Graph Labelings in Elementary Abelian 2-Groups

Yoshimi EGAWA
Science University of Tokyo
(Communicated by M. Maejima)

Abstract

Let $n \geq 2$ be an integer. We show that if G is a graph such that every component of G has order at least 3 , and $|V(G)| \leq 2^{n}$ and $|V(G)| \neq 2^{n}-2$, then there exists an injective mapping φ from $V(G)$ to an elementary abelian 2-group of order 2^{n} such that for every component C of G, the sum of $\varphi(x)$ as x ranges over $V(C)$ is o.

1. Introduction.

Let $n \geq 2$ be an integer, and let $E_{2^{n}}$ denote an elementary abelian 2-group of order 2^{n} (the operation is written additively).

Let G be a graph with no isolated vertex (by a graph, we mean a simple undirected graph). Suppose that there exists a mapping ψ from the edge set $E(G)$ of G to $E_{2^{n}}$ such that if we define a mapping φ from the vertex set $V(G)$ of G to $E_{2^{n}}$ by

$$
\varphi(x)=\sum_{\substack{e \in E(G) \\ e \text { is incident with } x}} \varphi(e) \quad(x \in V(G)),
$$

then φ is injective. In this situation, we say that G is realizable in $E_{2^{n}}$. We easily see that if G is realizable in $E_{2^{n}}$, then every component of G has order at least 3 (recall that we are assuming G has no isolated vertex). It also follows that
G is realizable in $E_{2^{n}}$ if and only if there exists an injective mapping φ from $V(G)$ to $E_{2^{n}}$ such that $\sum_{x \in V(C)} \varphi(x)=0$
for every component C of G
(see [1, Lemma 4]). We let $g(n)$ denote the maximum of those integers m for which every graph G of order at most m such that all components of G have order at least 3 is realizable in $E_{2^{n}}$.

A subset S of $E_{2^{n}}$ is called a zero-sum subset if $\sum_{v \in S} v=o$. Let a, b, c be nonnegative integers, and let Z be a subset of $E_{2^{n}}$. Let K be a family of zero-sum subsets of Z, and

[^0]suppose that $S \cap T=\varnothing$ for all $S, T \in K$ with $S \neq T$, that $3 \leq|S| \leq 5$ for all $S \in K$, and that $a=|\{S| | S \mid=3\}|, b=|\{S| | S \mid=4\}|$ and $c=|\{S| | S \mid=5\}|$. In this situation, we say that K realizes (a, b, c) in Z. If there exists a family realizing (a, b, c) in Z, we say that (a, b, c) is realizable in Z. We let $f(n)$ denote the largest integer such that every triple (a, b, c) of nonnegative integers with $3 a+4 b+5 c \leq f(n)$ is realizable in $E_{2^{n}}$. It follows from (1.1) that $f(n)=g(n)$ (see the first paragraph of the proof of Theorem 3 in [1]).

In [1], Aigner and Triesch proved that $f(n) \geq 2^{n-2}$ for all $n \geq 2$, and conjectured that $f(n) \geq 2^{n-1}$. In [5], Tuza settled this conjecture for large values of n by proving $\lim _{n \rightarrow \infty} f(n) / 2^{n}=1$ by a probabilistic method. In this paper, we settle the conjecture completely by proving the following theorem (it is easy to see that $f(2)=4$):

Theorem 1. Let $n \geq 3$ be an integer. Then $f(n)=2^{n}-3$.
We in fact give a constructive proof of the following stronger result:
Theorem 2. Let $n \geq 2$ be an integer, and let a, b, c be nonnegative integers with $3 a+4 b+5 c=2^{n}-1$. Then (a, b, c) is realizable in $E_{2^{n}} \backslash\{o\}$.

Corollary 3. Let $n \geq 2$ be an integer, and let a, b, c be nonnegative integers such that $3 a+4 b+5 c \leq 2^{n}$ and $3 a+4 b+5 c \neq 2^{n}-2$. Then (a, b, c) is realizable in $E_{2^{n}}$.

Remark. From $n \geq 2$, we see that $E_{2^{n}}$ itself is a zero-sum subset. Since no subset of $E_{2^{n}}$ having cardinality 2 is a zero-sum subset, this implies that no triple (a, b, c) with $3 a+4 b+5 c=2^{n}-2$ is realizable in $E_{2^{n}}$.

In view of the above remark, it is straightforward to verify that Corollary 3 implies Theorem 1. For completeness, we here include a description of how Corollary 3 follows from Thorem 2. Let a, b, c be as in Corollary 3. By replacing a, b, c by suitable larger integers (if necessary), we may assume that $3 a+4 b+5 c=2^{n}-1$ or 2^{n}. If $3 a+$ $4 b+5 c=2^{n}-1$, the desired conclusion immediately follows from Theorem 2. Thus we may assume $3 a+4 b+5 c=2^{n}$. Since 2^{n} is not a multiple of 3 , we have $b>0$ or $c>0$. Assume first that $b>0$. Then by Theorem 2, there exists a family K realizing ($a+1$, $b-1, c)$ in $E_{2^{n}} \backslash\{o\}$. Take $S \in K$ with $|S|=3$. Then the family $(K \backslash\{S\}) \cup\{S \cup\{o\}\}$ realizes (a, b, c). If $c>0$, then we can simmilarly get a family realizing (a, b, c) from a family realizing $(a, b+1, c-1)$ in $E_{2^{n}} \backslash\{o\}$.

We prove several preliminary results in Sections 2 and 3, and prove Theorem 2 in Sections 4 and 5. We conclude this section with related results. Let $n \geq 2$ be an integer. A graph G with no isolated vertex is said to be embeddable in a set A of cardinality n if there exists a mapping ψ from $E(G)$ to the set of all subsets of A such that the mapping φ defined by

$$
\varphi(x)=\bigcup_{\substack{e \in E(G) \\ \text { eis inciden with } x}} \psi(e) \quad(x \in V(G))
$$

is injective. We let $h(n)$ denote the maximum of those integers m for which every graph G of order at most m such that all components of G have order at least 3 is embeddable in a set of cardinality n. In [1], Aigner and Triesch proved that $h(n) \geq 2^{n-1}$ for all $n \geq 2$, and it has recently been proved in [3] that $h(n)=2^{n}$ for all $n \geq 2$.

Remark. In [2], Caccetta and Jia have recently obtained the same result as Theorem 2.

2. Nonnegative integers.

In this section and the following section, we prove a number of preliminary results which we use in the proof of Theorem 2 (readers not interested in technical details may skip Sections 2 through 4, and proceed to Section 5). We start with lemmas concerning nonnegative integers.

