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Abstract. Let $n\geq 2$ be an integer. We show that if $G$ is a graph such that every component of $G$ has
order at least 3, and $|V(G)|\leq 2^{n}$ and $|V(G)|\neq 2^{n}-2$ , then there exists an injective mapping $\varphi$ from $V(G)$ to
an elementary abelian 2-group of order $2^{n}$ such that for every component $C$ of $G$, the sum of $\varphi(x)$ as $x$ ranges
over $V(C)$ is $0$ .

1. Introduction.

Let $n\geq 2$ be an integer, and let $E_{2^{n}}$ denote an elementary abelian 2-group of order
$2^{n}$ (the operation is written additively).

Let $G$ be a graph with no isolated vertex (by a graph, we mean a simple undirected
graph). Suppose that there exists a mapping $\psi$ from the edge set $E(G)$ of $G$ to $E_{2^{n}}$ such
that if we define a mapping $\varphi$ from the vertex set $V(G)$ of $G$ to $E_{2^{n}}$ by

$\varphi(x)=$

$\sum_{E\langle G,eisincident}$

with

$x\varphi(e)$

$(x\in V(G))$ ,

then $\varphi$ is injective. In this situation, we say that $G$ is realizable in $E_{2^{n}}$ . We easily see
that if $G$ is realizable in $E_{2^{n}}$ , then every component of $G$ has order at least 3 (recall
that we are assuming $G$ has no isolated vertex). It also follows that

$G$ is realizable in $E_{2^{n}}$ if and only if there exists an injective
mapping $\varphi$ from $V(G)$ to $E_{2^{n}}$ such that $\sum_{x\in V\langle C)}\varphi(x)=o$ (1.1)
for every component $C$ of $G$

(see [1, Lemma 4]). We let $g(n)$ denote the maximum of those integers $m$ for which
every graph $G$ of order at most $m$ such that all components of $G$ have order at least 3
is realizable in $E_{2^{n}}$ .

A subset $S$ of $E_{2^{n}}$ is called a zero-sum subset if $\sum_{v\in S}v=0$ . Let $a,$ $b,$ $c$ be nonnegative
integers, and let $Z$ be a subset of $E_{2}$ .. Let $K$ be a family of zero-sum subsets of $Z$, and
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suppose that $ S\cap T=\emptyset$ for all $S,$ $T\in K$ with $S\neq T$, that $3\leq|S|\leq 5$ for all $S\in K$, and
that $a=|\{S||S|=3\}|,$ $b=|\{S||S|=4\}|$ and $c=|\{S||S|=5\}|$ . In this situation, we
say that $K$ realizes $(a, b, c)$ in $Z$. If there exists a family realizing $(a, b, c)$ in $Z$, we say
that $(a, b, c)$ is realizable in $Z$ . We let $f(n)$ denote the largest integer such that every
triple $(a, b, c)$ of nonnegative integers with $3a+4b+5c\leq f(n)$ is realizable in $E_{2^{n}}$ . $I|$

follows from (1.1) that $f(n)=g(n)$ (see the first paragraph of the proof of Theorem 3
in [1]).

In [1], Aigner and Triesch proved that $f(n)\geq 2^{n-2}$ for all $n\geq 2$ , and conjectured
that $f(n)\geq 2^{n-1}$ . In [5], Tuza settled this conjecture for large values of $n$ by proving
$\lim_{n\rightarrow\infty}f(n)/2^{n}=1$ by a probabilistic method. In this paper, we settle the conjecture
completely by proving the following theorem (it is easy to see that $f(2)=4$):

THEOREM 1. Let $n\geq 3$ be an integer. Then $f(n)=2^{n}-3$ .
We in fact give a constructive proof of the following stronger result:

THEOREM 2. Let $n\geq 2$ be an integer, and let $a,$ $b,$ $c$ be nonnegative integers with
$3a+4b+5c=2^{n}-1$ . Then $(a, b, c)$ is realizable in $E_{2^{n}}\backslash \{0\}$ .

COROLLARY 3. Let $n\geq 2$ be an integer, and let $a,$ $b,$ $c$ be nonnegative integers such
that $3a+4b+5c\leq 2^{n}$ and $3a+4b+5c\neq 2^{n}-2$ . Then $(a, b, c)$ is realizable in $E_{2^{n}}$ .

REMARK. From $n\geq 2$ , we see that $E_{2^{n}}$ itself is a zero-sum subset. Since no subset
of $E_{2^{n}}$ having cardinality 2 is a zero-sum subset, this implies that no triple $(a, b, c)$ with
$3a+4b+5c=2^{n}-2$ is realizable in $E_{2^{n}}$ .

In view of the above remark, it is straightforward to verify that Corollary 3 implies
Theorem 1. For completeness, we here include a description of how Corollary 3 follows
from Thorem 2. Let $a,$ $b,$ $c$ be as in Corollary 3. By replacing $a,$ $b,$ $c$ by suitable larger
integers (if necessary), we may assume that $3a+4b+5c=2^{n}-1$ or $2^{n}$ . If $3a+$

$4b+5c=2^{n}-1$ , the desired conclusion immediately follows from Theorem 2. Thus
we may assume $3a+4b+5c=2^{n}$ . Since $2^{n}$ is not amultiple of 3, we have $b>0$ or $c>0$ ,

Assume first that $b>0$ . Then by Theorem 2, there exists a family $K$ realizing $(a+1$ .
$b-1,$ $c$) in $E_{2^{n}}\backslash \{0\}$ . Take $S\in K$with $|S|=3$ . Then the family $(K\backslash \{S\})\cup\{S\cup\{0\}\}$ realizes
$(a, b, c)$ . If $c>0$ , then we can simmilarly get a family realizing $(a, b, c)$ from a family
realizing $(a, b+1, c-1)$ in $E_{2^{n}}\backslash \{0\}$ .

We prove several preliminary results in Sections 2 and 3, and prove Theorem 2 in
Sections 4 and 5. We conclude this section with related results. Let $n\geq 2$ be an integer.
A graph $G$ with no isolated vertex is said to be embeddable in a set $A$ of cardinality $n$

if there exists a mapping $\psi$ from $E(G)$ to the set of all subsets of $A$ such that the mapping
$\varphi$ defined by

$\varphi(x)=$

$\bigcup_{e\in E(G),eisincid\epsilon ntwithx}\psi(e)$

$(x\in V(G))$
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is injective. We let $h(n)$ denote the maximum of those integers $m$ for which every graph
$G$ of order at most $m$ such that all components of $G$ have order at least 3 is embeddable
in a set of cardinality $n$ . In [1], Aigner and Triesch proved that $h(n)\geq 2^{n-1}$ for all $n\geq 2$ ,
and it has recently been proved in [3] that $h(n)=2^{n}$ for all $n\geq 2$ .

REMARK. In [2], Caccetta and Jia have recently obtained the same result as
Theorem 2.

2. Nonnegative integers.

In this section and the following section, we prove a number of preliminary results
which we use in the proof of Theorem 2 (readers not interested in technical details may
skip Sections 2 through 4, and proceed to Section 5). We start with lemmas conceming
nonnegative integers.

