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On the Greatest Regular Closed Subalgebras and the Apostol
Algebras of $L^{p}$-Multipliers Whose Fourier Transforms

Are Continuous and Vanish at Infinity
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Niigata University

(Communicated by S. Suzuki)

Abstract. For certain algebras of continuous functions, the relationship between the greatest regular
subalgebras, the algebras which consist of functions of which corresponding multiplication operators are
decomposable, and the sets of functions with natural spectra are studied. In particular, spectral properties of
certain Fourier multipliers are considered.

1. Introduction.

Let $B$ be a commutative Banach algebra. Inoue-Takahasi [6] and Neumann [12]
independently proved that there is the greatest regular closed subalgebra Reg $B$ of $B$ .
The existence for the case that $B$ is semi-simple and unital had been discovered by
Albrecht [1]. Given a Banach space $X$, a bounded linear operator $T$ on $X$ is called
decomposable if for every open covering $\{U, V\}$ of the complex plane $C$, there exists
T-invariant closed linear subspaces $X_{U}$ and $X_{V}$ of $X$ such that $\sigma(T|X_{U})\subset U,$ $\sigma(T|X_{V})\subset V$

and $X_{U}+X_{V}=X$, where $\sigma(\cdot)$ denotes the spectrum of an operator. A subset Dec $B$ of
$B$ consists of $b\in T$ for which the corresponding multiplication operator $T_{b}$ on $B$ defined
by $T_{b}(a)=ab$ for $a\in B$ is a decomposable operator on $B$ . Neumann [11] proved that if
$B$ is semi-simple, then $b\in DecB$ if and only if the Gelfand transform $\check{b}$ of $B$ is hull-kemel
continuous on the maximal ideal space $\Phi_{B}$ of $B$ . It follows that Dec $B$ is a closed subal-
gebra of $B$ and $RegB\subset DecB$ . The algebra Dec $B$ is called the Apostol algebra of $B$ and
dates back to classical work of Apostol [2]. The author does not know for which
$B$ the identity Reg$B=DecB$ holds. Laursen and Neumann [10] studied the case
where $B=M_{0}(A)$ , where $M_{0}(A)$ is a closed subalgebra of the multiplier algebra $M(A)$

of a semi-simple commutative Banach algebra $A$ which consists of $T\in M(A)$ such that
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the restriction of the Gelfand transform $I$ in $M(A)$ to $\Phi_{A}$ vanishes at infinity in the
Gelfand topology of the maximal ideal space $\Phi_{A}$ of $A$ . We denote

$M_{00}(A)=$ { $T\in M(A):I=0$ on $\Phi_{M(A)}\backslash \Phi_{A}$ }.
THEOREM (Laursen and Neumann). Let $A$ be a semi-simple regular commutative

Banach algebra. Then

Reg $M_{0}(A)=DecM_{0}(A)=M_{00}(A)$ .
Moreover if $\Phi_{A}$ is scattered, then

$M_{00}(A)=$ { $T\in M_{0}(A):\sigma(T)$ is countable} $=\{T\in M_{0}(A):\sigma(T)=\overline{I(\Phi_{A})}\}$ .

Let $G$ be a locally compact abelian group with dual group $\hat{G}$ . For $1\leq p<\infty,$ $L^{p}(G)$

will denote the usual $L^{p}$ space with respect to the Harr measure on $G$ . Let $M_{p}(G)$

designate the algebra ofbounded operators on $L^{p}(G)$ which commute with all translations
on $L^{p}(G)$ . The algebra $M_{p}(G)$ is called the $L^{p}$-multiplier and is a commutative Banach
algebra which is isometric and isomorphic to the measure algebra $M(G\underline{)}$if $p=1[16]$ .
If $T\in M_{p}(G)$ , then there exists a unique function $\hat{T}\in L^{\infty}(\hat{G})$ such that $Tf=\hat{T};$, for all
integrable simple functions $f$ on $G$, where 1denotes the Fourier transform of $f$ We
also say that $\hat{T}$ is the Fourier transform of $T\in M_{p}(G)$ . We denote by $C_{0}M_{p}(G)$ those
multipliers $T\in M_{p}(G)$ for which $\hat{T}$ is continuous and vanishes at infinity on $\hat{G}$ . If$p=1$ or
$G$ is compact, then $L^{p}(G)$ is a semi-simple commutative algebra and $M_{p}(G)$ coincides
with the multiplier algebra $M(L^{p}(G))$ of $L^{p}(G)$ . Since the maximal ideal space of $L^{p}(G)$

is $\hat{G}$, we see that

$M_{0}(L^{p}(G))=C_{0}M_{p}(G)$ .

