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Introduction.

Let $\mathfrak{g}$ be a real Lie algebra and $\mathfrak{g}^{\pm}$ be two subalgebras of $\mathfrak{g}$ and $p$ be an alternating
2-form on $\mathfrak{g}$ . Then the triple $\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, \rho\}$ is called a weak dipolarization in $\mathfrak{g}$ if the
following conditions are satisfied:

(WD1) $\mathfrak{g}=\mathfrak{g}^{+}+\mathfrak{g}^{-}$ ,
(WD2) $\rho(\mathfrak{g}^{+}, \mathfrak{g}^{+})=\rho(\mathfrak{g}^{-}, \mathfrak{g}^{-})=0$ ,
(WD3) $\rho(X, \mathfrak{g})=0$ if and only if $X\in \mathfrak{g}^{+}\cap \mathfrak{g}^{-}$ ,
(WD4) $\rho([X, Y], Z)+\rho([Y, Z], X)+\rho([Z, X], Y)=0,$ $\forall X,$ $Y,$ $Z\in \mathfrak{g}$ .
A dipolarization in $\mathfrak{g}$ is a triple $\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, f\}$ , formed by two subalgebras $\mathfrak{g}^{\pm}$ and a

linear form $f$, which satisfies the following conditions:
(D1) $\mathfrak{g}=\mathfrak{g}^{+}+\mathfrak{g}^{-}$ ,
(D2) $f([\mathfrak{g}^{+}, \mathfrak{g}^{+}])=f([\mathfrak{g}^{-}, \mathfrak{g}^{-}])=0$ ,
(D3) $f([X, \mathfrak{g}])=0$ if and only if $X\in \mathfrak{g}^{+}\cap \mathfrak{g}^{-}$ .
A dipolarization $\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, f\}$ is itself a weak dipolarization, since $df$ satisfies

$(WD2)-(WD4)$ . A weak dipolarization is called symmetric if $\mathfrak{g}^{+}$ is Lie-isomorphic to
$\mathfrak{g}^{-}$ . Otherwise it is called nonsymmetric. A dipolarization (resp. weak dipolarization) is
called trivial, if $\mathfrak{g}^{+}=\mathfrak{g}^{-}=\mathfrak{g}$ , and if $f=0$ (resp. $\rho=0$).

The notions of dipolarizations and weak dipolarizations in a Lie algebra were first
introduced by Kaneyuki ([6]) to describe a class of homogeneous symplectic manifolds,
called homogeneous parakahler manifolds. Let us recall the definition of homogeneous
parak\"ahler manifolds ([6]). A parak\"ahler manifold $M$ is, by definition, a symplectic
manifold which admits a pair of transversal Lagrangian foliations. If a Lie group $G$

acts on $M$ as symplectomorphisms which preserves each of the two foliations, then we
say that the parak\"ahler structure is G-invariant. Furthermore, if $G$ acts transitively on
$M$, then $M$ is said to be a homogeneous parakahler manifold. It was proved in [6] that
a necessary and sufficient condition for the existence of an invariant parak\"ahler structure
on $M=G/H$ ($H$ is an isotropy subgroup) is that there exists a weak dipolarization in
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$\mathfrak{g}=LieG$ such that the intersection of the two polarized subalgebras coincides witl
$\mathfrak{h}=LieH$. In $[7, 8]$ , a large class of homogeneous parak\"ahler manifolds are obtained
In [1], the authors constructed an example of nonsymmetric dipolarization in a Lit
algebra, which indicates that homogeneous parak\"ahler structures are $substantiall\tau$.
different from homogeneous K\"ahler structures. In this paper we study dipolarization $\{$

and weak dipolarizations of compact Lie algebras to obtain the following results:

THEOREM 1. Let $u$ be a compact semisimple Lie algebra. Then there exist $n($

nontrivial dipolarizations in $u$ .

THEOREM 2. Let $G$ be a connected compact Lie group, $H$ be a closed subgroup $0$.
G. Suppose that the coset space $G/H$ is effective. Then there exists a G-invariantparakahle,
structure on $G/H$, if and only if $G/H$ is an even-dimensional torus.

NOTATION. $\mathfrak{g}^{C}$ denotes the complexification of a Lie algebra $g$ . $c_{g}(X)$ denotes th$($

centralizer of an element $X\in \mathfrak{g}$ in a Lie algebra $\mathfrak{g}$ .

