Dynamical System on Cantor Set

Makoto MORI

Nihon University
(Communicated by K. Katayama)

1. Introduction.

We will consider Cantor sets generated by piecewise $C^{1+\gamma}$ transformations ($\gamma > 0$). In this article, we only consider Markov cases. Non Markov (but piecewise linear) cases will be studied in [6]. A heuristic argument will also appear in that paper.

Let us denote I=[0, 1]. We assume that there exists a finite set \mathscr{A} of symbols, and a subinterval $\langle a \rangle \subset I$ corresponds to a symbol $a \in \mathscr{A}$, and

- 1. $\bigcup_{a \in \mathcal{A}} \langle a \rangle = I$,
- 2. $\langle a \rangle \cap \langle b \rangle = \emptyset$ if $a \neq b$.

Take a subset $\mathscr{A}_1 \subset \mathscr{A}$, and we consider a mapping F from $\bigcup_{a \in \mathscr{A}_1} \langle a \rangle$ to I such that

- 1. F is monotone on each $\langle a \rangle$ and it can extend to $\overline{\langle a \rangle}$ in $C^{1+\gamma}$ ($\gamma > 0$) (piecewise $C^{1+\gamma}$).
- 2. if $F(\langle a \rangle) \cap \langle b \rangle \neq \emptyset$ for $a, b \in \mathcal{A}_1$, then $\overline{F(\langle a \rangle)} \supset \langle b \rangle$ (Markov),
- 3. $\xi = \lim \inf_{n \to \infty} \frac{1}{n} \operatorname{ess inf}_{x \in I} \log |F^{n'}(x)| > 0$ (expanding),
- 4. for each $a, b \in \mathcal{A}_1$, there exists n such that $\overline{F^n(\langle a \rangle)} \supset \langle b \rangle$ (irreducible), where we denote the closure of a set J by \overline{J} . Note that from the above assumption, we get

$$\log \underset{x \in I}{\operatorname{ess inf}} |F^{n}(x)| > 0$$

for some n>0. Here we denote by F^n the n-th iteration of F:

$$F^{n}(x) = \begin{cases} x & \text{if } n = 0, \\ F^{n-1}(F(x)) & \text{if } n \ge 1. \end{cases}$$

Thus, hereafter we assume without loss of generality that

$$\xi_0 = \log \underset{x \in I}{\operatorname{ess inf}} |F'(x)| > 0.$$

We will consider a set

$$\mathscr{C} = \{ x \in I : F^n(x) \in \bigcup_{a \in \mathscr{A}_1} \langle a \rangle, \forall n \ge 0 \},$$

that is, the set of points whose orbits pass only subintervals corresponding to \mathscr{A}_1 . One of the simplest examples of \mathscr{C} is the usual Cantor set, which is defined by F(x) = 3x (mod 1), $\mathscr{A} = \{0, 1, 2\}$, $\langle i \rangle = [i/3, (i+1)/3)$, and $\mathscr{A}_1 = \{0, 2\}$, and one of the most important examples is the set of points with digits 1 and 2 in its continued expansion. In the case, $F(x) = 1/x \pmod{1}$, $\mathscr{A} = \{1, 2, \dots\}$, $\langle i \rangle = (1/(i+1), 1/i]$ and $\mathscr{A}_1 = \{1, 2\}$. The continued fraction expansion has countable symbols, and does not satisfy our assumption. But the transformation on $\bigcup_{a \in \mathscr{A} \setminus \mathscr{A}_1} \langle a \rangle$ is unessential. Moreover, though F'(1) = -1, there exists a neighborhood of 1 such that $\{x : F(x) \notin \langle 1 \rangle \cup \langle 2 \rangle\}$. So, this case $\mathscr{A}_1 = \{1, 2\}$ essentially satisfies our assumption (cf. §6).

As usual, we express a point $x \in I$ by a sequence of symbols $a_1^x a_2^x \cdots$ called the expansion of x defined by

$$F^{i-1}(x) \in \langle a_i^x \rangle$$
 $i \ge 1$.

We call a finite sequence of symbols $w = a_1 \cdots a_m$ a word and define |w| = m (the length of a word w). We define as usual a subinterval $\langle w \rangle$ corresponding to a word w, which is the set of points x such that $F^{i-1}(x) \in \langle a_i \rangle$ for any $1 \le i \le m$. We call a word w admissible if $\langle w \rangle = \emptyset$. We denote the empty word by ε , and for notational convenience we define $\langle \varepsilon \rangle = I$ (that is, ε is admissible), and $|\varepsilon| = 0$. We denote by \mathcal{W}_m the set of admissible words $w = a_1 \cdots a_m$ with $a_i \in \mathcal{A}_1$. Set $w = \bigcup_{m=0}^{\infty} W_m$. We denote by $wx \in \mathcal{W}, x \in I$) a point which belongs to $\langle w \rangle$ and $F^{|w|}(wx) = x$ if it exists. Note that w expresses the set of all the admissible words with symbols only in \mathcal{A}_1 . Hereafter, we only consider words with symbols in \mathcal{A}_1 .

We also define for $x \in \langle w \rangle$ (|w| = m)

$$F_{m}^{+'}(x) = F_{m}^{+'}(w) = \begin{cases} + \operatorname{ess inf}_{y \in \langle w \rangle} |F'(y)| & \text{if } F'(x) > 0, \\ - \operatorname{ess inf}_{y \in \langle w \rangle} |F'(y)| & \text{if } F'(x) < 0, \end{cases}$$

$$F_{m}^{-'}(x) = F_{m}^{-'}(w) = \begin{cases} + \operatorname{ess sup}_{y \in \langle w \rangle} |F'(y)| & \text{if } F'(x) > 0, \\ - \operatorname{ess sup}_{y \in \langle w \rangle} |F'(y)| & \text{if } F'(x) < 0, \end{cases}$$

$$(F_{m}^{\tau})^{n'}(x) = \prod_{i=0}^{n-1} F_{m}^{\tau_{i}}(F^{i}(x)) \qquad (\tau \in \{+, -\}).$$

Note that a transformation F_m^r is only a formal piecewise linear Markov transformation on the symbolic dynamics where F is realized, and it may not be able to express as a map from I into itself.