LEMMA 2.1. Let $a,$ $b,$ $c$ be nonnegative integers such that

$3a+4b+5c\geq 57$ , (2.1)

and suppose that we have $a\geq 3$ or $c\geq 1$ . Then there exist nonnegative integers $x,$ $y,$ $z$

such that

$3x+4y+5z=45$ , $x\leq a$ , $y\leq b$ , $z\leq c$ . (2.2)

PROOF. Let $d=\min\{b, c\}$ . If $d\geq 5,$ $(2.2)$ holds with $(x, y, z)=(0,5,5)$ . Thus we may
assume $d\leq 4.Ifa+3d\geq 15,$ $(2.2)$ holds with $(x, y, z)=(15-3d, d, d)$ . Thus we may assume

$a+3d<15$ . (2.3)

We first consider the case whereb $\geq c$ . Ifc $\geq 1,1eta_{0}=0andc_{0}=1$ ; ifc $=0$ (soa $\geq 3$

by assumption), let $a_{O}=3$ and $c_{0}=0$ . Then $a_{0}\leq a,$ $c_{0}\leq c$ and

$3a_{0}+9c_{0}=9$ . (2.4)

Also we easily see that there exist nonnegative integers $p,$ $r$ with $p\leq a-a_{0},$ $r\leq c-c_{0}$ and

$p+r\leq 3$ (2.5)

such that

$3p+5r\equiv 3(a-a_{0})+5(c-c_{0})$ (mod4). (2.6)

Since $3p+5r\leq 15$ by (2.5), we obtain

$3(a-p)+4b+5(c-r)\geq 42$ (2.7)

by (2.1). On the other hand, we get

$3(a-p)+5(c-r)\leq 3(a+3c)=3(a+3d)<45$ (2.8)
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from (2.3). Since $45-(3(a-p)+5(c-r))=36+4c_{0}-(3(a-a_{0}-p)+5(c-c_{0}-r))$ is a
multiple of 4 by (2.4) and (2.6), it follows from (2.7) and (2.8) that there exists a positive
integer $y$ such that (2.2) holds with $x=a-p$ and $z=c-r$ .

We now consider the case where $b<c$ . In this case, we take nonnegative integers
$p,$ $q$ with $p\leq a,$ $q\leq b$ and $p+q\leq 4$ such that $3p+4q\equiv 3a+4b$ (mod5). Then we have
$3(a-p)+4(b-q)+5c\geq 41$ and $3(a-p)+4(b-q<45$ , and $45-(3(a-p)+4(b-q))$ is a
multiple of 5. Consequently, there exists a positive integer $z$ such that (2.2) holds with
$x=a-p$ and $y=b-q$ .

LEMMA 2.2. Let $r$ be a nonnegative integer. Let $a,$ $b,$ $c$, be nonnegative integers such
that $3a+4b+5c\geq 45r+12$ and

$[(b-1)/9]\leq(a/3)+c$ . (2.9)

Then there exist nonnegative integers $x_{1},$ $y_{1},$ $z_{1};x_{1},$ $y_{2},$ $z_{2};\cdots;x_{r},$ $y_{y},$ $z_{r}$ such thal
$3x_{i}+4y_{i}+5z_{i}=45$ for all $i,$ $\sum x_{i}\leq a,$ $\sum y_{i}\leq b$ and $\sum z_{i}\leq c$ .

PROOF. If $r=0$ , the lemma trivially holds. Thus let $r\geq 1$ , and assume that the
lemma is proved for $r-1$ . It suffices to show that there exist nonnegative integers $x$ ,
$y,$ $z$ satisfying (2.2) such that

$[((b-y)-1)/9]\leq(a-x)/3+(c-z)$ . (2.10)

Assume first that $b\geq 10$ . Then $a/3+c\geq 1$ by (2.9), and hence $a\geq 3$ or $c\geq 1$ . If $a\geq 3$ , let
$(x, y, z)=(3,9,0)$; if $a<3$ (so $c\geq 1$ ), let $(x, y, z)=(0,10,1)$ . Then (2.10) easily follows
from (2.9). Assume now that $b\leq 9$ . Then $3a+5c\geq(45+12)-36$ , and hence we have
$a>3$ or $c>1$ . Consequently, it follows from Lemma 2.1 that there exist nonnegative
integers $x,$ $y,$ $z$ satisfying (2.2), and (2.10) clearly holds because $(b-y)-1\leq b-1<9$ .

LEMMA 2.3. Let $b,$ $c,$ $t$ be nonnegative integers such that $4b+5c\geq t+12$, and
suppose that one of the folloiwng holds:

(i) $t$ is a multiple of 4 and $b\geq 4$ ; or
(ii) $t$ is a multiple of 5 and $c\geq 3$ .

Then there exist nonnegative integers $y,$ $z$ such that

$4y+5z=t$ , $y\leq b$ , $z\leq c$ . (2.11)

PROOF. We first consider the case where (i) holds. Clearly we may assume $b<t/4$ .
Also there exists a nonnegative integer $q$ with $q\leq 4$ such that $t-4(b-q)$ is a multiple
of 5. Then $4(b-q)+5c\geq t-4$ , and hence there exists a positive integer $z$ such that (2.11)
holds with $y=b-q$ . We now consider the case where (ii) holds. We may assume $c<t/5$ .
Also there exists a nonnegative integer $r$ with $r\leq 3$ such that $t-5(c-r)$ is a multiple of
4. Then $4b+5(c-r)\geq t-3$ , and hence there exists a nonnegative integer $y$ such that
(2.11) holds with $z=c-r$ .
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3. Realizable triples.

Throughout this section, we let $n\geq 2$ be an integer, and let $X$ be an elementary
abelian 2-group of order $2^{n}$ . For a subset $S$ of $X$, we let $\langle S\rangle$ denote the subgroup of
$X$ generated by $S$ . For subsets $S,$ $T$ of $X$, we let $S+T=\{u+v|u\in S, v\in T\}$ .

LEMMA 3.1. Let $S$ be a subset of $X$ and let $Q$ be a zero-sum subset of cardinality
4 of $X$, and suppose that $\langle S\rangle\cap\langle Q\rangle=\{0\}$ . Then $(0, |S|, 0)$ is realizable in $S+Q$ .

PROOF. The family $\{u+Q|u\in S\}$ realizes $(0, |S|, 0)$ .
LEMMA 3.2. Let $S,$ $P$ be zero-sum subsets ofcardinality 3 such that $\langle S\rangle\cap\langle P\rangle=\{0\}$ .

Then $(0,1,1)$ and $(3, 0,0)$ are realizable in $S+P$ .

PROOF. Write S $=\{s_{1}, s_{2}, s_{3}\}$ and P $=\{v_{1}, v_{2}, v_{3}\},$ $andletP_{k}=\{s_{i}+v_{i+k}|1\leq i\leq 3\}$

for each $1\leq k\leq 3$ (subscripts of the letter $v$ are to be read modulo 3). Then $\{P_{1}, P_{2}, P_{3}\}$

realizes $(3, 0,0)$ , and

$\{\{s_{1}, s_{3}\}+\{v_{1}, v_{3}\}, (S+P)\backslash (\{s_{1}, s_{3}\}+\{v_{1}, v_{3}\})\}$

realizes $(0,1,1)$ .