1. Dipolarizations in compact Lie algebras.

1.1. Let $u$ be a compact semisimple Lie algebra and $u^{C}$ be its complexification
We denote by $B$ the Killing forms of $u$ and of $u^{C}$ . Let $\{u^{+}, u^{-}, f\}$ be a dipolarizatiol
in $u$ , and let $Z\in u$ be the unique element satisfying

(1.1) $B(Z, X)=f(X)$ , $X\in u$ .

Then we have ([6])

(1.2) $u^{+}\cap u^{-}=c_{u}(Z)$ .
Choose a maximal abelian subalgebra $t$ of $u$ such that $Z\in t$ . The complexification $t^{(}$

of $t$ is a Cartan subalgebra of $u^{C}$ . Let $\Delta$ be the root system for $(u^{C}, t^{C})$ , and let $\Delta^{+}b($

the positive root system with respect to an order. Let $\{X_{\alpha};\alpha\in\Delta\}$ be a Weyl basis of $u^{(}$

mod $t^{C}$ with respect to $u$ (see Helgason [4]). Then $u$ is written as

(1.3) $u=t+\sum_{\alpha\in\Delta^{+}}R(X_{\alpha}-X_{-\alpha})+\sum_{\alpha\in\Delta^{+}}Ri(X_{\alpha}+X_{-\alpha})$ .

1.2. Let $\mathfrak{v}$ be a subalgebra of $u$ containing $t$ . Then $\mathfrak{v}^{C}$ is a regular subalgebra $0$

$u^{C}$ in the sense ofDynkin [3]. Therefore there exists a closed subsystem $\Delta^{\prime}of\Delta$ such that

(1.4) $\mathfrak{v}^{C}=t^{c}+\sum_{\alpha\in\Delta},CX_{\alpha}$ .

$\mathfrak{v}^{C}$ is reductive and we have

(1.5) $-\Delta^{\prime}=\Delta^{\prime}$

LEMMA 1.1. $\mathfrak{v}$ is written as
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(1.6) $\mathfrak{v}=t+\sum_{\alpha\in\Delta^{\prime+}}R(X_{a}-X_{-\alpha})+\sum_{\alpha\in\Delta^{;+}}Ri(X_{\alpha}+X_{-\alpha})$ ,

where $\Delta^{l+}=\Delta^{\prime}\cap\Delta^{+}$ .

PROOF. $LetX\in D$ . Then, by (1.3), Xis written as

(1.7) $X=H+\sum_{a\in\Delta^{+}}a_{\alpha}(X_{\alpha}-X_{-\alpha})+\sum_{\alpha\in\Delta^{+}}ib_{\alpha}(X_{\alpha}+X_{-\alpha})$ ,

where $H\in t$ and $a_{\alpha},$
$b_{\alpha}\in R$ . If we put $\omega_{\alpha}=a_{\alpha}+ib_{\alpha}$ , then $X$ can be written as

(1.8)
$X=H+\sum_{\alpha\in\Delta^{+}}(\omega_{\alpha}X_{a}-\overline{\omega}_{\alpha}X_{-a})$ .

Since $X$ lies in $\mathfrak{v}^{C}$ , it follows from (1.4) that if $\omega_{\alpha}\neq 0$ , then $\alpha\in\Delta^{\prime}$ . This implies the
inclusion $\subset$ in (1.6). The converse inclusion follows from $\mathfrak{v}=\mathfrak{v}^{C}\cap u$ and (1.4). $\square $

LEMMA 1.2. Let $\alpha\in\Delta^{+}$ . Then $X_{\alpha}-X_{-\alpha}$ lies either in $u^{+}$ or in $u^{-}$ Then same
assertion holds for $i(X_{\alpha}+X_{-a})$ .

PROOF. By (1.2), $t$ is contained in $u^{+}\cap u^{-}$ . Consequently the complexifications
$(u^{+})^{C}$ and $(u^{-})^{C}$ are regular subalgebras of $u^{c}$ . Hence there exist two closed subsystems
$\Delta^{\prime}$ and $\Delta^{\prime\prime}$ of $\Delta$ such that

(1.9)
$(u^{+})^{C}=t^{C}+\sum_{\alpha\in\Delta^{\prime}}CX_{\alpha}$ ,

(1.10)
$(u^{-})^{C}=t^{C}+\sum_{\alpha\in\Delta},,$

$CX_{\alpha}$ ,

(1.11) $-\Delta^{\prime}=\Delta^{\prime}$ , $-\Delta^{\prime\prime}=\Delta^{\prime\prime}$