As in [4] and [5], we will define generating functions for $g \in L^{\infty}$ and $0 \le \alpha \le 1$

$$s_{g,\alpha}^{w}(z:F) = \sum_{n=0}^{\infty} z^{n} \sum_{u \in \mathcal{W}_{n}} \int_{ux \in \langle w \rangle} |F^{n}(ux)|^{-\alpha} g(x) d\bar{x}$$
 (1)

$$S_{g,\alpha}^{w}(z:F_{m}^{\tau}) = \sum_{n=0}^{\infty} z^{n} \sum_{u \in \mathcal{W}_{n}} \int_{ux \in (w)} |(F_{m}^{\tau})^{n}(ux)|^{-\alpha} g(x) d\bar{x}$$
 (2)

for a word $w \in \mathcal{W}$, where $d\bar{x}$ denotes the integral by the Lebesgue measure restricted to $\bigcup_{a \in \mathcal{A}_1} \langle a \rangle$. We also define α_m^{τ} the maximum α for which z = 1 is the minimum singularity in modulus of $s_{g,\alpha}^w(z:F_m^{\tau})$ for some $g \in L^{\infty}$ and some word w. We denote by α_0 the corresponding value for F. From the definition, if the right hand term of (1) converges, it is easy to see that

$$|s_{q,\alpha}^w(z:F)| \leq s_{|q|,\alpha}^w(|z|:F)$$
.

Therefore, since the coefficients of the right hand term of (1) is positive for $g \ge 0$, the minimal singularity of $s_{g,\alpha}^w(z:F)$ is nonnegative. Moreover, for a non-negative valued function g, positive z and $\alpha \ge 0$, if the right hand terms of (1) and (2) converge, we get

$$s_{g,\alpha}^{w}(z:F) \le s_{g,\alpha}^{\varepsilon}(z:F)$$
,
 $s_{g,\alpha}^{w}(z:F_{1}^{-}) \le s_{g,\alpha}^{w}(z:F_{2}^{-}) \le \cdots \le s_{g,\alpha}^{w}(z:F) \le \cdots \le s_{g,\alpha}^{w}(z:F_{2}^{+}) \le s_{g,\alpha}^{w}(z:F_{1}^{+})$.

Therefore we get

$$1 \ge \alpha_1^+ \ge \alpha_2^+ \ge \cdots \ge \alpha_0^- \ge \cdots \ge \alpha_2^- \ge \alpha_1^- \ge 0.$$

REMARK. Let v_{α} be a Hausdorff measure with exponent α , that is,

$$v_{\alpha}(J) = \liminf_{\delta \perp 0 \{J_i\}} (Lebes(J_i))^{\alpha},$$

where infimum is taken over all coverings of \mathscr{C} with countable subintervals $\{J_i\}$ with Lebesgue measure $Lebes(J_i)$ less than δ . Then as a formal expression, we can define

$$\bar{s}_{g,\alpha}^{w}(z:F) = \sum_{n=0}^{\infty} z^{n} \int 1_{\langle w \rangle}(x) g(F^{n}(x)) dv_{\alpha}$$

$$= \sum_{n=0}^{\infty} z^{n} \int_{I} \sum_{y \in \mathscr{C}: F^{n}(y) = x} 1_{\langle w \rangle}(y) |F^{n'}(y)|^{-\alpha} g(x) dv_{\alpha}$$

$$= \sum_{n=0}^{\infty} z^{n} \sum_{u \in \mathscr{W}_{n}} \int_{ux \in \langle w \rangle} |F^{n'}(ux)|^{-\alpha} g(x) dv_{\alpha}$$

$$= \int [(I - zP_{\alpha})^{-1} 1_{\langle w \rangle}](x) g(x) dv_{\alpha}.$$

where P_{α} is the Perron-Frobenius operator associated with F with respect to v_{α} . Therefore, these formal generating functions $\bar{s}_{g,\alpha}$ will express the ergodic properties of the dynamical system. But they are only formal expression up to this point, thus we slightly modify them, and define $s_{g,\alpha}^{w}(z:F)$.

LEMMA 1. For fixed $0 \le \alpha \le 1$,

$$\lim_{m \to \infty} \operatorname{ess \, sup}_{x \in I} ||F_m^{\tau}(x)|^{-\alpha} - |F'(x)|^{-\alpha}| = 0.$$

PROOF. Note first $|X-Y|^{\alpha} \ge |X^{\alpha}-Y^{\alpha}|$ for X, Y>0. Therefore

$$||F_{m}^{\tau \prime}(x)|^{-\alpha} - |F'(x)|^{-\alpha}| = ||F_{m}^{\tau \prime}(x)|^{\alpha} - |F'(x)|^{\alpha}|/(|F_{m}^{\tau \prime}(x)|^{\alpha}|F'(x)|^{\alpha})$$

$$\leq |F_{m}^{\tau \prime}(x) - F'(x)|^{\alpha}/(|F_{m}^{\tau \prime}(x)|^{\alpha}|F'(x)|^{\alpha}).$$

Because F is piecewise $C^{1+\gamma}$ and expanding, the lemma is proved.

LEMMA 2. Set $0 \le \alpha \le 1$. For any $\varepsilon > 0$, we get for sufficiently large m independent of n

$$|(F_m^{\tau})^{n\prime}(x)|^{-\alpha} \begin{cases} \leq (1+\varepsilon)^n |F^{n\prime}(x)|^{-\alpha}, \\ \geq (1-\varepsilon)^n |F^{n\prime}(x)|^{-\alpha}, \end{cases}$$

for any x.

PROOF. By the chain rule,

$$\begin{split} |(F_{m}^{\tau})^{n\prime}(x)|^{-\alpha} &= \prod_{i=0}^{n-1} |F_{m}^{\tau\prime}(F^{i}(x))|^{-\alpha} \\ &\leq \prod_{i=0}^{n-1} |F'(F^{i}(x))|^{-\alpha} \\ &\times (1+||F_{m}^{\tau\prime}(F'(x))|^{-\alpha} - |F'(F^{i}(x))|^{-\alpha}||F'(F^{i}(x))|^{\alpha}) \; . \end{split}$$

Therefore by Lemma 1, for any $\varepsilon > 0$

$$|(F_m^{\tau})^{n\prime}(x)|^{-\alpha} \leq (1+\varepsilon)^n |F^{n\prime}(x)|^{-\alpha}$$

holds for any sufficiently large m. In a similar way, we can prove the other inequality.

