with a boundary.
We say that $S^{4}$ decomposes as a twisted double of $N$ if $s^{4}=NU_{\partial^{-N}}$ .

We use the word “twisted double” because we allow that the gluing map between
the boundaries is not $id|_{\partial N}$ . This conception is a kind of an extension of Heegaard
splitting of $S^{3}$ .

Let $N_{2}$ be a tubular neighborhood of a (+)-standard $RP^{2}$ in $S^{4}([M, P])$ . It is well
known that the closure of $S^{4}\backslash N_{2}$ is also homeomorphic to $N_{2}$ by an orientation reversing
homeomorphism, i.e., $S^{4}=N_{2}\bigcup_{\partial^{-N_{2}}}$ . Thus $S^{4}$ decomposes as a twisted double of $N_{2}$ .
$N_{2}$ can be characterized as a total space of a 2-disk bundle over $RP^{2}$ whose normal
Euler number is 2 ([K2, $L,$ $M,$ $P]$ ). The boundary of $N_{2}$ , which we call $Q_{2}$ , is arational
homology 3 sphere ([P]). It is known that the 2 covering of $S^{4}$ branched along a
(-)-standard $RP^{2}$ is $CP^{2}$ ([Kl, K2, $M]$).

We extend these facts to the case of a certain 2-complex $X_{n}(n\geq 2)$ instead of $RP^{2}$ .
The main theorem will be stated as: $S^{4}$ decomposes as a twisted double of $N_{n}$ , where
$N_{n}$ is a regular neighborhood of a standard realization of $X_{n}$ in $S^{4}$ . We give the defini-
tions of the complexes and manifolds, and state the main Theorem 1 in the next section.
We prove the main Theorem 1 in section 3. In section 4, we study on $Q_{n}$ the boundary
of $N_{n}$ , which is a Seifert rational homology 3-sphere. The author thinks $Q_{n}$ as a typical
example among prime 3-manifolds which can be embedded in $S^{4}$ . In section 5, we also
study a covering of $S^{4}$ branched along $-X_{n}$ .

ADDITION. Using an $S^{1}$ action on $S^{4}$ , we can construct some more Seifert 3
manifolds each of which decomposes $S^{4}$ as a twisted double. We will go into detail
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about it in another paper [Y].

2. Definitions and the main theorem.

First, we define a 2-complex $X_{n}$ . For an integer $n(n\geq 2)$, let $X_{n}$ be a 2-complex
defined as follows (Figure 1):

$X_{n}=D^{2}/e^{2\pi^{\sqrt{-1}g}}\sim e^{2\pi^{\sqrt{-1}}\langle\theta+1/n)}$ , where $D^{2}=\{|z|\leq 1|z\in C\}$ .

FIGURE 1. 2-complex $X_{n}$

Before defining a standard realization of $X_{n}$ in $S^{4}$ , we construct some subsets in
$S^{3}$ . We regard $S^{3}$ as the unit sphere of $C^{2}$ and $S^{2}$ as $CP^{1}$ :

$S^{3}=\{(z_{1}, z_{2})||z_{1}|^{2}+|z_{2}|^{2}=1\}$ , $S^{2}=CP^{1}=Cu$ {oo}.

Let $p_{n}$ be aSeifert fibering of $S^{3}$ over $S^{2}$ :
$p_{n}$ : $S^{3}\rightarrow S^{2}$

$(z_{1}, z_{2})\mapsto\frac{z_{1}^{n}}{(z_{2}|z_{1}|^{n-1})}$ .