By a theorem of Laursen and Neumann we see that

Reg $M_{0}(L^{p}(G))=DecM_{O}(L^{p}(G))=M_{00}(L^{p}(G))$

if $p=1$ or $G$ is compact. Moreover they coincide with

{ $T\in M_{0}(L^{p}(G)):\sigma(T)$ is countable}
and

$\{T\in M_{0}(L^{p}(G)):\sigma(T)=\overline{\hat{T}(\hat{G})}\}$

if $G$ is compact. If $1<p<\infty,$ $p\neq 2$ and if $G$ is not compact, then $L^{p}(G)$ is not a
commutative Banach algebra under the convolution. Then a theorem of Laursen and
Neumann cannot be directly applied for $L^{p}(G)$ and $C_{0}M_{p}(G)$ .

In this paper, we show that Reg$M=DecM$ for certain Banach algebras $M$ of
continuous functions on locally compact Hausdorff spaces Y. As a consequence of the
result we show that Reg $C_{0}M_{p}(G)$ coincides with Dec $C_{O}M_{p}(G)$ for any locally compact
abelian group $G$ and $ 1\leq p<\infty$ . We also consider the case where $Y$ is scattered.
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2. Spectra of continuous functions.

For a commutative Banach algebra $B$ and $b\in B,\check{b}wi11$ denote the Gelfand transform
of $b,\check{B}=\{\check{b}:b\in B\}$ and $\Phi_{B}$ the maximal ideal space for $B$ . For an element $b$ in $B$, we
denote the spectrum of $b$ in $B$ by $sp(b, B)$ . Let $Y$ be a locally compact Hausdorff space.
The algebra of all complex-valued continuous functions which vanish at infinity on $Y$

will be denoted by $C_{0}(Y)$ . Let $M$ be a commutative Banach algebra included in $C_{0}(Y)$

which strongly separates the points in $Y$, that is, $M$ separates the points in $Y$ and
ker $ M=\{y\in Y:m(y)=0, \forall m\in M\}=\emptyset$ . The original norm for $M$ is denoted by $\Vert\cdot\Vert_{M}$ .
On the other hand, for a subset $K$ of $\Phi_{M},$ $\Vert\cdot\Vert_{\infty\langle K)}$ stands for the uniform norm on $K$.
For a point $y\in Y$, we denote

$L_{y}=$ { $p\in\Phi_{M}$ : $\check{m}(p)=m(y)$ for $\forall m\in RegM$ } ,

$L_{\infty}=$ { $p\in\Phi_{M}$ : $\check{m}(p)=0$ for $\forall m\in RegM$}.
Let $Ns(M)$ designate the set of functions with natural spectra, that is,

$Ns(M)=\{m\in M : sp(m, M)=\overline{m(Y)}\}$ .
We also denote

$M^{\prime}=$ { $m\in M:\check{m}|L_{y}$ is constant for $\forall y\in Y,\check{m}|L_{\infty}=0$}.
Then $M^{\prime}$ is a closed subalgebra of $M$ since $\Vert\check{m}\Vert_{\infty\langle\Phi_{M})}\leq\Vert m\Vert_{M}$ , and contains Reg $M$. By
a theorem of Neumann [11] we see that

Reg $M\subset DecM\subset Ns(M)$ .
THEOREM 2.1. Let $Y$ be a locally compact Hausdorff space and $M$ a commutative

Banach algebra included in $C_{0}(Y)$ which strongly separates the points in Y When $Y$ is
compact we assume $1\in M$. Suppose that Reg $M$ is dense in $C_{0}(Y)$ . Ifa subset $S$ of $Ns(M)$
contains RegM and is closed under addition, then RegM $=S$. In particular, Reg$M=$
Dec $M=M^{\prime}$ .

