The Sym-Bobenko Formula and Constant Mean Curvature Surfaces in Minkowski 3-Space

Tetsuya TANIGUCHI

Tohoku University
(Communicated by T. Nagano)

1. Introduction.

Recently, Dorfmeister, Pedit and Wu discovered a Weierstrass-type representation for harmonic maps from a Riemann surface into symmetric spaces [DPW]. In their formula, the Weierstrass data are defined as meromorphic potentials, i.e. meromorphic 1-forms on a Riemann surface with values in an infinite-dimensional loop algebra. They regarded a harmonic map as a map taking values in a twisted loop group and showed that every harmonic map from a Riemann surface into a symmetric space is obtained by integrating the potential. In a related paper, Dorfmeister and Haak have constructed constant mean curvature surfaces by applying the Sym-Bobenko formula [DH] to the loop-group-valued maps given by integrating the potentials.

On the other hand, Kenmotsu discovered a representation formula for immersions with prescribed mean curvature from a simply connected Riemann surface into Euclidean 3-space. In particular, he obtained a formula for an immersion with constant mean curvature whose Gauss map is a given harmonic map [K]. And Akutagawa and Nishikawa constructed the Minkowski 3-space version of the above formula [AN].

Motivated by these results, the present paper has two aims. The first is to establish a natural correspondence between the following two spaces: the space of conformal spacelike immersions with constant mean curvature from a simply connected Riemann surface Σ into Minkowski 3-space, and that of nowhere anti-holomorphic harmonic maps from Σ into the Poincaré half plane, regarded as the riemannian symmetric space $SL(2, \mathbf{R})/SO(2)$. The second is to prove the Lorentzian version of the Sym-Bobenko formula and apply it to construct spacelike immersions with constant mean curvature.

In section 2 we shall first prepare notations used in the later sections and recall the identification of the riemannian symmetric space $SL(2, \mathbf{R})/SO(2)$ with the unit disk equipped with the Poincaré metric and also with the Poincaré half plane. In section 3 we shall define a $sl(2, \mathbf{R})$ -valued 1-form Λ^f on a Riemann surface Σ associated to a

smooth map $f: \Sigma \to SL(2, \mathbb{R})/SO(2)$ and show that the harmonicity of f is equivalent to the d-closedness of Λ^f . By using this fact, we shall establish the correspondence between the two spaces above-mentioned. In section 4 we shall prove the Sym-Bobenko-type formula and give examples of spacelike immersions with constant mean curvature.

The author thanks Professors S. Nishikawa and S. Nayatani for their advice and encouragement.

2. Preliminaries.

We begin with fixing our terminology and notation. Let $L^3 = (\mathbb{R}^3, \bar{g})$ denote Minkowski 3-space. Here \bar{g} is the flat Lorentzian metric of signature (+, +, -). In terms of the canonical coordinates (x^1, x^2, x^3) of \mathbb{R}^3 , the metric \bar{g} , denoted also by \langle , \rangle , is expressed as $\bar{g} = (dx^1)^2 + (dx^2)^2 - (dx^3)^2$. Let Σ be a Riemann surface and $\Phi \colon \Sigma \to L^3$ a smooth map from Σ into L^3 . Let $\tilde{\Sigma}$ be the open subset of Σ defined by

$$\tilde{\Sigma} = \{ p \in \Sigma \mid \Phi^*\bar{g} \text{ is positive definite at } p \}$$
.

We call $\Phi: \Sigma \to L^3$ a spacelike immersion if $\Sigma = \tilde{\Sigma}$. Throughout this paper, we assume that Φ is weakly conformal, namely,

$$\Phi^*\bar{g} = \lambda^2 (d\xi^1 \otimes d\xi^1 + d\xi^2 \otimes d\xi^2), \qquad \lambda \ge 0$$

where $\xi = \xi^1 + \sqrt{-1}\xi^2$ is a local complex coordinate on Σ . Let I be the first fundamental form of the immersion $\Phi|_{\Sigma}$, that is, the riemannian metric on $\widetilde{\Sigma}$ obtained by restricting $\Phi^*\bar{g}$ to $\widetilde{\Sigma}$.