Lemma 2.1. Let a, b, c be nonnegative integers such that

$$
\begin{equation*}
3 a+4 b+5 c \geq 57 \tag{2.1}
\end{equation*}
$$

and suppose that we have $a \geq 3$ or $c \geq 1$. Then there exist nonnegative integers x, y, z such that

$$
\begin{equation*}
3 x+4 y+5 z=45, \quad x \leq a, \quad y \leq b, \quad z \leq c \tag{2.2}
\end{equation*}
$$

Proof. Let $d=\min \{b, c\}$. If $d \geq 5$, (2.2) holds with $(x, y, z)=(0,5,5)$. Thus we may assume $d \leq 4$. If $a+3 d \geq 15$, (2.2) holds with $(x, y, z)=(15-3 d, d, d)$. Thus we may assume

$$
\begin{equation*}
a+3 d<15 . \tag{2.3}
\end{equation*}
$$

We first consider the case where $b \geq c$. If $c \geq 1$, let $a_{0}=0$ and $c_{0}=1$; if $c=0$ (so $a \geq 3$ by assumption), let $a_{0}=3$ and $c_{0}=0$. Then $a_{0} \leq a, c_{0} \leq c$ and

$$
\begin{equation*}
3 a_{0}+9 c_{0}=9 . \tag{2.4}
\end{equation*}
$$

Also we easily see that there exist nonnegative integers p, r with $p \leq a-a_{0}, r \leq c-c_{0}$ and

$$
\begin{equation*}
p+r \leq 3 \tag{2.5}
\end{equation*}
$$

such that

$$
\begin{equation*}
3 p+5 r \equiv 3\left(a-a_{0}\right)+5\left(c-c_{0}\right) \quad(\bmod 4) . \tag{2.6}
\end{equation*}
$$

Since $3 p+5 r \leq 15$ by (2.5), we obtain

$$
\begin{equation*}
3(a-p)+4 b+5(c-r) \geq 42 \tag{2.7}
\end{equation*}
$$

by (2.1). On the other hand, we get

$$
\begin{equation*}
3(a-p)+5(c-r) \leq 3(a+3 c)=3(a+3 d)<45 \tag{2.8}
\end{equation*}
$$

from (2.3). Since $45-(3(a-p)+5(c-r))=36+4 c_{0}-\left(3\left(a-a_{0}-p\right)+5\left(c-c_{0}-r\right)\right)$ is a multiple of 4 by (2.4) and (2.6), it follows from (2.7) and (2.8) that there exists a positive integer y such that (2.2) holds with $x=a-p$ and $z=c-r$.

We now consider the case where $b<c$. In this case, we take nonnegative integers p, q with $p \leq a, q \leq b$ and $p+q \leq 4$ such that $3 p+4 q \equiv 3 a+4 b(\bmod 5)$. Then we have $3(a-p)+4(b-q)+5 c \geq 41$ and $3(a-p)+4(b-q<45$, and $45-(3(a-p)+4(b-q))$ is a multiple of 5 . Consequently, there exists a positive integer z such that (2.2) holds with $x=a-p$ and $y=b-q$.

Lemma 2.2. Let r be a nonnegative integer. Let a, b, c, be nonnegative integers such that $3 a+4 b+5 c \geq 45 r+12$ and

$$
\begin{equation*}
[(b-1) / 9] \leq(a / 3)+c . \tag{2.9}
\end{equation*}
$$

Then there exist nonnegative integers $x_{1}, y_{1}, z_{1} ; x_{1}, y_{2}, z_{2} ; \cdots ; x_{r}, y_{y}, z_{r}$ such that $3 x_{i}+4 y_{i}+5 z_{i}=45$ for all $i, \sum x_{i} \leq a, \sum y_{i} \leq b$ and $\sum z_{i} \leq c$.

Proof. If $r=0$, the lemma trivially holds. Thus let $r \geq 1$, and assume that the lemma is proved for $r-1$. It suffices to show that there exist nonnegative integers x, y, z satisfying (2.2) such that

$$
\begin{equation*}
[((b-y)-1) / 9] \leq(a-x) / 3+(c-z) . \tag{2.10}
\end{equation*}
$$

Assume first that $b \geq 10$. Then $a / 3+c \geq 1$ by (2.9), and hence $a \geq 3$ or $c \geq 1$. If $a \geq 3$, let $(x, y, z)=(3,9,0)$; if $a<3$ (so $c \geq 1)$, let $(x, y, z)=(0,10,1)$. Then (2.10) easily follows from (2.9). Assume now that $b \leq 9$. Then $3 a+5 c \geq(45+12)-36$, and hence we have $a>3$ or $c>1$. Consequently, it follows from Lemma 2.1 that there exist nonnegative integers x, y, z satisfying (2.2), and (2.10) clearly holds because $(b-y)-1 \leq b-1<9$.

Lemma 2.3. Let b, c, t be nonnegative integers such that $4 b+5 c \geq t+12$, and suppose that one of the folloiwng holds:
(i) t is a multiple of 4 and $b \geq 4$; or
(ii) t is a multiple of 5 and $c \geq 3$.

Then there exist nonnegative integers y, z such that

$$
\begin{equation*}
4 y+5 z=t, \quad y \leq b, \quad z \leq c . \tag{2.11}
\end{equation*}
$$

Proof. We first consider the case where (i) holds. Clearly we may assume $b<t / 4$. Also there exists a nonnegative integer q with $q \leq 4$ such that $t-4(b-q)$ is a multiple of 5. Then $4(b-q)+5 c \geq t-4$, and hence there exists a positive integer z such that (2.11) holds with $y=b-q$. We now consider the case where (ii) holds. We may assume $c<t / 5$. Also there exists a nonnegative integer r with $r \leq 3$ such that $t-5(c-r)$ is a multiple of 4. Then $4 b+5(c-r) \geq t-3$, and hence there exists a nonnegative integer y such that (2.11) holds with $z=c-r$.

3. Realizable triples.

Throughout this section, we let $n \geq 2$ be an integer, and let X be an elementary abelian 2 -group of order 2^{n}. For a subset S of X, we let $\langle S\rangle$ denote the subgroup of X generated by S. For subsets S, T of X, we let $S+T=\{u+v \mid u \in S, v \in T\}$.

Lemma 3.1. Let S be a subset of X and let Q be a zero-sum subset of cardinality 4 of X, and suppose that $\langle S\rangle \cap\langle Q\rangle=\{o\}$. Then $(0,|S|, 0)$ is realizable in $S+Q$.

Proof. The family $\{u+Q \mid u \in S\}$ realizes $(0,|S|, 0)$.
Lemma 3.2. Let S, P be zero-sum subsets of cardinality 3 such that $\langle S\rangle \cap\langle P\rangle=\{o\}$. Then $(0,1,1)$ and $(3,0,0)$ are realizable in $S+P$.

Proof. Write $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $P=\left\{v_{1}, v_{2}, v_{3}\right\}$, and let $P_{k}=\left\{s_{i}+v_{i+k} \mid 1 \leq i \leq 3\right\}$ for each $1 \leq k \leq 3$ (subscripts of the letter v are to be read modulo 3). Then $\left\{P_{1}, P_{2}, P_{3}\right\}$ realizes ($3,0,0$), and

$$
\left\{\left\{s_{1}, s_{3}\right\}+\left\{v_{1}, v_{3}\right\}, \quad(S+P) \backslash\left(\left\{s_{1}, s_{3}\right\}+\left\{v_{1}, v_{3}\right\}\right)\right\}
$$

realizes $(0,1,1)$.
Lemma 3.3. Let S and R be zero-sum subsets of cardinality 3 and 5, respectively, such that $\langle S\rangle \cap\langle R\rangle=\{o\}$. Then $(0,0,3)$ is realizable in $S+R$.