PROOF. We first consider the case where $Y$ is compact. In this case $ L_{\infty}=\emptyset$ since
$1\in M$. Let $x$ and $y$ be a pair of distinct points in Y. Then $ L_{x}\cap L_{y}=\emptyset$ since

$L_{a}=\bigcap_{m\in RegM}\check{m}^{-1}(m(a))$

for every $a\in Y$ and Reg $M$ separates the points in Y. Let $\Phi_{M}$ be the maximal ideal space
of $M$. Then

$\Phi_{M}=\bigcup_{x\in Y}L_{x}$ .

Suppose not. Choose $p\in\Phi_{M}\backslash \bigcup_{x\in Y}L_{x}$ . Put $J=\{m\in RegM:\check{m}(p)=0\}$ . Since $1\in RegM$,
$J$ is a proper ideal of Reg$M$. There exists a maximal ideal $\tilde{J}$ of RegM with $J\subset\tilde{J}$. Since
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the maximal ideal space $\Phi_{R\epsilon gM}$ of Reg $M$ coincides with $Y$, there exists $a\in Y$ such that

$\tilde{J}=\{m\in RegM:m(a)=0\}$ .
There exists $m_{p}\in RegM$ such that $\check{m}_{p}(p)\neq m_{p}(a)$ for $p\in\Phi_{M}\backslash L_{a}$ . Since $1\in RegM$ we may
assume $\check{m}_{p}(p)=0$ , so $m_{p}\in J\subset\tilde{J}$. We have $m_{p}(a)=0$ , which is a contradiction. We have
just proved that $\Phi_{M}=\bigcup_{x\in Y}L_{x}$ .

Next we prove $S\subset M^{\prime}$ . Suppose that $m_{S}\in S\backslash M^{\prime}$ . Then the set $\check{m}_{S}(L_{a})$ contains at
least two points for some point $a\in Y$, so there exists $p\in L_{a}$ such that $\epsilon=|\check{m}_{S}(p)-m_{S}(a)|/3$

is positive. Since Reg $M$ is dense in $C_{0}(Y)$ we can choose $m_{\epsilon}\in RegM$ which satisfies the
inequality $\Vert m_{S}-m_{\epsilon}\Vert_{\infty(Y)}<\epsilon$ . Since $RegM\subset S$ and $S+S\subset S\subset Ns(M)$ , we have
$m_{S}-m_{\epsilon}\in Ns(M)$ . Thus $(m_{S}-m_{\epsilon})^{\prime}(\Phi_{M})\subset\{z\in C:|z|<\epsilon\}$ . Since $m_{\epsilon}\in RegM$ we have
$\check{m}_{\epsilon}(p)=m_{\epsilon}(a)$ , so the inequalities

$|(m_{S}-m_{\epsilon})^{\prime}(p)|\geq|\check{m}_{S}(p)-m_{S}(a)|-|m_{S}(a)-m_{\epsilon}(a)|>2\epsilon$

hold, which is a contradiction.
Note that $M^{\prime}$ is a closed subalgebra of $M$. We also see that $M^{\prime}\subset Ns(M)$ since

$\Phi_{M}=\bigcup_{x\in Y}L_{x}$ and $sp(m, M)=\check{m}(\Phi_{M})$ for $m\in M$. By a simple calculation we have
$sp(m, M^{\prime})=sp(m, M)$ for every $m\in M^{\prime}$ , so $sp(m, M^{\prime})=m(Y)$ for every $m\in M^{\prime}$ . We show
that the maximal ideal space $\Phi_{M^{\prime}}$ of $M^{\prime}$ coincides with $Y$. Let $m_{1},$ $\cdots,$ $m_{n}\in M^{\prime}$ be a
corona data, that is, $\sum|m_{i}|>0$ on Y. Then there are functions $h_{1},$ $\cdots,$ $h_{n}\in C_{0}(Y)$

such that $\sum_{i=1}^{n}m_{i}h_{i}=1$ on Y. Sinoe Reg $M$ is dense in $C_{o}(Y)$ and Reg $M\subset M^{\prime}$ we
can choose functions $u_{1},$ $\cdots,$ $u_{n}\in M^{\prime}$ which satisfies the inequality