Let $D_{1}$ be a unit disk $\{z\in C||z|\leq 1\}\subset C\subset S^{2}$ and $V$ a standard solid torus $p_{n}^{-1}(D_{1})$ .
$T_{n}=p_{n}^{-1}(1)$ and $T_{n}^{\prime}=p_{n}^{-1}(-1)$ form a pair of parallel simple closed curves on $\partial V$, each
of which represents $M_{V}+nL_{V}$ in $H_{1}(\partial V;Z)$ after changing its orientation if needed,
where $M_{V},$ $L_{V}$ are the classes of the meridian, longitude of $\partial V$ respectively. Let $Y_{n}$ and

$Y_{n}^{\prime}$ be 2-complexes defined by $p_{n}^{-1}([0,1]),$ $p_{n}^{-1}([-1,0])$ respectively, where we take the
intervals in $R\subset$ C. Here we note that $Y_{n}\cap\partial V=T_{n}$ and $Y_{n}^{\prime}\cap\partial V=T_{n}^{\prime}$ . In fact, $Y_{n}(Y_{n}^{\prime}$ ,
respectively) connects $p_{n}^{-1}(0)$ the core of $V$ and $T_{n}(T_{n}^{\prime})$ in $V$.

Next we decompose $S^{2}$ into 4 parts: $D_{1/2},$ $C_{2},$ $A_{+}$ and $A_{-}$ , and pull back them by
$p_{n}$ as a decomposition of $S^{3}$ :

$S^{2}$ $S^{3}$

$D_{1/2}=\{z\in C||z|\leq 1/2\}$ , $V_{O}=p_{n}^{-1}(D_{1/2})$ ,
$C_{2}=\{z\in C||z|\geq 2\}\cup\{\infty\}$ , $V_{1}=p_{n}^{-1}(C_{2})$ ,
$A_{+}=\{z\in C|1/2\leq|z|\leq 2, {\rm Re} z\geq 0\}$ , $N(T_{n})=p_{n}^{-1}(A_{+})$ ,
$A_{-}=\{z\in C|1/2\leq|z|\leq 2, {\rm Re} z\leq 0\}$ . $N(T_{n}^{\prime})=p_{n}^{-1}(A_{-})$ .
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$(n=2)$

$S^{3}\times\{-1\}$

$S^{3}\times\{-1/2\}$

$S^{3}x\{0\}$

$\backslash $

$S^{3}\times\{1/2\}$
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$\backslash $

$S^{3}\times\{1\}$

$(n=3)$

: $X_{n}$

– : $X_{n}^{\prime}$

FIGURE 2. $X_{n}$ and -X. in $S^{4}$
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Finally we define a standard realization of $X_{n}$ in $S^{4}$ . We use the standard de-
composition $S^{4}=B_{-}^{4}\bigcup_{\partial-}S^{3}\times[-1,1]u_{\partial_{+}}B_{+}^{4}$ (see Figure 2).

$ X_{n}\cap B_{-}^{4}=\emptyset$ , $X_{n}\cap S^{3}\times[-1, -1/2$) $=\emptyset$ ,

$X_{n}\cap S^{3}\times\{-1/2\}=Y_{n}\times\{-1/2\}$ , $X_{n}\cap S^{3}\times(-1/2,1$ ] $=T_{n}\times(-1/2,1$],

$X_{n}\cap B_{+}^{4}=\{a$ disk $D_{+}^{2}\subset B_{+}^{4}$ such that
$D_{+}^{2}\cap\partial B_{+}^{4}=\partial D_{+}^{2}=T_{n}$ and $(B_{+}^{4}, D_{+}^{2})\cong$ standard ball pair”}.

Here we note that $T_{n}$ is a trivial knot in $S^{3}(=\partial B_{+}^{4})$ .
Let $N_{n}$ be a regular neighborhood of the standardly realized $X_{n}$ in $S^{4}$ . $N_{n}$ is a

connected oriented 4-manifold with a boundary.
We state the main theorem.

THEOREM 1. For any $n,$
$S^{4}$ decomposes as a twisted double of $N_{n}$ .

REMARK 1. In the case $n=2,$ $X_{2}$ is homeomorphic to $RP^{2}$ and the theorem is
known ([K2, $L,$ $M,$ $P]$).