Proof. Write $S=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $R=\left\{v_{1}, v_{2}, v_{3}, p, q\right\}$ and define P_{k} as in Lemma 3.2. Then $\left\{P_{k} \cup\left\{s_{k}+p, s_{k}+q\right\} \mid 1 \leq k \leq 3\right\}$ realizes $(0,0,3)$.

Lemma 3.4. Let S, P, Q be zero-sum subsets of cardinality 3 such that $P \cap Q=\varnothing$ and $\langle S\rangle \cap\langle P \cup Q\rangle=\{o\}$. Then $(2,3,0)$ and $(1,0,3)$ are realizable in $S+(P \cup Q)$.

Proof. Write $S=\left\{s_{1}, s_{2}, s_{3}\right\}, P=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $Q=\left\{w_{1}, w_{2}, w_{3}\right\}$ (subscripts are to be read modulo 3). For each $1 \leq k \leq 3$, let

$$
\begin{gathered}
Q_{k}=\left\{s_{k+1}, s_{k+2}\right\}+\left\{v_{k}, w_{k}\right\} \\
R_{k}=\left\{s_{k}+v_{i} \mid 1 \leq i \leq 3\right\} \cup\left\{s_{k+1}+w_{k}, s_{k+2}+w_{k}\right\}
\end{gathered}
$$

Let

$$
P_{1}=\left\{s_{i}+v_{i} \mid 1 \leq i \leq 3\right\}, \quad P_{2}=\left\{s_{i}+w_{i} \mid 1 \leq i \leq 3\right\} .
$$

Then $\left\{P_{1}, P_{2}\right\} \cup\left\{Q_{k} \mid 1 \leq k \leq 3\right\}$ realizes $(2,3,0)$, and $\left\{P_{2}\right\} \cup\left\{R_{k} \mid 1 \leq k \leq 3\right\}$ realizes $(1,0,3)$.

Lemma 3.5. Let T be a zero-sum subset of cardinality 5 and let P, Q be zero-sum subsets of cardinality 3, and suppose that $P \cap Q=\varnothing$ and $\langle T\rangle \cap\langle P \cup Q\rangle=\{o\}$. Then $(0,5,2)$ is realizable in $T+(P \cup Q)$.

Proof. Write $T=\left\{s_{1}, s_{2}, s_{3}, t, u\right\}, P=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $Q=\left\{w_{1}, w_{2}, w_{3}\right\}$. Define
$P_{1}, P_{2}, Q_{1}, Q_{2}, Q_{3}$ as in Lemma 3.4, and let

$$
\begin{aligned}
R_{1}=P_{1} \cup\left\{t+v_{2}, u+v_{2}\right\}, & R_{2}=P_{2} \cup\left\{t+w_{2}, u+w_{2}\right\}, \\
Q_{4}=\{t, u\}+\left\{v_{1}, v_{3}\right\}, & Q_{5}=\{t, u\}+\left\{w_{1}, w_{3}\right\} .
\end{aligned}
$$

Then $\left\{R_{1}, R_{2}\right\} \cup\left\{Q_{k} \mid 1 \leq k \leq 5\right\}$ realizes $(0,5,2)$.
Lemma 3.6. Let S be a zero-sum subset of cardinality 3 and let Q, R be zero-sum subsets of cardinality 5, and suppose that $Q \cap R=\varnothing$ and $\langle S\rangle \cap\langle Q \cup R\rangle=\{0\}$. Then $(0,5,2)$ is realizable in $S+(Q \cup R)$.

Proof. Write $S=\left\{s_{1}, s_{2}, s_{3}\right\}, Q=\left\{v_{1}, v_{2}, v_{3}, p, q\right\}, R=\left\{w_{1}, w_{2}, w_{3}, x, y\right\}$. Define P_{1}, $P_{2}, Q_{1}, Q_{2}, Q_{3}$ as in Lemma 3.4, and let

$$
\begin{aligned}
R_{1}=P_{1} \cup\left\{s_{2}+p, s_{2}+q\right\}, & R_{2}=P_{2} \cup\left\{s_{2}+x, s_{2}+y\right\}, \\
Q_{4}=\left\{s_{1}, s_{3}\right\}+\{p, q\}, & Q_{5}=\left\{s_{1}, s_{3}\right\}+\{x, y\} .
\end{aligned}
$$

Then $\left\{R_{1}, R_{2}\right\} \cup\left\{Q_{k} \mid 1 \leq k \leq 5\right\}$ realizes $(0,5,2)$.
Lemma 3.7. Let S, P be zero-sum subsets of cardinality 3 and let R be a zero-sum subset of cardinality 5, and suppose that $P \cap R=\varnothing$ and $\langle S\rangle \cap\langle P \cup R\rangle=\{o\}$. Then $(1,4,1)$ is realizable in $S+(P \cup R)$.

Proof. Write $S=\left\{s_{1}, s_{2}, s_{3}\right\}, P=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $R=\left\{w_{1}, w_{2}, w_{3}, x, y\right\}$, and let P_{1}, $R_{2}, Q_{1}, Q_{2}, Q_{3}, Q_{5}$ be as in Lemma 3.6. Then they form a family realizing $(1,4,1)$.

Lemma 3.8. Let W be a subgroup of order 2^{3} of X and let P be a zero-sum subset of cardinality 3 of X, and suppose that $W \cap\langle P\rangle=\{o\}$. Then $(0,1,4),(3,0,3)$ and $(8,0,0)$ are realizable in $W+P$.

Proof. Let Z be a subgroup of order 2^{2} of W. By Lemma 3.2, $(0,1,1)$ and $(3,0,0)$ are realizable in $(Z \backslash\{o\})+P$. By Lemma 3.3, $(0,0,3)$ is realizable in $((W \backslash Z) \cup\{o\})+P$. Consequently, $(0,1,4)$ and $(3,0,3)$ are realizable in $W+P$. Now write $W=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $P=\left\{p_{1}, p_{2}, p_{3}\right\}$ (subscripts are to be read modulo 3). For each $1 \leq k \leq 3$, let

$$
\begin{gathered}
P_{k}=\left\{p_{k}, v_{k}+p_{k+1}, v_{k}+p_{k+2}\right\}, \\
S_{k}=\left\{v_{k}+p_{k}, v_{k+1}+v_{k+2}+p_{k+2}, v_{k}+v_{k+1}+v_{k+2}+p_{k+1}\right\} .
\end{gathered}
$$

For each $1 \leq l \leq 2$, let

$$
T_{l}=\left\{v_{i}+v_{i+1}+p_{i+1+l} \mid 1 \leq i \leq 3\right\} .
$$

Then $\left.\left\{P_{k}, S_{k}, T_{l}\right\} \mid 1 \leq k \leq 3,1 \leq l \leq 2\right\}$ realizes $(8,0,0)$.
Lemma 3.9. Let W be a subgroup of order 2^{3} and let R be a zero-sum subset of cardinality 5 , and suppose that $W \cap\langle R\rangle=\{o\}$. Then $(0,0,8)$ is realizable in $W+R$.