$|\sum_{i=1}^{n}m_{i}u_{i}-1|<1/2$

on Y. Put $F=\sum_{i=1}^{n}m_{i}u_{i}$ . Then $F\in M^{\prime}$ , so $sp(F, M^{\prime})=F(Y)$ . Thus $F^{-1}\in M^{\prime}$ . Put
$g_{1}=u_{1}F^{-1},$ $\cdots,$ $g_{n}=u_{n}F^{-1}$ . Then $g_{1},$ $\cdots,$ $g_{n}\in M^{\prime}$ is a corona solution, that is,
$\sum_{i=1}^{n}m_{i}g_{i}=1$ . It follows that $\Phi_{M’}=Y$. (Suppose that $p\in\Phi_{M’}\backslash Y$. For every $y\in Y$ there
is a function $f_{y}\in M^{\prime}$ with $f_{y}(p)=0$ and $f_{y}(y)=1$ . Since $\Phi_{M’}$ is compact there is a finite
number of $y_{1},$ $\cdots,$ $y_{n}\in Y$ with

$\sum_{i=1}^{n}|f_{y_{i}}|>1/2$

on Y. Thus there are functions $g_{1},$ $\cdots,$ $g_{n}$ such that

$\sum_{i=1}^{n}g_{i}f_{y\iota}=1$

on $Y$, which is a contradiction since $f_{y_{i}}(p)=\cdots=f_{y_{n}}(p)=0.)$

Let $K$ be a closed subset of $Y$ and $x\in Y\backslash K$. Then there is $m\in RegM$ such that
$m(K)=0$ and $m(x)=1$ . Since Reg $M\subset M^{\prime}$ and $\Phi_{M^{\prime}}=Y$ we see that $M^{\prime}$ is regular,
henceforce $M^{\prime}=RegM$. It follows that Reg $M=S=M^{\prime}$ . Since $M$ is semi-simple and $y$
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is hull-kernel dense in $\Phi_{M}$ , we have $RegM\subset DecM=\{m\in M:\check{m}$ is hull-kernel continuous
on $\Phi_{M}$ } $\subset Ns(M)$ by a theorem of Neumann [12]. Since Dec $M$ is closed under addition
we have Reg$M=DecM$.

We next consider the case where $Y$ is not compact. Let $M[e]$ be the unitalization
of $M$. For a subset $P$ of $M$, we denote by $P[e]$ the directed sum of $P$ and the space of
constant functions on Y. We denote by $\overline{\Phi_{M}}=\Phi_{M}\cup\{\infty\}$ the one point compactification
of $\Phi_{M}$ . Then we may suppose that the one point compactification $\overline{Y}$ of $Y$ is a closed
subset of $\overline{\Phi_{M}}$ . It is well-known that the maximal ideal space $\Phi_{M[e]}$ of $M[e]$ coincides
with $\overline{\Phi_{M}}$ (cf. [9]). It is easy to see that Reg$M[e]=(RegM)[e]$ and $Ns(M[e])=Ns(M)[e]$ .
Henceforce Reg $M[e]\subset S[e]\subset Ns(M[e])$ . It follows by the first part of the proof that
Reg $M[e]=S[e]$ , in particular, Reg $M[e]=DecM[e]=M[e]^{\prime}$ . By a simple calculation
we have Reg$M=S$ and Reg $M=DecM=M^{\prime}$ . Q.E.D.

COROLLARY 2.2. Suppose that $M$ is the same as in Theorem 2.1. Then Reg$M=$
Dec $M=M^{\prime}=Ns(M)$ if and only if $Ns(M)$ is closed under addition.

We can easily prove Corollary 2.2 by using Theorem 2.1 and a proof is omitted.
Eschmeier, Laursen and Neumann [3] proved that $NS(M(G))\cap M_{O}(G)=M_{O0}(G)$

if and only if $NS(M(G))\cap M_{0}(G)$ is closed under addition, where $\underline{M_{00}(}G$ ) $=\{\mu\in$

$M(G):\check{\mu}=0$ on $\Phi_{M\langle G)}\backslash \hat{G}$ } and $NS(M(G))=\{\mu\in M(G):sp(\mu, M(G))=\hat{\mu}(\hat{G})\}$ . Since
Reg $M_{0}(G)=DecM_{0}(G)=M_{00}(G)$ , we see that Corollary 2.2 is a generalization of a
result of Eschmeier, Laursen and Neumann [3].