COROLLARY 1. For a fixed $0 \le \alpha \le 1$, there exists $\beta(\alpha) > 0$ such that for $|z| < \beta(\alpha)$

$$\lim_{m\to\infty} s_{g,\alpha}^{w}(z:F_m^{\tau}) = s_{g,\alpha}^{w}(z:F)$$

for any word $w \in \mathcal{W}$.

PROOF. Note first

$$|s_{g,\alpha}^{w}(z:F)| \leq \sum_{n=0}^{\infty} |z|^{n} \sum_{u \in \mathcal{W}_{n}} \int_{ux \in \langle w \rangle} |F^{n}(ux)|^{-\alpha} |g(x)| d\bar{x}$$

$$\leq ||g||_{\infty} \sum_{n=0}^{\infty} (\# \mathcal{A}_{1} |z| \operatorname{ess sup}_{x \in I} |F'(x)|^{-\alpha})^{n}.$$

Now put

$$\beta(\alpha) = \frac{1}{2} (\sharp \mathscr{A}_1 \operatorname{ess \, sup} |F'(x)|^{-\alpha})^{-1}.$$

Then from Lemma 2, $s_{g,\alpha}(z:F_m^{\tau})$ and $s_{g,\alpha}(z:F)$ are uniformly bounded in $|z| < \beta(\alpha)$ for sufficiently large m. Therefore the proof follows.

2. α -Fredholm matrix and α -zeta function.

Now we will construct an α -Fredholm matrix $\Phi_{\alpha}(z:F_m^{\tau})$. For $k \geq m$, set $\mathcal{W}_k \times \mathcal{W}_k$ matrix

$$\Phi_{\alpha,k}(z:F_m^{\tau})_{u,v} = \begin{cases} z |F_m^{\tau}(u)'|^{-\alpha} & \text{if } \overline{F(\langle u \rangle)} \supset \langle v \rangle, \\ 0 & \text{otherwise}. \end{cases}$$

We denote $\Phi_{\alpha,m}(z:F_m^{\tau})$ by $\Phi_{\alpha}(z:F_m^{\tau})$. Then we get for $u \in \mathcal{W}_k$

$$\begin{split} s_{g,\alpha}^{u}(z:F_{m}^{\tau}) &= \sum_{n=0}^{\infty} z^{n} \sum_{v \in \mathcal{W}_{n}} \int_{vx \in \langle u \rangle} |(F_{m}^{\tau})^{n'}(vx)|^{-\alpha} g(x) d\bar{x} \\ &= \int_{\langle u \rangle} g(x) d\bar{x} + z \sum_{v \in \mathcal{W}_{k}: \overline{F(\langle u \rangle)} = \langle v \rangle} |F_{m}^{\tau'}(u)|^{-\alpha} S_{g,\alpha}^{v}(z:F_{m}^{\tau}) \; . \end{split}$$

Therefore we can construct a renewal equation of the form

$$(s_{g,\alpha}^{u}(z:F_{m}^{\tau}))_{u\in\mathcal{W}_{k}} = \left(\int_{\langle u\rangle} g(x)d\bar{x}\right)_{u\in\mathcal{W}_{k}} + \Phi_{\alpha,k}(z:F_{m}^{\tau})(s_{g,\alpha}^{v}(z:F_{m}^{\tau}))_{v\in\mathcal{W}_{k}}.$$

Now we define α -zeta function by

$$\zeta_{\alpha}(z:F) = \exp\left[\sum_{n=1}^{\infty} \frac{z^{n}}{n} \sum_{y \in \mathscr{C}: y = F^{n}(y)} |F^{n}(y)|^{-\alpha}\right]$$

$$\zeta_{\alpha}(z:F^{\tau}_{m}) = \exp\left[\sum_{n=1}^{\infty} \frac{z^{n}}{n} \sum_{y \in \mathscr{C}: y = F^{n}(y)} |(F^{\tau}_{m})^{n}(y)|^{-\alpha}\right].$$

LEMMA 3. for any $k \ge m$

$$\det(I - \Phi_{\alpha,k}(z : F_m^{\tau})) = \zeta_{\alpha}(z : F_m^{\tau})^{-1}$$

especially

$$\det(I - \Phi_{\alpha}(z : F_m^{\tau})) = \zeta_{\alpha}(z : F_m^{\tau})^{-1}.$$

Note that $\Phi_{\alpha,k}(z)$ is essentially a structure matrix of the dynamical system. Namely, the trace of $\Phi_{\alpha,k}(z)^n$ corresponds to periodic orbits with period n. Thus, from the fact that, for a matrix A, $\det A = \exp[\operatorname{tr} \log A]$, we get the proof using the Taylor expansion of $\log(1-z)$, where $\operatorname{tr} A$ means the trace of a matrix A (cf. [4]).

LEMMA 4. For $|z| < \beta(\alpha)$,

$$\lim_{m\to\infty}\zeta_{\alpha}(z:F_{m}^{\tau})=\zeta_{\alpha}(z:F).$$

The proof easily follows from Lemma 2 and the similar discussion in Corollary 1.