We define a local Lorentzian frame field (e_1, e_2, e_3) adapted to $\Phi|_{\tilde{\Sigma}}$ as follows. Let $\Phi(\xi) = (\Phi^1(\xi^1, \xi^2), \Phi^2(\xi^1, \xi^2), \Phi^3(\xi^1, \xi^2))$ be a local expression of the smooth map Φ with respect to a local complex coordinate $\xi = \xi^1 + \sqrt{-1}\xi^2$ on $\tilde{\Sigma}$. For i = 1, 2, let

(2.1)
$$e_{i} = \frac{1}{\lambda} \frac{\partial \Phi}{\partial \xi^{i}} = \frac{1}{\lambda} \left(\frac{\partial \Phi^{1}}{\partial \xi^{i}}, \frac{\partial \Phi^{2}}{\partial \xi^{i}}, \frac{\partial \Phi^{3}}{\partial \xi^{i}} \right).$$

We define $e_3 = e_1 \times e_2$. Here the exterior product $v \times w$ of two vectors $v = {}^{t}(x_1, x_2, x_3)$, $w = {}^{t}(y_1, y_2, y_3)$ in L^3 is defined by

$$v \times w = {}^{t}(x_{3}y_{2} - x_{2}y_{3}, x_{1}y_{3} - x_{3}y_{1}, x_{1}y_{2} - x_{2}y_{1})$$
 (cf. [AN]).

Let II denote the second fundamental form of $\Phi|_{\tilde{\Sigma}}$. We denote the covariant differentiation in L^3 by D. If we set

$$Q = -\langle D_{\partial} \partial, e_3 \rangle , \qquad H = -\frac{2}{\lambda^2} \langle D_{\partial} \overline{\partial}, e_3 \rangle ,$$

II is expressed as

$$II = Qd\xi \otimes d\xi + (1/2)H\lambda^2 d\xi \otimes d\overline{\xi} + (1/2)H\lambda^2 d\overline{\xi} \otimes d\xi + \overline{Q}d\overline{\xi} \otimes d\overline{\xi}$$

where $\partial = \partial/\partial \xi$ and $\bar{\partial} = \partial/\partial \bar{\xi}$. Notice that H is nothing but the mean curvature of the immersion.

Next we define the Gauss map $G(\Phi): \widetilde{\Sigma} \to \mathcal{H} \subset L^3$ of $\Sigma|_{\Sigma}$ by $p \mapsto e_3(p)$, where \mathcal{H} is the unit pseudosphere defined by $\mathcal{H} = \{{}^t(x, y, z) \in L^3 \mid x^2 + y^2 - z^2 = -1\}.$

Next we recall the relation among various models of the hyperbolic plane defined by

$$\mathbf{H} = \left(\{ p + \sqrt{-1}q \in \mathbf{C} \mid q > 0 \}, \frac{dp \otimes dp + dq \otimes dq}{q^2} \right).$$

Let \mathcal{H}^+ be the upper unit pseudosphere in L^3 defined by $\mathcal{H}^+ = \{t(x, y, z) \in \mathcal{H} \mid z > 0\}$. Let $\psi : \mathcal{H}^+ \to \mathbf{D}$ be the stereographic projection from \mathcal{H}^+ into the unit disk $\mathbf{D} = \{\alpha \in \mathbf{C} \mid |\alpha| < 1\}$ given by

$$'(x, y, z) \mapsto \frac{x}{1+z} + \sqrt{-1} \frac{y}{1+z}$$
.

Let $\gamma: \mathbf{D} \to \mathbf{H}$ be the Cayley transform, that is, the map given by

$$\alpha \mapsto -\sqrt{-1} \frac{\alpha + \sqrt{-1}}{\alpha - \sqrt{-1}}$$

and $\varphi: \mathcal{H}^+ \to \mathbf{H}$ the map defined by $\varphi = \gamma \circ \psi$. Let J be the map from L^3 to $sl(2, \mathbf{R})$ defined by

$${}^{t}(x, y, z) \mapsto (x/2)\eta_{1} + (y/2)\eta_{2} + (z/2)\eta_{3}$$

where

$$\eta_1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \eta_2 = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \quad \eta_3 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

By a simple calculation, we see that J satisfies

$$J(r_1 \times r_2) = [J(r_1), J(r_2)]$$
 for any two vectors r_1, r_2 in L^3 ,

where [,] denotes the Lie bracket of $sl(2, \mathbf{R})$ and \times is the exterior product defined as above.

Now we have the natural bijection $\rho: SL(2, \mathbb{R})/SO(2) \to \mathbb{H}$ given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} SO(2) \mapsto \frac{a\sqrt{-1} + b}{c\sqrt{-1} + d} .$$

The canonical metric on $SL(2, \mathbb{R})/SO(2)$ as a riemannian symmetric space coincides with the pull back

$$\rho^*\left(\frac{dp\otimes dp + dq\otimes dq}{q^2}\right)$$

of the Poincaré metric by ρ .

