Токуо J. Матн. Vol. 20, No. 2, 1997

On Iwasawa λ_p -Invariants of Relative Real Cyclic Extensions of Degree p

Takashi FUKUDA, Keiichi KOMATSU, Manabu OZAKI and Hisao TAYA*

Nihon University, Waseda University and Tohoku University

Dedicated to Professor Fumiyuki Terada on his 70th birthday

Abstract. We give a criterion of the vanishing of λ_p -invariants for relative cyclic extensions of totally real number fields with degree p using Iwasawa's result of Riemann-Hurwitz type which is an analogue to Kida's formula.

1. Introduction.

Let p be a prime number and \mathbb{Z}_p the ring of p-adic integers. Let k be an algebraic number field of finite degree and K a Galois extension of degree p over k. It is considered that properties of the cyclotomic \mathbb{Z}_p -extension of k are well reflected on those of K. For example, Iwasawa proved in [4] that if p is odd, then $\mu_p(k) = 0$ implies $\mu_p(K) = 0$. Here, and in what follows, for a finite algebraic extension k of Q, we denote by k_{∞} the cyclotomic \mathbb{Z}_p -extension of k, and by $\lambda_p(k)$ and $\mu_p(k)$ the Iwasawa invariants of k_{∞}/k . In this context, we study a relation between $\lambda_p(K)$ and $\lambda_p(k)$ using the result of Iwasawa which is an analogue to Kida's formula (cf. [5], [7]). Our purpose in this paper is to prove Theorem 3.5 which is a criterion of the vanishing of λ_p -invariants for relative cyclic extensions of totally real number fields with degree p, and apply it for some real cubic fields.

2. Preliminaries.

Throughout the following, let Z and Q denote the ring of rational integers and the field of rational numbers, respectively. For an algebraic extension F of Q, let E_F be the unit group of F, I_F the group of ideals of F and P_F the group of principal ideals of F. Let K be a Galois extension of F with Galois group G(K/F). For a finite prime v of F and an extension w of v on K, we denote by e(w/v) the order of the inertia group

Received April 4, 1996

^{*} This research was supported in part by Waseda University Grant for Special Research Projects 95A-286.

T(w/v) in G(K/F). We also denote by $H^{n}(G(K/F), M)$ the *n*-th cohomology group for a G(K/F)-module M.

In [5], Iwasawa proved the following striking result, which is considered as a "plus-version" analogue to Kida's formula describing a relation between λ_p^- -invariants for relative *p*-extensions of CM-fields.

THEOREM 2.1. Let p be a prime number, k a totally real number field of finite degree and K a cyclic extension of degree p over k, unramified at every infinite prime of k and not contained in k_{∞} . Let h_n be the dimension of $H^n(G(K_{\infty}/k_{\infty}), E_{K_{\infty}})$ over the finite field $\mathbf{F}_p = \mathbf{Z}/p\mathbf{Z}$. We assume that $\mu_p(k) = 0$. Then we have the following formula for $\lambda_p(K)$ and $\lambda_p(k)$:

$$\lambda_p(K) = p\lambda_p(k) + \sum_{w} (e(w/v) - 1) + (p - 1)(h_2 - h_1),$$

where w ranges over all finite primes of K_{∞} which are prime to p.

As a straightforward application of this theorem, we see that $\lambda_p(K) \equiv 0 \pmod{p-1}$ for a real cyclic extension K of degree p over a totally real number field k if $\lambda_p(k) = \mu_p(k) = 0$. Here we make a remark about $\lambda_p(k)$ and $\mu_p(k)$. It is conjectured that if k is a totally real number field, then $\lambda_p(k) = \mu_p(k) = 0$, which is often called Greenberg's conjecture (cf. [2]). In the following, using this theorem, we study cyclotomic \mathbb{Z}_p -extensions of relative cyclic extensions of totally real number fields with degree p in connection with Greenberg's conjecture.

3. Cohomological properties of Z_p -extensions.

Let p be a prime number. From now on, let k be a totally real number field of finite degree and K a real cyclic extension of degree p over k, which satisfies $K \cap k_{\infty} = k$. Then the degree $[K_{\infty} : k_{\infty}]$ is equal to p. Let

 $S_{K_{\infty}/k_{\infty}} = \{w : \text{ prime ideal of } K_{\infty} \mid w \text{ is prime to } p \text{ and ramified in } K_{\infty}/k_{\infty} \}$,

 $T_{K_{\infty}/k_{\infty}} = \{ w \in S_{K_{\infty}/k_{\infty}} \mid \text{the order of the ideal class of } w \text{ is prime to } p \}$

and s_{∞} (resp. t_{∞}) be the cardinality of $S_{K_{\infty}/k_{\infty}}$ (resp. $T_{K_{\infty}/k_{\infty}}$). We note that s_{∞} and t_{∞} are finite because any prime of K is finitely decomposed in K_{∞} . Moreover, as mentioned in §2, we let

$$h_i = \dim_{\mathbf{F}_n} H^i(G(K_{\infty}/k_{\infty}), E_{K_{\infty}})$$

for i = 1, 2.

