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1. Introduction.

Recently, Dorfmeister, Pedit and Wu discovered a Weierstrass-type representation
for harmonic maps from a Riemann surface into symmetric spaces [DPW]. In their
formula, the Weierstrass data are defined as meromorphic potentials, i.e. meromorphic
1-forms on a Riemann surface with values in an infinite-dimensional loop algebra. They
regarded a harmonic map as a map taking values in a twisted loop group and showed
that every harmonic map from a Riemann surface into a symmetric space is obtained
by integrating the potential. In a related paper, Dorfmeister and Haak have constructed
constant mean curvature surfaces by applying the Sym-Bobenko formula [DH] to the
loop-group-valued maps given by integrating the potentials.

On the other hand, Kenmotsu discovered a representation formula for immersions
with prescribed mean curvature from a simply connected Riemann surface into Euclidean
3-space. In particular, he obtained a formula for an immersion with constant mean
curvature whose Gauss map is a given harmonic map [K]. And Akutagawa and
Nishikawa constructed the Minkowski 3-space version of the above formula [AN].

Motivated by these results, the present paper has two aims. The first is to establish
a natural correspondence between the following two spaces: the space of conformal
spacelike immersions with constant mean curvature from a simply connected Riemann
surface 2 into Minkowski 3-space, and that of nowhere anti-holomorphic harmonic
maps from X into the Poincaré half plane, regarded as the riemannian symmetric space
SL(2, R)/SO(2). The second is to prove the Lorentzian version of the Sym-Bobenko
formula and apply it to construct spacelike immersions with constant mean curvature.

In section 2 we shall first prepare notations used in the later sections and recall
the identification of the riemannian symmetric space SL(2, R)/SO(2) with the unit disk
equipped with the Poincaré metric and also with the Poincaré half plane. In section 3
we shall define a s/(2, R)-valued 1-form A/ on a Riemann surface X associated to a
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smooth map f: 2 —SL(2, R)/SO(2) and show that the harmonicity of f is equivalent
to the d-closedness of A’/. By using this fact, we shall establish the correspondence
between the two spaces above-mentioned. In section 4 we shall prove the Sym-Bobenko-
type formula and give examples of spacelike immersions with constant mean curvature.

The author thanks Professors S. Nishikawa and S. Nayatani for their advice and
encouragement.

2. Preliminaries.

We begin with fixing our terminology and notation. Let L3=(R3, j§) denote
Minkowski 3-space. Here § is the flat Lorentzian metric of signature (4, +, —). In
terms of the canonical coordinates (x', x2, x®) of R?, the metric g, denoted also by ¢ , >,
is expressed as g=(dx")? +(dx?)*> —(dx>)?. Let X be a Riemann surface and &: X~ — L3
a smooth map from X into L3. Let £ be the open subset of X defined by

F={peZX | &*7is positive definite at p} .

We call &: X — L3 a spacelike immersion if =2. Throughout this paper, we assure
that @ is weakly conformal, namely,

P*g=A%d¢' ®d¢' +dE* ®dE?),  1z0,

where £ =¢1 4+ \/—_1 &2 is a local complex coordinate on X. Let 7 be the first fundamental
form of the immersion ® g, that is, the riemannian metric on £ obtained by restricting
d*j to .

We define a local Lorentzian frame field (e,, e,, e;) adapted to @|z as follows. Let
D(E)=(DP(EY, &3), D3(EY, £2), D3(EY, £2)) be a local expression of the smooth map &
with respect to a local complex coordinate ¢ =¢&'+./—1¢2 on £. For i=1, 2, let

1 o 1<acpl 0?2 6453)
2.1 e=——— = Y ———— .
A OEF A\ 9&' 0E'C BE!

We define e;=e¢, x e,. Here the exterior product v x w of two vectors v="(x,, x,, x3),
w="yy, y2, y3) in L? is defined by

UVXW="(X3Y,— X33, X1¥3—X3V1, X1 Y2 —X2)1) (cf. [AN]).

Let II denote the second fundamental form of &|z. We denote the covariant
differentiation in L* by D. If we set

2
Q= —<Dy0, e3>, H= —?<Daa-, e,

II is expressed as

= Qd¢ ® dé +(1/2)HA?dE ® dE + (1/2)HAdE ® dé + QdE ® dE ,
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where 8 =09/0¢ and 0=08/0¢. Notice that H is nothing but the mean curvature of the
immersion.