In general $Ns(M)$ need not be closed under addition. Zafran [18] showed that for
an I-group $G$ there exist measures $\mu$ and $v$ in $M(G)$ such that $sp(\mu, M(G))=\overline{\hat{\mu}(\hat{G})}$ ,
$sp(v, M(G))=\overline{\hat{v}(\hat{G})}$ and $sp(\mu+v, M(G))$ properly contains $(\mu+v)^{\wedge}(\hat{G})$ . The author [4]
showed that for an infinite compact abelian group $G,$ $NS(M_{p}(G))+NS(M_{p}(G))=$

$M_{p}(G)$ for $1<p<\infty,$ $p\neq 2$ , which means that $NS(M_{p}(G))$ is not closed under addition
since $NS(M_{p}(G\underline{))\neq}M_{p}(G)$ by a theorem of Igari [5], where $NS(M_{p}(G))=\{T\in M_{p}(G)$ :
$sp(T, M_{p}(G))=\hat{T}(\hat{G})\}$ .

On the othr hand, the situation is relatively simple in the case where Yis scattered.
Recall that a locally compact Hausdorff space $Y$ is scattered if every non-empty compact
subset of $Y$ contains an isolated point. Every discrete space is scattered and every
scattered space is totally disconnected. A locally compact Hausdorff space Yis scattered
if and only if $f(Y)$ is countable for every $f\in C_{O}(Y)$ (cf. [13], [14]).

THEOREM 2.3. Let $Y$ be a locally compact Hausdorff scattered space and $M$ a
commutative Banach algebra included in $C_{0}(Y)$ which strongly separates the points in $Y$

We assume $1\in M$ if $Y$ is compact. Then we have Reg$M=DecM=\{m\in M:sp(m, M)$ is
countable} $=Ns(M)$ .

To prove the theorem we need some lemmas. Put $M^{\prime\prime}=\{m\in M:sp(m, M)$ is
countable}.

LEMMA 2.4. $Ns(M)=M^{\prime\prime}$ .
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PROOF. Suppose that $m\in Ns(M)$ . Then $sp(m, M)=\overline{m(Y)}\subset m(Y)u\{0\}$ , so $sp(m, M)$

is countable since $Y$ is scattered. We have $m\in M^{\prime\prime}$ .
Suppose that there exists $m\in M^{\prime\prime}\backslash Ns(M)$ . Then there exists $\lambda\in sp(m, M)\backslash \overline{m(Y)}$ . Put

$S_{r}=\{z\in C:|z-\lambda|=r\}$ and $U_{r}=\{z\in C;|z-\lambda|<r\}$ for a positive real number $r$ . Let $r_{0}$

be the distance from $\lambda$ to $\overline{m(Y)}$ . Since $sp(m, M)$ is countable, there is a positive real
number $r$ with $r<r_{0}$ such that $ S_{r}\cap sp(m, M)=\emptyset$ . Put $U=U_{r}$ . Then $\check{m}^{-1}(U)=$

$\check{m}^{-1}(U\cup S_{r})$ is compact and $\check{m}^{-1}(U)\cap Y=\emptyset$ , where $\check{m}$ is the Gelfand transformation
of $m$ in $M$. Since $\check{m}^{-1}(U)$ is also an open subset of $\Phi_{M}$ , by the Silov idempotent theorem
there exists $l\in M$ such that

$l^{\vee}=\left\{\begin{array}{ll}1 & on \check{m}^{-1}(U)\\0 & on \Phi_{M}\backslash \check{m}^{-1}(U),\end{array}\right.$

which is a contradiction since $Y\subset\Phi_{M}\backslash \check{m}^{-1}(U)$ and so $l^{\vee}=0$ on Y. Q.E.D.

LEMMA 2.5. $M^{\prime\prime}$ is a closed subalgebra of $M$.
PROOF. It is easy to see that $M^{\prime\prime}$ is a subalgebra of $M$. We show that $M^{\prime\prime}$ is closed

in $M$. Suppose that $m_{n}\in M^{\prime\prime}$ and $m_{n}\rightarrow m$ in $M$. Then

$\Vert\check{m}_{n}-\check{m}\Vert_{\infty\langle\Phi_{M})}\leq\Vert m_{n}-m\Vert_{M}\rightarrow 0$ ,

as $ n\rightarrow\infty$ . Suppose that $m\in M\backslash M^{\prime\prime}$ . Then there exists $p\in\Phi_{M}$ such that $\check{m}(p)\in\check{m}(\Phi_{M})\backslash $