We first consider h_1 . Put $G = G(K_{\infty}/k_{\infty})$ and

$$P_{K_{\infty}}^{G} = \{ (\alpha) \in P_{K_{\infty}} \mid (\alpha^{\sigma}) = (\alpha) \text{ for all } \sigma \in G \}.$$

Then the exact sequence

$$1 \to E_{K_{\infty}} \to K_{\infty}^{\times} \to P_{K_{\infty}} \to 1$$

induces the following exact sequence:

$$1 \to E_{k_{\infty}} \to k_{\infty}^{\times} \to P_{K_{\infty}}^{G} \to H^{1}(G, E_{K_{\infty}}) \to H^{1}(G, K_{\infty}^{\times}) \to \cdots$$

Since $H^1(G, K_{\infty}^{\times}) = 1$, we have $H^1(G, E_{K_{\infty}}) \simeq P_{K_{\infty}}^G / P_{k_{\infty}}$.

Assume that $\lambda_p(k) = \mu_p(k) = 0$, namely, the *p*-primary part of $I_{k_{\infty}}/P_{k_{\infty}}$ is trivial. Then $(I_{k_{\infty}} \cap P_{K_{\infty}})/P_{k_{\infty}} = 1$ because it is a subgroup of the *p*-primary part of $I_{k_{\infty}}/P_{k_{\infty}}$. Hence

 $H^1(G, E_{K_{\mathcal{T}}}) \simeq P^G_{K_{\mathcal{T}}}/(I_{k_{\mathcal{T}}} \cap P_{K_{\mathcal{T}}}) .$

Let us put

$$I_{K_{\infty}}^{G} = \{ w \in I_{K_{\infty}} \mid w^{\sigma} = w \text{ for all } \sigma \in G \}.$$

Note that $P_{K_{\infty}}^{G} = I_{K_{\infty}}^{G} \cap P_{K_{\infty}}$ and $I_{K_{\infty}}^{G} = I_{k_{\infty}} \langle S_{K_{\infty}/k_{\infty}} \rangle$ (cf. §1 in [5]). Since

$$\rightarrow P^G_{K_{\infty}}/(I_{k_{\infty}} \cap P_{K_{\infty}}) \rightarrow I^G_{K_{\infty}}/I_{k_{\infty}} \rightarrow I^G_{K_{\infty}}/P^G_{K_{\infty}}I_{k_{\infty}} \rightarrow 1$$

is exact, it follows that

$$h_1 + \dim_{\mathbf{F}_p} (I_{K_{\infty}}^G/P_{K_{\infty}}^G I_{k_{\infty}}) = \dim_{\mathbf{F}_p} (I_{K_{\infty}}^G/I_{k_{\infty}}) = s_{\infty} .$$

In particular, we see that $h_1 \leq s_{\infty}$.

Hence Theorem 2.1 immediately implies the following proposition:

PROPOSITION 3.1. Assume that $\lambda_p(k) = \mu_p(k) = 0$. Then $\lambda_p(K) = 0$ if and only if the following two conditions are satisfied:

(1) $H^1(G(K_{\infty}/k_{\infty}), E_{K_{\infty}}) \simeq (\mathbb{Z}/p\mathbb{Z})^{\oplus s_{\infty}}.$

(2) $H^2(G(K_{\infty}/k_{\infty}), E_{K_{\infty}}) = 1.$

Moreover, since $P_{K_{\infty}}^{G}I_{k_{\infty}} = I_{K_{\infty}}^{G} \cap I_{k_{\infty}}P_{K_{\infty}}$, we have

$$I_{K_{\infty}}^G/P_{K_{\infty}}^G I_{k_{\infty}} \simeq I_{K_{\infty}}^G P_{K_{\infty}}/I_{k_{\infty}} P_{K_{\infty}} .$$

This is a *p*-primary abelian group. Hence, it is seen that $S_{K_{\infty}/k_{\infty}} = T_{K_{\infty}/k_{\infty}}$ if and only if $I_{K_{\infty}}^G/P_{K_{\infty}}^G I_{k_{\infty}} = 1$, so $s_{\infty} = t_{\infty}$ if and only if $h_1 = s_{\infty}$.

Now, the following lemma concerning the first cohomology group is an immediate consequence of this argument.

