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1. Introduction.

We will consider Cantor sets generated by piecewise C'*7 transformations (y > 0).
In this article, we only consider Markov cases. Non Markov (but piecewise linear) cases
will be studied in [6]. A heuristic argument will also appear in that paper.

Let us denote 7=[0, 1]. We assume that there exists a finite set &/ of symbols, and
a subinterval {(a) < I corresponds to a symbol ae ., and

1. Uae £ <a> = I’ |

2. (apnby= if a#b.
Take a subset 7, ./, and we consider a mapping F from | J,. «, <a) to I such that

1. Fis monotone on each <a> and it can extend to {a) in C!*” (y>0) (piecewise

Cl + y), '

2. if FKa))n<{b) # I for a, be o/,, then F({a))><b) (Markov),

3. &=liminf,_ ,lessinf, ;log| F"(x)|>0 (expanding),

4. for each a, be o/,, there exists n such that F*({a))>{b) (irreducible),
where we denote the closure of a set J by J. Note that from the above assumption, we
get

logess inf| F™(x)|>0

xel
for some n>0. Here we denote by F" the n-th iteration of F:

X if n=0,
F"~Y(F(x)) if n>1.

Thus, hereafter we assume without loss of generality that

F"(X)={

Eo=logessinf| F'(x)|>0.
xel

We will consider a set
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C={xel: F'(x)e| ], <a>,Yn=0},

that is, the set of points whose orbits pass only subintervals corresponding to .«/,. One
of the simplest examples of € is the usual Cantor set, which is defined by F(x)=3x
(mod 1), &={0,1,2}, <i>=[i/3,(i+1)/3), and o/, ={0,2}, and one of the most
important examples is the set of points with digits 1 and 2 in its continued expansion.
In the case, F(x)=1/x (mod 1), &/ ={1,2, -- -}, <i>=(1/i+1),1/i] and o/, ={1, 2}. The
continued fraction expansion has countable symbols, and does not satisfy our
assumption. But the transformation on | J,. , , <a) is unessential. Moreover, though
F'(1)= —1, there exists a neighborhood of 1 such that {x: F(x)¢<{1>u<2>}. So, this
case «/; ={1, 2} essentially satisfies our assumption (cf. §6).

As usual, we express a point xel by a sequence of symbols aja; - - - called the
expansion of x defined by

Fii(x)ela’y ix=1.

We call a finite sequence of symbols w=a, - - - a,, a word and define | w|=m (the length
of a word w). We define as usual a subinterval {w) corresponding to a word w, which
is the set of points x such that F'"!(x)e{a;> for any 1<i<m. We call a word w
admissible if {<w) = . We denote the empty word by ¢, and for notational convenience
we define {¢)=1 (that is, ¢ is admissible), and |¢|=0. We denote by ¥#,, the set of
admissible words w=a, - - a,, with q;e,. Set # ={)7_, W,. We denote by wx
(we#; xel) a point which belongs to {(w)> and F'*!(wx)=x if it exists. Note that %"
expresses the set of all the admissible words with symbols only in .«/,. Hereafter, we
only consider words with symbols in .2Z,.

We also define for xe<w) (|w|=m)

+essinf, . 5| F'(¥)] if F'(x)>0,
—essinf) . ., F'(¥)] if F'(x)<O0,
+€ss Supyc cws | F'(3)] if F'(x)>0,
— €SS SuP, e s | F'(¥) | if F'(x)<0,

F,I’(X)=F,'I’(W)={
F.T.'(x)=F.Z'(W)={

Faye)=T] FiFi)  (ed+, ).

Note that a transformation F}, is only a formal piecewise linear Markov transformation
on the symbolic dynamics where F is realized, and it may not be able to express as a
map from 7 into itself.

As in [4] and [5], we will define generating functions for ge L* and 0<a<1

Q0

spz F)=Y 2" % J | F™(ux) | ~*g(x)d% (1)
uxe{w)

n=0 uewW n
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ee]

syz: Fr)= 2, 2" ) f | (F )" (ux)| ™ "g(x)dx 2)
uxe{w)

n=0 ueW ,

for a word we ¥, where dx denotes the integral by the Lebesgue measure restricted to
Uscw, <@>. We also define o, the maximum o for which z=1 is the minimum singularity
in modulus of s,,(z: Fy) for some ge L* and some word w. We denote by «, the

corresponding value for F. From the definition, if the right hand term of (1) converges,
it is easy to see that

[sya(z: F)|<sjg.lzl: F).