3. Proof of the main theorem.

We will show the decomposition explicitly.
Let $-X_{n}\subset S^{4}$ be another realization of $X_{n}$ in $S^{4}$ defined as follows (Figure 2):

$-X_{n}\cap B_{-}^{4}=\{a$ disk $D_{-}^{2}\subset B^{4}$-such that
$D_{-}^{2}\cap\partial B_{-}^{4}=\partial D_{-}^{2}=T_{n}^{\prime}$ and $(B_{-}^{4}, D_{-}^{2})\cong$ standard ball pair”} ,

$-X_{n}\cap S^{3}\times[-1,1/2)=T_{n}^{\prime}\times[-1,1/2)$ , $-X_{n}\cap S^{3}\times\{1/2\}=Y_{n}^{\prime}\times\{1/2\}$ ,

$-X_{n}\cap S^{3}\times(1/2,1]=\emptyset$ , $-X_{n}\cap B_{+}^{4}=\otimes$ .

It is casy to see that there is an orientation-reversing homeomorphism $p$ of $S^{4}$ such
that $\rho|_{X_{n}}$ is a homeomorphism from $X_{n}$ to $-X_{n}$ .

Using the notations defined in the last section, we construct $N_{n}$ and $-N_{n}$ in $S^{4}$

simultaneously as follows (Figure 3):

$N_{n}=V_{0}\times[-1,0]\cup N(T_{n})\times[-1,1]\cup V_{1}\times[0,1]\cup B_{+}^{4}$ ,

$-N_{n}=B_{-}^{4}\cup V_{1}x[-1,0]\cup N(T_{n}^{\prime})\times[-1,1]\cup V_{0}\times[0,1]$ .

It is easy to verify that $X_{n}\subset N_{n},$ $-X_{n}\subset-N_{n}$ and $N_{n}\cup-N_{n}=S^{4}$ .
Next, we show that our $N_{n}$ is in fact a regular neighborhood of $X_{n}$ . The first

half of the decomposition of $N_{n}$ : $N_{n}^{\langle 1)}=V_{O}\times[-1,0]\cup N(T_{n})\times[-1,1]$ , is a regular
neighborhood of $X_{n}\cap N_{n}^{\langle 1)}$ .

Next, the other part $N_{n}^{\langle 2)}=V_{1}\times[0,1]\cup B_{+}^{4}$ is homeomorphic to a 4-ball $B^{4}$ . Since
$T_{n}$ is also a trivial knot in $\partial B^{4}$ , the pair $(B^{4}, X_{n}\cap B^{4})(=(B^{4}, D_{+}^{2}))$ homeomorphic to the
standard ball pair. In particular, this part $B^{4}$ is a regular neighborhood of $X_{n}\cap B^{4}$ .
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$B_{-}^{4}$

$+1-\iota_{I}0$

FIGURE 3. $N_{n}$ and $-N_{n}$

Finally, we see the intersection of these two parts. Let $A_{2}$ be an annulus con-
tained in $\partial N(T_{n})$ defined by $N(T_{n})\cap V_{1}$ . By the construction, $N_{n}^{\langle 1)}\cap N_{n}^{\langle 2)}$ is $ A_{2}\times[0,1]\cup$

$N(T_{n})\times\{1\}$ . Clearly, it is homeomorphic to $S^{1}\times D^{2}$ and is a regular neighborhood of
$T_{n}\times\{1\}$ , which is $X_{n}\cap(N_{n}^{\langle 1)}\cap N_{n}^{\langle 2)})$ .

Thus, the union $N_{n}$ of these two parts is also a regular neighborhood of $X_{n}$ .
Similarly, $-N_{n}$ is that of $-X_{n}$ , too. It is clear that our $N_{n}$ and $-N_{n}$ are homeo-

morphic to each other by an orientation-reversing homeomorphism. We have the
theorem. $\square $

4. Some calculations on $N_{n}$ and $\partial N_{n}$ .
In this section, we study more about the manifolds $N_{n}$ and $\partial N_{n}$ . We let $Q_{n}$ denote

$\partial N_{n}$ . First, we draw the framed links representing $N_{n}$ and $Q_{n}$ .