LEMMA 5.

$$\lim_{m\to\infty}\alpha_m^+=\lim_{m\to\infty}\alpha_m^-=\alpha_0.$$

PROOF. For any $\varepsilon > 0$, take m sufficiently large such that

$$\frac{|(F_m^+)'(x)|}{|(F_m^-)'(x)|} \ge \frac{1-\varepsilon}{1+\varepsilon}.$$

From Lemma 3, for any $\alpha > \alpha_m^-$, $\zeta_\alpha(z:F_m^-)$ has no singularity in the unit disk. Therefore

$$\sum_{n=1}^{\infty} \frac{1}{n} \sum_{y \in \mathscr{C}: y = F^n(y)} |(F_m^-)^{n'}(y)|^{-\alpha} < \infty.$$

On the other hand, for any $\alpha' > \alpha$,

$$\sum_{n=1}^{\infty} \frac{1}{n} \sum_{y \in \mathscr{C}: y = F^{n}(y)} |(F_{m}^{-})^{n'}(y)|^{-\alpha}$$

$$\geq \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{1-\varepsilon}{1+\varepsilon}\right)^{n\alpha} \sum_{y \in \mathscr{C}: y = F^{n}(y)} |(F_{m}^{+})^{n'}(y)|^{-\alpha}$$

$$= \sum_{n=1}^{\infty} \frac{1}{n} \left(\frac{1-\varepsilon}{1+\varepsilon}\right)^{n\alpha} \sum_{y \in \mathscr{C}: y = F^{n}(y)} |(F_{m}^{+})^{n'}(y)|^{-\alpha'} \prod_{i=0}^{n-1} |(F_{m}^{+})'(F^{i}(y))|^{\alpha'-\alpha}. \tag{3}$$

Now we choose any $\alpha' > \alpha$ such that

$$\inf_{x} |F'(x)|^{\alpha'-\alpha} \left| \frac{1-\varepsilon}{1+\varepsilon} \right|^{\alpha} > 1.$$

Namely,

$$\alpha' > \alpha \frac{1 + \log[(1 + \varepsilon)/(1 - \varepsilon)]}{\log\inf_{x} |F'(x)|}.$$
 (4)

Note here the right hand term of (4) tends to α as ε tends to 0. Thus

the right hand side of (3)
$$\geq \sum_{n=1}^{\infty} \frac{1}{n} \sum_{y \in \mathscr{C}: y = F^{n}(y)} |(F_{m}^{+})^{n'}(y)|^{-\alpha'}$$
.

This shows that $\zeta_{\alpha'}(z:F_m^+)$ is analytic in $|z| \le 1$. Thus $\det(I - \Phi_{\alpha'}(z:F_m^+))$ has no zero in $|z| \le 1$, that is, $\alpha' > \alpha_m^+$. This proves the lemma. Indeed, for example, if there exists $\delta > 0$

such that $\alpha_0 > \lim_{m \to \infty} \alpha_m^- + \delta$, then we can take $\varepsilon > 0$ sufficiently small such that there exists $\alpha' < \alpha_0$ which satisfies (4). This is the contradiction, because $\alpha_m^+ < \alpha' < \alpha_0 \le \alpha_m^+$. Therefore $\alpha_0 = \lim_{m \to \infty} \alpha_m^-$. In a similar way, we can show $\alpha_0 = \lim_{m \to \infty} \alpha_m^+$.

3. Construction of a transformation G.

First note that

LEMMA 6. Let $e_{m,k}^{\tau} = (e_{m,k}^{\tau}(w))_{w \in \mathcal{W}_k}$ be an eigenvector of $\Phi_{\alpha,k}(1:F_m^{\tau})$ associated with maximal eigenvalue. Set $e_m^{\tau}(v) = \sum_{\langle u \rangle = \langle v \rangle} e_{m,k}^{\tau}(u)$ for $v \in \mathcal{W}_m$. Then $e_m^{\tau} = (e_m^{\tau}(v))_{v \in \mathcal{W}_m}$ is the eigenvector of $\Phi_{\alpha}(1:F_m^{\tau})$ with the eigenvalue λ .

PROOF. Let $\lambda > 0$ be the maximal eigenvalue, and $(e_{m,k}^{\tau}(u))$ be an eigenvector associated with it. Since $\Phi_{\alpha_{m,k}^{\tau}}(1:F_m^{\tau})$ is a nonnegative irreducible matrix and 1 is its maximal eigenvalue, we can take $e_{m,k}^{\tau}(w) > 0$ for any $w \in \mathcal{W}_k$. For $v \in \mathcal{W}_m$, the v-component of $\Phi_{\alpha}(z:F_m^{\tau})(e_m^{\tau}(v))$ $(v \in \mathcal{W}_m)$ equals

$$\begin{split} &= \sum_{w \in \mathscr{W}_m} \Phi_{\alpha}(1:F_m^{\tau})_{v,w} e_m^{\tau}(w) \\ &= \sum_{w \in \mathscr{W}_m: \overline{F(\langle v \rangle)} \supset \langle w \rangle} |F_m^{\tau'}(v)|^{-\alpha} e_m^{\tau}(w) \\ &= \sum_{w \in \mathscr{W}_k: \overline{F(\langle v \rangle)} \supset \langle w \rangle} |F_m^{\tau'}(v)|^{-\alpha} e_{m,k}^{\tau}(w) \\ &= \sum_{v' \in \mathscr{W}_k: \langle v' \rangle \subset \langle v \rangle} \Phi_{\alpha,k}(1:F_m^{\tau})_{v',w} e_{m,k}^{\tau}(w) \\ &= \lambda \sum_{v' \in \mathscr{W}_k: \langle v' \rangle \subset \langle v \rangle} e_{m,k}^{\tau}(v') = \lambda e_m^{\tau}(v) . \end{split}$$

Let $e_m^{\tau} = (e_m^{\tau}(w))_{w \in \mathcal{W}_m}$ be an eigenvector associated with the eigenvalue 1 of $\Phi_{\alpha_m^r}(1:F_m^{\tau})$ such that $\sum_{w \in \mathcal{W}_m} e_m^{\tau}(w) = 1$. We can construct a piecewise linear Markov mapping $G_m^{\tau}: [0, 1] \to [0, 1]$ as follows:

Define a natural order on \mathcal{A}_1 , that is, a < b if and only if $x \in \langle a \rangle$ and $y \in \langle b \rangle$ satisfy x < y. We also introduce a natural order on \mathcal{W}_m . For $u = a_1 \cdots a_m$ and $v = b_1 \cdots b_m$ with $a_1 \cdots a_i = b_1 \cdots b_i$, and $a_{i+1} < b_{i+1}$. Then u < v if $F^{i'}(y) > 0$ for $y \in \langle u \rangle$, and u > v otherwise. Arrange all the words in \mathcal{W}_m in this order

$$W_{m,1} < W_{m,2} < \cdots < W_{m,\#W_m}$$
.