Proof. Write $W=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $P=\left\{p_{1}, p_{2}, p_{3}, q, r\right\}$ (subscripts are to be read
modulo 3). Define P_{k}, S_{k}, T_{l} as in Lemma 3.8, and let

$$
\begin{gathered}
R_{k}=P_{k} \cup\left\{v_{k}+q, v_{k}+r\right\}, \\
U_{k}=S_{k} \cup\left\{v_{k+1}+v_{k+2}+q, v_{k+1}+v_{k+2}+r\right\} \\
V_{1}=T_{1} \cup\{q, r\}, \quad V_{2}=T_{2} \cup\left\{v_{1}+v_{2}+v_{3}+q, v_{1}+v_{2}+v_{3}+r\right\}
\end{gathered}
$$

Then $\left\{R_{k}, U_{k}, V_{l} \mid 1 \leq k \leq 3,1 \leq l \leq 2\right\}$ realizes $(0,0,8)$.
Lemma 3.10. Let W be a subgroup of order 2^{3} and let R be a zero-sum subset of cardinality 5 with $o \notin R$, and suppose that $W \cap\langle R\rangle=\{o\}$. Then $(0,3,7)$ is realizable in $(W+(R \cup\{o\})) \backslash\{o\}$.

Proof. Under the notation of Lemma 3.9, let

$$
\begin{gathered}
V_{3}=\left\{v_{2}+v_{3}+p_{2}, v_{1}+v_{3}, v_{1}+v_{3}+p_{2}, v_{1}+v_{3}+p_{3}, v_{1}+v_{2}+p_{3}\right\}, \\
Q_{1}=\left\{v_{1}, v_{2}, v_{3}, v_{1}+v_{2}+v_{3}\right\}, \\
Q_{2}=\left\{v_{2}+v_{3}, v_{1}+v_{2}\right\}+\left\{o, p_{1}\right\}, \\
Q_{3}=\left\{o, v_{1}+v_{2}+v_{3}\right\}+\{q, r\}
\end{gathered}
$$

Then $\left\{Q_{k}, R_{k}, U_{k}, V_{3} \mid 1 \leq k \leq 3\right\}$ realizes $(0,3,7)$.
Lemma 3.11. If n is odd, let W denote a subgroup of order 2^{3}; if n is even, let $W=\{o\}$. Then $((|X|-|W|) / 3,0,0)$ is realizable in $X \backslash W$.

Proof. We proceed by induction on n. It is easy to verify the lemma for $n=2,3$. Thus let $n \geq 4$, and assume that the lemma is proved for $n-2$. Take subgroups U and V of order 2^{n-2} and 2^{2}, respectively, so that $U \supseteq W$ and $U \cap V=\{o\}$. By the induction hypothesis, there exists a family L realizing $((|U|-|W|) / 3,0,0)$ in $U \backslash W$. It follows from Lemma 3.2 that for each $P \in L$, there exists a family M_{P} realizing ($3,0,0$) in $P+(V \backslash\{o\})$. Furthermore, there exists a family N realizing $(|W|, 0,0)$ in $W+(V \backslash\{o\})$ (if $W=\{o\}$, this is trivial; if $|W|=8$, this follows from Lemma 3.8). Thus the family $\left(\bigcup_{P \in L} M_{P}\right) \cup N \cup L$ realizes $((|X|-|W|) / 3,0,0)$ in $X \backslash W$.

Lemma 3.12. Suppose that $n \geq 3$, and let U be a subgroup of order 2^{n-1}. Let a, b, c be nonnegative integers with $3 a+4 b+5 c=2^{n}-1$ and $b \geq 2^{n-3}$, and suppose that there exists a family K realizing $\left(a, b-2^{n-3}, c\right)$ in $U \backslash\{o\}$. Then (a, b, c) is realizable in $X \backslash\{o\}$.

Proof. Let W be a subgroup of order 2^{2} of U. Then the family L consisting of those cosets of W which are disjoint from U realizes $\left(0,2^{n-3}, 0\right)$, and hence $K \cup L$ realizes (a, b, c).

The following lemma shows that Theorem 2 holds for $2 \leq n \leq 4$:
Lemma 3.13. Suppose that $2 \leq n \leq 4$, and let a, b, c be nonnegative integers with $3 a+4 b+5 c=2^{n}-1$. Then (a, b, c) is realizable in $X \backslash\{o\}$.

Proof. If $n=2$ or 3 , the lemma clearly holds. Thus we may assume $n=4$. In view of Lemmas 3.11 and 3.12, we may assume $b+c \neq 0$ and $b \leq 1$. Thus $(a, b, c)=(2,1,1)$ or $(0,0,3)$. Let U, V be subgroups of order 2^{2} such that $U \cap V=\{o\}$. Then by Lemma 3.2, there exists a family K realizing $(0,1,1)$ in $(U \backslash\{o\})+(V \backslash\{o\})$, and hence $K \cup\{U \backslash\{o\}$, $V \backslash\{o\}\}$ realizes $(2,1,1)$. Now write $U \backslash\{o\}=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $V \backslash\{o\}=\left\{v_{1}, v_{2}, v_{3}\right\}$ (subscripts are to be read modulo 3). Then the family

$$
\left\{\left\{u_{k}, v_{k}, u_{k}+v_{k+1}, u_{k+1}+v_{k}, u_{k+1}+v_{k+1}\right\} \mid 1 \leq k \leq 3\right\}
$$

realizes $(0,0,3)$.
We prove four more technical results.
Lemma 3.14. Let r be a nonnegative integer, and let P_{1}, \cdots, P_{r}, S be zerosum subsets of cardinality 3 such that $P_{i} \cap P_{j}=\varnothing$ for all i, j with $i \neq j$ and $\langle S\rangle \cap\left\langle P_{1} \cup \cdots \cup P_{r}\right\rangle=\{o\}$. Let x, y, z be nonnegative integers with $3 x+4 y+5 z=9 r$, and let $d=\min \{y, z\}$ and $e=\max \{y, z\}$. Suppose that $e-d \leq 3(r-d) / 2$. Then (x, y, z) is realizable in $S+\left(P_{1} \cup \cdots \cup P_{r}\right)$.

Proof. We proceed by induction on r. If $r=0$, the lemma trivially holds. Thus assume $r \geq 1$. If $d \geq 1$, then $(x, y-1, z-1)$ is realizable in $S+\left(P_{1} \cup \cdots \cup P_{r-1}\right)$ by the induction hypothesis, and $(0,1,1)$ is realizable in $S+P_{r}$ by Lemma 3.2, and hence (x, y, z) is realizable in $S+\left(P_{1} \cup \cdots \cup P_{r}\right)$. Thus we may assume $d=0$. If $e=0$, then $y=z=0$ and $x=3 r$, and hence the desired conclusion immediately follows from Lemma 3.2. Thus we may assume $e>0$. Then either $y=0$ and $z>0$, or $z=0$ and $y>0$.

Assume first that $y=0$ and $z>0$. Then since $3 x+5 z=9 r, z$ is a multiple of 3 , and hence $z \geq 3$ and $r \geq 2$. Since $z=e-d \leq 3(r-d) / 2=3 r / 2$, we also get $x=(9 r-5 z) / 3 \geq r / 2 \geq 1$. Thus by the induction hypothesis, $(x-1,0, z-3)$ is realizable in $S+\left(P_{1} \cup \cdots \cup P_{r-2}\right)$. Since $(1,0,3)$ is realizable in $S+\left(P_{r-1} \cup P_{r}\right)$ by Lemma 3.4, this implies that $(x, 0, z)$ is realizable in $S+\left(P_{1} \cup \cdots \cup P_{r}\right)$.