$\overline{m(Y)}$ since $M^{\prime\prime}=Ns(M)$ by Lemma 2.4. By a simple calculation we can find $p_{n}\in Y$ such
that $\check{m}_{n}(p)=m_{n}(p_{n})$ since $m_{n}\in M^{\prime\prime}$ and $M^{\prime\prime}=Ns(M)$ by Lemma 2.4. Let $p_{0}$ be a
cluster point of $\{p_{n}\}$ in Y. (Suppose that $Y$ is not compact. Then $|m(p_{n})-\check{m}_{n}(p)|=$

$|m(p_{n})-m_{n}(p_{n})|\leq\Vert m-m_{n}\Vert_{M}\rightarrow 0$ as $ n\rightarrow\infty$ . Since $\check{m}_{n}(p)\rightarrow\check{m}(p)$ and $\check{m}(p)\neq 0$ we may
suppose that there exists $\epsilon>0$ such that $|m(p_{n})|>\epsilon$ for every positive integer $n$ . It follows
that $\{p_{n}\}$ is included in a compact subset of Y. Thus there is a cluster point $p_{0}\in Y$ )
We may suppose that $m(p_{n})\rightarrow m(p_{0})$ as $ n\rightarrow\infty$ . Then we have

$|\check{m}(p)-m(p_{0})|\leq 2\Vert\check{m}-\check{m}_{n}\Vert_{\infty\langle\Phi_{M})}+|m(p_{n})-m(p_{0})|\rightarrow 0$

as $ n\rightarrow\infty$ , hence $\check{m}(p)=m(p_{0})$ , which is a contradiction. Q.E.D.

By a simple calculation we see
LEMMA 2.6. For every $m\in M^{\prime\prime}$ we have $sp(m, M^{\prime\prime})=sp(m, M)$ .

LEMMA 2.7. $M^{\prime\prime}$ is a regular commutative Banach algebra.

PROOF. $ByLemma2.5M^{\prime\prime}$ isacommutative Banach algebra, so we show regularity
of $M^{\prime\prime}$ . Let $K$ be a closed subset of the maximal ideal space $\Phi_{M’}$ , of $M^{\prime\prime}$ and $x\in\Phi_{M^{\prime\prime}}\backslash K$.
Then there exists $m\in M^{\prime\prime}$ such that $\tilde{m}(x)=1$ , where $\tilde{m}$ is the Gelfand transform of $m$ in
$M^{\prime\prime}$ . By Lemma 2.4 and Lemma 2.6 there exists an open neighborhood $U$ of 1 with
$U\subset\{z\in C:|z-1|<1/2\}$ such that $F=\tilde{m}^{-1}(U)$ is a compact subset of $\Phi_{M^{\prime}}$ . Then by
the Silov idempotent theorem we can find $l_{0}\in M^{\prime\prime}$ such that
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$l_{0}=\sim\left\{\begin{array}{ll}1 & on F\\0 & on \Phi_{M^{\prime}}\backslash F.\end{array}\right.$

For every $y\in K\cap F$ there exists $h_{y}\in M^{\prime\prime}$ such that $\tilde{h}_{y}(x)=1$ and $ff_{y}(y)=0$ . In the same
way as above there exists a compact subset $F_{y}$ of $\Phi_{M’}$ which is also an open neighborhood
of $x$ and satisfies $y\in\Phi_{M^{\prime}},\backslash F_{y}$ . Then by the Silov idempotent theorem there exists $l_{y}\in M^{\prime\prime}$

such that

$T_{y}=\left\{\begin{array}{ll}1 & on F_{y}\\0 & on \Phi_{M},,\backslash F_{y}.\end{array}\right.$

Since $K\cap F$ is compact we can choose a finite number of points $y_{1},$ $\cdots,$ $ y_{n}\in K\cap F\subset$

$\bigcup_{j=1}^{n}(\Phi_{M’}\backslash F_{y_{j}})$ . Put $l=l_{0}\prod_{j=1}^{n}l_{y_{j}}$ . Then we have $l(x)=\sim 1$ and $ l=0\sim$ on $K$, which shows
that $M^{\prime\prime}$ is regular. Q.E.D.