Take

$$c_{m,i}^{\tau} = \begin{cases} 0 & \text{for } i = 0, \\ \sum_{i=1}^{i} e_{m}^{\tau}(w_{m,i}) & \text{for } 0 < i \leq \# W_{m}. \end{cases}$$

Set

$$\langle w_{m,i} \rangle = \begin{cases} [c_{m,i-1}^{\tau}, c_{m,i}^{\tau}) & \text{for } 1 \leq i \leq \# \mathcal{W}_m - 1, \\ [c_{m,\# \mathcal{W}_m - 1}^{\tau}, 1] & \text{for } i = \# \mathcal{W}_m, \end{cases}$$

$$d_{m,i}^{\tau} = \inf \left\{ \bigcup_{b \in \mathcal{A}_1: a_2 \cdots a_m b \in \mathcal{W}_m} \langle a_2 \cdots a_m b \rangle \right\},$$

$$d_{m,i}^{\tau}' = \sup \left\{ \bigcup_{b \in \mathcal{A}_1: a_2 \cdots a_m b \in \mathcal{W}_m} \langle a_2 \cdots a_m b \rangle \right\},$$

where $w_{m,i} = a_1 a_2 \cdots a_m$. Then for $x \in \langle w_{m,i} \rangle$, define

$$G_{m}^{\tau}(x) = \frac{d_{m,i}^{\tau} - d_{m,i}^{\tau}}{c_{m,i}^{\tau} - c_{m,i-1}^{\tau}} (x - c_{m,i-1}^{\tau}) + d_{m,i}^{\tau}.$$

Note that $|G_m^{\tau}(x)| = (|F_m^{\tau}(y)|)^{\alpha_m^{\tau}}$ and $G_m^{\tau} > 0$ if and only if $F_m^{\tau}(y) > 0$, where the expansion of $y \in I$ by F equals that of $x \in [0, 1]$ by G_m^{τ} . This shows that $\Phi_{\alpha_m^{\tau}}(1: F_m^{\tau})$ is the Fredholm matrix of G_m^{τ} (cf. [4]). Also note that G_m^{τ} is expanding and ([0, 1], G_m^{τ}) has the same symbolic dynamics with (\mathcal{C}, F) .

Set for a word $w \in \mathcal{W}$

$$s_g^w(z:G_m^\tau) = \sum_{n=0}^{\infty} z^n \int_0^1 1_{\langle w \rangle}(x) g((G_m^\tau)^n(x)) dx$$

where $\langle w \rangle \subset [0, 1]$ is the subinterval associated with a word w which is induced by G_m^{τ} . Then we can get a renewal equation of the form

$$(s_g^w(z:G_m^\tau))_{w\in \mathcal{W}_m} = \left(\int_{\langle w\rangle} g(x)dx\right)_{w\in \mathcal{W}_m} + \Phi_{\alpha_m^\tau}(z:F_m^\tau)(s_g^w(z:G_m^\tau))_{w\in \mathcal{W}_m}.$$

Now we will construct a transformation $G: [0, 1] \rightarrow [0, 1]$ which corresponds to F. For m > k, set $c_{m,k,0}^{\tau} = 0$ and for $0 < l \le \# W_k$

$$c_{m,k,l}^{\tau} = \sum_{i=1}^{l} \sum_{u \in \mathcal{W}_{m}: \langle u \rangle \subseteq \langle w_{k,i} \rangle} e_{m}^{\tau}(u) ,$$

that is, $[c_{m,k,l-1}^{\tau}, c_{m,k,l}^{\tau}]$ corresponds to a word $w_{k,l}$ with respect to the mapping G_m^{τ} . Take a subsequence which we also express by $\{m\}$ such that the sequence $c_{m,1,1}^{\tau}$ converges to a point which we express by $\bar{c}_{1,1}^{\tau}$. Next we choose again a subsequence $\{m\}$ of the above subsequence to converge $c_{m,1,2}^{\tau}$ to some point $\bar{c}_{1,2}^{\tau}$, and so on, and we can define $\bar{c}_{k,l}^{\tau}$ for all k and $0 \le l \le \#W_k$. Then $[\bar{c}_{k,l-1}^{\tau}, \bar{c}_{k,l}^{\tau}]$ is a new subinterval corresponding to a word $w_{k,l} \in \mathscr{W}_K$. Using these subintervals, we can also define $\bar{d}_{k,l}^{\tau}$ and $\bar{d}_{k,l}^{\tau}$. Then we can define mappings \bar{G}_k^{τ} as before. From the construction, \bar{G}_k^{τ} maps a subinterval corresponding to a word $w = a_1 \cdots a_k$ to the union of the subintervals corresponding to $a_2 \cdots a_k a_k$ $(a \in \mathscr{A}_1)$. Now we will fix a word $w_{k,l} = a_1 \cdots a_k \in \mathscr{W}_k$, and we assume that its image

 $\langle a_2 \cdots a_k \rangle$ corresponds to a set of words $w_{k,n}$ $(l_1 \le n \le l_2)$. Then we can choose a subsequence $\{m\}$ such that $c_{m,k,n}^{\tau}$ converges to $\bar{c}_{k,n}^{\tau}$ for $n = l - 1, l, l_1 - 1, l_2$. Then

$$\bar{G}_{k}^{\tau'}(w) = \frac{\bar{c}_{k,l_{2}}^{\tau} - \bar{c}_{k,l-1}^{\tau}}{\bar{c}_{k,l}^{\tau} - \bar{c}_{k,l-1}^{\tau}} = \lim_{m \to \infty} \frac{c_{m,k,l_{2}}^{\tau} - c_{m,k,l_{1}-1}^{\tau}}{c_{m,k,l}^{\tau} - c_{m,k,l-1}^{\tau}},$$

$$\inf_{x \in \langle w \rangle} |F'(x)|^{\alpha_{m}^{r}} \leq \left| \frac{c_{m,k,l_{2}}^{\tau} - c_{m,k,l_{1}-1}^{\tau}}{c_{m,k,l_{2}}^{\tau} - c_{m,k,l_{1}-1}^{\tau}} \right| \leq \sup_{x \in \langle w \rangle} |F'(x)|^{\alpha_{m}^{r}}.$$