LEMMA 3.3. Let $S$ and $R$ be zero-sum subsets of cardinality 3 and 5, respectively,
such that $\langle S\rangle\cap\langle R\rangle=\{0\}$ . Then $(0,0,3)$ is realizable in $S+R$ .

PROOF. Write $S=\{s_{1}, s_{2}, s_{3}\}$ and $R=\{v_{1}, v_{2}, v_{3}, p, q\}$ and define $P_{k}$ as in Lemma
3.2. Then $\{P_{k}u\{s_{k}+p, s_{k}+q\}|1\leq k\leq 3\}$ realizes $(0,0,3)$ .

LEMMA 3.4. Let $S,$ $P,$ $Q$ be zero-sum subsets of cardinality 3 such that $ P\cap Q=\emptyset$

and $\langle S\rangle\cap\langle P\cup Q\rangle=\{0\}$ . Then $(2, 3, 0)$ and $(1, 0,3)$ are realizable in $S+(P\cup Q)$ .
PROOF. Write $S=\{s_{1}, s_{2}, s_{3}\},$ $P=\{v_{1}, v_{2}, v_{3}\}$ and $Q=\{w_{1}, w_{2}, w_{3}\}$ (subscripts are

to be read modulo 3). For each $1\leq k\leq 3$ , let

$Q_{k}=\{s_{k+1}, s_{k+2}\}+\{v_{k}, w_{k}\}$ ,

$R_{k}=\{s_{k}+v_{i}|1\leq i\leq 3\}\cup\{s_{k+1}+w_{k}, s_{k+2}+w_{k}\}$ .
Let

$P_{1}=\{s_{i}+v_{i}|1\leq i\leq 3\}$ , $P_{2}=\{s_{i}+w_{i}|1\leq i\leq 3\}$ .

Then $\{P_{1}, P_{2}\}\cup\{Q_{k}|1\leq k\leq 3\}$ realizes $(2, 3, 0)$ , and $\{P_{2}\}\cup\{R_{k}|1\leq k\leq 3\}$ realizes
$(1, 0,3)$ .

LEMMA 3.5. Let $T$ be a zero-sum subset of cardinality 5 and let $P,$ $Q$ be zero-sum
subsets of cardinality 3, and suppose that $ P\cap Q=\emptyset$ and $\langle T\rangle\cap\langle P\cup Q\rangle=\{0\}$ . Then
$(0,5,2)$ is realizable in $T+(P\cup Q)$ .

PROOF. Write $T=\{s_{1}, s_{2}, s_{3}, t, u\},$ $P=\{v_{1}, v_{2}, v_{3}\}$ and $Q=\{w_{1}, w_{2}, w_{3}\}$ . Define
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$P_{1},$ $P_{2},$ $Q_{1},$ $Q_{2},$ $Q_{3}$ as in Lemma 3.4, and let

$R_{1}=P_{1}\cup\{t+v_{2}, u+v_{2}\}$ , $R_{2}=P_{2}\cup\{t+w_{2}, u+w_{2}\}$ ,

$Q_{4}=\{t, u\}+\{v_{1}, v_{3}\}$ , $Q_{5}=\{t, u\}+\{w_{1}, w_{3}\}$ .

Then $\{R_{1}, R_{2}\}\cup\{Q_{k}|1\leq k\leq 5\}$ realizes $(0,5,2)$ .
LEMMA 3.6. Let $S$ be a zero-sum subset of cardinality 3 and let $Q,$ $R$ be zero-sun

subsets of cardinality 5, and suppose that $ Q\cap R=\emptyset$ and $\langle S\rangle\cap\langle Q\cup R\rangle=\{0\}$ . The’
$(0,5,2)$ is realizable in $S+(Q\cup R)$ .

PROOF. Write $S=\{s_{1}, s_{2}, s_{3}\},$ $Q=\{v_{1}, v_{2}, v_{3}, p, q\},$ $R=\{w_{1}, w_{2}, w_{3}, x, y\}$ . Define $P_{1}$

$P_{2},$ $Q_{1},$ $Q_{2},$ $Q_{3}$ as in Lemma 3.4, and let

$R_{1}=P_{1}\cup\{s_{2}+p, s_{2}+q\}$ , $R_{2}=P_{2}\cup\{s_{2}+x, s_{2}+y\}$ ,

$Q_{4}=\{s_{1}, s_{3}\}+\{p, q\}$ , $Q_{5}=\{s_{1}, s_{3}\}+\{x, y\}$ .
Then $\{R_{1}, R_{2}\}\cup\{Q_{k}|1\leq k\leq 5\}$ realizes $(0,5,2)$ .

LEMMA 3.7. Let $S,$ $P$ be zero-sum subsets of cardinality 3 and let $R$ be a zero-sun
subset of cardinality 5, and suppose that $ P\cap R=\emptyset$ and $\langle S\rangle\cap\langle P\cup R\rangle=\{0\}$ . Then
(1, 4, 1) is realizable in $S+(P\cup R)$ .

PROOF. Write $S=\{s_{1}, s_{2}, s_{3}\},$ $P=\{v_{1}, v_{2}, v_{3}\}$ and $R=\{w_{1}, w_{2}, w_{3}, x, y\}$ , and let $P_{1}$

$R_{2},$ $Q_{1},$ $Q_{2},$ $Q_{3},$ $Q_{5}$ be as in Lemma 3.6. Then they form a family realizing (1, 4, 1).

LEMMA 3.8. Let $W$ be a subgroup of order 2 of $X$ and let $P$ be a zero-sum subse $i$

of cardinality 3 of $X$, and suppose that $W\cap\langle P\rangle=\{0\}$ . Then $(0,1,4),$ $(3,0,3)$ and (8, $0,0$

are realizable in $W+P$.
PROOF. Let $Z$ be a subgroup of order 2 of $W$. By Lemma 3.2, $(0,1,1)$ and (3, $0,0$

are realizable in $(Z\backslash \{0\})+P$ . By Lemma 3.3, $(0,0,3)$ is realizable in $((W\backslash Z)\cup\{0\})+P$

Consequently, $(0,1,4)$ and $(3, 0,3)$ are realizable in $W+P$ . Now write $W=\langle v_{1},$ $v_{2},$ $v_{3}$ )
and $P=\{p_{1},p_{2},p_{3}\}$ (subscripts are to be read modulo 3). For each $1\leq k\leq 3$ , let

$P_{k}=\{p_{k}, v_{k}+p_{k+1}, v_{k}+p_{k+2}\}$ ,

$S_{k}=\{v_{k}+p_{k}, v_{k+1}+v_{k+2}+p_{k+2}, v_{k}+v_{k+1}+v_{k+2}+p_{k+1}\}$ .
For each $1\leq l\leq 2$ , let

$T_{l}=\{v_{i}+v_{i+1}+p_{i+1+i}|1\leq l\leq 3\}$ .
Then $\{P_{k}, S_{k}, T_{l}\}|1\leq k\leq 3,1\leq l\leq 2\}$ realizes $(8, 0,0)$ .