PROPOSITION 2.2. For any element g in $SL(2, \mathbb{R})$, we have the following identity

$$\varphi \circ J^{-1}\left(Ad(g)\frac{1}{2}\eta_3\right) = \rho \circ \pi(g)$$
,

where π is the natural projection from $SL(2, \mathbf{R})$ to $SL(2, \mathbf{R})/SO(2)$.

PROOF. Setting $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, we have

$$Ad(g)\frac{1}{2}\eta_{3} = (ac+bd)\frac{1}{2}\eta_{1} + \frac{1}{2}(a^{2}+b^{2}-c^{2}-d^{2})\frac{1}{2}\eta_{2} + \frac{1}{2}(a^{2}+b^{2}+c^{2}+d^{2})\frac{1}{2}\eta_{3}.$$

So $J^{-1}(Ad(g)\frac{1}{2}\eta_3)$ lies in \mathscr{H}^+ . Mapping this point of \mathscr{H}^+ by ψ , we get

$$\psi \circ J^{-1}\left(Ad(g)\frac{1}{2}\eta_3\right) = \frac{2(ac+bd)}{2+a^2+b^2+c^2+d^2} + \sqrt{-1}\frac{a^2+b^2-c^2-d^2}{2+a^2+b^2+c^2+d^2}.$$

By a straightforward computation, $\gamma^{-1} \circ \rho \circ \pi(g)$ is equal to the right-hand side of this formula. This completes the proof of Proposition 2.2. \square

3. $sl(2, \mathbb{C})$ -valued 1-forms on a Riemann surface.

Let Σ be a Riemann surface and $f: \Sigma \to SL(2, \mathbb{R})/SO(2)$ a smooth map. We define an $sl(2, \mathbb{C})$ -valued 1-form ω^f on Σ as follows. Take any point p of Σ , and let $(U(p), \xi)$ be a local coordinate system around p so that there exists a local lift $F: U(p) \to SL(2, \mathbb{R})$. Let A, B, C be complex-valued smooth functions on U(p) such that

(3.1)
$$A\eta_1 + B\eta_2 + C\eta_3 = F^{-1} \frac{\partial}{\partial \xi} F.$$

Let ω^f be the $sl(2, \mathbb{C})$ -valued 1-form on Σ defined by

(3.2)
$$(\omega^f)_p = m(p)Ad(F(p))\sigma_- \otimes (d\xi)_p ,$$

where the complex-valued smooth function m and the element σ_{-} of $sl(2, \mathbb{C})$ are defined respectively by

(3.3)
$$m = \sqrt{-1}A - B$$
, $\sigma_{-} = \frac{1}{2} (\eta_{1} - \sqrt{-1}\eta_{2})$.

Let ω denote the map $f \in C^{\infty}(\Sigma, SL(2, \mathbb{R})/SO(2)) \mapsto \omega^f \in \Gamma(sl(2, \mathbb{C}) \otimes T_{\mathbb{C}}^{*1,0}\Sigma)$.

LEMMA 3.4. The map ω is well-defined.

PROOF. It is easy to check that the definition of ω is independent of the choice of coordinate system. We verify that the definition of ω is independent of the choice

of the lift F. To do this, let \tilde{F} be another lift of f, i.e. $\tilde{F} = Fk$, wehre

$$k = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

is a map from U(p) to SO(2). Let \tilde{A} , \tilde{B} , \tilde{C} and \tilde{m} be the corresponding functions on U(p). Setting $\mu = e^{\sqrt{-1}\theta}$, we get

$$\tilde{m} = \mu^2 m$$
, $Ad(\tilde{F})\sigma_- = \mu^{-2}Ad(F)\sigma_-$.

Thus we see that

$$\tilde{m}Ad(\tilde{F})\sigma_{-}\otimes d\xi = mAd(F)\sigma_{-}\otimes d\xi$$
.

This completes the proof of Lemma 3.4.

Let $\Lambda^f = \omega^f + \overline{\omega^f}$, twice the real part of ω^f , and Λ the map $f \in C^{\infty}(\Sigma, SL(2, \mathbb{R})/SO(2)) \mapsto \Lambda^f \in \Gamma(sl(2, \mathbb{R}) \otimes T_{\mathbb{R}}^*\Sigma)$.

LEMMA 3.5. Let f be a smooth map from Σ to $SL(2, \mathbb{R})/SO(2)$. Then f is harmonic if and only if $d\Lambda^f = 0$.