Assume now that $z=0$ and $y>0$. Then $y \geq 3, r \geq 2$ and $x \geq 2$. Thus by the induction hypothesis, $(x-2, y-3,0)$ is realizable in $S+\left(P_{1} \cup \cdots \cup P_{r-2}\right)$. Since $(2,3,0)$ is realizable in $S+\left(P_{r-1} \cup P_{r}\right)$ by Lemma 3.4, this implies that $(x, y, 0)$ is realizable in $S+\left(P_{1} \cup \cdots \cup P_{r}\right)$.

Lemma 3.15. Let V be a subgroup of order 2^{4}, and let S be a zero-sum subset of cardinality 3 such that $\langle S\rangle \cap V=\{0\}$. Let x, y, z be nonnegative integers with $3 x+4 y+5 z=45$. Then (x, y, z) is realizable in $S+(V \backslash\{o\})$.

Proof. Let $d=\min \{y, z\}$ and $e=\max \{y, z\}$. By Lemma 3.13, we can partition $V \backslash\{o\}$ into five zero-sum subsets of cardinality 3 . Consequently, if $e-d \leq 3(5-d) / 2$, then the desired conclusion immediately follows from Lemma 3.14. Thus we may assume $e-d>3(5-d) / 2$. Then $(x, y, z)=(0,0,9),(0,10,1),(1,8,2)$ or $(3,9,0)$. By Lemma 3.13, we can partition $V \backslash\{o\}$ into three zero-sum subsets of cardinality 5 , and hence it follows
from Lemma 3.3 that $(0,0,9)$ is realizable in $S+(V \backslash\{o\})$. By Lemma 3.13, we can partition $V \backslash\{o\}$ into four zero-sum subsets P, Q_{1}, Q_{2}, Q_{3} such that $|P|=3$ and $\left|Q_{1}\right|=\left|Q_{2}\right|=\left|Q_{3}\right|=4$. Then $(0,1,1)$ and $(3,0,0)$ are realizable in $S+P$ by Lemma 3.2, and $(0,3,0)$ is realizable in $S+Q_{i}$ by Lemma 3.1. Consequently, $(0,10,1)$ and $(3,9,0)$ are realizable in $S+(V \backslash\{o\})$. Now by Lemma 3.13, we can partition $V \backslash\{o\}$ into four zero-sum subsets P_{1}, P_{2}, Q, R such that $\left|P_{1}\right|=\left|P_{2}\right|=3,|Q|=4$ and $|R|=5$. Then $(1,4,1)$ is realizable in $S+\left(P_{1} \cup R\right)$ by Lemma 3.7, $(0,1,1)$ is realizable in $S+P_{2}$ by Lemm1 3.2, and $(0,3,0)$ is realizable in $S+Q$ by Lemma 3.1. Consequently, $(1,8,2)$ is realizable in $S+(V \backslash\{o\})$.

Lemma 3.16. Let V be a subgroup of order 2^{4}, and S be a zero-sum subset of cardinality 3 such that $\langle S\rangle \cap V=\{o\}$. Let x, y, z be nonnegative integers with $3 x+4 y+5 z=48$. Then (x, y, z) is realizable in $S+V$.

Proof. If $x \geq 1$, the desired conclusion immediately follows from Lemma 3.15. Thus we may assume $x=0$. Since $(1,3,0)$ is realizable in $V \backslash\{o\}$ by Lemma 3.13, $(0,4,0)$ is realizable in V. Consequently, it follows from Lemma 3.1 that $(0,12,0)$ is realizable in $S+V$. Thus we may assume $z>0$, and hence $(y, z)=(2,8)$ or $(7,4)$. Since $(2,1,1)$ is realizable in $V \backslash\{0\}$ by Lemma 3.13, we can partition V into two zero-sum sets P_{1}, P_{2} of cardinality 3 and two zero-sum subsets R_{1}, R_{2} of cardinality 5 . By Lemma 3.2, $(0,1,1)$ is realizable in $S+P_{1}$ and $S+P_{2}$. By Lemmas 3.3 and $3.6,(0,0,6)$ and $(0,5,2)$ are realizable in $S+\left(R_{1} \cup R_{2}\right)$. Consequently, $(0,2,8)$ and $(0,7,4)$ are realizable in $S+V$.

Lemma 3.17. Let V be a subgroup of order 2^{4}, and let T be a zero-sum subset of cardinality 5 such that $\langle T\rangle \cap V=\{0\}$. Let y, z be nonnegative integers with $4 y+5 z=75$. Then $(0, y, z)$ is realizable in $T+(V \backslash\{o\})$.

Proof. By Lemma 3.13, we can partition $V \backslash\{o\}$ into a zero-sum subset P of cardinality 3 and three zero-sum subsets $Q_{1}, Q_{2}, \mathrm{Q}_{3}$ of cardinality 4. By Lemma 3.3, $(0,0,3)$ is realizable in $T+P$. By Lemma 3.1, $(0,5,0)$ is realizable in $T+Q_{i}$ for each i. Consequently, $(0,15,3)$ is realizable in $T+(V \backslash\{o\})$. Thus we may assume $z>3$, and hence $(y, z)=(0,15),(5,11)$ or $(10,7)$. By Lemma 3.13, we can partition $V \backslash\{o\}$ into five zero-sum subsets P_{1}, \cdots, P_{5} of cardinality 3 . By Lemmas 3.3 and $3.5,(0,0,6)$ and $(0,5,2)$ are realizable in $T+\left(P_{2 i-1} \cup P_{2 i}\right)$ for each $1 \leq i \leq 2$. By Lemma 3.3, $(0,0,3)$ is realizable in $T+P_{5}$. Consequently, $(0,0,15),(0,5,11)$ and $(0,10,7)$ are realizable in $T+(V \backslash\{o\})$.

4. Small case.

Let $n \geq 2$ be an integer, and let X be an elementary abelian 2-group of order 2^{n}. In this section, we consider the case where $5 \leq n \leq 7$.

Lemma 4.1. Suppose that $n=5$, and let a, b, c be nonnegative integers with $3 a+4 b+5 c=31$. Then (a, b, c) is realizable in $X \backslash\{o\}$.

Proof. By Lemmas 3.12 and 3.13, we may assume $b \leq 3$. Thus $(a, b, c)=(1,2,4)$, $(2,0,5),(3,3,2),(4,1,3),(6,2,1),(7,0,2)$ or $(9,1,0)$. Take subgroups U and V of order 2^{3} and 2^{2}, respectively, so that $U \cap V=\{o\}$, and let W be a subgroup of order 2^{2} of U.

Case 1. $(a, b, c)=(1,2,4),(4,1,3)$ or $(9,1,0)$. By Lemma 3.8, $(0,1,4),(3,0,3)$ and $(8,0,0)$ are realizable in $U+(V \backslash\{o\})$. Since $\{W \backslash\{o\}, U \backslash W\}$ realizes $(1,1,0)$, it follows that $(1,2,4),(4,1,3)$ and $(9,1,0)$ are realizable in $X \backslash\{o\}$. This completes the discussion for Case 1 .

Throughout the rest of the proof of the lemma, we write $V \backslash\{o\}=\{p, q, r\}$ and $W \backslash\{o\}=\{u, v, w\}$, and fix $z \in U \backslash W$.