Therefore, since $\lim_{m\to\infty} \alpha_m^{\tau} = \alpha_0$, this implies

$$\inf_{x \in \langle w \rangle} |F'(x)|^{\alpha_0} \le |\bar{G}_k^{\tau'}(w)| \le \sup_{x \in \langle w \rangle} |F'(x)|^{\alpha_0}.$$

For each word w, the endpoints of the subintervals corresponding to w converge. Therefore there exists a limit $G^{\tau}(x) = \lim_{k \to \infty} \overline{G}_k^{\tau}(x)$, if x does not coincide with endpoints of any word. Namely, there exists G'(x) except countably many points (that is, there exists G' in L^1 sense). It is also easy to see even for an endpoint of a word whose expansion equals $s = a_1 a_2 \cdots$, there exists a limit $\lim_{m \to \infty} G_m^{\tau}(s)$. However, it may not coincide with the limit corresponding to another sequence of symbols which express the same endpoint. Hereafter, we fix G^+ or G^- and denote it by G. From the construction, G and F on $\mathscr C$ has the same symbolic dynamics. We denote the 1 to 1, onto mapping by $\phi: [0, 1] \to \mathscr C$ for which $x \in [0, 1]$ and $\phi(x) \in \mathscr C$ has the same expansion. Then

$$G'(x) = \begin{cases} + |F'(\phi(x))|^{\alpha_0} & \text{if } F'(\phi(x)) > 0, \\ -|F'(\phi(x))|^{\alpha_0} & \text{if } F'(\phi(x)) < 0. \end{cases}$$

To emphasize the notation, we denote by $\langle w \rangle_F$ and $\langle w \rangle_G$ subintervals associated with a word w which correspond to F on I and G on [0, 1], respectively.

LEMMA 7. Assume that $\alpha_0 > 0$. Then there exists a constant $\gamma' > 0$ such that 1/G'(x) is of universally bound γ' -variation, where a function f is of universally bounded p-variation if

$$\operatorname{var}_{p}(f) = \sup_{0 < x_{0} < \dots < x_{n} \leq 1} \left(\sum_{i=1}^{n} |f(x_{i}) - f(x_{i-1})|^{p} \right)^{1/p} < \infty.$$

PROOF. For x < y which do not coincide with endpoints of any word,

$$|1/G'(x)-1/G'(y)| = ||F'(\phi(x))|^{-\alpha_0} - |F'(\phi(y))|^{-\alpha_0}|$$

$$\leq ||F'(\phi(x))|^{-1} - |F'(\phi(y))|^{-1}|^{\alpha_0}$$

$$\leq ||F'(\phi(x))| - |F'(\phi(y))||^{\alpha_0}e^{-2\alpha_0\xi_0}.$$

Since F' is Hölder continuous with Hölder exponent γ , it is also of universally bounded $1/\gamma$ variation (cf. [3]), therefore 1/G' is of universally $\gamma' = \gamma/\alpha_0$ bounded variation. This proves the lemma.

4. Hausdorff dimension.

First we will mention easy lemmas.

LEMMA 8. For $0 < \alpha < 1$, and $x_i > 0$ $(1 \le i \le k)$, we get

$$k^{\alpha-1} \left(\sum_{i=1}^k x_i^{\alpha} \right) \leq \left(\sum_{i=1}^k x_i \right)^{\alpha} \leq \sum_{i=1}^k x_i^{\alpha}.$$

Lemma 9. There exists a constant K>1 such that

$$\frac{1}{K} < \frac{Lebes(\langle wa \rangle)}{Lebes(\langle wb \rangle)} < K,$$

for any word w and any symbols $a, b \in \mathcal{A}$ such that wa, wb are admissible.

The proofs of both lemmas are trivial.

For a probability measure μ on I, we define another Hausdorff dimension \dim_{μ} as follows. Let for $\delta > 0$

$$\mu_{\alpha}(C, \delta) = \inf \sum_{i} \mu(\langle v_i \rangle)^{\alpha},$$

where infimum is taken over all covering by words $\{v_i\}$ such that $\mu(\langle v_i \rangle) < \delta$. Then as usual we can define the Hausdorff dimension $\dim_{\mu}(\mathscr{C})$ of \mathscr{C} with respect to the probability measure μ as a critical point whether $\lim_{\delta \to 0} \mu_{\alpha}(\mathscr{C}, \delta)$ converges or diverges.

We will use the following theorem.

THEOREM 1 (Billingsley [1]). For probability measures μ_1 , μ_2 such that

$$\mathscr{C} \subset \left\{ x : \lim_{n \to \infty} \frac{\log \mu_1(\langle a^x[1, n] \rangle)}{\log \mu_2(\langle a^x[1, n] \rangle)} = \alpha \right\}$$

for some $0 \le \alpha \le \infty$,

$$\dim_{\mu_2}(\mathscr{C}) = \alpha \dim_{\mu_1}(\mathscr{C}) ,$$

where $a^{x}[1, n]$ is a word with length n such that $\langle a^{x}[1, n] \rangle \ni x$.

We will fix $\tau \in \{+, -\}$ and express F_m^{τ} and G_m^{τ} simply by F_m and G_m .