LEMMA 3.9. Let $W$ be a subgroup of order 2 and let $R$ be a zero-sum subset $oj$

cardinality 5, and suppose that $W\cap\langle R\rangle=\{0\}$ . Then $(0,0,8)$ is realizable in $W+R$ .
PROOF. Write $ W=\langle v_{1}, v_{2}, v_{3}\rangle$ and $P=\{p_{1}, p_{2}, p_{3}, q, r\}$ (subscripts are to be read
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modulo 3). Define $P_{k},$ $S_{k},$ $T_{l}$ as in Lemma 3.8, and let

$R_{k}=P_{k}\cup\{v_{k}+q, v_{k}+r\}$ ,

$U_{k}=S_{k}u\{v_{k+1}+v_{k+2}+q, v_{k+1}+v_{k+2}+r\}$ ,

$V_{1}=T_{1}\cup\{q, r\}$ , $V_{2}=T_{2}\cup\{v_{1}+v_{2}+v_{3}+q, v_{1}+v_{2}+v_{3}+r\}$ .
Then $\{R_{k}, U_{k}, V_{i}|1\leq k\leq 3,1\leq l\leq 2\}$ realizes $(0,0,8)$ .

LEMMA 3.10. Let $W$ be a subgroup of order 2 and let $R$ be a zero-sum subset of
cardinality 5 with $0\not\in R$ , and suppose that $W\cap\langle R\rangle=\{0\}$ . Then $(0,3,7)$ is realizable in
$(W+(Ru\{0\}))\backslash \{0\}$ .

PROOF. Under the notation of Lemma 3.9, let

$V_{3}=\{v_{2}+v_{3}+p_{2}, v_{1}+v_{3}, v_{1}+v_{3}+p_{2}, v_{1}+v_{3}+p_{3}, v_{1}+v_{2}+p_{3}\}$ ,

$Q_{1}=\{v_{1}, v_{2}, v_{3}, v_{1}+v_{2}+v_{3}\}$ ,

$Q_{2}=\{v_{2}+v_{3}, v_{1}+v_{2}\}+\{0, p_{1}\}$ ,

$Q_{3}=\{0, v_{1}+v_{2}+v_{3}\}+\{q, r\}$ .
Then $\{Q_{k}, R_{k}, U_{k}, V_{3}|1\leq k\leq 3\}$ realizes $(0,3,7)$ .

LEMMA 3.11. If $n$ is odd, let $W$ denote a subgroup of order 2; if $n$ is even, let
$W=\{0\}$ . Then $((|X|-|W|)/3,0,0)$ is realizable in $X\backslash W$.

PROOF. We proceed by induction on n. It is easy to verify the lemma forn $=2,3$ .
Thus let $n\geq 4$ , and assume that the lemma is proved for $n-2$ . Take subgroups $U$ and
$V$ of order $2^{n-2}$ and 2, respectively, so that $U\supseteq W$ and $U\cap V=\{0\}$ . By the induction
hypothesis, there exists a family $L$ realizing $((|U|-|W|)/3,0,0)$ in $U\backslash W$. It follows
from Lemma 3.2 that for each $P\in L$ , there exists a family $M_{P}$ realizing $(3, 0,0)$ in
$P+(V\backslash \{0\})$ . Furthermore, there exists a family $N$ realizing $(|W|, 0,0)$ in $W+(V\backslash \{0\})$

(if $W=\{0\}$ , this is trivial; if $|W|=8$ , this follows from Lemma 3.8). Thus the family
$(\bigcup_{P\in L}M_{P})\cup N\cup L$ realizes $((|X|-|W|)/3,0,0)$ in $X\backslash W$.

LEMMA 3.12. Suppose that $n\geq 3$ , and let $U$ be a subgroup of order 2. Let $a,$
$b$,

$c$ be nonnegative integers with $3a+4b+5c=2^{n}-1$ and $b\geq 2^{n-3}$ , and suppose that there
exists a family $K$ realizing $(a, b-2^{n-3}, c)$ in $U\backslash \{0\}$ . Then $(a, b, c)$ is realizable in $X\backslash \{0\}$ .

PROOF. Let $W$ be a subgroup of order 2 of $U$. Then the family $L$ consisting of
those cosets of $W$ which are disjoint from $U$ realizes $(0,2^{n-3},0)$ , and hence $K\cup L$

realizes $(a, b, c)$ .

The following lemma shows that Theorem 2 holds for $2\leq n\leq 4$ :

LEMMA 3.13. Suppose that $2\leq n\leq 4$ , and let $a,$ $b,$ $c$ be nonnegative integers with
$3a+4b+5c=2^{n}-1$ . Then $(a, b, c)$ is realizable in $X\backslash \{0\}$ .
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PROOF. If $n=2$ or 3, the lemma clearly holds. Thus we may assume $n=4$ . In view
of Lemmas 3.11 and 3.12, we may assume $b+c\neq 0$ and $b\leq 1$ . Thus $(a, b, c)=(2,1,1)0l$

$(0,0,3)$ . Let $U,$ $V$ be subgroups of order 2 such that $U\cap V=\{0\}$ . Then by Lemma 3.2
there exists a family $K$ realizing $(0,1,1)$ in $(U\backslash \{0\})+(V\backslash \{0\})$ , and hence $K\cup\{U\backslash \{0\}$

$V\backslash \{0\}\}$ realizes (2, 1, 1). Now write $U\backslash \{0\}=\{u_{1}, u_{2}, u_{3}\}$ and $V\backslash \{0\}=\{v_{1},$ $v_{2},$
$v_{3_{p}^{\backslash }}$

(subscripts are to be read modulo 3). Then the family

$\{\{u_{k}, v_{k}, u_{k}+v_{k+1}, u_{k+1}+v_{k}, u_{k+1}+v_{k+1}\}|1\leq k\leq 3\}$

realizes $(0,0,3)$ .

We prove four more technical results.

LEMMA 3.14. Let $r$ be a nonnegative integer, and let $P_{1},$ $\cdots,$ $P_{r},$ $S$ be zero $\cdot$

sum subsets of cardinality 3 such that $ P_{i}\cap P_{j}=\emptyset$ for all $i,$ $j$ with $i\neq j$ am
$\langle S\rangle\cap\langle P_{1}\cup\cdots\cup P_{r}\rangle=\{0\}$ . Let $x,$ $y,$ $z$ be nonnegative integers with $3x+4y+5z=9r$
and let $d=\min\{y, z\}$ and $e=\max\{y, z\}$ . Suppose that $e-d\leq 3(r-d)/2$ . Then $(x, y, z)i_{L}^{t}$

realizable in $S+(P_{1}\cup\cdots\cup P_{r})$ .
PROOF. We proceed by induction on $r$ . If $r=0$ , the lemma trivially holds. Thus

assume $r\geq 1$ . If $d\geq 1$ , then $(x, y-1, z-1)$ is realizable in $S+(P_{1}u\cdots uP_{r-1})$ by tht
induction hypothesis, and $(0,1,1)$ is realizable in $S+P_{r}$ by Lemma 3.2, and hence $(x,$ $y,$ $z$

is realizable in $S+(P_{1}\cup\cdots\cup P_{r})$ . Thus we may assume $d=0$ . If $e=0$ , then $y=z=t$

and $x=3r$, and hence the desired conclusion immediately follows from Lemma 3.2
Thus we may assume $e>0$ . Then either $y=0$ and $z>0$ , or $z=0$ and $y>0$ .