Case 2. $(a, b, c)=(6,2,1)$. Since $\{V \backslash\{o\}, W \backslash\{o\}, U \backslash W\}$ realizes $(2,1,0)$ in $(U \cup V) \backslash\{o\}$, it suffices to show that $(4,1,1)$ is realizable in $X \backslash(U \cup V)$. Let

$$
\begin{aligned}
& P_{1}=\{p+z, q+u, r+u+z\} \\
& P_{2}=\{q+z, r+v, p+v+z\} \\
& P_{3}=\{r+z, p+w, q+w+z\} \\
& P=\{p+u, q+v, r+w\} \\
& Q=\{p+v, q+w, p+w+z, q+v+z\} \\
& R=\{r+u, p+u+z, q+u+z, r+v+z, r+w+z\}
\end{aligned}
$$

Then $\left\{P_{1}, P_{2}, P_{3}, P, Q, R\right\}$ realizes $(4,1,1)$.
Case 3. $(a, b, c)=(3,3,2)$. Let

$$
\begin{aligned}
& P=\{p+u, q+v+z, r+w+z\}, \\
& Q_{1}=\{r, q+z\}+\{u, w\}, \\
& Q_{2}=\{p+z, r+z\}+\{u, v\}, \\
& R_{1}=\{p+v, q+u, q+v, q+w, r+v\}, \\
& R_{2}=\{p+z, q+z, r+z, p+w, p+w+z\} .
\end{aligned}
$$

Then $\left\{P, Q_{1}, Q_{2}, R_{1}, R_{2}\right\}$ realizes $(1,2,2)$ in $X \backslash(U \cup V)$.
Case 4. $(a, b, c)=(7,0,2)$. We show that $(5,0,2)$ is realizable in $X \backslash(V \cup W)$. Let

$$
\begin{aligned}
& P_{1}=\{p+z, u+z, p+u\} \\
& P_{2}=\{q+z, v+z, q+v\} \\
& P_{3}=\{r+z, w+z, r+w\} \\
& S_{1}=\{q+u, p+w+z, r+v+z\}
\end{aligned}
$$

$$
\begin{aligned}
& S_{2}=\{q+w, p+v+z, r+u+z\} \\
& R_{1}=\{z, p+v, p+w, r+v, r+w+z\} \\
& R_{2}=\{r+u, p+u+z, q+u+z, q+v+z, q+w+z\}
\end{aligned}
$$

Then $P_{1}, P_{2}, P_{3}, S_{1}, S_{2}, R_{1}, R_{2}$ realizes $(5,0,2)$ in $X \backslash(V \cup W)$.
Case 5. $(a, b, c)=(2,0,5)$. Let

$$
\begin{aligned}
& R_{1}=\{p+z, q+z, r+u, r+v, r+w\} \\
& R_{2}=\{u+z, v+z, w+z, q+w, q+w+z\} \\
& R_{3}=\{p+u, p+v, p+w, q+v+z, r+v+z\} \\
& R_{4}=\{q+u, p+u+z, p+v+z, p+w+z, r+u+z\} \\
& R_{5}=\{z, r+z, q+v, q+u+z, r+w+z\}
\end{aligned}
$$

Then $\left\{R_{i} \mid 1 \leq i \leq 5\right\}$ realizes $(0,0,5)$ in $X \backslash(V \cup W)$.
Lemma 4.2. Suppose that $n=6$, and let a, b, c be nonnegative integers with $3 a+4 b+5 c=63$. Then (a, b, c) is realizable in $X \backslash\{o\}$.

Proof. By Lemmas 3.12 and 4.1, we may assume $b \leq 7$, and hence we have $a>5$ or $c>3$. If $a>5$, let $a_{1}=5$ and $c_{1}=0$; if $a \leq 5$ (so $c>3$), let $a_{1}=0$ and $c_{1}=3$. Let U, V be subgroups of order 2^{4} and 2^{2} such that $U \cap V=\{o\}$. Then $\left(a_{1}, 0, c_{1}\right)$ is realizable in $U \backslash\{o\}$ by Lemma 3.13, and ($a-a_{1}, b, c-c_{1}$) is realizable in $U+(V \backslash\{o\})$ by Lemma 3.16, and hence (a, b, c) is realizable in $X \backslash\{o\}$.

Lemma 4.3. Suppose that $n=7$, and let a, b, c be nonnegative integers with $3 a+4 b+5 c=127$. Then (a, b, c) is realizable in $X \backslash\{o\}$.

Proof. By Lemmas 3.12 and 4.2, we may assume

$$
\begin{equation*}
b \leq 15 \tag{4.1}
\end{equation*}
$$

We divide the proof into four cases.
Case 1. $a=0$. By (4.1), we have $(b, c)=(3,23),(8,19)$ or $(13,15)$.
Subcase 1.1. $(b, c)=(3,23)$. Let U, V be subgroups of order 2^{3} and 2^{4} such that $U \cap V=\{o\}$. By Lemma 3.13, we can partition $V \backslash\{o\}$ into three zero-sum subsets R_{1}, R_{2}, R_{3} of cardinality 5 . It follows from Lemma 3.9 that $(0,0,8)$ is realizable in $U+R_{1}$ and $U+R_{2}$, and it follows from Lemma 3.10 that $(0,3,7)$ is realizable in $\left(U+\left(R_{\mathbf{3}} \cup\{o\}\right)\right) \backslash\{o\}$, and hence $(0,3,23)$ is realizable in $X \backslash\{o\}$.
Subcase 1.2. $(b, c)=(8,19)$ or $(13,15)$. Let U, V be subgroups of order 2^{5} and 2^{2} such that $U \cap V=\{o\}$. Since $(4,1,3)$ is realizable in $U \backslash\{o\}$ by Lemma 4.1, we can partition U into four zero-sum subsets P_{1}, \cdots, P_{4} of cardinality 3 and four zero-sum subsets R_{1}, \cdots, R_{4} of cardinality 5 . By Lemma $3.2,(0,1,1)$ is realizable in $P_{i}+(V \backslash\{o\})$ for
each $1 \leq i \leq 4$. By Lemmas 3.3 and $3.6,(0,0,6)$ and $(0,5,2)$ are realizable in $\left(R_{2 i-1} \cup R_{2 i}\right)+(V \backslash\{o\})$ for each $1 \leq i \leq 2$. Since $(0,4,3)$ is realizable in $U \backslash\{o\}$ by Lemma 4.1, it now follows that $(0,8,19)$ and $(0,13,15)$ (and $(0,18,11)$) are realizable in $X \backslash\{o\}$.

Case $2.1 \leq a \leq 11$ and $b=0$. We have $(a, c)=(4,23)$ or $(9,20)$. Let U, V be subgroups of order 2^{5} and 2^{2} such that $U \cap V=\{o\}$. By Lemma 4.1, we can partition $U \backslash\{o\}$ into two zero-sum subsets P_{1}, P_{2} of cardinality 3 and five zero-sum subsets R_{1}, \cdots, R_{5} of cardinality 5 . By Lemmas 3.2 and $3.4,(6,0,0)$ and $(1,0,3)$ are realizable in $\left(P_{1} \cup P_{2}\right)+(V \backslash\{o\})$. By Lemma 3.3, $(0,0,3)$ is realizable in $R_{i}+(V \backslash\{o\})$ for each i. Since $\left\{V \backslash\{o\}, P_{1}, P_{2}\right\} \cup\left\{R_{i} \mid 1 \leq i \leq 5\right\}$ realizes $(3,0,5)$, it now follows that $(9,0,20)$ and $(4,0,23)$ are realizable in $X \backslash\{o\}$.