Next we define the Gauss map G(®): £ » # L3 of 2 |s by pr— es(p), where # is
the unit pseudosphere defined by # = {!(x, y, z)e L* | x> +y* —z*= —1}.

Next we recall the relation among various models of the hyperbolic plane defined by

dp®dp+dqg®d
Gp+vf—beclq>0} pC>pq q q)

Let #* be the upper unit pseudosphere in L? defined by #* = {!(x, y, z)e # | z>0}.
Let y: # " >D be the stereographic projection from % into the unit disk
D={xeC||ax|<1} given by

y
14z

x
‘x, y,2) > ———+./ —1
x, », 2) "

Let y: D —>H be the Cayley transform, that is, the map given by

-/ —1

and ¢: #* > H the map defined by p=y-y. Let J be the map from L? to s/(2, R)
defined by

(%, y,2) = (x/2m +(y/2n2+ (/205 5

_(1 0 > _(() —1) _(0 —1>
'71- 0 _1 ’ ’12— _1 0 s ?’3— 1 0 .

By a simple calculation, we see that J satisfies

where

J(ry xry)=[Jry), Jry)] for any two vectors r,, r, in L3,

where [ , ] denotes the Lie bracket of s/(2, R) and x is the exterior product defined
as above.
Now we have the natural bijection p: SL(2, R)/SO(2) —H given by

(a b)SO(Z)r—» a/—1+b .
c d c/—1+d

The canonical metric on SL(2, R)/SO(2) as a riemannian symmetric space coincides with
the pull back

ﬁ<@®@+@®@>
2

q
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of the Poincaré metric by p.

PROPOSITION 2.2. For any element g in SL(2, R), we have the following identity

(PoJ“(Ad(g) % n3>=p°n(g) :
where T is the natural projection from SL(2, R) to SL(2, R)/SO(2).

PROOF. Setting g=(a z>, we have
c

Ad(g)—;»n3=(ac+bd)—;—n1+ %(a2+b2—c2—d2)%n2+ —é—(a2+b2+c2+d2)%173 .

So J~!(Ad(g)4n5) lies in s *. Mapping this point of #* by ¥, we get

_ 1 2(ac+bd) a’+b>—c?—d?
oJ 7 Ad(g) = = V=1 . .
v ( ©) 2 "3) 2+a*+b*+c?+d? 24+a?+b24+c?+4d?
By a straightforward computation, y o pon(g) is equal to the right-hand side of this
formula. This completes the proof of Proposition 2.2. [J

3. s/(2, C)-valued 1-forms on a Riemann surface.

Let 2 be a Riemann surface and f: ~ — SL(2, R)/SO(2) a smooth map. We define
an s/(2, C)-valued 1-form w/ on X as follows. Take any point p of X, and let (U(p), &)
be a local coordinate system around p so that there exists a local lift F: U(p)— SL(2, R).
Let A, B, C be complex-valued smooth functions on U(p) such that

0
(3.1) A771+B’72+C’73=F_16—€‘F-
Let w” be the s/(2, C)-valued 1-form on X defined by
(3.2) (0),=m(p)Ad(F(p))o - ® (dE),,

where the complex-valued smooth function m and the element o _ of s/(2, C) are defined
respectively by

(3.3) m=./—14—B, a_=%(111—«/—1n2).

Let w denote the map fe C*(Z, SL(2, R)/SOQ2))— w’ eI'(sl(2, C)® T¥'°X).
LEMMA 3.4. The map w is well-defined.

PrROOF. It is easy to check that the definition of w is indepednent of the choice
of coordinate system. We verify that the definition of w is independent of the choice
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of the lift F. To do this, let F be another lift of f, 1.e. F=Fk, wehre
k=<cos9 —sin9>
sinf cos6
is a map from U(p) to SO(2). Let A, B, C and  be the corresponding functions on
U(p). Setting p=ev" 1%, we get
m=u’m, Ad(Fyo _=p~2A4d(F)o _ .
Thus we see that
mAd(Fo_ @ dé=mAd(F)o_ Q d¢ .
This completes the proof of Lemma 3.4. [

Let A/ =w’/ 4+ w”, twice the real part of w”/, and A the map fe C*(Z, SL(2, R)/
SOQ))— A’ e [(sI2, R)® TL).