PROPOSITION 1. $N_{n}$ is described by the framed link $L(N_{n})$ in Figure 4 and $Q_{n}$ is the
boundary of the 4-manifold described by the framed link $L(Q_{n})$ in Figure 5.

FIGURE 4. Framed link $L(N_{n})$ of $N_{n}$ FIGURE 5. Framed link $L(Q_{n})$ of $Q_{n}$

PROOF. We use the construction of $N_{n}$ in the last section. The part $V_{0}\times[-1,0]$

is naturally identified with $S^{1}\times D^{3}$ . It is made of one O-handle $H^{0}$ and one l-handle
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$H^{1}$ , and it is described by an unknotted circle with a dot ([Kl, p. 4]).

Let $H^{2}$ be the other part of $N_{n}$ : $H^{2}=N(T_{n})\times[-1,1]\cup V_{1}\times[0,1]\cup B_{+}^{4}$ . Let $Z_{n}$

be an annulus contained in $Y_{n}$ defined by $p_{n}^{-1}([1/2,1])$ which contains $T_{n}$ as a com-
ponent of its boundary, and let $D,$ $c$ denote the disk $X_{n}\cap H^{2}$ and its boundary:

$D=Z_{n}\times\{-1/2\}\cup T_{n}\times(-1/2,1]\cup D_{+}^{2}$ , $c=\partial D=p_{n}^{-1}(1/2)\times\{-1/2\}$ .

As we have seen in the last section, $H^{2}$ itself is a regular neighborhood of $D$ and
$H^{2}\cong D\times D^{2}$ . When we let $A_{1/2}$ denote an annulus $V_{0}\cap N(T_{n})$ ,

$H^{2}\cap S^{1}\times D^{3}=\partial H^{2}\cap\partial(S^{1}\times D^{3})=A_{1/2}\times[-1,0]$ $(\cong S^{1}\times D^{2})$ .

Since $A_{1/2}$ contains $p_{n}^{-1}(1/2)$ as a center circle, it is a regular neighborhood of $c$ in the
both sides of $\partial H^{2}$ and $\partial(S^{1}\times D^{3})$ . Thus, we can regard $H^{2}$ as a 2-handle attached to
$S^{1}\times D^{3}$ . The attaching circle of $H^{2}$ is $c$ and drawn as $L_{2}$ in the framed link in Figure
4. We have a handlebody decomposition of $N_{n}$ : $N_{n}=H^{0}uH^{1}\cup H^{2}$ , where $H$‘ is an
r-handle.

The most troublesome step is to calculate the framing number of $L_{2}$ . We can
calculate it as follows:

Let $c^{\prime}$ , a push-off of $c$ in the attaching region, be $p_{n}^{-1}(\neq e^{i\epsilon})\times\{-1/2\}$ , where $\epsilon(>0)$

is a sufficiently small number. The linking number $lk(c, c^{\prime})$ in the framed link of $S^{1}\times D^{3}$

(a dotted circle) is $n$ .
On the other hand, since $lk(c, c^{\prime})=n$ in $S^{3}(\times\{1/2\})$ , the intersection number $D\circ D^{\prime}$

is $n$ , where $D^{\prime}$ is apush-off of $D$ in $H^{2}$ bounded by $c^{\prime}$ .
Thus, in the side of $\partial H^{2}$ , O-framing of $c$ is $-n$ twisted $c^{\prime}$ around $c$ . But –twisting

in the side of $\partial H^{2}$ corresponds to a $+$ -twisting in the side of $\partial(S^{1}\times D^{3})$, because the
attaching map is orientation reversing. Thus the framing number of $L_{2}$ is $n+n=2n$ .