LEMMA 3.2. Assume that $\lambda_p(k) = \mu_p(k) = 0$. Then the following two conditions are equivalent:

- (1) $S_{K_{\infty}/k_{\infty}} = T_{K_{\infty}/k_{\infty}}$. (2) $H^{1}(G(K_{\infty}/k_{\infty}), E_{K_{\infty}}) \simeq (\mathbb{Z}/p\mathbb{Z})^{\oplus s_{\infty}}$.

In the proof of Lemma 3 in [6], Iwasawa noticed the following important property of the second cohomology group. As he, however, omitted the proof, we give it for convenience of readers.

T. FUKUDA, K. KOMATSU, M. OZAKI AND H. TAYA

LEMMA 3.3. Assume that k_{∞} has only one prime ideal lying over p and that the class number of k is not divisible by p. Then $H^2(G(K_{\infty}/k_{\infty}), E_{K_{\infty}}) = 1$.

PROOF. Note that K_{∞}/k_{∞} is an extension of degree *p*. Let $G = G(K_{\infty}/k_{\infty})$. Let K_n and k_n be the *n*-th layer of K_{∞}/K and k_{∞}/k , respectively. It follows from the assumption on k_{∞}/k that the class number of k_n is not divisible by *p* (cf. [3]). Since *k* is totally real, from the genus theory for k_n/k_m , we have $N_{k_n/k_m}(E_{k_n}) = E_{k_m}$ for $n \ge m$, where N_{k_n/k_m} is the norm mapping of k_n over k_m . This implies the surjective homomorphism

(1)
$$N_{k_n/k_m} : E_{k_n}/N_{K_n/k_n}(E_{K_n}) \to E_{k_m}/N_{K_m/k_m}(E_{K_m}).$$

Also, the genus theory for K_n/k_n shows that the order of $E_{k_n}/N_{K_n/k_n}(E_{K_n})$ is not more than $p^{s_{\infty}}$. Hence the homomorphism (1) becomes an isomorphism for sufficiently large integers $n \ge m$. For such a sufficiently large m, let n be an integer with $n > m + s_{\infty}$ and u an element of E_{k_m} . Since the order of $E_{k_n}/N_{K_n/k_n}(E_{K_n})$ is not more than $p^{s_{\infty}}$, we have $N_{k_n/k_m}(u) = u^{p^{n-m}} \in N_{K_m/k_m}(E_{K_m})$. This shows that a canonical mapping

$$E_{k_m}/N_{K_m/k_m}(E_{K_m}) \to E_{k_n}/N_{K_n/k_n}(E_{K_n})$$

is trivial for sufficiently large integers $n \ge m$. Hence,

$$H^{2}(G, E_{K_{\infty}}) = \varinjlim H^{2}(G, E_{K_{n}}) \simeq \varinjlim E_{k_{n}}/N_{K_{n}/k_{n}}(E_{K_{n}}) = 1.$$

This completes the proof. \Box

478

We obtain the next corollary by letting $k = \mathbf{Q}$.

COROLLARY 3.4. Let K be a real cyclic extension of degree p over Q. Then we have $H^2(G(K_{\infty}/Q_{\infty}), E_{K_{\infty}}) = 1.$

Combining Proposition 3.1 with Lemmas 3.2 and 3.3, we obtain the following theorem.

THEOREM 3.5. Let p be a prime number, k a totally real number field of finite degree and K a real cyclic extension of degree p over k. Assume that k_{∞} has only one prime ideal lying over p and that the class number of k is not divisible by p. Then, the following are equivalent:

- (1) $\lambda_p(K) = 0.$
- (2) For any prime ideal w of K_{∞} which is prime to p and ramified in K_{∞}/k_{∞} , the order of the ideal class of w is prime to p.

Further, we obtain the next corollary by letting $k = \mathbf{Q}$.

COROLLARY 3.6. Let K be a real cyclic extension of degree p over Q. Then the following are equivalent:

(1) $\lambda_p(K) = 0.$

(2) For any prime ideal w of K_{∞} which is prime to p and ramified in $K_{\infty}/\mathbf{Q}_{\infty}$, the

IWASAWA λ_p -INVARIANTS

order of the ideal class of w is prime to p.

4. Examples in the case p = 3.

Let K be a cyclic cubic extension of Q. We treat the case that the conductor f of K is a prime number not divisible by 3. Then f is congruent to 1 modulo 3 and such a K is uniquely determined by its conductor (cf. Theorem 6.4.6 of [1]). It follows from genus theory that the class number of such a K is not divisible by 3. If 3 does not decomposed in K, then we conclude that $\lambda_3(K) = 0$ by Iwasawa's theorem (cf. [3]). So we consider the case that 3 splits in K. Now, if 9 does not divide f-1, then the unique prime ideal of K ramified in K/Q remains prime in K_{∞}/K , and hence $s_{\infty} = t_{\infty} = 1$ because the class number of K is not divisible by 3. Therefore, in such a case, $\lambda_3(K) = 0$ from Corollary 3.6. Finally we shall apply Corollary 3.6 for some non-trivial cases.