Assume first that $y=0$ and $z>0$ . Then since $3x+5z=9r,$ $z$ is a multiple of 3, anc
hence $z\geq 3$ and $r\geq 2$ . Since $z=e-d\leq 3(r-d)/2=3r/2$ , we also get $x=(9r-5z)/3\geq r/2\geq 1$

Thus by the induction hypothesis, $(x-1,0, z-3)$ is realizable in $S+(P_{1}\cup\cdots\cup P_{r-2})$

Since $(1, 0,3)$ is realizable in $S+(P_{r-1}\cup P_{r})$ by Lemma 3.4, this implies that $(x, 0, z)$ is
realizable in $S+(P_{1}\cup\cdots\cup P_{r})$ .

Assume now that $z=0$ and $y>0$ . Then $y\geq 3,$ $r\geq 2$ and $x\geq 2$ . Thus by the inductior
hypothesis, $(x-2, y-3,0)$ is realizable in $S+(P_{1}\cup\cdots\cup P_{r-2})$ . Since $(2, 3, 0)$ is
realizable in $S+(P_{r-1}uP_{r})$ by Lemma 3.4, this implies that $(x, y, 0)$ is realizable ir
$S+(P_{1}\cup\cdots\cup P_{r})$ .

LEMMA 3.15. Let $V$ be a subgroup of order $2^{4}$, and let $S$ be a zero-sum subset $oj$

cardinality 3 such that $\langle S\rangle\cap V=\{0\}$ . Let $x,$ $y,$ $z$ be nonnegative integers wit)

$3x+4y+5z=45$ . Then $(x, y, z)$ is realizable in $S+(V\backslash \{0\})$ .
PROOF. Let $d=\min\{y, z\}$ and $e=\max\{y, z\}$ . By Lemma 3.13, we can partition

$V\backslash \{0\}$ into five zero-sum subsets of cardinality 3. Consequently, if $e-d\leq 3(5-d)/2$

then the desired conclusion immediately follows from Lemma 3.14. Thus we may assume
$e-d>3(5-d)/2$ . Then $(x, y, z)=(0,0,9),$ $(0,10,1),$ $(1,8,2)$ or $(3, 9, 0)$ . By Lemma 3.13
we can partition $V\backslash \{0\}$ into three zero-sum subsets of cardinality 5, and hence it follows
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from Lemma 3.3 that $(0,0,9)$ is realizable in $S+(V\backslash \{0\})$ . By Lemma 3.13, we can
partition $V\backslash \{0\}$ into four zero-sum subsets $P,$ $Q_{1},$ $Q_{2},$ $Q_{3}$ such that $|P|=3$ and
$|Q_{1}|=|Q_{2}|=|Q_{3}|=4$ . Then $(0,1,1)$ and $(3, 0,0)$ are realizable in $S+P$ by Lemma 3.2,
and $(0,3,0)$ is realizable in $S+Q_{i}$ by Lemma 3.1. Consequently, $(0,10,1)$ and $(3, 9, 0)$

are realizable in $S+(V\backslash \{0\})$ . Now by Lemma 3.13, we can partition $V\backslash \{0\}$ into four
zero-sum subsets $P_{1},$ $P_{2},$ $Q,$ $R$ such that $|P_{1}|=|P_{2}|=3,$ $|Q|=4$ and $|R|=5$ . Then
(1, 4, 1) is realizable in $S+(P_{1}\cup R)$ by Lemma 3.7, $(0,1,1)$ is realizable in $S+P_{2}$ by
Lemml 3.2, and $(0,3,0)$ is realizable in $S+Q$ by Lemma 3.1. Consequently, (1, 8, 2) is
realizable in $S+(V\backslash \{0\})$ .

LEMMA 3.16. Let $V$ be a subgroup of order $2^{4}$ , and $S$ be a zero-sum subset of
cardinality 3 such that $\langle S\rangle\cap V=\{0\}$ . Let $x,$ $y,$ $z$ be nonnegative integers with
$3x+4y+5z=48$ . Then $(x, y, z)$ is realizable in $S+V$.

PROOF. If $x\geq 1$ , the desired conclusion immediately follows from Lemma 3.15.
Thus we may assume $x=0$ . Since $(1, 3, 0)$ is realizable in $V\backslash \{0\}$ by Lemma 3.13, $(0,4,0)$

is realizable in $V$. Consequently, it follows from Lemma 3.1 that $(0,12,0)$ is realizable
in $S+V$. Thus we may assume $z>0$ , and hence $(y, z)=(2,8)$ or $(7, 4)$ . Since (2, 1, 1) is
realizable in $V\backslash \{0\}$ by Lemma 3.13, we can partition $V$ into two zero-sum sets $P_{1},$ $P_{2}$

of cardinality 3 and two zero-sum subsets $R_{1},$ $R_{2}$ of cardinality 5. By Lemma 3.2,
$(0,1,1)$ is realizable in $S+P_{1}$ and $S+P_{2}$ . By Lemmas 3.3 and 3.6, $(0,0,6)$ and $(0,5,2)$

are realizable in $S+(R_{1}\cup R_{2})$ . Consequently, $(0,2,8)$ and $(0,7,4)$ are realizable in
$S+V$.

LEMMA 3.17. Let $V$ be a subgroup of order $2^{4}$ , and let $T$ be a zero-sum subset of
cardinality 5 such that $\langle T\rangle\cap V=\{0\}$ . Let $y,$ $z$ be nonnegative integers with $4y+5z=75$ .
Then $(0, y, z)$ is realizable in $T+(V\backslash \{0\})$ .

PROOF. By Lemma 3.13, we can partition $V\backslash \{0\}$ into a zero-sum subset $P$ of
cardinality 3 and three zero-sum subsets $Q_{1},$ $Q_{2},$ $Q_{3}$ of cardinality 4. By Lemma 3.3,
$(0,0,3)$ is realizable in $T+P$ . By Lemma 3.1, $(0,5,0)$ is realizable in $T+Q_{i}$ for each $i$.
Consequently, $(0,15,3)$ is realizable in $T+(V\backslash \{0\})$ . Thus we may assume $z>3$ , and
hence $(y, z)=(0,15),$ $(5,11)$ or $(10, 7)$ . By Lemma 3.13, we can partition $V\backslash \{0\}$ into five
zero-sum subsets $P_{1},$ $\cdots,$ $P_{5}$ of cardinality 3. By Lemmas 3.3 and 3.5, $(0,0,6)$ and
$(0,5,2)$ are realizable in $T+(P_{2i-1}\cup P_{2i})$ for each $1\leq i\leq 2$ . By Lemma 3.3, $(0,0,3)$ is
realizable in $T+P_{5}$ . Consequently, $(0,0,15),$ $(0,5,11)$ and $(0,10,7)$ are realizable in
$T+(V\backslash \{0\})$ .

4. Small case.

Let $n\geq 2$ be an integer, and let $X$ be an elementary abelian 2-group of order $2^{n}$ .
In this section, we consider the case where $5\leq n\leq 7$ .
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LEMMA 4.1. Suppose that $n=5$ , and let $a,$ $b,$ $c$ be nonnegative integers with
$3a+4b+5c=31$ . Then $(a, b, c)$ is realizable in $X\backslash \{0\}$ .