LeMMA 3.5. Let f be a smooth map from X to SL(2, R)/SO(2). Then f is harmonic
if and only if dAY =0.
Proor. To start the proof, we quote the following

THEOREM 3.6 [GO]. Let G/K be a symmetric space and n: G — G/K the natural
projection. We denote the Lie algebras of G and K by g and ¥ respectively, and let g=T® p
be the Cartan decomposition. Let F: ¥ — G be a smooth map from a Riemann surface X
into G, and let a=0,+o, =F~ 'dF where a, and a, are ¥- and p-valued. Then noF is
harmonic if and only if

(3.7 ooy +[agAai]=0,
where oy is the (1, 0)-component of o,.

We apply this theorem to G=SL(2, R) and K=S0(2). Notice that f=R#n,; and
p=Rzn; @ Ry,. Then by substituting (3.1), equation (3.7) becomes the system

9 psca,
o¢

(.8) )
o¢

By a direct calculation,
(3.9) dAS = —(/— 14— Bs—2./—1mC)Ad(F)o _ @ dé A dE

+(—y/—14;,— B +2/~ 1hC)Ad(F)o . @ d¢ A dE ,

where 6, =4(n, +./— 1n,). If f is harmonic, then equation (3.8) holds, and substituting
this into (3.9), we get dA”/ =0, proving the “only if” part of the proposition. To prove
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the “if”” part, we consider the Maurer-Cartan equation
do+ 1 [0A6]=0,
where 0 is the left Maurer-Cartan form of SL(2, R). Since a=F~1dF=F*#), we get
(3.10) do+ %[a/\a]=0.

Taking the p-part of this, we see that

3.11) doay +[ogAna,;]=0.

If we use A, B, and C, this unravels to become

{Ag—l¢+23C_—ZFC=O ,
Bs—B,—2AC+2AC=0.

On the other hand, since dA” =0, it follows from (3.9) that

3.13) {1/ 14;—Bz—2,/—1mC=0,
' —/ 14— B,+2./—1mC=0.

Solving equations (3.12) and (3.13), we get (3.8). We have completed the proof of
Lemma 3.5. O

(3.12)

Let H be a fixed positive constant. For a smooth map f: X — SL(2, R)/SO(2), we
define L3-valued 1-form L/ on X by

S =J 1 _1_ S )
(3.14) Li(x)=J (HA(X) :

where X is an arbitrary tangent vector to X.

LeMMA 3.15. Let X be a connected, simply connected Riemann surface and
f:Z—>SL2,R)/SO?) a harmonic map. Then there exists a smooth map ®/: X — L3,
unique up to an additive constant, such that

(@)=L,
where Q="(dx, dy, dz).
PROOF. Since f is harmonic, we have dA” =0 and so dL' =0 by Lemma 3.5. Thus

we can integrate L/ to get a smooth map &/ : X — L3, determined up to an additive
constant, such that (#/)*(Q)=L/. O

From this point on, we shall always assume that our Riemann surface X is connected
and simply connected.
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LemMmA 3.16. Let f: X — SL(2, R)/SO(2) be a harmonic map and ® as above. Then
the pull back (®7)* g is given by

2mm

4m(“®£4£®ﬁ%

gpf*g=

where m is defined as in (3.3).
PROOF. Set 0=0/0¢, 0=0/0¢. The d¢ ® dé component of I is given by
1 2mm

(L0, o[F >=<7{- Af(a),%Af(5)> -

sl

where < , D>y is the Ad-invariant inner product of s/(2, R) given by
N Nda=M2 N2Dg=—N3, N309=4, My, 'ij>sz=0 if i#j.
Similary we can compute other components, getting the desired formula. [J

ProrosITION 3.17. Let f: ¥ — SL(2, R)/SO(2) be a smooth map. Take any point
p of Z, and let (U(p), &) be a coordinate neighborhood of p such that f has a local lift

(%), b(é)) _

F: U(p) - SL(22, R);
(p) = SH )5H<c(:),d(¢)
Let ¥: X —H be the map defined by

Y=pof.

Then ¥ ,(0/0&) is given by
0 0 0
v, (~>= {m(B' —/ =187} —+{(/ =14+ B(—B' —/ = 1B*)} ——
o0& ow ow
on U(p), where m, A, and B are defined as in (3.1) and (3.3), w is the complex coordinate

of H, and

A=) ded
(d?+c?)? (d? +c?)?