By (D1), we have $u^{C}=(u^{+})^{C}+(u^{-})^{C}$ , and hence $\Delta=\Delta^{\prime}\cup\Delta^{\prime\prime}$ . If we put $\Delta^{\prime+}=\Delta^{\prime}\cap\Delta^{+}$

and $\Delta^{\prime\prime+}=\Delta^{\prime\prime}\cap\Delta^{+}$ , then we have

(1.12) $\Delta^{+}=\Delta^{\prime+}\cup\Delta^{\prime\prime+}$

This implies that the root $\alpha\in\Delta^{+}$ lies either in $\Delta^{l+}$ or in $\Delta^{\prime\prime+}$ . Suppose $\alpha\in\Delta^{l+}$ . Then
(1.9) shows that $X_{\pm\alpha}\in(u^{+})^{C}$ . In view of Lemma 1.1, we have $X_{\alpha}-X_{-\alpha}\in u^{+}$ and
$i(X_{\alpha}+X_{-\alpha})\in u^{+}$ . Similarly, if $\alpha\in\Delta^{\prime\prime+}$ , then we conclude that $X_{\alpha}-X_{-\alpha}\in u^{-}$ and
$i(X_{\alpha}+X_{-\alpha})\in u^{-}$ $\square $

LEMMA 1.3. Let $\alpha\in\Delta$ be a positive root satisfying $\alpha(Z)\neq 0$ . Then $X_{\alpha}-X_{-\alpha}$ lies in
$u^{+}$ (resp. $u^{-}$ ) if and only $lfi(X_{\alpha}+X_{-\alpha})$ lies in $u^{-}$ (resp. $u^{+}$ ).

PROOF. Suppose that $X_{\alpha}-X_{-a}\in u^{+}$ . Suppose further that $i(X_{\alpha}+X_{-\alpha})\not\in u^{-}$ . Then
by Lemma 1.2 we see that $i(X_{\alpha}+X_{-a})\in u^{+}$ . Also we have:



384 ZIXIN HOU, SHAOQIANG DENG AND SOJI KANEYUKI

(1.13) $f([X_{\alpha}-X_{-\alpha}, i(X_{a}+X_{-\alpha})])$

$=B(Z, [X_{\alpha}-X_{-\alpha}, i(X_{\alpha}+X_{-\alpha})])=iB([Z, X_{\alpha}-X_{-\alpha}], X_{a}+X_{-\alpha})$

$=i\alpha(Z)B(X_{\alpha}+X_{-\alpha}, X_{\alpha}+X_{-\alpha})=2i\alpha(Z)B(X_{\alpha}, X_{-\alpha})\neq 0$ ,

which contradicts (D2). Thus we have proved that $i(X_{\alpha}+X_{-\alpha})\in u^{-}$ . The other case
can be proved analogously. $\square $

1.3. Proof of Theorem 1. Let $\{u^{+}, u^{-}, f\}$ be a dipolarization in $u$ . First we wish
to prove $u^{+}=u$ . For this it is sufficient to prove $(u^{+})^{C}=u^{C}$ . We choose $Z,$ $t,$ $\Delta$ and $X_{a}’ s$

as in 1.1. The last condition is equivalent to the condition $\Delta^{\prime}=\Delta$ (cf. (1.9)). Since $c_{u}(Z)$

contains $t,$ $c_{u}(Z)^{C}$ is given by

(1.14) $c_{u}(Z)^{C}=c_{u^{C}}(Z)=t^{C}+\sum_{\alpha\in\Delta_{0}}CX_{\alpha}$ ,

where the closed subsystem $\Delta_{0}$ is given by

(1.15) $\Delta_{0}=\{\alpha\in\Delta : \alpha(Z)=0\}$ .
Now let $\alpha\in\Delta^{+}$ . If $\alpha\in\Delta_{0}$ , then by (1.2) $\alpha$ lies in $\Delta^{\prime}$ . Suppose next that $\alpha\in\Delta^{+}-\Delta_{0}$ . Then
we have $\alpha(Z)\neq 0$ . By Lemma 1.2, $X_{\alpha}-X_{-a}$ lies either in $u^{+}$ or in $u^{-}$ . Suppose that
$X_{\alpha}-X_{-\alpha}\in u^{-}$ . Then by Lemma 1.3, $i(X_{\alpha}+X_{-\alpha})\in u^{+}$ . We have