PROOF OF THEOREM 2.3. Since $M$ is a semi-simple commutative Banach algebra
we see by a theorem of Neumann [12] that Dec $M\subset Ns(M)$ since Yis hull-kernel dense
in $\Phi_{M}$ , so by a theorem of Neumann [12] we have Reg $M\subset DecM\subset Ns(M)$ . It follows
by Lemma 2.4 and Lemma 2.7 that Reg $M=DecM=Ns(M)=M^{\prime\prime}$ . Q.E.D.

3. Spectra of multipliers.

Let $G$ be a locally compact abelian group and $\hat{G}$ its dual group. Laursen and
Neumann [10] investigated the relationship between the greatest regular closed
subalgebra of the multiplier algebra $M(A)$ of a commutative Banach algebra $A$ , the
decomposability of a multiplier, the hull-kernel continuity of its Gelfand transform on
the maximal ideal spaces $\Phi_{A}$ and $\Phi_{M(A)}$ , and a natural spectral property. For $B=M(G)$ ,
$M_{0}(G),$ $M_{p}(G),$ $C_{0}M_{p}(G)$ , we will denote $NS(B)=\{T\in B:sp(T, B)=\hat{T}(\hat{G})\}$ , where $\hat{T}$

denotes the Fourier transform of $T$. As an application of their results they showed that
Reg $M_{0}(G)=DecM_{0}(G)=M_{00}(G)$ , which is a generalization of work of Zafran [18] and
Albrecht [1]. Laursen and Neumann also studied the case where $\Phi_{A}$ is scattered. As a
consequence of their results we see that for $ 1\leq p<\infty$ ,

Reg $C_{0}M_{p}(G)=DecC_{0}M_{p}(G)=C_{0}M_{p}(G)^{\prime\prime}=NS(C_{0}M_{p}(G))$

if $G$ is compact (cf. [7], [8], [18]), where $C_{0}M_{p}(G)^{\prime\prime}=\{T\in C_{0}M_{p}(G):sp(T, C_{0}M_{p}(G))$

is countable}.
In this section we observe that Reg $C_{0}M_{p}(G)=DecC_{0}M_{p}(G)$ holds and is, in a sense,

maximal in $NS(C_{0}M_{p}(G))$ for arbitrary locally compact abelian group $G$ .

COROLLARY 3.1. Let $G$ be a locally compact abelian group and $ 1\leq p<\infty$ .
Then $RegC_{0}M_{p}(G)=DecC_{0}M_{p}(G)\subset NS(C_{0}M_{p}(G))$ . Suppose that $RegC_{0}M_{p}(G)\subset S\subset$

$NS(C_{0}M_{p}(G))$ and $S+S\subset S$. Then $RegC_{0}M_{p}(G)=S$. We also have $RegC_{0}M_{p}(G)=$

(Reg $M_{p}(G)$) $\cap C_{0}M_{p}(G)$ , Dec $C_{0}M_{p}(G)=(DecM_{p}(G))\cap C_{0}M_{p}(G)$ and $NS(C_{0}M_{p}(G))=$
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$NS(M_{p}(G))\cap C_{0}M_{p}(G)$ .

PROOF. Put $M=C_{0}\overline{M_{p}(}G$ ) with the norm induced by $C_{0}M_{p}(G)$ and $Y=\hat{G}$ . Since
$L^{1}(G)\subset C_{0}M_{p}(G)$ and $\overline{L^{1}(}G$ ) is dense in $C_{0}(\hat{G})$ we see that $M$ satisfies the conditions
in Theorem 2.1. Henceforce Reg$M=DecM=\hat{S}$. It follows that Reg $C_{0}M_{p}(G)=$

Dec $C_{0}M_{p}(G)=S$.
It is easy to see that for every $T\in C_{0}M_{p}(G),$ $sp(T, C_{0}M_{p}(G))$ coincides with

$sp(T, M_{p}(G))$ . It follows that $NS(C_{0}M_{p}(G))=NS(M_{p}(G))\cap C_{0}M_{p}(G)$ . By a theorem of
Neumann [12] we see Reg $M_{p}(G)\subset DecM_{p}(G)\subset NS(M_{p}(G))$ , thus we have

Reg $ C_{O}M_{p}(G)\subset(RegM_{p}(G))\cap C_{O}M_{p}(G)\subset$

(Dec $M_{p}(G)$) $\cap C_{0}M_{p}(G)\subset NS(C_{0}M_{p}(G))$ .