Therefore, since the coefficients of the right hand term of (1) is positive for g=>0, the
minimal singularity of s’z : F) is nonnegative. Moreover, for a non-negative valued
function g, positive z and «>0, if the right hand terms of (1) and (2) converge, we get

Sylz: F)<s; (z: F),
SVAz FU) <)z F3)< - <spz: F)< - <sifz: F3)<sylz: F{).
Therefore we get
1>af >af > 20,> " >a; =0a; =0.

REMARK. Let v, be a Hausdorff measure with exponent «, that is,
v(J)=liminf (Lebes(J;))* ,
310{J:}

where infimum is taken over all coverings of 4 with countable subintervals {J;} with
Lebesgue measure Lebes(J;) less than 8. Then as a formal expression, we can define

o0

Spadz: F)= 3} 2" J 1wy (X)g(F"(x))dv,

n=0

= io Z"j Y LanWIF"())I™*g(x)dv,
n= I

ye€:Fn(y)=x

=Sy f | F™(ux) |~ *g(x)dv,
n=0 uxe{w)

= f[(l —zP)™ 11 <w>](x)g(x)dva .

where P, is the Perron-Frobenius operator associated with F with respect to v,. Therefore,
these formal generating functions 3, , will express the ergodic properties of the dynamical

system. But they are only formal expression up to this point, thus we slightly modify
them, and define s5,;,(z : F).

LemMA 1. For fixed 0<a <],
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lim esssup|| Fi(x)|~*—| F'(x)|~*|=0.
xel

PrOOF. Note first | X— Y |*>| X*— Y*| for X, Y>0. Therefore
N Fm() | ™= F'(x) | ™% | = || Fa() "= F'() [*1/(| Fm() || F'(x) %)
<|FR(x)—=F'(x)1*/(| Fu () I*| F'(x) ) .
Because F is piecewise C!*? and expanding, the lemma is proved.

LEMMA 2. Set 0<a<]1. For any €>0, we get for sufficiently large m independent

of n
<(I+&)'|F¥(x)|™",

[(FR)" ()]~ "‘{
=(1—¢f'|F™(x)| %,

for any x.

PrOOF. By the chain rule,
n—1
|(F)"(x)| %= ]__[0 | Fr(F*(x))| ™%

n—1
<[l IF'(Fix)I~—
i=0
X (L+H Fu(F'G) ™= F'(F'C) ||| F'(Fi(x) ) .
Therefore by Lemma 1, for any £é>0
[(FR) ()7 < +&)"| F™(x)|~*
holds for any sufficiently large m. In a similar way, we can prove the other inequality.

COROLLARY 1. For a fixed 0<a <1, there exists f(a)>0 such that for | z|< B(x)

lim 5 (z: Fy)=s(z: F)

Jor any word we W:
Proor. Note first

|sga(z: F)|< i lzI" 2 J | F"(ux)|~*| g(x) |dx
n uxedlw)

=0 ueW n

0

<llgllw X (4| zesssup|F'(x)|™%)" .

n=0 xel

Now put
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B(a)=%(#~% esssup| F'(x)| """
xel

Then from Lemma 2, 5, ,(z: F;,) and s, ,(z : F) are uniformly bounded in |z | < f(x) for
sufficiently large m. Therefore the proof follows.

2. oa-Fredholm matrix and o-zeta function.

Now we will construct an a-Fredholm matrix @(z: F). For k>m, set #; x %,
matrix

B F)um { LECI IO OF
' 0 otherwise .

We denote @, ,.(z: F;) by ®(z: F;). Then we get for ue %’

a0

Sadzi Fr)=2 2" 3, J | (Fo)" (vx) |~ *g(x)dx
vxeu)

n=0 VEW n

.—_J‘ g(x)d)'c+z‘ z | Fu)| % .z Fp) .
<u)

veW i F({u))>Kv)

Therefore we can construct a renewal equation of the form

(s;,a(z : F;l))ue“ﬂfk: (J‘ g(X)d.f) + ¢a,k(z : Frf'l)(s;,a(z : Frtn))vewk .
lud ueW

Now we define «-zeta function by

M8

ca(z:F)=exp[ Zy IF”’(y)I'“}

n=1 N ye€:y=Fn(y)

CJZ:F&FCXP[ii 2 I(an)”’(y)l'“]-

n=1 N ye%:y=Fr(y)
LEMMA 3. forany k>m
det(I— @, (z: FR))={,z: Fp)7',
especially
det(I—D(z: FX))=C(z: FL)™*'.