(1.16) $[Z, i(X_{\alpha}+X_{-\alpha})]=i\alpha(Z)(X_{\alpha}-X_{-\alpha})$ .
The left side of (1.16) belongs to $u^{+}$ , and hence $X_{\alpha}-X_{-\alpha}\in u^{+}$ . We have thus proved
that $X_{\alpha}-X_{-\alpha}\in u^{+}$ for $\alpha\in\Delta^{+}-\Delta_{0}$ . Similarly, again by using Lemma 1.2 and Lemma
1.3, we conclude that $i(X_{\alpha}+X_{-\alpha})\in u^{+}$ for $\alpha\in\Delta^{+}-\Delta_{0}$ . Therefore, in view of Lemma
1.1, we have $X_{\alpha}\in(u^{+})^{C}$ for $\alpha\in\Delta^{+}$ , and hence $\alpha\in\Delta^{\prime+}$ . Thus we have proved $\Delta^{\prime}=\Delta$ , or
equivalently, $u^{+}=u$ . Similarly we have $u^{-}=u$ . Now it follows from (1.2) that $Z$ is a
central element in $u$ . By the semisimplicity of $u$ , we have $Z=0$ . Therefore $f=0$

(cf. (1.1)). $\square $

COROLLARY 1.4. Let $u$ be a compact Lie algebra, and let $\{u^{+}, u^{-}, f\}$ be a
dipolarization in $u$ . Then $u^{+}=u^{-}=u$ .

PROOF. Sinceu is compact, we have u $=c\oplus u^{\prime}$ , wherec is the center ofu and u’
is the commutator subalgebra of $u$ . By (D3) we have $c\subset u^{+}\cap u^{-}$ . If we denote $u^{\pm}\cap u^{\prime}$

by $u^{\prime\pm}$ , then it is obvious that $\{u^{\prime+}, u^{\prime-}, f|_{u’}\}$ is a dipolarization in $u^{\prime}$ . Since $u^{\prime}$ is
semisimple, by Theorem 1 we have $u^{\prime\pm}=u^{\prime}$ , and thus $u’\subset u^{\pm}$ . Hence it follows that
$u^{\pm}=u$ . $\square $
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2. Compact homogeneous parakahler manifolds.

2.1. We need the following Matsushima’s result (cf. Murakami [10]).

PROPOSITION 2.1 (Matsushima [9]). Let $G$ be a connected compact Lie group and
$H$ be a closed subgroup of G. Suppose that the coset space $G/H$ is effective and that there
exists a G-invariant symplectic form $\omega$ on $G/H$. Then the following assertions are valid:
(1) $H$ is contained in the commutator subgroup $G^{\prime}$ of G. (2) $H$ is connected and is the
centralizer of an element $Z^{\prime}\in \mathfrak{g}^{\prime}=LieG^{\prime}$ in $G^{\prime}$ . (3) Let $C$ be the center of G. Then we
have $G=C\times G^{\prime}$ (direct product).

Now let $G$ and $H$ be the same as in Proposition 2.1. Suppose further that the coset
space $M=G/H$ is an effective and homogeneous parak\"ahler manifold. Let $\hat{I}$ and $\omega$ be,
respectively, the invariant paracomplex structure and the invariant symplectic form of
$M$ associated with the parak\"ahler structure of $M$. Let $0$ be the origin of $G/H$. We
identify the tangent space $T_{e}G$ of $G$ at the unit element $e\in G$ with $\mathfrak{g}=LieG$ . Let $\pi$ be
the projection of $G$ onto $G/H$. As we did in [6], we choose a linear endomorphism $I$

on $\mathfrak{g}$ in such a way that

(2.1) $\pi_{*e}I=\hat{I}_{o}\pi_{*e}$ .
Let $\mathfrak{h}=LieH$ and $ p=\pi^{*}\omega$ . Then we have a parak\"ahler algebra $\{\mathfrak{g}, \mathfrak{h}, I, p\}$ ([6]). Ifwe put

(2.2) $g(X, Y)=\omega(X,\hat{I}Y)$

for smooth vector fields $X$ and Yon $M$, then $g$ is a G-invariant parak\"ahler metric on $M$.
LEMMA 2.2. Let $c=Lie$ C. Then we have

(2.3) $Ic\subset c+\mathfrak{h}$ .