For the latter half of the theorem, see [Kl, p. 7]. $\square $

From the framed link $L(Q.)$ , we can calculate $\pi_{1}(Q_{n})$ and $H_{1}(Q_{n} ; Z)$ :
$\pi_{1}(Q_{n})=\langle x, t|x(xt)^{n}x^{-1}(xt)^{-n}, (xt)^{n}t^{-n}, x^{n}(xt)^{n}\rangle$

$\cong\langle\alpha, \beta|\alpha^{n}=\beta^{n}=(\alpha\beta)^{n}\rangle$ ,

where the generators $x,$ $t$ are drawn in Figure 5, and $\alpha=x^{-1},$ $\beta=xt$ . And

$ H_{1}(Q_{n} ; Z)\cong\pi_{1}(Q_{n})/[\pi_{1}(Q_{n}), \pi_{1}(Q_{n})]\cong Z/nZ\langle[\alpha]\rangle\oplus Z/nZ\langle[\beta]\rangle$ .
Thus, $Q_{n}$ is a rational homology 3-sphere.

REMARK 2. In the case $n=2$ , it is known that $Q_{2}\cong S^{3}/G_{8}$ , where $G_{8}$ is the
quatemion group and $\pi_{1}(Q_{2})\cong G_{8}$ ([P]). $\pi_{1}(Q_{n})$ is a finite group if and only if $n=2$ ,
because its quotient group $\langle\alpha, \beta|\alpha^{n}=\beta^{n}=(\alpha\beta)^{n}=1\rangle$ is a well-known triangle group,
which is infinite if $n\geq 3$ .

In the rest of this section, we study more about $Q_{n}$ .
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It is known that $Q_{2}$ admits a Seifert structure ([O]) whose invariants are { $-1$ ;
$(0_{1},0);(2,1)(2,1)(2,1)\}$ ( $[P,$ $O$ , p. 109]). We extend it to our 3-manifold $Q_{n}$ .

PROPOSITION 2. $Q_{n}$ admits a Selfert structure whose invariants are { $-1$ ; $(0_{1},0)$ ;
$(n, 1)(n, 1)(n, n-1)\}$ .

PROOF (see [Y]). At the beginning of the construction of $N_{n}$ in section 2, we used
a Seifert fibering $p_{n}$ of $S^{3}$ over $S^{2}$ . The Seifert invariants of $p_{n}$ are $\{0;(0_{1},0);(n, 1)\}$

and its singular fiber is $p_{n}^{-1}(0)$ the core of $V_{0}$ . The map $ p_{n}\times id:S^{3}\times[-1,1]\rightarrow S^{2}\times$

$[-1,1]$ defines a Seifert fibering of $S^{3}\times[-1,1]$ whose singular fiber lies over $\{0\}\times$

$[-1,1]$ . By the construction of $N_{n}$ in section 3 (see Figure 3), $Q_{n}=\partial N_{n}$ is contained in
$S^{3}\times[-1,1]\subset S^{4}$ and $Q_{n}$ is a union of fibers of $p_{n}\times id$. Thus the restriction $(p_{n}\times id)|_{Q_{n}}$

is a fibration. It is not hard to verify that the base space $(p_{n}\times idXQ_{n})$ is homeomorphic
to $S^{2}$ which intersects $\{0\}\times[-1,1]$ at 3points. Thus the fibration of $Q_{n}$ has 3singular
fibers: $p_{n}^{-1}(0)\times\{-1,1,0\}$ . Because the neighborhood of each fiber is equivalent to
$p_{n}|_{V_{O}}$ : $V_{0}\rightarrow D_{1/2}$ , the singular types of the first two are both $(n, 1)$, since the orientation
of the neighborhood agrees with that of $V_{0}$ . On the other hand, the singular type of
the third is $(n, -1)$ , because the orientation induced as a boundary of $N_{n}$ is opposite
to that of $V_{0}$ . After normalizing the Seifert invariants, we have the lemma:

$\{0;(0_{1},0);(n, 1)(n, 1)(n, -1)\}\cong\{-1 ; (0_{1},0);(n, 1)(n, 1)(n, n-1)\}$ $\square $

5. Branched covering.

In this section, we study about a covering of $S^{4}$ branched along $-X_{n}$ . The reason
why we choose $-X_{n}$ will become clear soon.