PROOF. To start the proof, we quote the following

THEOREM 3.6 [GO]. Let G/K be a symmetric space and $\pi: G \to G/K$ the natural projection. We denote the Lie algebras of G and K by g and f respectively, and let $g = f \oplus p$ be the Cartan decomposition. Let $F: \Sigma \to G$ be a smooth map from a Riemann surface Σ into G, and let $\alpha = \alpha_0 + \alpha_1 = F^{-1}dF$ where α_0 and α_1 are f- and g-valued. Then $\pi \circ F$ is harmonic if and only if

$$(3.7) \bar{\partial}\alpha_1' + [\alpha_0 \wedge \alpha_1'] = 0,$$

where α'_1 is the (1, 0)-component of α_1 .

We apply this theorem to $G = SL(2, \mathbb{R})$ and K = SO(2). Notice that $\mathfrak{f} = \mathbb{R}\eta_3$ and $\mathfrak{p} = \mathbb{R}\eta_1 \oplus \mathbb{R}\eta_2$. Then by substituting (3.1), equation (3.7) becomes the system

(3.8)
$$\begin{cases} \frac{\partial}{\partial \bar{\xi}} B = 2\bar{C}A, \\ \frac{\partial}{\partial \bar{\xi}} A = -2\bar{C}B. \end{cases}$$

By a direct calculation,

(3.9)
$$d\Lambda^{f} = -(\sqrt{-1}A_{\xi} - B_{\xi} - 2\sqrt{-1}m\overline{C})Ad(F)\sigma_{-} \otimes d\xi \wedge d\overline{\xi} + (-\sqrt{-1}\overline{A}_{\xi} - \overline{B}_{\xi} + 2\sqrt{-1}\overline{m}C)Ad(F)\sigma_{+} \otimes d\xi \wedge d\overline{\xi},$$

where $\sigma_+ = \frac{1}{2}(\eta_1 + \sqrt{-1}\eta_2)$. If f is harmonic, then equation (3.8) holds, and substituting this into (3.9), we get $d\Lambda^f = 0$, proving the "only if" part of the proposition. To prove

the "if" part, we consider the Maurer-Cartan equation

$$d\theta + \frac{1}{2} \left[\theta \wedge \theta \right] = 0 ,$$

where θ is the left Maurer-Cartan form of $SL(2, \mathbb{R})$. Since $\alpha = F^{-1}dF = F^*(\theta)$, we get

(3.10)
$$d\alpha + \frac{1}{2} \left[\alpha \wedge \alpha \right] = 0 .$$

Taking the p-part of this, we see that

$$(3.11) d\alpha_1 + [\alpha_0 \wedge \alpha_1] = 0.$$

If we use A, B, and C, this unravels to become

(3.12)
$$\begin{cases} A_{\bar{\xi}} - \bar{A}_{\xi} + 2B\bar{C} - 2\bar{B}C = 0, \\ B_{\bar{\xi}} - \bar{B}_{\xi} - 2A\bar{C} + 2\bar{A}C = 0. \end{cases}$$

On the other hand, since $d\Lambda^f = 0$, it follows from (3.9) that

(3.13)
$$\begin{cases} \sqrt{-1}A_{\xi} - B_{\xi} - 2\sqrt{-1}m\bar{C} = 0, \\ -\sqrt{-1}\bar{A}_{\xi} - \bar{B}_{\xi} + 2\sqrt{-1}\bar{m}C = 0. \end{cases}$$

Solving equations (3.12) and (3.13), we get (3.8). We have completed the proof of Lemma 3.5. \Box

Let H be a fixed positive constant. For a smooth map $f: \Sigma \to SL(2, \mathbb{R})/SO(2)$, we define L^3 -valued 1-form L^f on Σ by

(3.14)
$$L^{f}(X) = J^{-1}\left(\frac{1}{H}\Lambda^{f}(X)\right),$$

where X is an arbitrary tangent vector to Σ .

LEMMA 3.15. Let Σ be a connected, simply connected Riemann surface and $f: \Sigma \to SL(2, \mathbb{R})/SO(2)$ a harmonic map. Then there exists a smooth map $\Phi^f: \Sigma \to L^3$, unique up to an additive constant, such that

$$(\Phi^f)^*(\Omega) = L^f$$

where $\Omega = {}^{t}(dx, dy, dz)$.

PROOF. Since f is harmonic, we have $d\Lambda^f = 0$ and so $dL^f = 0$ by Lemma 3.5. Thus we can integrate L^f to get a smooth map $\Phi^f : \Sigma \to L^3$, determined up to an additive constant, such that $(\Phi^f)^*(\Omega) = L^f$. \square

From this point on, we shall always assume that our Riemann surface Σ is connected and simply connected.

LEMMA 3.16. Let $f: \Sigma \to SL(2, \mathbf{R})/SO(2)$ be a harmonic map and Φ^f as above. Then the pull back $(\Phi^f)^*$ \bar{g} is given by

$$\Phi^{f*}\bar{g} = \frac{2m\bar{m}}{H^2} \left(d\xi \otimes d\bar{\xi} + d\bar{\xi} \otimes d\xi \right),$$

where m is defined as in (3.3).