PROOF. By Lemmas 3.12 and 3.13, we may assume $b\leq 3$ . Thus $(a, b, c)=(1,2,4)$ ,
$(2, 0,5),$ $(3,3,2),$ $(4,1,3),$ $(6,2,1),$ $(7,0,2)$ or $(9, 1, 0)$ . Take subgroups $U$ and $V$ of order
2 and 2, respectively, so that $U\cap V=\{0\}$ , and let $W$be a subgroup oforder 2 of $U$.

Case 1. $(a, b, c)=(1,2,4),$ $(4,1,3)$ or $(9, 1, 0)$ . By Lemma 3.8, $(0,1,4),$ $(3,0,3)$ and
$(8, 0,0)$ are realizable in $U+(V\backslash \{0\})$ . Since $\{W\backslash \{0\}, U\backslash W\}$ realizes $(1, 1, 0)$ , it follows
that (1, 2, 4), (4, 1, 3) and $(9, 1, 0)$ are realizable in $X\backslash \{0\}$ . This completes the discussion
for Case 1.

Throughout the rest of the proof of the lemma, we write $V\backslash \{0\}=\{p, q, r\}$ and
$W\backslash \{0\}=\{u, v, w\}$ , and fix $z\in U\backslash W$

Case 2. $(a, b, c)=(6,2,1)$ . Since $\{V\backslash \{0\}, W\backslash \{0\}, U\backslash W\}$ realizes $(2, 1, 0)$ in
$(U\cup V)\backslash \{0\}$ , it suffices to show that (4, 1, 1) is realizable in $X\backslash (U\cup V)$ . Let

$P_{1}=\{p+z, q+u, r+u+z\}$ ,

$P_{2}=\{q+z, r+v, p+v+z\}$ ,

$P_{3}=\{r+z, p+w, q+w+z\}$ ,

$P=\{p+u, q+v, r+w\}$ ,

$Q=\{p+v, q+w, p+w+z, q+v+z\}$ ,

$R=\{r+u, p+u+z, q+u+z, r+v+z, r+w+z\}$ .
Then $\{P_{1}, P_{2}, P_{3}, P, Q, R\}$ realizes (4, 1, 1).

Case 3. $(a, b, c)=(3,3,2)$ . Let

$P=\{p+u, q+v+z, r+w+z\}$ ,

$Q_{1}=\{r, q+z\}+\{u, w\}$ ,

$Q_{2}=\{p+z, r+z\}+\{u, v\}$ ,

$R_{1}=\{p+v, q+u, q+v, q+w, r+v\}$ ,

$R_{2}=\{p+z, q+z, r+z, p+w, p+w+z\}$ .
Then $\{P, Q_{1}, Q_{2}, R_{1}, R_{2}\}$ realizes (1, 2, 2) in $X\backslash (U\cup V)$ .

Case 4. $(a, b, c)=(7,0,2)$ . We show that $(5, 0,2)$ is realizable in $X\backslash (VuW)$ . Let

$P_{1}=\{p+z, u+z, p+u\}$ ,

$P_{2}=\{q+z, v+z, q+v\}$ ,

$P_{3}=\{r+z, w+z, r+w\}$ ,

$S_{1}=\{q+u, p+w+z, r+v+z\}$ ,
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$S_{2}=\{q+w, p+v+z, r+u+z\}$ ,

$R_{1}=\{z, p+v, p+w, r+v, r+w+z\}$ ,

$R_{2}=\{r+u, p+u+z, q+u+z, q+v+z, q+w+z\}$ .

Then $P_{1},$ $P_{2},$ $P_{3},$ $S_{1},$ $S_{2},$ $R_{1},$ $R_{2}$ realizes $(5, 0,2)$ in $X\backslash (VuW)$ .
Case 5. $(a, b, c)=(2,0,5)$ . Let

$R_{1}=\{p+z, q+z, r+u, r+v, r+w\}$ ,

$R_{2}=\{u+z, v+z, w+z, q+w, q+w+z\}$ ,

$R_{3}=\{p+u, p+v, p+w, q+v+z, r+v+z\}$ ,

$R_{4}=\{q+u, p+u+z, p+v+z, p+w+z, r+u+z\}$ ,

$R_{5}=\{z, r+z, q+v, q+u+z, r+w+z\}$ .

Then $\{R_{i}|1\leq i\leq 5\}$ realizes $(0,0,5)$ in $X\backslash (V\cup W)$ .
LEMMA 4.2. Suppose that $n=6$ , and let $a,$ $b,$ $c$ be nonnegative integers with

$3a+4b+5c=63$ . Then $(a, b, c)$ is realizable in $X\backslash \{0\}$ .
PROOF. By Lemmas 3.12 and 4.1, we may assume $b\leq 7$ , and hence we have $a>5$

or $c>3$ . If $a>5$ , let $a_{1}=5$ and $c_{1}=0$ ; if $a\leq 5$ (so $c>3$), let $a_{1}=0$ and $c_{1}=3$ . Let $U,$ $V$

be subgroups of order $2^{4}$ and 2 such that $U\cap V=\{0\}$ . Then $(a_{1},0, c_{1})$ is realizable in
$U\backslash \{0\}$ by Lemma 3.13, and $(a-a_{1}, b, c-c_{1})$ is realizable in $U+(V\backslash \{0\})$ by
Lemma 3.16, and hence $(a, b, c)$ is realizable in $X\backslash \{0\}$ .

LEMMA 4.3. Suppose that $n=7$ , and let $a,$ $b,$ $c$ be nonnegative integers with
$3a+4b+5c=127$ . Then $(a, b, c)$ is realizable in $X\backslash \{0\}$ .

PROOF. By Lemmas 3.12 and 4.2, we may assume
$b\leq 15$ . (4.1)

We divide the proof into four cases.
Case 1. $a=0$ . By (4.1), we have $(b, c)=(3,23),$ $(8,19)$ or $(13, 15)$ .

Subcase 1.1. $(b, c)=(3,23)$ . Let $U,$ $V$ be subgroups of order 2 and $2^{4}$ such that
$U\cap V=\{0\}$ . By Lemma 3.13, we can partition $V\backslash \{0\}$ into three zero-sum subsets $R_{1}$ ,
$R_{2},$ $R_{3}$ of cardinality 5. It follows from Lemma 3.9 that $(0,0,8)$ is realizable in $U+R_{1}$

and $U+R_{2}$ , and it follows from Lemma 3.10 that $(0,3,7)$ is realizable in
$(U+(R_{3}\cup\{0\}))\backslash \{0\}$ , and hence $(0,3,23)$ is realizable in $X\backslash \{0\}$ .
Subcase 1.2. $(b, c)=(8,19)$ or $(13, 15)$ . Let $U,$ $V$ be subgroups of order 2 and 2 such
that $U\cap V=\{0\}$ . Since (4, 1, 3) is realizable in $U\backslash \{0\}$ by Lemma 4.1, we can partition
$U$ into four zero-sum subsets $P_{1},$ $\cdots,$ $P_{4}$ of cardinality 3 and four zero-sum subsets
$R_{1},$ $\cdots,$ $R_{4}$ of cardinality 5. By Lemma 3.2, $(0,1,1)$ is realizable in $P_{i}+(V\backslash \{0\})$ for
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each $1\leq i\leq 4$ . By Lemmas 3.3 and 3.6, $(0,0,6)$ and $(0,5,2)$ are realizable in
$(R_{2i-1}\cup R_{2i})+(V\backslash \{0\})$ for each $1\leq i\leq 2$ . Since $(0,4,3)$ is realizable in $U\backslash \{0\}$ by Lemma
4.1, it now follows that $(0,8,19)$ and $(0,13,15)(and(0,18,11))$ are realizable in $X\backslash \{0\}$ .