In particular, the equation 0¥ /0&(p)=0 holds if and only if m(p)=0.

Bl

PrOOF. A straightforward computation. []

COROLLARY 3.18. Let f and &' be as in Lemma 3.15. Let A" be the subset of £
defined by /" ={peX|0¥/0E(p)#0}, where ¥ =po f. Then ="

ProoF. This follows from the definition of £, Lemma 3.16, and Proposition
3.17. O

LemMMA 3.19. Let f and &7 be as in Lemma 3.15. Then the image of the Gauss
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map G(®7): 5 — # is contained in # ™ and
@-G(@)=pof on £.

ProOOF. Take any point pe £, and let (U(p), €)= £ be a coordinate neighborhood
of p such that f has a local lift F: U(p)— SL(2, R). We can choose

H
31=‘p£<

2) e )
2 /mm 0& ’ 2 *2mn’1552

as an orthonormal frame on U(p). By definition, the value of the Gauss map G($”) at
p is given by

G(P”)(p)=es(p)=e1(p) x e5(p)
ol ) 3]
H 2 /mm O&! H 2/ mm 0&*

=J" 1<Ad(F(p» 5 '13) .

Using Proposition 2.2, G(®/ ) p) lies in o * and
<poG<d>f)(p)=<po<r “AdFp) n))

=pon(F(p)=p-f(p). =

LEMMA 3.20. Let &' be as in Lemma 3.15, and II the second fundamental form of
the immersion ®/|g: £ — L3. Then II is given by

_ 2(4*+B?) 2mm 2mm 2(4%*+ B?)

n d€®d€+—H—d€®d5+Tdf®dé+

dEQ@dE,
where A, B, and m are defined as in (3.1) and (3.3).
PROOF. Set ®=®’. The d¢é ® dé component of II is given by

_ 24>+ B?)

1
—(Dy®,d), e5> = —<ﬁ A @), Ad(ﬂ%n3> =

sl
The other components can be computed in a similar way, and we get the desired
formula. O

COROLLARY 3.21. Let &7/ be as in Lemma 3.15. Then the mean curvature of
&/ |g: £ L3 is equal to the constant H.

PROOF. Let I=®/*j|s. The mean curvature of ®/|y is given by (1/2)trace/(II).
Using Lemma 3.16 and Lemma 3.20, we get (1/2)trace,(Il)=H. []
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Let Harm denote the space of harmonic maps from X into SL(2, R)/SO(2), and let
C=(Z, L) be the space of equivalence classes of maps from X into L3, where two
elements @,, @,: ¥ — L3 are equivalent if &, =®, + ¢ for some constant vector ¢ in L3.
By Lemma 3.15 we have the map

R: Harm - C>(Z, L% ; [ [®7],

where ¢/ satisfies ®/*(2)=L’. Let Harm* be the set of elements of Harm which are
nowhere anti-holomorphic, and denote by Immy(Z, L3) the set of elements of C*(Z, L)
whose representatives are conformal spacelike immersion with constant mean curvature
H >0 having Gauss images in # .

THEOREM 3.22. The image of Harm* by R is contained in Immy(Z, L3). Moreover
R*: Harm* - Immy(Z, L3) is bijective, where R* is the restriction of R to Harm*.

Proor. The first statement follows immediately from Lemma 3.16, Corollary 3.18,
Lemma 3.19 and Corollary 3.21. Let us prove the bijectivity of R*. Since the Gauss
map of an immersion with constant mean curvature is harmonic [M], we can define
the map G: Immy(Z, L?)— Harm by [¢]— p ~'o@oG(P). First we shall show that the
image of Gis contained in Harm*. Assume that G([#])is not a nowhere anti-holomorphic
map, i.e. ¥ =y -G(®P) has some point pe X such that ¥/0&(p)=0. Since the induced
metric $*g is given by