PROOF. Set $\partial = \partial/\partial \xi$, $\bar{\partial} = \partial/\partial \bar{\xi}$. The $d\xi \otimes d\bar{\xi}$ component of I is given by

$$\langle \Phi_*^f \partial, \Phi_*^f \bar{\partial} \rangle = \left\langle \frac{1}{H} \Lambda^f(\partial), \frac{1}{H} \Lambda^f(\bar{\partial}) \right\rangle_{cl} = \frac{2m\bar{m}}{H^2},$$

where \langle , \rangle_{sl} is the Ad-invariant inner product of $sl(2, \mathbf{R})$ given by

$$\langle \eta_1, \eta_1 \rangle_{sl} = \langle \eta_2, \eta_2 \rangle_{sl} = -\langle \eta_3, \eta_3 \rangle_{sl} = 4$$
, $\langle \eta_i, \eta_i \rangle_{sl} = 0$ if $i \neq j$.

Similary we can compute other components, getting the desired formula.

PROPOSITION 3.17. Let $f: \Sigma \to SL(2, \mathbb{R})/SO(2)$ be a smooth map. Take any point p of Σ , and let $(U(p), \xi)$ be a coordinate neighborhood of p such that f has a local lift

$$F: U(p) \to SL(2, \mathbf{R}); \xi \mapsto \begin{pmatrix} a(\xi), b(\xi) \\ c(\xi), d(\xi) \end{pmatrix}.$$

Let $\Psi: \Sigma \to \mathbf{H}$ be the map defined by

$$\Psi = \rho \circ f$$
.

Then $\Psi_{\star}(\partial/\partial\xi)$ is given by

$$\Psi_*\left(\frac{\partial}{\partial \xi}\right) = \left\{m(\beta^1 - \sqrt{-1}\beta^2)\right\} \frac{\partial}{\partial w} + \left\{(\sqrt{-1}A + B)(-\beta^1 - \sqrt{-1}\beta^2)\right\} \frac{\partial}{\partial \bar{w}}$$

on U(p), where m, A, and B are defined as in (3.1) and (3.3), w is the complex coordinate of H, and

$$\beta^1 = \frac{2(d^2 - c^2)}{(d^2 + c^2)^2}, \qquad \beta^2 = \frac{4cd}{(d^2 + c^2)^2}.$$

In particular, the equation $\partial \Psi/\partial \xi(p) = 0$ holds if and only if m(p) = 0.

Proof. A straightforward computation.

COROLLARY 3.18. Let f and Φ^f be as in Lemma 3.15. Let $\mathcal N$ be the subset of Σ defined by $\mathcal N = \{ p \in \Sigma \mid \partial \Psi / \partial \xi(p) \neq 0 \}$, where $\Psi = \rho \circ f$. Then $\tilde{\Sigma} = \mathcal N$.

PROOF. This follows from the definition of $\tilde{\Sigma}$, Lemma 3.16, and Proposition 3.17. \square

LEMMA 3.19. Let f and Φ^f be as in Lemma 3.15. Then the image of the Gauss

map $G(\Phi^f)$: $\tilde{\Sigma} \to \mathcal{H}$ is contained in \mathcal{H}^+ and

$$\varphi \circ G(\Phi^f) = \rho \circ f$$
 on $\widetilde{\Sigma}$.

PROOF. Take any point $p \in \tilde{\Sigma}$, and let $(U(p), \xi) \subset \tilde{\Sigma}$ be a coordinate neighborhood of p such that f has a local lift $F: U(p) \to SL(2, \mathbb{R})$. We can choose

$$e_1 = \Phi_*^f \left(\frac{H}{2\sqrt{m\bar{m}}} \frac{\partial}{\partial \xi^1} \right), \qquad e_2 = \Phi_*^f \left(\frac{H}{2\sqrt{m\bar{m}}} \frac{\partial}{\partial \xi^2} \right)$$

as an orthonormal frame on U(p). By definition, the value of the Gauss map $G(\Phi^f)$ at p is given by

$$\begin{split} G(\Phi^f)(p) &= e_3(p) = e_1(p) \times e_2(p) \\ &= J^{-1} \Biggl(\Biggl[\frac{1}{H} \Lambda^f \Biggl(\frac{H}{2\sqrt{m\bar{m}}} \frac{\partial}{\partial \xi^1} \Biggr), \quad \frac{1}{H} \Lambda^f \Biggl(\frac{H}{2\sqrt{m\bar{m}}} \frac{\partial}{\partial \xi^2} \Biggr) \Biggr] \Biggr) \\ &= J^{-1} \Biggl(Ad(F(p)) \frac{1}{2} \eta_3 \Biggr). \end{split}$$