In the case $n=2,$ $-X_{2}\subset S^{4}$ is pairwise homeomorphic to the (-)-standard em-
bedding of $RP^{2}$ into $S^{4}$ , and its 2-fold branched covering is $CP^{2}$ (see [Kl, K2, $M]$ ).
Here we note that the normal Euler number of the (-)-standard embedding is $-2$ .

In the case $n>2,$ $-X_{n}$ is not a manifold and has an $S^{1}$ -singularity $\gamma$ . Thus we
consider a branched covering with the singularity removed, i.e., a covering of the
exterior $S_{\gamma}^{4}=S^{4}\backslash intN(\gamma)$ branched along $-X_{n}\cap S_{\gamma}^{4}$ , where $N(\gamma)$ is an open tubular
neighborhood of $\gamma inS^{4}$ . As we will see below, $\pi_{1}(S_{\gamma}^{4}\backslash -X_{n}\cap S_{\gamma}^{4})\cong Z/nZ$ . In this paper
we only study an n-fold cyclic branched covering associated to it. It is a connected
oriented 4-manifold with a boundary.

From Theorem 1: $S^{4}=N_{n}\cup-N_{n}$ and a handlebody decomposition of $N_{n}$ : $ H^{0}\cup$

$H^{1}\cup H^{2}$ , we have a non-trivial handlebody decomposition

$S^{4}=N_{n}\cup-N_{n}=H_{+}^{0}\cup H_{+}^{1}\cup H_{+}^{2}u(H_{-}^{2})^{\perp}\cup(H_{-}^{1})^{\perp}\cup(H_{-}^{0})^{\perp}$ ,

where $(H^{r})^{\perp}$ is a dual $(4-r)$-handle. If we regard $(H_{-}^{1})^{\perp}\cup(H^{0})^{\perp}$ as $N(\gamma)$ , we have a
handlebody decomposition of $S_{\gamma}^{4}=S^{4}\backslash intN(\gamma)$ :
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$S_{\gamma}^{4}=H_{+}^{0}\cup H_{+}^{1}\cup H_{+}^{2}\cup(H_{-}^{2})^{\perp}$ $(\cong S^{2}\times D^{2})$ .

LEMMA 1. $S_{\gamma}^{4}$ is described by the framed link in Figure 6.

FIGURE 6. Framed link of $S_{\gamma}^{4}$

$PR\infty F$ . We use the construction of $N_{n}$ and its framed link which we have seen in
the previous section:

$N_{n}=V_{0}\times[-1,0]\cup N(T_{n})\times[-1,1]\cup V_{1}\times[0,1]\cup B_{+}^{4}$ ,

$(H_{-}^{2})^{\perp}=B_{-}^{4}\cup V_{1}\times[-1,0]\cup N(T_{n}^{\prime})\times[-1,1]$ .
From now on, we regard $V_{0}\times[0,1]uN(T_{n}^{\prime})\times[-1,1]$ as $N(\gamma)$ . On the other hand,

it is easy to check that $N_{n}=N_{n}\cup V_{1}\times[-1,0]$ is homeomorphic to $N_{n}$ and that $\overline{N}_{n}$ can
be described by the same framed link $L(N_{n})$ . Consequently, the only thing we must do
is attaching $B_{-}^{4}$ to $\overline{N}_{n}$ . When we let $\overline{V}_{0}$ denote $V_{0}\cup N(T_{n})\cup N(T_{n}^{\prime})\subset S^{3},$ $ B_{-}^{4}\cap\overline{N}_{n}=\overline{V}_{0}\times$

$\{-1\}$ , which is a tubular neighborhood of a circle $l_{3}=p_{n}^{-1}(0)\times\{-1\}$ in the both sides
$\partial B^{4}$-and $\partial\overline{N}_{n}$ . Since $\overline{V}_{0}$ is a standard solid torus in $\partial B_{-}^{4}$ , we can regard $B_{-}^{4}$ as a 2-handle
attached to $\overline{N}_{n}$ along $\overline{V}_{0}$ .