Case 3. $1 \leq a \leq 11$ and $b \geq 1$. Let U, V be subgroups of order 2^{3} and 2^{4} such that $U \cap V=\{o\}$, and let W be a subgroup of order 2^{2} of U. Then $\{W \backslash\{o\}, U \backslash W\}$ realizes $(1,1,0)$ in $U \backslash\{o\}$. We aim at showing that we can write $b-1=b_{1}+b_{2}$ and $c=c_{1}+c_{2}$ so that $\left(0, b_{1}, c_{1}\right)$ and $\left(a-1, b_{2}, c_{2}\right)$ are realizable in $((U \backslash W) \cup\{o\})+(V \backslash\{o\})$ and $(W \backslash\{o\})+(V \backslash\{o\})$, respectively. Since $a \leq 11$, we get $4(b-1)+5 c \geq 127-33-4=75+$ 15 , and we also get $c \geq 7$ from (4.1). Hence by Lemma 2.3, there exist nonnegative integers b_{1}, c_{1} with $b_{1} \leq b-1$ and $c_{1} \leq c$ such that $4 b_{1}+5 c_{1}=75$. Let $b_{2}=b-1-b_{1}$ and $c_{2}=c-c_{1}$. Then $3(a-1)+4 b_{2}+5 c_{2}=45$. It now follows from Lemma 3.17 that $\left(0, b_{1}, c_{1}\right)$ is realizable in $((U \backslash W) \cup\{o\})+(V \backslash\{o\})$, and it follows from Lemma 3.15 that $\left(a-1, b_{2}, c_{2}\right)$ is realizable in $(W \backslash\{o\})+(V \backslash\{o\})$, and hence (a, b, c) is realizable in $X \backslash\{o\}$.

Case 4. $a \geq 12$. Let U, V be subgroups of order 2^{5} and 2^{2} such that $U \cap V=\{o\}$, and let W be a subgroup of order 2^{3} of U. We aim at showing that we can write $a=a_{1}+a_{2}+a_{3}, b=b_{1}+b_{2}+b_{3}$ and $c=c_{1}+c_{2}+c_{3}$ so that (a_{1}, b_{1}, c_{1}), (a_{2}, b_{2}, c_{2}) and $\left(a_{3}, b_{3}, c_{3}\right)$ are realizable in $W+(V \backslash\{o\}),(U \backslash W)+(V \backslash\{o\})$ and $U \backslash\{o\}$.

We first take up $W+(V \backslash\{o\})$. If $12 \leq a \leq 16$, let $\left(a_{1}, b_{1}, c_{1}\right)=(3,0,3)$; if $a \geq 17$, let $\left(a_{1}, b_{1}, c_{1}\right)=(8,0,0)$. Note that in the case where $12 \leq a \leq 16$, it follows from (4.1) that $c \geq(127-48-60) / 5$, i.e., $c \geq 4$. Thus in either case, we have

$$
\begin{equation*}
3 a_{1}+4 b_{1}+5 c_{1}=24 \tag{4.2}
\end{equation*}
$$

$a-a_{1} \geq 9, b \geq b_{1}$ and $c \geq c_{1}$. Moreover, $\left(a_{1}, b_{1}, c_{1}\right)$ is realizable in $W+(V \backslash\{o\})$ by Lemma 3.8.

We now consider $(U \backslash W)+(V \backslash\{o\})$. We choose nonnegative integers a_{2}, b_{2}, c_{2} as follows so that they satisfy

$$
\begin{gather*}
8 \leq a_{2} \leq a-a_{1} \tag{4.3}\\
b_{2} \leq b-b_{1}, \quad c_{2} \leq c-c_{1}, \quad 3 a_{2}+4 b_{2}+5 c_{2}=72 \tag{4.4}
\end{gather*}
$$

If $a-a_{1} \geq 24$, we simply let $\left(a_{2}, b_{2}, c_{2}\right)=(24,0,0)$. Thus assume that $a-a_{1} \leq 23$. Then $4\left(b-b_{1}\right)+5\left(c-c_{1}\right) \geq 34$ by (4.2), and hence we have $b-b_{1}>4$ or $c-c_{1}>3$. We first consider the case where $b-b_{1}>4$. In this case, we let a_{2} be the largest integer with $a_{2} \leq a-a_{1}$ such that $24-a_{2}$ is a multiple of 4 . Then

$$
\begin{equation*}
\left(a-a_{1}\right)-a_{2} \leq 3 \tag{4.5}
\end{equation*}
$$

and, from $a-a_{1} \geq 9$, we obtain $a_{2} \geq 8$. Since we get $4\left(b-b_{1}\right)+5\left(c-c_{1}\right)=3\left(24-a_{2}\right)+$ $31-3\left(\left(a-a_{1}\right)-a_{2}\right) \geq 3\left(24-a_{2}\right)+22$ from (4.2) and (4.5), it follows from Lemma 2.3 that there exist nonnegative integers b_{2}, c_{2} satisfying (4.4). We now consider the case where $b-b_{2} \leq 4$ (so $c-c_{1}>3$). In this case, we let a_{2} be the largest integer with $a_{2} \leq a-a_{1}$ such that $24-a_{2}$ is a multiple of 5 . Then we get $a_{2} \geq 9$ and $4\left(b-b_{1}\right)+5\left(c-c_{1}\right) \geq$ $3\left(24-a_{2}\right)+19$, and hence by Lemma 2.3, there exist nonnegative integers b_{2}, c_{2} satisfying (4.4). Now in any case, we have (4.3) and (4.4). By Lemma 3.11, we can partition $U \backslash W$ into 8 zero-sum subsets of cardinality 3 . Since (4.3) and (4.4) imply $\max \left\{b_{2}, c_{2}\right\}+$ $\left(\min \left\{b_{2}, c_{2}\right\}\right) / 2 \leq b_{2}+c_{2} \leq(72-24) / 4=(3 / 2) \cdot 8$, we have $\max \left\{b_{2}, c_{2}\right\}-\min \left\{b_{2}, c_{2}\right\} \leq$ $(3 / 2)\left(8-\min \left\{b_{2}, c_{2}\right\}\right)$, and hence it now follows from Lemma 3.14 that $\left(a_{2}, b_{2}, c_{2}\right)$ is realizable in $(U \backslash W)+(V \backslash\{o\})$.

Finally, let $a_{3}=a-a_{1}-a_{2}, b_{3}=b-b_{1}-b_{2}$ and $c_{3}=c-c_{1}-c_{2}$. Then by (4.2), (4.3) and (4.4), a_{3}, b_{3}, c_{3} are nonnegative integers and $3 a_{3}+4 b_{3}+5 c_{3}=31$, and hence by Lemma 4.1, $\left(a_{3}, b_{3}, c_{3}\right)$ is realizable in $U \backslash\{o\}$. Consequently, (a, b, c) is realizable in $X \backslash\{o\}$.