Using Proposition 2.2, $G(\Phi^f)(p)$ lies in \mathcal{H}^+ and

$$\varphi \circ G(\Phi^f)(p) = \varphi \circ \left(J^{-1}(Ad(F(p)) \frac{1}{2} \eta_3) \right)$$
$$= \rho \circ \pi(F(p)) = \rho \circ f(p) .$$

LEMMA 3.20. Let Φ^f be as in Lemma 3.15, and II the second fundamental form of the immersion $\Phi^f|_{\mathfrak{T}}\colon \widetilde{\Sigma}\to L^3$. Then II is given by

$$II = \frac{2(A^2 + B^2)}{H} d\xi \otimes d\xi + \frac{2m\bar{m}}{H} d\xi \otimes d\bar{\xi} + \frac{2m\bar{m}}{H} d\bar{\xi} \otimes d\xi + \frac{2(A^2 + B^2)}{H} d\bar{\xi} \otimes d\bar{\xi},$$

where A, B, and m are defined as in (3.1) and (3.3).

PROOF. Set $\Phi = \Phi^f$. The $d\xi \otimes d\xi$ component of II is given by

$$-\langle D_{\partial}(\Phi_{*}\partial), e_{3}\rangle = -\left\langle \frac{1}{H} \partial(\Lambda^{f}(\partial)), Ad(F) \frac{1}{2} \eta_{3} \right\rangle_{sl} = \frac{2(A^{2} + B^{2})}{H}.$$

The other components can be computed in a similar way, and we get the desired formula. \Box

COROLLARY 3.21. Let Φ^f be as in Lemma 3.15. Then the mean curvature of $\Phi^f|_{\mathfrak{T}}\colon \widetilde{\Sigma} \to L^3$ is equal to the constant H.

PROOF. Let $I = \Phi^{f*}\bar{g}|_{\Sigma}$. The mean curvature of $\Phi^{f}|_{\Sigma}$ is given by $(1/2)\operatorname{trace}_{I}(II)$. Using Lemma 3.16 and Lemma 3.20, we get $(1/2)\operatorname{trace}_{I}(II) = H$. \square

Let Harm denote the space of harmonic maps from Σ into $SL(2, \mathbb{R})/SO(2)$, and let $\tilde{C}^{\infty}(\Sigma, L^3)$ be the space of equivalence classes of maps from Σ into L^3 , where two elements Φ_1 , $\Phi_2: \Sigma \to L^3$ are equivalent if $\Phi_2 = \Phi_1 + c$ for some constant vector c in L^3 . By Lemma 3.15 we have the map

$$R: \operatorname{Harm} \to \tilde{C}^{\infty}(\Sigma, L^3); \qquad f \mapsto \lceil \Phi^f \rceil,$$

where Φ^f satisfies $\Phi^{f*}(\Omega) = L^f$. Let Harm* be the set of elements of Harm which are nowhere anti-holomorphic, and denote by $\operatorname{Imm}_H(\Sigma, L^3)$ the set of elements of $\tilde{C}^{\infty}(\Sigma, L^3)$ whose representatives are conformal spacelike immersion with constant mean curvature H>0 having Gauss images in \mathcal{H}^+ .

THEOREM 3.22. The image of Harm* by R is contained in $Imm_H(\Sigma, L^3)$. Moreover R^* : Harm* $\to Imm_H(\Sigma, L^3)$ is bijective, where R^* is the restriction of R to Harm*.

PROOF. The first statement follows immediately from Lemma 3.16, Corollary 3.18, Lemma 3.19 and Corollary 3.21. Let us prove the bijectivity of R^* . Since the Gauss map of an immersion with constant mean curvature is harmonic [M], we can define the map $\tilde{G}: \operatorname{Imm}_H(\Sigma, L^3) \to \operatorname{Harm}$ by $[\Phi] \mapsto \rho^{-1} \circ \varphi \circ G(\Phi)$. First we shall show that the image of \tilde{G} is contained in Harm*. Assume that $\tilde{G}([\Phi])$ is not a nowhere anti-holomorphic map, i.e. $\Psi = \psi \circ G(\Phi)$ has some point $p \in \Sigma$ such that $\partial \Psi / \partial \xi(p) = 0$. Since the induced metric $\Phi^* \bar{g}$ is given by

$$\Phi^*\bar{g} = \left\lceil \frac{1}{H} \frac{2}{(1-|\Psi|^2)} \left| \frac{\partial \Psi}{\partial \xi} \right| \right\rceil^2 ((d\xi^1)^2 + (d\xi^2)^2)$$