In the framed link $L(N_{n})$ (Figure 4), we can see that the part drawn as the exterior
of $L_{1}$ is the side of $\overline{V}_{0}\times\{-1\}$ , by considering orientation. It is clear that the attaching
circle $l_{3}$ is drawn as $L_{3}$ and its framing number is $0$ . We have the lemma. $\square $

Before stating the next proposition, we introduce some notations and remarks.
Let $C_{n}$ be a complex algebraic curve in $CP^{2}$ of degree $n$ defined by

$\{[z_{0} : z_{1} ; z_{2}]\in CP^{2}|z_{0}^{n}+z_{1}^{n}+z_{2}^{n}=0\}$ .
$C_{n}$ is a closed connected oriented surface of genus $\neq(n-1)(n-2)$ , since $C_{n}$ is an n-fold
cyclic covering of $CP^{1}(=S^{2})$ branched at $n$ points in the equator of $CP$ ’:

$C_{n}\rightarrow CP^{1}$

$[z_{0} : z_{1} : z_{2}]\mapsto[z_{1} : z_{2}]$ .

Let $\hat{\omega}_{n}$ be an n-periodic self-homeomorphism of $C_{n}$ defind as follows:
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$\hat{\omega}_{n}$ : $C_{n}\rightarrow C_{n}$

$[z_{0} : z_{1} : z_{2}]->[z_{0} : z_{1} : e^{2\pi\sqrt{}\overline{-1}\langle 1/n)}z_{2}]$ .

PROPOSITION 3. Let $M_{n}$ be the n-fold cyclic covering of $S^{4}$ branched along $-X_{n}$

with singularity removed.
(1) $-\partial M_{n}$ is a $C_{n}$-bundle over $S^{1}$ with monodromy $\hat{\omega}_{n}$ .
(2) $M_{n}$ is described by the framed link in Figure 7, which is a torus link $T(n, -n)$

each of whose components has framing number $n-1$ .

$O^{1}O^{1}$
$\cong$

$0^{1}$ $0^{0}$

$M_{2}$ $puncCP^{2}\# S^{2}\times D^{2}$

$2^{\cup^{-}0^{\text{ノ}}}C_{2}^{2}\backslash $ $-2^{\backslash 0^{-2}}C_{\text{ノ}}\bigcup_{-2}^{-}$

Singular fibre
$M_{3}$ $-M_{3}$ of “type IV”

FIGURE 7. Framed link of $M_{n}$

PROOF. (1) We see $\partial M_{n}$ from the side of $N(\gamma)$ . $\partial M_{n}$ is an n-fold cyclic covering
of $\partial N(\gamma)$ branched along $\partial N(\gamma)\cap X_{n}$ . Each of $\partial N(\gamma)$ and $\partial N(\gamma)\cap X_{n}$ is simultaneously
regarded as a total space of a fibre bundle over $S^{1}$ with monodromy $\omega_{n}$ as follows:

$\partial N(\gamma)=\partial D^{3}\times[0,1]/(x, 1)\sim(\omega_{n}(x), 0):\partial D^{3}$ -bundle ,

$\partial N(\gamma)\cap X_{n}=\{npoints\}\times[0,1]/(x, 1)\sim’(\omega_{n}(x), 0):\{npoints\}- bundle$ ,

where

$D^{3}=\{(z, t)\in C\times R||z|^{2}+t^{2}\leq 1\}$ ,

{ $n$ points} $=\{(z, t)\in D^{3}|z^{n}=1, t=0\}\subset the$ equator of $\partial D^{3}$ ,

$\omega_{n}$ is a $(2\pi/n)$-rotation of $D^{3}$ along t-axis and $\sim^{l}$ is a restriction $of\sim$ in the definition
of the $\partial N(\gamma)$ .