1 2 oY
ool 2
H 1-|¥1) | &

(See [AN].), @ is degenerate at the point p. (Note that the orientation of D in this
paper is opposite to the one in [AN]. So the above expression of the metric is slightly
different from that in [AN].) This contradicts the assumption that & is an im-
mersion. So G maps Immg(Z, L?) into Harm*. We have GoR*=id, as is easily de-
rived from Lemma 3.19. So to prove the bijectivity of R*, it remains to show that
G is injective. Let [@,], [©,] be two elements of Immg(Z, L3) such that G([®,])=
G([®,]). Since the Gauss maps and the mean curvatures of ¢, and @, agree, their first
and the second fundamental forms must also agree. By the fundamental theorem of
differential geometry, there exists a rotational isometry ¢ of L3 and a constant vector
¢ of L? such that ®,=0(®,; +¢) and 6(0)=0. Combining this and the assumption
that G(®@,)=G(®,), we have G(®,)=0c(G(®,)). Suppose that ¢ is not the identity. Then
since ¢ is an orientation preserving rotational isometry of L3, which fixes 0e L? and
satisfies (¢ *)=s#", ¢ has at most one fixed point in #*. So G([®,]) is a constant
map and, in particular, is an anti-holomorphic map. This contradiction shows that ¢
must be the identity, and so &, =&, +c, i.e. [#,]=[P,]. Thus G is injective. Theorem
3.22 has been proved. [J

2
] ((d¢")? +@¢?))
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4. The Sym-Bobenko formula for Minkowski 3-space.

We shall derive the Sym-Bobenko formula for Minkowski 3-space.

THEOREM 4.1. Let X be a simply connected Riemann surface and f: ¥ — SL(2, R)/
SO(2) a hormonic map. Let F: X —SL(22,R) be a lift of f. Let F(*): (—¢&,e)x X —
SL(2, R), >0, be a smooth map such that

(1) F)=F,

0))

d

4 1 0 )__ -
> ,=0<R') og T )= —v/=1tn, +Bny),

where An, + Bn,+ Cny=F"'-%F. Then R(f) is given by

| ({2 ~1_ 44 L
ey (4] o -san 1))

PrOOF. Set [@]= R(f). It suffices to show that

o _ o (o .f 1 ((4 g L
et (] o) -aae )l

Equation (4.2) is equivalent to
op\ 0 ) 1 i -1 1
@3 J( o8 ) ot { 2H (( di ,=0H’)>F 4403 "3)}’

By the definition of R(f) and the property of L, the left-hand side of (4.3) is equal to

(4.4) % A7(9)= % mAd(F)o_ .

On the other hand, —2H times the right-hand side of (4.3) is equal to

0 d —1\_ 9 1
9 g (] o))z (sam g n)

(A4 .. d

-((5 ,=o””>)F ta

— Ad(F) {gt—

F(t)o(F~)— Ad(F) [F‘ 19F, % '73]

t=0

(Ft)~ 151‘(1))}—x‘iaf(F)(z‘iﬂz —Bn,)

t=0

=Ad(F){ —/ —1(An, + Bn,)—(An,— Bn,)} = —2mAd(F)o _ .
Combining (4.4) and (4.5), we get (4.3). [
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EXAMPLE 4.6. Let f: C—H be the harmonic‘map defined by

¢=x+./—1ly— . /—1exp@dy),
and let f: C—SL(2, R)/SO(2) be the harmonic map defined by f=p 'of Let
F+): (—n, n)x C— SL(2, R) be the map defined by

—/—=141"1 /—10E

(t,x+\/-——1y)l—>(exP( 14 f+ A.f) 0 _),
0 exp(/ — 147 1¢—/—11&)

where A=exp(,/—1¢). Set H=1. Then F(-) satisfies the conditions of Theorem 4.1,
and R(f) is given by

t inh4 4
R(f)=[x+ Ty <2x, sm2 Y cos; y)]
This is a hyperbolic cylinder of mean curvature 1 in L3.
ExAMPLE 4.7. Let f: H—»H be the identity map, and let f=p 'of: H—
SL(2, R)/SOQ2). Let F(*): (—=n, t) x H— SL(2, R) be the map defined by
i t
& x+/—T) s («/ Y x// y)( co's(1/2)t sin(1/2) )
0 1/\/ y —sin(1/2)t cos(1/2)t
Set H=1. Then K -) satisfies the conditions of Theorem 4.1, and R(f) is given by
Y x 1 y x?2 1 y x? )]
Rf)=|x+/—ly—> = —+ 4+, —+—+—}|.
m[ y(y 3 2 22y 2 2y
This is a hyperboloid of mean curvature 1 in L3.
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