PROOF. Let $X\in \mathfrak{h}$ and $Y\in c$ . Then, by the axioms of parak\"ahler algebras ([6]), we
have

(2.4) [X, $IY$] $\equiv I[X, Y]=0$ $mod \mathfrak{h}$ .
This means that $[\mathfrak{h}, Ic]\subset \mathfrak{h}$ . Consequently $Ic$ is contained in the normalizer $\mathfrak{n}_{\mathfrak{g}}(\mathfrak{h})$ of $\mathfrak{h}$ in
$\mathfrak{g}$ . As was shown in [9], we have that $\mathfrak{n}_{\mathfrak{g}}(\mathfrak{h})=\mathfrak{h}+c$ , which implies $Ic\subset c+\mathfrak{h}$ . $\square $

LEMMA 2.3. The subalgebra $\mathfrak{g}^{\prime}$ of $\mathfrak{g}$ is I-stable.

PROOF. First we note that the equality

(2.5) $g_{0}(\pi_{*}(c), \pi_{*}(\mathfrak{g}^{\prime}))=0$

is valid. In fact, this can be proved quite analogously as for the equality (4) in Matsushima
[9], by using (2.3) and by replacing the complex structures there by the paracomplex
structures. (2.5) means that $\pi_{*}(\mathfrak{g}^{\prime})$ is the orthogonal complement of $\pi_{*}(c)$ in $T_{o}M$ with
respect to $g_{0}$ . Now let $X\in c$ and $Y\in \mathfrak{g}^{\prime}$ . Since $T_{o}M$ can be identified with $\mathfrak{g}/\mathfrak{h}$ , it follows
from (2.3) that
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(2.6) $\pi_{*}(IX)\in\pi_{*}(c)$ .
Since $g$ is a parak\"ahler metric, we have from (2.5) and (2.6),

(2.7) $g_{0}(\pi_{*}X, \pi_{*}IY)=g_{0}(\pi_{*}X,\hat{I}_{o}\pi_{*}Y)=-g_{0}(\hat{I}_{o}\pi_{*}X, \pi_{*}Y)=-g_{0}(\pi_{*}IX, \pi_{*}Y)=0$ ,

which implies that $\pi_{*}IY\in\pi_{*}(\mathfrak{g}^{\prime})$ . Therefore, in view of Proposition 2.1 (1), we hav
$IY\in \mathfrak{g}^{\prime}$ . $\square $

We define the subalgebras $\mathfrak{g}^{\pm}$ of $\mathfrak{g}$ by (cf. [6])

(2.8) $\mathfrak{g}^{\pm}=\{X\in \mathfrak{g} : IX\equiv\pm Xmod \mathfrak{h}\}$ .

Then, as is known in [6], $\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, p\}$ is a weak dipolarization of $\mathfrak{g}$ satisfying

(2.9) $\mathfrak{g}^{+}\cap \mathfrak{g}^{-}=\mathfrak{h}$ .
Now let

(2.10) $\mathfrak{g}^{\prime\pm}=\mathfrak{g}^{\pm}\cap \mathfrak{g}^{\prime}$ , $c^{\pm}=\mathfrak{g}^{\pm}\cap c$ .
LEMMA 2.4. $\mathfrak{g}^{\pm}$ can be written as the direct sums:

(2.11) $\mathfrak{g}^{+}=\mathfrak{g}^{\prime+}\oplus c^{+}$ , $\mathfrak{g}^{-}=\mathfrak{g}^{\prime-}\oplus c^{-}$

PROOF. Let $X\in \mathfrak{g}^{+}$ . By the Levi decomposition $\mathfrak{g}=\mathfrak{g}^{\prime}\oplus c$ , one can write $X$ a
$X=X_{1}+X_{2},$ $X_{1}\in \mathfrak{g}^{\prime},$ $X_{2}\in c$ . We have

(2.12) $IX=IX_{1}+IX_{2}$ .
By Lemma 2.3, $IX_{1}$ lies in $\mathfrak{g}^{\prime}$ . By (2.8) one has

(2.13) $IX=X+h=X_{1}+X_{2}+h$ ,

where $h\in \mathfrak{h}$ . By (2.3), one has

(2.14) $IX_{2}=(IX_{2})_{c}+(IX_{2})_{\mathfrak{h}}$ ,

where $($ $)_{c}$ and $($ $)_{\mathfrak{h}}$ denote the c-component and the $\mathfrak{h}$-component, respectively
Substituting (2.13) and (2.14) into (2.12), and comparing the $\mathfrak{g}^{\prime}$-component and $th|$

c-component in the both sides of (2.12), we have

(2.15) $IX_{1}+(IX_{2})_{\mathfrak{h}}=X_{1}+h$ ,

(2.16) $(IX_{2})_{c}=X_{2}$ .