From the previous remark on $C_{n}$ , it is clear that $\partial M_{n}$ is the total space of the
$C_{n}$-bundle over $S^{1}$ with monodromy $\omega_{n}$ .

(2) First, we construct n-fold cyclic unbranched covering $\tilde{N}_{n}$ of $N_{n}$ . Since a gen-
erator of $\pi_{1}(N_{n})(\cong Z/nZ)$ is represented by a circle which goes around the dotted
circle once, $\tilde{N}_{n}$ is described by the framed link in Figure 8. The matrix added to the
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$L_{1}L_{2.1}L_{2,2}L_{2,n}:($
$0111$

$|$

$n+1111$
$n.\cdot+.\cdot 111$

1

$n+1111)$

FIGURE 8. Framed link of $\hat{N}^{n}$

$L_{2.n}L_{2.1}L_{3}L_{1}:.($
$0111$ $0111$

$n.\cdot+.\cdot 111$

1

$n+1111$ $)$

Handle slides
$L_{2.i}^{\prime}=-(L_{2.j}-L_{3})$

$L_{2.n}L_{2.1}^{\prime}L_{1}L_{3}:.\left(\begin{array}{lllllll}0 & -101 & 0 & \cdots & \cdots & \cdots & 0\\1 & \vdots & -l & & & & -1\\0 & \vdots & n-1 & \ddots & & & \vdots\\\vdots & \vdots & & & \ddots & \ldots & -1\\0 & -1 & \cdots & \cdots & \cdots & -1 & n-1\end{array}\right)$

Handle cancelation
( $L_{1}$ and $L_{3}$)

Figure 7

FIGURE 9. Kirby calculus on $M_{n}$
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figure is the linking matrix. The action of the transformation group is easily shown.
Next, we will attach a 2-handle $(H_{-}^{2})^{\perp}\sim$ to $\tilde{N}_{n}Z/nZ$-equivariantly. Since the co-

core of the 2-handle $(H_{-}^{2})^{\perp}:$ $X_{n}\cap(H_{-}^{2})^{\perp}$ is a branched locus, the attaching circle of
$(H_{-}^{2})^{\perp}$ is the same as that of $(H_{-}^{2})^{\perp}$ in the previous claim and drawn as $L_{3}$ in the first
figure of Figure 9.

Finally, using Kirby calculus, we cancel the l-handle $L_{1}$ . Those processes are left
to the reader (Figure 9). We have the proposition. $\square $

REMARK 3. It is pointed out by Professor Y. Matsumoto that $-M_{n}$ is diffeo-
morphic to a neighborhood of a singular fiber at $0$ of Fermat-type surface $V_{n+1}$ of
degree $n+1:V_{n+1}=\{[z_{0} : z_{1} : z_{2} : z_{3}]\in CP^{3}|z_{0}^{n+1}-z_{1}^{n+1}=z_{2}^{n+1}-z_{3}^{n+1}\}$ ,

$p_{n+1}$ : $V_{n+1}\rightarrow CP^{1}=C\cup\{\infty\}$

$[z_{0} : z_{1} ; z_{2} : z_{3}]->\{_{(z_{0}-z_{1})/(z_{2}-z_{3})}^{z_{2}^{n}/z_{0}^{n}}$ $ifz_{0}=z_{1}otherwise$

and $z_{2}=z_{3}$ ,

and $-M_{n}\cong p_{n+1}^{-1}(D_{0,\epsilon})$ , where $D_{0.\epsilon}=\{z\in C||z|\leq\epsilon\}$ and $\epsilon>0$ is a sufficiently small
number. See also [A] for the case $n=4$ .
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