(See [AN].), Φ is degenerate at the point p. (Note that the orientation of **D** in this paper is opposite to the one in [AN]. So the above expression of the metric is slightly different from that in [AN].) This contradicts the assumption that Φ is an immersion. So \tilde{G} maps $Imm_H(\Sigma, L^3)$ into Harm*. We have $\tilde{G} \circ R^* = id$, as is easily derived from Lemma 3.19. So to prove the bijectivity of R^* , it remains to show that \widetilde{G} is injective. Let $[\Phi_1]$, $[\Phi_2]$ be two elements of $\mathrm{Imm}_H(\Sigma, L^3)$ such that $\widetilde{G}([\Phi_1]) =$ $\tilde{G}([\Phi_2])$. Since the Gauss maps and the mean curvatures of Φ_1 and Φ_2 agree, their first and the second fundamental forms must also agree. By the fundamental theorem of differential geometry, there exists a rotational isometry σ of L^3 and a constant vector c of L^3 such that $\Phi_2 = \sigma \circ (\Phi_1 + c)$ and $\sigma(0) = 0$. Combining this and the assumption that $G(\Phi_1) = G(\Phi_2)$, we have $G(\Phi_1) = \sigma(G(\Phi_1))$. Suppose that σ is not the identity. Then since σ is an orientation preserving rotational isometry of L^3 , which fixes $0 \in L^3$ and satisfies $\sigma(\mathcal{H}^+) = \mathcal{H}^+$, σ has at most one fixed point in \mathcal{H}^+ . So $\tilde{G}([\Phi_1])$ is a constant map and, in particular, is an anti-holomorphic map. This contradiction shows that σ must be the identity, and so $\Phi_1 = \Phi_2 + c$, i.e. $[\Phi_1] = [\Phi_2]$. Thus \tilde{G} is injective. Theorem 3.22 has been proved.

4. The Sym-Bobenko formula for Minkowski 3-space.

We shall derive the Sym-Bobenko formula for Minkowski 3-space.

THEOREM 4.1. Let Σ be a simply connected Riemann surface and $f: \Sigma \to SL(2, \mathbb{R})/SO(2)$ a hormonic map. Let $F: \Sigma \to SL(2, \mathbb{R})$ be a lift of f. Let $F(\cdot): (-\varepsilon, \varepsilon) \times \Sigma \to SL(2, \mathbb{R})$, $\varepsilon > 0$, be a smooth map such that

(1) F(0) = F,

(2)

$$\frac{d}{dt}\bigg|_{t=0} \left(F(t)^{-1} \frac{\partial}{\partial \xi} F(t)\right) = -\sqrt{-1}(A\eta_1 + B\eta_2),$$

where $A\eta_1 + B\eta_2 + C\eta_3 = F^{-1} \frac{\partial}{\partial \xi} F$. Then R(f) is given by

$$R(f) = \left[J^{-1} \left\{ -\frac{1}{2H} \left(\left(\frac{d}{dt} \Big|_{t=0} F(t) \right) F^{-1} - Ad(F) \frac{1}{2} \eta_3 \right) \right\} \right].$$

PROOF. Set $[\Phi] = R(f)$. It suffices to show that

(4.2)
$$\frac{\partial \Phi}{\partial \xi} = \frac{\partial}{\partial \xi} \left\{ J^{-1} \left\{ -\frac{1}{2H} \left(\left(\frac{d}{dt} \right|_{t=0} F(t) \right) F^{-1} - Ad(F) \frac{1}{2} \eta_3 \right) \right\} \right\}.$$

Equation (4.2) is equivalent to

$$(4.3) J\left(\frac{\partial \Phi}{\partial \xi}\right) = \frac{\partial}{\partial \xi} \left\{ -\frac{1}{2H} \left(\left(\frac{d}{dt}\Big|_{t=0} F(t)\right) F^{-1} - Ad(F) \frac{1}{2} \eta_3 \right) \right\}.$$

By the definition of R(f) and the property of L^f , the left-hand side of (4.3) is equal to