It follows that

Reg $ M\subset((RegM_{p}(G))\cap C_{0}M_{p}(G))^{\wedge}\subset$

$((DecM_{p}(G))\cap C_{0}M_{p}(G))^{\wedge}\subset Ns(M)$ .
Since $((DecM_{p}(G))\cap C_{0}M_{p}(G))^{\wedge}$ is closed under addition we see by the first part of the
proof that

Reg $M=((RegM_{p}(G))\cap C_{0}M_{p}(G))^{\wedge}=((DecM_{p}(G))\cap C_{0}M_{p}(G))^{\wedge}$

Hence the conclusion holds. Q.E.D.

As a consequence of Theorem 2.3 we see that a theorem of Laursen and Neumann
holds, that is,

Reg $C_{0}M_{p}(G)=DecC_{0}M_{p}(G)=C_{0}M_{p}(G)^{\prime\prime}=NS(C_{0}M_{p}(G))$

holds if $G$ is compact.
Let $T$ be the circle group and $H^{p}$ the usual Hardy space for $ 1\leq p\leq\infty$ . A bounded

function $\varphi$ defined on the set of all non-negative integers $N_{0}$ is an $H^{1}- H^{p}$ multiplier if
$\varphi f\in H^{p}$ for every $f\in H^{1}$ . We denote the set of all $H^{1}- H^{p}$ multipliers by $M(H^{1}, H^{p})$

and $C_{0}M(H^{1}, H^{p})=C_{0}(N_{0})\cap M(H^{1}, H^{p})$ . Then $C_{O}M(H^{1}, H^{p})$ is a commutative Banach
algebra included in $C_{O}(N_{0})$ .

COROLLARY 3.2. Reg $C_{O}M(H^{1}, H^{p})=DecC_{0}M(H^{1}, H^{p})=C_{0}M(H^{1}, H^{p})^{\prime\prime}=$

$Ns(C_{0}M(H^{1}, H^{p}))$ .

PROOF. Put $M=C_{0}M(H^{1}, H^{p})$ and $Y=N_{0}$ . Then the conditions in Theorem 2.3
hold, thus the conclusion holds. Q.E.D.

For certain algebras $M$, Reg $M$ and Dec $M$ need not be large. As is pointed out by
Neumann [12] for the disk algebra $A(D)$ , Reg$A(D)=DecA(D)=C$, the space of constant
functions. We show a generalization of the result.
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COROLLARY 3.3. Let $X$ be a connected compact Hausdorff space and $B$ a com-
mutative Banach algebra included in $C_{0}(X)$ which separates the points in $X$ and contains
constant functions. Suppose that $\{z_{n}\}$ is a discrete sequence of distinct points in $X$ with
only one cluster point $z_{0}$ . Suppose also that the restriction map from $B$ onto $B|\{z_{n}\}$ is an
injection. Then we have Reg$B=DecB=C$.

PROOF. Put $Y=\{z_{n}\}\cup\{z_{0}\}$ and $M=B|$ Y. Then $M$ satisfies the condition in
Theorem 2.3, hence RegM $=DecM=M^{\prime\prime}$ . Let $f\in M^{\prime\prime}$ . Then there exists a unique $F\in B$

such that $F|Y=f$. Since the restriction map from $B$ to $M$ is an injection we see that
$B$ and $B|Y$ are isomorphic, so $sp(f, M)\supset F(X)$ , thus $F(X)$ is connected and counta-
ble. Henceforce $F$ is a constant function, so Reg$M=DecM=C$. It follows that
RegB$=DecB=C$. Q.E.D.

In the same way as in the proof of Corollary 3.3 we see
COROLLARY 3.4. Let $Y$ be a connected non-compact locally compact Hausdorff

space and $B$ a commutative Banach algebra included in $C_{0}(Y)$ which strongly separates
the points in Y Suppose that $\{z_{n}\}$ is a discrete sequence of distinct points in $Y$ without
cluster points. Suppose also that the restriction map from $B$ onto $B|\{z_{n}\}$ is an injection.
Then we have Reg$B=DecB=\{0\}$ .
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