EXAMPLE 4.1. Let K be the cyclic cubic field with conductor 523. Since $523 \equiv 1 \pmod{9}$ and $523 \neq 1 \pmod{27}$, the prime ideal of K lying over 523 splits into $\mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3$ in the initial layer K_1 of the cyclotomic \mathbb{Z}_3 -extension K_∞ and each \mathfrak{p}_i remains prime in K_∞/K_1 . Therefore $S_{K_\infty/\mathbb{Q}_\infty} = \{\mathfrak{p}_1, \mathfrak{p}_2, \mathfrak{p}_3\}$. We calculated $E_{\mathbb{Q}_1}$ and E_{K_1} by a computer and verified that $N_{K_1/\mathbb{Q}_1}(E_{K_1}) = E_{\mathbb{Q}_1}^3$. From this and genus theory for K_1/\mathbb{Q}_1 , it follows that each \mathfrak{p}_i is actually principal in K_1 . Hence we have $s_\infty = t_\infty = 3$. Therefore it follows from Corollary 3.6 that $\lambda_3(K) = 0$. The same argument can be applied to the cyclic cubic field of conductor 1531, 4951, 5059, 5851, 6067, 8461 and 9109.

EXAMPLE 4.2. Let K be the cyclic cubic field with conductor f=73, 307, 577, 613 or 1009. As in the above example, we see that $S_{K_{\infty}/Q_{\infty}} = \{p_1, p_2, p_3\}$, where p_i is a prime ideal of K_1 lying over f. We verified that $(E_{Q_1}: N_{K_1/Q_1}(E_{K_1})) = 3$ for each case. From this, we see that at least one of ideal classes of p_i has order 3 in the ideal class group of K_1 . We do not know the values of t_{∞} and $\lambda_3(K)$ for these K's.

EXAMPLE 4.3. Let K be the cyclic cubic field with conductor 991, 1117, 1549, 2251 or 2341. Then $S_{K_{\infty}/Q_{\infty}} = \{p_1, p_2, p_3\}$ as in the above example. In each case, we see that $N_{K_1/Q_1}(E_{K_1}) = E_{Q_1}$ and that every ideal class of p_i has order 3 in the ideal class group of K_1 . We do not know the values of t_{∞} and $\lambda_3(K)$ for these K's.

References

- [1] H. COHEN, A Course in Computational Algebraic Number Theory, Graduate Texts in Math. 138 (1993), Springer-Verlag.
- [2] R. GREENBERG, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), 263-284.
- [3] K. IWASAWA, A note on class numbers of algebraic number fields, Abh. Math. Sem. Hamburg 20 (1955), 257-258.
- [4] K. IWASAWA, On the μ -invariants of \mathbb{Z}_{l} -extensions, Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya (1973), 1–11.

T. FUKUDA, K. KOMATSU, M. OZAKI AND H. TAYA

- [5] K. IWASAWA, Riemann-Hurwitz formula and *p*-adic Galois representation for number fields, Tôhoku Math. J. 33 (1981), 263–288.
- [6] K. IWASAWA, A note on capitulation problem for number fields II, Proc. Japan Acad. 65 (1989), 183– 186.
- [7] Y. KIDA, *l*-extensions of CM-fields and cyclotomic invariants, J. Number Theory 12 (1980), 519-528.

Present Addresses: Takashi Fukuda Department of Mathematics, College of Industrial Technology, Nihon University, Shin-ei, Narashino, Chiba, 275 Japan. *e-mail*: fukuda@math.cit.nihon-u.ac.jp

Keiichi Komatsu Department of Information and Computer Sciences, School of Science and Engineering, Waseda University, Okubo, Shinjuku-ku, Tokyo, 169–50 Japan.

MANABU OZAKI DEPARTMENT OF INFORMATION AND COMPUTER SCIENCES, SCHOOL OF SCIENCE AND ENGINEERING, WASEDA UNIVERSITY, OKUBO, SHINJUKU-KU, TOKYO, 169–50, JAPAN. *e-mail*: ozkm@cfi.waseda.ac.jp

HISAO TAYA GRADUATE SCHOOL OF INFORMATION SCIENCES, TOHOKU UNIVERSITY, KATAHIRA, AOBA-KU, SENDAI, 980–77, JAPAN. *e-mail*: taya@math.is.tohoku.ac.jp