LEMMA 10. Let $\varepsilon > 0$ be any constant. Then for sufficiently large m and any word $w \in \mathcal{W}$ (|w| > m)

$$Lebes(\langle w \rangle_{F}) \begin{cases} \leq (1+\varepsilon)^{|w|} K^{2m} |F_{m}^{|w|'}(w)|^{-1}, \\ \geq (1-\varepsilon)^{|w|} K^{-2m} |F_{m}^{|w|'}(w)|^{-1}, \end{cases}$$

$$Lebes(\langle w \rangle_{G}) \begin{cases} \leq (1+\varepsilon)^{|w|} K^{2m} |G_{m}^{|w|'}(w)|^{-1}, \\ \geq (1-\varepsilon)^{|w|} K^{-2m} |G_{m}^{|w|'}(w)|^{-1}, \end{cases}$$

where

$$K = \max\{\sup_{x \in I} |F'(x)|, \sup_{x \in I} |F'(x)|^{-1}\}.$$

PROOF. The proofs of above four inequalities are almost the same, so we will only show the first one. Note first

$$Lebes(\langle w \rangle_F) = \int_{F^{|w|}(\langle w \rangle)} |F^{|w|}(wx)|^{-1} dx.$$

Therefore for any m and for any word w with |w| > m

$$Lebes(\langle w \rangle_F) = \int_{F^{|w|}(\langle w \rangle)} \prod_{n=1}^{|w|} |F'(a_n \cdots a_{|w|} x)|^{-1} dx$$

$$\leq K^m \int_{n=1}^{|w|-m} |F'(a_n \cdots a_{|w|} x)|^{-1} dx,$$

where $w = a_1 \cdot \cdot \cdot \cdot a_{|w|}$. Thus by Lemma 2, we take sufficiently large m, and get

$$Lebes(\langle w \rangle_F) \leq (1+\varepsilon)^{|w|-m} K^{2m} |F_m^{|w|'}(w)|^{-1}$$
.

This proves the lemma.

Now take μ_1 as Lebesgue measure on I, and μ_2 the measure induced by ϕ from the Lebesgue measure on [0, 1] where G acts. Then for $x \in \mathcal{C}$,

$$\frac{\log \mu_1(\langle a^x[1,n] \rangle)}{\log \mu_2(\langle a^x[1,n] \rangle)} = \frac{\log(Lebes(\langle a^x[1,n] \rangle_F))}{\log(Lebes(\langle a^x[1,n] \rangle_G))}$$

tends to $1/\alpha_0$ as $n \to \infty$. Because for example, from Lemma 10

$$\frac{\log(Lebes(\langle a^x[1,n]\rangle_F))}{\log(Lebes(\langle a^x[1,n]\rangle_G))} \leq \frac{n\log(1+\varepsilon) + 2m\log K - \log|F_m^{n'}(x)|}{n\log(1-\varepsilon) - 2m\log K - \alpha_m^{\tau}\log|F_m^{n'}(x)|},$$

where we take $G_m = G_m^{\tau}$. Taking $n \to \infty$, and as we can take ε arbitrarily small, we get the left hand term is less than or equal to $1/\alpha_0$. We can get the opposite inequality in a same way. Therefore, by Billingsley's theorem, we get

$$\dim_{\mu_1}(\mathscr{C}) = \alpha_0 \dim_{\mu_2}(\mathscr{C}) = \alpha_0 \dim_{Lebes}([0, 1]) = \alpha_0.$$

THEOREM 2. The Hausdorff dimension of \mathscr{C} equals α_0 .

PROOF. Since $\dim_{\mu_1}(\mathscr{C})$ is greater than or equal to the Hausdorff dimension of \mathscr{C} , we only need to show the opposite inequality. Let $\{J_i\}$ be a covering by intervals such that $\sum (Lebes(J_i))^{\alpha} < M < \infty$. For each J_i , let

$$n_i = \min\{n : |w| = n, \langle w \rangle \subset J_i\}$$
.

If J_i intersects with $\langle u_1 \rangle$, \cdots , $\langle u_k \rangle$ with $|u_j| = n_i - 1$, we divide J_i into k intervals $J_i \cap u_j$ $(1 \le j \le k)$. Note that $k \le \# \mathscr{A}$. We denote new covering by intervals also by $\{J_i\}$. Therefore we can assume that J_i is contained in some $\langle u \rangle$ with $|u| = n_i - 1$, and that contains at least one $\langle v \rangle$ with $|v| = n_i$. Then by Lemma 8 and the assumption,

$$\sum_{i} (Lebes(J_{i}))^{\alpha} \leq \# \mathscr{A}^{1-\alpha} M < \# \mathscr{A} \cdot M.$$

We take all the words $w_{i,1}, \dots, w_{i,i_1}$ contained in J_i with length n_i . Then take all the words $w_{i,i_1+1}, \dots, w_{i,i_2}$ contained in $J_i \setminus \bigcup_{j=1}^{i_1} \langle w_{i,j} \rangle$ with length n_i+1 , and continue this procedure. Then we get a sequence of words $\{w_{i,j}\}$. Note that, from Lemma 9, the length of any word w with length n_i which intersect with J_i (not only words $w_{i,1}, \dots, w_{i,i_1}$) is less than or equal to $KLebes(\langle w_{i1} \rangle) \leq KLebes(J_i)$. Also noticing $Lebes(\langle wa \rangle) \leq e^{-\xi_0} Lebes(\langle w \rangle)$ for any word w and $a \in \mathcal{A}_1$, we get

$$\sum_{i} \sum_{j} (Lebes(\langle w_{i,j} \rangle))^{\alpha} \leq 2 \# \mathscr{A} K^{\alpha} \sum_{i} (Lebes(J_{i}))^{\alpha} / (1 - e^{-\xi_{0}\alpha})$$

$$\leq 2 (\# \mathscr{A})^{2} K^{\alpha} M / (1 - e^{-\xi_{0}\alpha}).$$

Now take any α which is greater than the Hausdorff dimension of \mathscr{C} . Then for any $\varepsilon > 0$ there exists a covering by intervals $\{J_i\}$ such that $\sum_i (Lebes(J_i))^{\alpha} < \varepsilon$. Then we can choose a covering by words $\{\langle w_{ij} \rangle\}$ such that

$$\sum_{i}\sum_{j}(Lebes(\langle w_{ij}\rangle))^{\alpha}<2K^{\alpha}(\#\mathcal{A})^{2}\varepsilon/(1-e^{-\xi_{0}\alpha}).$$

This proves α_0 smaller than or equal to the Hausdorff dimension of \mathscr{C} . This proves the theorem.