Case 2. $1\leq a\leq 11$ and $b=0$ . We have $(a, c)=(4,23)$ or $(9, 20)$ . Let $U,$ $V$ be
subgroups of order 2 and 2 such that $U\cap V=\{0\}$ . By Lemma 4.1, we can partition
$U\backslash \{0\}$ into two zero-sum subsets $P_{1},$ $P_{2}$ of cardinality 3 and five zero-sum subsets
$R_{1},$ $\cdots,$ $R_{5}$ of cardinality 5. By Lemmas 3.2 and 3.4, $(6, 0,0)$ and $(1, 0,3)$ are realizable
in $(P_{1}\cup P_{2})+(V\backslash \{0\})$ . By Lemma 3.3, $(0,0,3)$ is realizable in $R_{i}+(V\backslash \{0\})$ for each $i$ .
Since $\{V\backslash \{0\}, P_{1}, P_{2}\}\cup\{R_{i}|1\leq i\leq 5\}$ realizes $(3, 0,5)$, it now follows that (9, $0,20$]
and $(4, 0,23)$ are realizable in $X\backslash \{0\}$ .

Case 3. $1\leq a\leq 11$ and $b\geq 1$ . Let $U,$ $V$ be subgroups of order 2 and $2^{4}$ such that
$U\cap V=\{0\}$ , and let $W$ be a subgroup of order 2 of $U$. Then $\{W\backslash \{0\}, U\backslash W\}$ realizes
$(1, 1, 0)$ in $U\backslash \{0\}$ . We aim at showing that we can write $b-1=b_{1}+b_{2}$ and $c=c_{1}+c_{2}$

so that $(0, b_{1}, c_{1})$ and $(a-1, b_{2}, c_{2})$ are realizable in $((U\backslash W)\cup\{0\})+(V\backslash \{0\})$ and
$(W\backslash \{0\})+(V\backslash \{0\})$ , respectively. Since $a\leq 11$ , we get $4(b-1)+5c\geq 127-33-4=75+$
$15$ , and we also get $c\geq 7$ from (4.1). Hence by Lemma 2.3, there exist nonnegative
integers $b_{1},$ $c_{1}$ with $b_{1}\leq b-1$ and $c_{1}\leq c$ such that $4b_{1}+5c_{1}=75$ . Let $b_{2}=b-1-b_{1}$ and
$c_{2}=c-c_{1}$ . Then $3(a-1)+4b_{2}+5c_{2}=45$ . It now follows from Lemma 3.17 that $(0, b_{1}, c_{1})$

is realizable in $((U\backslash W)\cup\{0\})+(V\backslash \{0\})$ , and it follows from Lemma 3.15 that
$(a-1, b_{2}, c_{2})$ is realizable in $(W\backslash \{0\})+(V\backslash \{0\})$ , and hence $(a, b, c)$ is realizable in $X\backslash \{0\}$ .

Case 4. $a\geq 12$ . Let $U,$ $V$ be subgroups of order 2 and 2 such that $U\cap V=\{0\}$ ,
and let $W$ be a subgroup of order 2 of $U$. We aim at showing that we can write
$a=a_{1}+a_{2}+a_{3},$ $b=b_{1}+b_{2}+b_{3}$ and $c=c_{1}+c_{2}+c_{3}$ so that $(a_{1}, b_{1}, c_{1}),$ $(a_{2}, b_{2}, c_{2})$ and
$(a_{3}, b_{3}, c_{3})$ are realizable $jnW+(V\backslash \{0\}),$ $(U\backslash W)+(V\backslash \{0\})$ and $U\backslash \{0\}$ .

We first take up $W+(V\backslash \{0\})$ . If $12\leq a\leq 16$ , let $(a_{1}, b_{1}, c_{1})=(3,0,3)$; if $a\geq 17$ , let
$(a_{1}, b_{1}, c_{1})=(8,0,0)$ . Note that in the case where $12\leq a\leq 16$ , it follows from (4.1) that
$c\geq(127-48-60)/5$ , i.e., $c\geq 4$ . Thus in either case, we have

$3a_{1}+4b_{1}+5c_{1}=24$ , (4.2)

$a-a_{1}\geq 9,$ $b\geq b_{1}$ and $c\geq c_{1}$ . Moreover, $(a_{1}, b_{1}, c_{1})$ is realizable in $W+(V\backslash \{0\})$ by Lemma
3.8.

We now consider $(U\backslash W)+(V\backslash \{0\})$ . We choose nonnegative integers $a_{2},$ $b_{2},$ $c_{2}$ as
follows so that they satisfy

$8\leq a_{2}\leq a-a_{1}$ , (4.3)

$b_{2}\leq b-b_{1}$ , $c_{2}\leq c-c_{1}$ , $3a_{2}+4b_{2}+5c_{2}=72$ . (4.4)

If $a-a_{1}\geq 24$ , we simply let $(a_{2}, b_{2}, c_{2})=(24,0,0)$ . Thus assume that $a-a_{1}\leq 23$ . Then
$4(b-b_{1})+5(c-c_{1})\geq 34$ by (4.2), and hence we have $b-b_{1}>4$ or $c-c_{1}>3$ . We first
consider the case where $b-b_{1}>4$ . In this case, we let $a_{2}$ be the largest integer with
$a_{2}\leq a-a_{1}$ such that $24-a_{2}$ is a multiple of 4. Then
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$(a-a_{1})-a_{2}\leq 3$ (4.5)

and, from $a-a_{1}\geq 9$ , we obtain $a_{2}\geq 8$ . Since we get $4(b-b_{1})+5(c-c_{1})=3(24-a_{2})+$

$31-3((a-a_{1})-a_{2})\geq 3(24-a_{2})+22$ from (4.2) and (4.5), it follows from Lemma 2.3 that
there exist nonnegative integers $b_{2},$

$c_{2}$ satisfying (4.4). We now consider the case where
$b-b_{2}\leq 4$ (so $c-c_{1}>3$). In this case, we let $a_{2}$ be the largest integer with $a_{2}\leq a-a_{1}$

such that $24-a_{2}$ is a multiple of 5. Then we get $a_{2}\geq 9$ and $ 4(b-b_{1})+5(c-c_{1})\geq$

$3(24-a_{2})+19$ , and hence by Lemma 2.3, there exist nonnegative integers $b_{2},$
$c_{2}$ satisfying

(4.4). Now in any case, we have (4.3) and (4.4). By Lemma 3.11, we can partition $U\backslash W$

into 8 zero-sum subsets of cardinality 3. Since (4.3) and (4.4) imply $\max\{b_{2}, c_{2}\}+$