(4.4)
$$\frac{1}{H} \Lambda^f(\partial) = \frac{1}{H} mAd(F)\sigma_-.$$

On the other hand, -2H times the right-hand side of (4.3) is equal to

$$(4.5) \qquad \frac{\partial}{\partial \xi} \left(\left(\frac{d}{dt} \Big|_{t=0} F(t) \right) F^{-1} \right) - \frac{\partial}{\partial \xi} \left(Ad(F) \frac{1}{2} \eta_3 \right)$$

$$= \left(\partial \left(\frac{d}{dt} \Big|_{t=0} F(t) \right) \right) F^{-1} + \frac{d}{dt} \Big|_{t=0} F(t) \partial (F^{-1}) - Ad(F) \left[F^{-1} \partial F, \frac{1}{2} \eta_3 \right]$$

$$= Ad(F) \left\{ \frac{d}{dt} \Big|_{t=0} (F(t)^{-1} \partial F(t)) \right\} - Ad(F) (A\eta_2 - B\eta_1)$$

$$= Ad(F) \left\{ -\sqrt{-1} (A\eta_1 + B\eta_2) - (A\eta_2 - B\eta_1) \right\} = -2mAd(F) \sigma_-.$$

Combining (4.4) and (4.5), we get (4.3). \square

EXAMPLE 4.6. Let $\tilde{f}: \mathbb{C} \to \mathbb{H}$ be the harmonic map defined by

$$\xi = x + \sqrt{-1}y \mapsto \sqrt{-1} \exp(4y)$$
,

and let $f: \mathbb{C} \to SL(2, \mathbb{R})/SO(2)$ be the harmonic map defined by $f = \rho^{-1} \circ \tilde{f}$. Let $F(\cdot): (-\pi, \pi) \times \mathbb{C} \to SL(2, \mathbb{R})$ be the map defined by

$$(t, x + \sqrt{-1}y) \mapsto \begin{pmatrix} \exp(-\sqrt{-1}\lambda^{-1}\xi + \sqrt{-1}\lambda\overline{\xi}) & 0 \\ 0 & \exp(\sqrt{-1}\lambda^{-1}\xi - \sqrt{-1}\lambda\overline{\xi}) \end{pmatrix},$$

where $\lambda = \exp(\sqrt{-1}t)$. Set H=1. Then $F(\cdot)$ satisfies the conditions of Theorem 4.1, and R(f) is given by

$$R(f) = \left[x + \sqrt{-1}y \mapsto {}^{t} \left(2x, \frac{\sinh 4y}{2}, \frac{\cosh 4y}{2} \right) \right].$$

This is a hyperbolic cylinder of mean curvature 1 in L^3 .

EXAMPLE 4.7. Let $\tilde{f}: \mathbf{H} \to \mathbf{H}$ be the identity map, and let $f = \rho^{-1} \circ \tilde{f}: \mathbf{H} \to SL(2, \mathbf{R})/SO(2)$. Let $F(\cdot): (-\pi, \pi) \times \mathbf{H} \to SL(2, \mathbf{R})$ be the map defined by

$$(t, x + \sqrt{-1}y) \mapsto \begin{pmatrix} \sqrt{y} & x/\sqrt{y} \\ 0 & 1/\sqrt{y} \end{pmatrix} \begin{pmatrix} \cos(1/2)t & \sin(1/2)t \\ -\sin(1/2)t & \cos(1/2)t \end{pmatrix}.$$

Set H=1. Then $F(\cdot)$ satisfies the conditions of Theorem 4.1, and R(f) is given by

$$R(f) = \left[x + \sqrt{-1}y \mapsto \left(\frac{x}{y}, -\frac{1}{2y} + \frac{y}{2} + \frac{x^2}{2y}, \frac{1}{2y} + \frac{y}{2} + \frac{x^2}{2y} \right) \right].$$

This is a hyperboloid of mean curvature 1 in L^3 .

References

- [AN] K. AKUTAGAWA and S. NISHIKAWA, The Gauss map and spacelike surfaces with prescribed mean curvature in Minkowski 3-space, Tôhoku Math. J. 42 (1990), 67–82.
- [DPW] J. DORFMEISTER, F. PEDIT and H. Wu, Weierstrass type representation of harmonic maps into symmetric spaces, preprint.
- [DH] J. DORFMEISTER and G. HAAK, Meromorphic potentials and smooth CMC surfaces, preprint.
- [GO] M. A. GUEST and Y. OHNITA, Actions of loop groups, deformations for harmonic maps and their applications, Sugaku 46 (1994), 228-242 (in Japanese).
- [K] K. Kenmotsu, Weierstrass formula for surfaces of prescribed mean curvature, Math. Ann. 245 (1979), 89-99.
- [M] T. K. MILNOR, Harmonic maps and classical surface theory in Minkowski 3-space, Trans. Amer. Math. Soc. 280 (1983), 161–185.

Present Address:

MATHEMATICAL INSTITUTE, TOHOKU UNIVERSITY,

SENDAI, 980 JAPAN.

e-mail: tetsu@math.tohoku.ac.jp