5. Invariant measures.

We have proved in Lemma 7 that 1/G' is of universally bounded γ' -variation, that is, G satisfies the assumptions of Theorem 3.5 in [3]. Hence, there exists an invariant probability measure μ_G which is absolutely continuous with respect to the Lebesgue measure, and the dynamical system ([0, 1], μ_G , G) is weakly mixing. We will denote by μ_F the induced measure of μ_G to $\mathscr C$ by $\phi: [0, 1] \to \mathscr C$ such that $x \in [0, 1]$ and $\phi(x) \in \mathscr C$ has same expansion by G and F, respectively.

LEMMA 11. The measure μ_2 , the induced measure on $\mathscr C$ from the Lebesgue measure on [0, 1] by ϕ , is α_0 -conformal measure. Here, we call a measure μ α_0 -conformal if

$$\mu(F(A)) = \int_A |F'(x)|^{\alpha_0} d\mu$$

holds for any $\mathscr{A} \subset \langle a \rangle$ $(a \in \mathscr{A}_1)$.

PROOF. Since the Lebesgue measure on [0, 1] is 1-conformal measure with respect to G and $|G'(x)| = |F'(y)|^{\alpha_0}$ for $y = \phi(x)$, it is easy to prove the lemma.

Thus combining the results, we get:

THEOREM 3. The measure μ_F is an invariant probability measure absolutely continuous with respect to the α_0 -conformal measure μ_2 , and the dynamical system (\mathscr{C}, μ_F, F) is weakly mixing.

Now we will study the relations between the conformal measure and the Hausdorff measure.

DEFINITION. (1) The Cantor set $\mathscr C$ has Darboux property if $F(\langle a \rangle \cap \mathscr C) = F(\langle a \rangle) \cap \mathscr C$.

(2) A transformation F satisfies the Misiurewicz condition if the set

$$\bigcup_{i=1}^{N} \left\{ \lim_{x \uparrow c_i} F^j(x) : j \ge 1 \right\} \cup \bigcup_{i=0}^{N-1} \left\{ \lim_{x \downarrow c_i} F^j(x) : j \ge 1 \right\}$$

has empty intersection with

$$\bigcup_{i=0}^{N-1} (c_i, c_i + \varepsilon) \cup \bigcup_{i=1}^{N} (c_i - \varepsilon, c_i)$$

for some $\varepsilon > 0$, where $\{c_i\}_{i=0}^N$ is the set of endpoints of $\langle a \rangle$ $(a \in \mathcal{A}_1)$.

It is easy to see that our \mathscr{C} has Darboux property and F satisfies Misiurewicz condition. Then from Theorem 6 of [2], there exists a constant $c \neq 0$ such that $v_{\alpha_0} = c\mu_2$. Thus, summarizing the results, we get:

THEOREM 4. The Hausdorff measure v_{α_0} is non-zero finite, μ_F is an invariant probability measure absolutely continuous with respect to v_{α_0} , and the dynamical system (\mathscr{C}, μ_F, F) is weakly mixing.

6. Example.

We will calculate the Hausdorff dimension of the set which has only symbols 1 and 2 in continued fraction expansion. We can restrict this map to the interval $[1/(1+\sqrt{3}), -1+\sqrt{3}]$ into itself as in the figure. Namely, all the points which have symbols only 1 and 2 in continued fraction expansion are contained in this interval.

We denote the set $[1/(1+\sqrt{3}), (1+\sqrt{3})/(3+2\sqrt{3})], ((1+\sqrt{3})/(3+2\sqrt{3}), 1/\sqrt{3})$ and $[1/\sqrt{3}, -1+\sqrt{3}]$ by symbols $\langle 0 \rangle, \langle 1 \rangle$ and $\langle 2 \rangle$, respectively. Denote $\mathscr{A} = \{0, 1, 2\}, \mathscr{A}_1 = \{0, 2\}$ and $I = [1/(1+\sqrt{3}), -1+\sqrt{3}),$

$$F(x) = \begin{cases} 1/x - 2 & \text{if } x \in \langle 0 \rangle, \\ 1/x - 1 & \text{if } x \in \langle 2 \rangle. \end{cases}$$



Then the Cantor set which we want to calculate can be expressed by

$$\mathscr{C} = \{ x \in I : F^n(x) \notin \langle 1 \rangle \}.$$

We can approximate this map by formal piecewise linear transformations. First approximation is formal piecewise linear transformations F_1^+ , F_1^- which are linear on each $\langle 0 \rangle$ and $\langle 2 \rangle$, and the second approximation is formal piecewise linear transformations F_2^+ , F_2^- which are linear on $\langle 00 \rangle$, $\langle 02 \rangle$, $\langle 20 \rangle$ and $\langle 22 \rangle$ and so on. The Hausdorff dimension α_0 which we calculate by computer satisfies the following:

approximation	minimum	maximum
1	0.4599714039	0.6429535391
2	0.5066200906	0.5573891372
3	0.5239108226	0.5395066173
4	0.528895873377809917692	0.533552187854664990041
5	0.530600797037892992251	0.532010237643201833751

The program to get these values is very simple, but to get *i*-th approximation, we need to calculate determinants of 2^i dimensional matrices. Thus, it is not so easy to calculate more precise value. However, we can imagine that α_0 is not so far from the mean value of the fifth approximation $0.531305517\cdots$.

References

- [1] P. BILLINGSLEY, Ergodic Theory and Information, John Wiley (1965).
- [2] G. HOFBAUER, Hausdorff and conformal measures for expanding piecewise monotonic maps of the interval, Studia Math. 103 (1992), 191–206.
- [3] G. Keller, Generalized bounded variation and applications to piecewise monotonic transformations, Z. Wahrsch. 69 (1985), 461-478.
- [4] M. Mori, Fredholm determinant for piecewise linear transformations, Osaka J. Math. 27 (1990), 81-
- [5] M. Mori, Fredholm determinant for piecewise monotonic transformations, Osaka J. Math. 29 (1992), 497–529.
- [6] M. KEANE and M. MORI, preparing.

Present Address:

DEPARTMENT OF MATHEMATICS, COLLEGE OF HUMANITIES AND SCIENCES, NIHON UNIVERSITY, SAKURA-JOSUI, SETAGAYA-KU, TOKYO, 156–8550 JAPAN.