By (2.15), we have $IX_{1}\equiv X_{1}mod \mathfrak{h}$ , which implies $X_{1}\in \mathfrak{g}^{\prime+}$ . From (2.14) and (2.16), $i$

follows that $IX_{2}=X_{2}+(IX_{2})_{\mathfrak{h}}\equiv X_{2}mod \mathfrak{h}$ . Hence $X_{2}\in c^{+}$ . Thus we have prove$($

$\mathfrak{g}^{+}=\mathfrak{g}^{\prime+}+c^{+}$ . $\square $

LEMMA 2.5. $\{\mathfrak{g}^{\prime+}, \mathfrak{g}^{\prime-}, p^{\prime}\}$ is a weak dipolarization of $\mathfrak{g}^{\prime}$ satisfying $\mathfrak{g}^{\prime+}\cap \mathfrak{g}^{r-}=\mathfrak{h}$

where $\rho^{\prime}=\rho|_{\mathfrak{g}’ x\mathfrak{g}^{\prime}}$ .
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PROOF. The equalities $\mathfrak{g}^{\prime}=\mathfrak{g}^{l+}+\mathfrak{g}^{\prime-}$ and $c=c^{+}+c^{-}$ follow from the equality
$\mathfrak{g}=\mathfrak{g}^{+}+\mathfrak{g}^{-}$ , Lemma 2.4 and the Levi decomposition $\mathfrak{g}=\mathfrak{g}^{\prime}\oplus c$ . The property
$\mathfrak{g}^{r+}\cap \mathfrak{g}^{\prime-}=\mathfrak{h}$ follows from the equality (2.9) and Proposition 2.1 (1). Sinoe $\mathfrak{g}^{\pm}$ and $p$

satisfy (WD2), $\mathfrak{g}^{\prime\pm}$ and $p^{\prime}$ also satisfy (WD2). Since $p$ satisfies (WD4), we have

(2.17) $p(c, \mathfrak{g}^{\prime})=p(c, [\mathfrak{g}, \mathfrak{g}])=p([c, \mathfrak{g}], \mathfrak{g})=0$ .
Now let $X\in \mathfrak{g}^{\prime}$ , and suppose that $p(X, \mathfrak{g}^{\prime})=0$ . Then, by (2.17), we have $p(X, \mathfrak{g})=$

$\rho(X, \mathfrak{g}^{\prime})+p(X, c)=0$ . Hence, by (WD3) for $\mathfrak{g}$ , we get $X\in g^{+}\cap \mathfrak{g}^{-}$ . This implies that
$X\in \mathfrak{g}^{l+}\cap \mathfrak{g}^{l-}$ Conversely, let $X\in \mathfrak{g}^{\prime+}\cap \mathfrak{g}^{\prime-}$ . Then, by (WD3) for $\mathfrak{g}$ and (2.17), we
have $0=p(X, \mathfrak{g})=\rho^{\prime}(X, \mathfrak{g}^{\prime})+\rho(X, c)=p^{\prime}(X, \mathfrak{g}^{\prime})$ . Thus we have proved that $\{\mathfrak{g}^{l+}, \mathfrak{g}^{\prime-}, \rho^{\prime}\}$

satisPes (WD3). $\square $

LEMMA 2.6. $\{c^{+}, c^{-}, p^{\prime\prime}\}$ is a weak dipolarization in $c$ satisfying $c^{+}\cap c^{-}=(0)$ , where
$p^{\prime\prime}=p|_{c\times c}$ .