$(\min\{b_{2}, c_{2}\})/2\leq b_{2}+c_{2}\leq(72-24)/4=(3/2)\cdot 8$ , we have $\max\{b_{2}, c_{2}\}-\min\{b_{2}, c_{2}\}\leq$

$(3/2)(8-\min\{b_{2}, c_{2}\})$ , and hence it now follows from Lemma 3.14 that $(a_{2}, b_{2}, c_{2})$

is realizable in $(U\backslash W)+(V\backslash \{0\})$ .
Finally, let $a_{3}=a-a_{1}-a_{2},$ $b_{3}=b-b_{1}-b_{2}$ and $c_{3}=c-c_{1}-c_{2}$ . Then by (4.2), (4.3)

and (4.4), $a_{3},$ $b_{3},$
$c_{3}$ are nonnegative integers and $3a_{3}+4b_{3}+5c_{3}=31$ , and hence by

Lemma 4.1, $(a_{3}, b_{3}, c_{3})$ is realizable in $U\backslash \{0\}$ . Consequently, $(a, b, c)$ is realizable in
$X\backslash \{0\}$ .

5. Proof of Theorem 2.

In this section, we complete the proof of Theorem 2. Let $n,$ $a,$ $b,$ $c$ be as in Theorem
2 and, as in the preceding section, let $X$denote an elementary abelian 2-group oforder $2^{n}$ .

We proceed by induction on $n$ . The theorem holds for $n\leq 7$ by Lemmas 3.13, 4.1,
4.2 and 4.3. Thus let $n\geq 8$ , and assume that the theorem is proved for smaller values
of $n$ . By Lemma 3.12, we may assume

$b<2^{n-3}$ , (5.1)

and hence

$3a+5c>2^{n-1}$ (5.2)

Let $U,$ $V$ be subgroups of order $2^{n-4}$ and $2^{4}$ such that $U\cap V=\{0\}$ . If $n$ is odd, let $W$

be a subgroup of order 8 of $U$; if $n$ is even, let $W=\{0\}$ . Since $n\geq 8$ , we have
$|W|\leq 2^{n-6}$ (5.3)

We aim at showing that we can write $a=a_{1}+a_{2}+a_{3},$ $b=b_{1}+b_{2}+b_{3}$ and $c=c_{1}+c_{2}+c_{3}$

so that $(a_{1}, b_{1}, c_{1})$ , $(a_{2}, b_{2}, c_{2})$ and $(a_{3}, b_{3}, c_{3})$ are realizable in $W+(V\backslash \{0\})$ ,
$(U\backslash W)+(V\backslash \{0\})$ and $U\backslash \{0\}$ .

We first take up $W+(V\backslash \{0\})$ . By (5.2), we have $3a>2^{n-2}$ or $5c>2^{n}$
‘ 2. Assume

first that $3a>2^{n-2}$ . In this case, we let $(a_{1}, b_{1}, c_{1})=(5|W|, 0,0)$ . By (5.3), we have $a_{1}<a$ .
By Lemma 3.13, we can partition $V\backslash \{0\}$ into five zero-sum subsets $P_{1},$ $\cdots,$ $P_{5}$ of
cardinality 3. Then for each $1\leq i\leq 5$ , there is a family $K_{i}$ of subsets of $W+P_{i}$ realizing
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$(|W|, 0,0)$ (in the case where $n$ is odd, we here use Lemma 3.8). Consequently, the family
$K=\bigcup_{1\leq i\leq 5}K_{i}$ realizes $(a_{1}, b_{1}, c_{1})$ in $W+(V\backslash \{0\})$ . Assume now that $3a\leq 2^{n-2}$ , so
$5c>2^{n-2}$ . In this case, we let $(a_{1}, b_{1}, c_{1})=(0,0,3|W|)$ . By (5.3), we have $c_{1}<c$ . By
Lemma 3.13, we can partition $V\backslash \{0\}$ into three zero-sum subsets $R_{1},$ $R_{2},$ $R_{3}$ ofcardinali-
ty 5. Then we see from Lemma 3.9 that for each $1\leq i\leq 3$ , there is a family $K_{i}$ of
subsets of $W+R_{i}$ realizing $(0,0, |W|)$ . Consequently, the family $K=\bigcup_{1\leq i\leq 3}K_{i}$ realizes
$(a_{1}, b_{1}, c_{1})$ in $W+(V\backslash \{0\})$ .

We now consider $(U\backslash W)+(V\backslash \{0\})$ and $U\backslash \{0\}$ . Let $r=(|U|-|W|)/3$ . Then

$3(a-a_{1})+4(b-b_{1})+5(c-c_{1})$

(5.4)
$=|U\backslash W|\cdot|V\backslash \{0\}|+|U\backslash \{0\}|=45r+|U\backslash \{0\}|$ .

We also have

$[((b-b_{1})-1)/9]<b/9<2^{n-3}/9$ (by (5.1))

$<(2^{n-1}-15|W|)/9$ (by (5.3))

$=(2^{n-1}-(3a_{1}+5c_{1}))/9$

$<((3a+5c)-(3a_{1}+5c_{1}))/9$ (by (5.2))

$\leq(a-a_{1})/3+(c-c_{1})$ .
Sinoe (5.4) implies $3(a-a_{1})+4(b-b_{1})+5(c-c_{1})=45r+(2^{n-4}-1)\geq 45r+15$ , it now
follows from Lemma2.2 that there exist nonnegative integers $x_{1},y_{1},$ $z_{1};x_{2},y_{2},$ $ z_{2};\cdots$ ; $x_{r}$ ,
$y_{r},$ $z_{r}$ such that

$3x_{i}+4y_{i}+5z_{i}=45$ (5.5)

for all $i,$ $\sum x_{i}\leq a-a_{1},$ $\sum y_{i}\leq b-b_{1}$ and $\sum z_{i}\leq c-c_{1}$ . Let $a_{2}=\sum x_{i},$ $b_{2}=\sum y_{i},$ $c_{2}=\sum z_{i}$ ,

$a_{3}=a-a_{1}-a_{2},$ $b_{3}=b-b_{1}-b_{2},$ $c_{3}=c-c_{1}-c_{2}$ . By the induction hypothesis, it follows
from (5.4) and (5.5) that there exists a family $L$ of subsets of $U\backslash \{0\}$ realizing $(a_{3}, b_{3}, c_{3})$ .
By Lemma 3.11, we can partition $U\backslash W$ into $r$ zero-sum subsets $S_{1},$ $\cdots,$ $S_{r}$ of cardinality
3, and we see from Lemma 3.15 that for each $1\leq i\leq r$ , there exists a family $N_{i}$ of subsets
of $S_{i}+(V\backslash \{0\})$ realizing $(x_{i}, y_{i}, z_{i})$ . Then $\bigcup_{1\leq i\leq r}N_{i}$ realizes $(a_{2}, b_{2}, c_{2})$ in $(U\backslash W)+$

$(V\backslash \{0\})$ . Consequently, the family $K\cup L\cup(\bigcup_{1\leq i\leq r}N_{i})$ realizes $(a, b, c)$ in $X\backslash \{0\}$ .
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