5. Proof of Theorem 2.

In this section, we complete the proof of Theorem 2. Let n, a, b, c be as in Theorem 2 and, as in the preceding section, let X denote an elementary abelian 2-group of order 2^{n}.

We proceed by induction on n. The theorem holds for $n \leq 7$ by Lemmas 3.13, 4.1, 4.2 and 4.3. Thus let $n \geq 8$, and assume that the theorem is proved for smaller values of n. By Lemma 3.12, we may assume

$$
\begin{equation*}
b<2^{n-3} \tag{5.1}
\end{equation*}
$$

and hence

$$
\begin{equation*}
3 a+5 c>2^{n-1} \tag{5.2}
\end{equation*}
$$

Let U, V be subgroups of order 2^{n-4} and 2^{4} such that $U \cap V=\{o\}$. If n is odd, let W be a subgroup of order 8 of U; if n is even, let $W=\{o\}$. Since $n \geq 8$, we have

$$
\begin{equation*}
|W| \leq 2^{n-6} \tag{5.3}
\end{equation*}
$$

We aim at showing that we can write $a=a_{1}+a_{2}+a_{3}, b=b_{1}+b_{2}+b_{3}$ and $c=c_{1}+c_{2}+c_{3}$ so that $\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c_{2}\right)$ and $\left(a_{3}, b_{3}, c_{3}\right)$ are realizable in $W+(V \backslash\{o\})$, $(U \backslash W)+(V \backslash\{o\})$ and $U \backslash\{o\}$.

We first take up $W+(V \backslash\{o\})$. By (5.2), we have $3 a>2^{n-2}$ or $5 c>2^{n-2}$. Assume first that $3 a>2^{n-2}$. In this case, we let $\left(a_{1}, b_{1}, c_{1}\right)=(5|W|, 0,0)$. By (5.3), we have $a_{1}<a$. By Lemma 3.13, we can partition $V \backslash\{o\}$ into five zero-sum subsets P_{1}, \cdots, P_{5} of cardinality 3. Then for each $1 \leq i \leq 5$, there is a family K_{i} of subsets of $W+P_{i}$ realizing
($|W|, 0,0$) (in the case where n is odd, we here use Lemma 3.8). Consequently, the family $K=\bigcup_{1 \leq i \leq 5} K_{i}$ realizes $\left(a_{1}, b_{1}, c_{1}\right)$ in $W+(V \backslash\{o\})$. Assume now that $3 a \leq 2^{n-2}$, so $5 c>2^{n-2}$. In this case, we let $\left(a_{1}, b_{1}, c_{1}\right)=(0,0,3|W|)$. By (5.3), we have $c_{1}<c$. By Lemma 3.13, we can partition $V \backslash\{o\}$ into three zero-sum subsets $\boldsymbol{R}_{\mathbf{1}}, \boldsymbol{R}_{\mathbf{2}}, \boldsymbol{R}_{\mathbf{3}}$ of cardinality 5 . Then we see from Lemma 3.9 that for each $1 \leq i \leq 3$, there is a family K_{i} of subsets of $W+R_{i}$ realizing $(0,0,|W|)$. Consequently, the family $K=\bigcup_{1 \leq i \leq 3} K_{i}$ realizes $\left(a_{1}, b_{1}, c_{1}\right)$ in $W+(V \backslash\{o\})$.

We now consider $(U \backslash W)+(V \backslash\{o\})$ and $U \backslash\{o\}$. Let $r=(|U|-|W|) / 3$. Then

$$
\begin{align*}
& 3\left(a-a_{1}\right)+4\left(b-b_{1}\right)+5\left(c-c_{1}\right) \tag{5.4}\\
& \quad=|U \backslash W| \cdot|V \backslash\{o\}|+|U \backslash\{o\}|=45 r+|U \backslash\{o\}|
\end{align*}
$$

We also have

$$
\begin{align*}
{\left[\left(\left(b-b_{1}\right)-1\right) / 9\right]<b / 9 } & <2^{n-3} / 9 \quad(\text { by }(5.1)) \\
& <\left(2^{n-1}-15|W|\right) / 9 \quad(\text { by }(5.3)) \\
& =\left(2^{n-1}-\left(3 a_{1}+5 c_{1}\right)\right) / 9 \\
& <\left((3 a+5 c)-\left(3 a_{1}+5 c_{1}\right)\right) / 9 \quad(\text { by }(5.2)) \tag{5.2}\\
& \leq\left(a-a_{1}\right) / 3+\left(c-c_{1}\right) .
\end{align*}
$$

Since (5.4) implies $3\left(a-a_{1}\right)+4\left(b-b_{1}\right)+5\left(c-c_{1}\right)=45 r+\left(2^{n-4}-1\right) \geq 45 r+15$, it now follows from Lemma 2.2 that there exist nonnegative integers $x_{1}, y_{1}, z_{1} ; x_{2}, y_{2}, z_{2} ; \cdots ; x_{r}$, y_{r}, z_{r} such that

$$
\begin{equation*}
3 x_{i}+4 y_{i}+5 z_{i}=45 \tag{5.5}
\end{equation*}
$$

for all $i, \sum x_{i} \leq a-a_{1}, \sum y_{i} \leq b-b_{1}$ and $\sum z_{i} \leq c-c_{1}$. Let $a_{2}=\sum x_{i}, b_{2}=\sum y_{i}, c_{2}=\sum z_{i}$, $a_{3}=a-a_{1}-a_{2}, b_{3}=b-b_{1}-b_{2}, c_{3}=c-c_{1}-c_{2}$. By the induction hypothesis, it follows from (5.4) and (5.5) that there exists a family L of subsets of $U \backslash\{o\}$ realizing (a_{3}, b_{3}, c_{3}). By Lemma 3.11, we can partition $U \backslash W$ into r zero-sum subsets S_{1}, \cdots, S_{r} of cardinality 3, and we see from Lemma 3.15 that for each $1 \leq i \leq r$, there exists a family N_{i} of subsets of $S_{i}+(V \backslash\{o\})$ realizing $\left(x_{i}, y_{i}, z_{i}\right)$. Then $\bigcup_{1 \leq i \leq r} N_{i}$ realizes $\left(a_{2}, b_{2}, c_{2}\right)$ in $(U \backslash W)+$ $(V \backslash\{o\})$. Consequently, the family $K \cup L \cup\left(\bigcup_{1 \leq i \leq r} N_{i}\right)$ realizes (a, b, c) in $X \backslash\{o\}$.

References

[1] M. Aigner and E. Triesch, Codings of graphs with binary edge labels, Graphs and Combin. 10 (1994), 1-10.
[2] L. Caccetta and R.-Z. Jia, Binary labelings of graphs, Graphs Combin. 13 (1997), 119-137.
[3] Y. Egawa and M. Miyamoto, Graph labelings in Boolean lattices, preprint.
[4] Zs. Tuza, Encoding the vertices of a graph with binary edge-labels, Sequences, Combinatorics,

Compression, Security and Transmission (R. M. Capocelli, ed.), Springer (1990), 287-299.
[5] Zs. Tuza, Zero-sum block designs and graph labelings, J. Combin. Designs 3 (1995), 89-99.

Present Address:

Department of Applied Mathematics, Science University of Tokyo, Shinjuku-ku, Tokyo, 162 Japan.

[^0]: Received January 25, 1996
 Revised August 9, 1996