PROOF. We have seen the equality $c=c^{+}+c^{-}$ in the proof of Lemma 2.5. We
have $c^{+}\cap c^{-}\subset \mathfrak{g}^{+}\cap \mathfrak{g}^{-}=\mathfrak{h}$ . Hence, by Proposition 2.1, (1), we get $c^{+}\cap c^{-}\subset \mathfrak{h}\cap c\subset$

$\mathfrak{g}^{\prime}\cap c=(0)$ . (WD2) is trivially satisfied by $c^{\pm}$ . Now let $X\in c$ and suppose $\rho^{\prime\prime}(X, c)=0$ .
Then, by (2.17) we have $p(X, \mathfrak{g})=0$ . Therefore (WD3) for $\mathfrak{g}^{+}$ implies that $ X\in \mathfrak{g}^{+}\cap$

$\mathfrak{g}^{-}\cap c=\mathfrak{h}\cap c=(0)$ , that is, $X=0\in c^{+}\cap c^{-}$ . Thus we have proved the lemma. $\square $

REMARK 2.7. Lemmas 2.4, 2.5 and 2.6 imply that the weak dipolarization
$\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, p\}$ in $\mathfrak{g}$ can be expressed as a direct sum of two weak subdipolarizations induced
on $\mathfrak{g}^{\prime}$ and $\mathfrak{c}$ .

2.2. Proof of Theorem 2. Suppose that $G/H$ is an effective homogeneous
parak\"ahler manifold with $G$ compact connected. Then, by Proposition 2.1, we have

(2.18) $G/H=C\times(G^{\prime}/H)$ .

Consider the weak dipolarization $\{\mathfrak{g}^{l+}, \mathfrak{g}^{l-}, p^{\prime}\}$ in $\mathfrak{g}^{\prime}$ . Since $\mathfrak{g}^{\prime}$ is semisimple, there exists
a linear form $f$ on $\mathfrak{g}^{\prime}$ such that $p^{\prime}=df$. The triple $\{\mathfrak{g}^{\prime+}, \mathfrak{g}^{\prime-}, f\}$ is a dipolarization in
$\mathfrak{g}^{\prime}$ , which is trivial by Theorem 1. Therefore $\mathfrak{g}^{\prime}=\mathfrak{g}^{\prime\pm}=\mathfrak{g}^{l+}\cap \mathfrak{g}^{\prime-}=\mathfrak{h}$ . Since $H$ is connected
(Proposition 2.1), we get $G^{\prime}=H$. Therefore, by (2.18) we have $G/H=C$. Note that
dimc $=\dim c^{-}$ , since $\{c^{+}, c^{-}, p^{\prime\prime}\}$ is a weak dipolarization. Hence $G/H=C$ is an even-
dimensional torus. The converse assertion can be easily shown (cf. p. 84 in [5]). $\square $

Appendix.

The following lemma justifies calling a triple $\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, f\}$ satisfying $(D1)-(D3)$ a
dipolarization. For the definition of a polarization in a Lie algebra, one should refer
to Dixmier [2], for instance.

LEMMA. Let $\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, f\}$ be a dipolarization in $\mathfrak{g}$ . Then $\{\mathfrak{g}^{+}, f\}$ and $\{\mathfrak{g}^{-}, f\}$ are
polarizations in $\mathfrak{g}$ .
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PROOF. Let $\mathfrak{g}^{\prime}$ be a subspace of $\mathfrak{g}$ which contains $\mathfrak{g}^{+}$ and satisfies $f([\mathfrak{g}^{\prime}, \mathfrak{g}^{\prime}])=0$ .
Choose an element $X=X^{+}+X^{-}\in \mathfrak{g}^{\prime},$ $X^{\pm}\in \mathfrak{g}^{\pm}$ . Then $X^{-}\in \mathfrak{g}^{\prime}$ , and consequently
$\mathfrak{g}^{\prime}=\mathfrak{g}^{+}+\mathfrak{g}^{\prime}\cap \mathfrak{g}^{-}$ . We then have

$0=f([X, \mathfrak{g}^{\prime}])=f([X^{+}+X^{-}, \mathfrak{g}^{+}+\mathfrak{g}^{\prime}\cap \mathfrak{g}^{-}])=f([X^{-}, \mathfrak{g}^{+}])$ .

On the other hand $f([X^{-}, \mathfrak{g}^{-}])=0$ is obvious. Therefore $f([X^{-}, \mathfrak{g}])=0$ , which implies
that $X^{-}\in \mathfrak{g}^{+}\cap \mathfrak{g}^{-}$ . Thus $X\in \mathfrak{g}^{+}$ , or $\mathfrak{g}^{\prime}=\mathfrak{g}^{+}$ . This shows that $\{\mathfrak{g}^{+}, f\}$ is a polarization in
$\mathfrak{g}$ . $\square $
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