Note that @, ,(z) is essentially a structure matrix of the dynamical system. Namely,
the trace of @, ,(z)" corresponds to periodic orbits with period n. Thus, from the fact
that, for a matrix A, det4 =exp[trlogA4], we get the proof using the Taylor expansion
of log(1 —z), where tr 4 means the trace of a matrix 4 (cf. [4]).
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LemMmA 4. For |z|<p(x),
lim {(z: FL)={(z: F).

The proof easily follows from Lemma 2 and the similar discussion in Corollary 1.

LEMMA 5.

4 g
lim o) = lim «, =« .

m— o0 m=— oo
ProOOF. For any ¢>0, take m sufficiently large such that

[(FaY®)] 1
((FaY@1~ 1+e

From Lemma 3, for any a>«,,, {,(z: F,,) has no singularity in the unit disk. Therefore
o 1 N Y
Y— X FIT<o.

n=1 N ye¥€:y=Fn(y)

On the other hand, for any o' >a,

SLoy Eron

n=1 N ye€:y=Fny)

o 1 /1—¢e\™
ZZ—( "’) Y IEDH)I

1+¢

n=1 N ye€:y=Fn(y)
= 1 1—8 " +\n7, —a'n_l + 1y i a’ —a

=2 — Y IEDDIE TTIEDYF )= 3)
n=1Hh 1+¢ ye€:y=Fn(y) i=0

Now we choose any a’>a such that

a

1—
¢ >1.

inf| F'(x) |~
x 1

Namely,

o >0 1 +log[(1+¢€)/(1—¢)] .
loginf, | F'(x)|

Note here the right hand term of (4) tends to « as ¢ tends to 0. Thus

Q)

the right hand side of (3)> Y, 1 Y IEYDITT.

n=1 N ye€:y=Fn®y)

This shows that {,.(z: F}}) is analytic in |z| < 1. Thus det(I — ®,.(z: F,;)) has no zero in
|z| <1, that is, «’>a,}. This proves the lemma. Indeed, for example, if there exists 6 >0
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such that ay>lim,,_ , «, +9J, then we can take ¢>0 sufficiently small such that there
exists a' <o, which satisfies (4). This is the contradiction, because o, <o’ <oo<o,.

Therefore oy =1lim a,.. In a similar way, we can show ag,=Ilim,,_, ., o, .

m— oo

3. Construction of a transformation G.

First note that

"LEMMA 6. Let e}, =(e}, (W) ey, be an eigenvector of ®,,(1: F) associated with
maximal eigenvalue. Set ey (v)=Y > < oy Ema(W) for ve W, Then ey, =(es(V))yew,, IS the
eigenvector of ®,(1: F;) with the eigenvalue A.

PrROOF. Let A>0 be the maximal eigenvalue, and (e, (#)) be an eigenvector
associated with it. Since D, (1 ") is a nonnegative irreducible matrix and 1 is its
maximal eigenvalue, we can fake er (w)>0 for any we #;. For ve ¥%,,, the v-component
of @, (z: FL)ei(v) (ve#,,) equals

= Y O l:Ff), .erw)

weW m

= )y | FE(v)| " es(w).

weW i F({(v)) 2w

2 | Fr(©)| ™ emu(W)

we Wi F({v))2{w)

= > @,,(1: FL)y et i(w)

veW v Y=(v)

=4 2. em (V)= Aen(v) .

veW i (v'ycev)

Let ey =(e;(W)wey, be an eigenvector associated with the eigenvalue 1 of
@ar(l F}) such that ZWGW er(w)=1. We can construct a piecewise linear Markov
mapplng G, : [0, 1]-[0, 1] as follows:

Define a natural order on «7,, that is, a<b if and only if x e (@) and y € {(b) satisfy
x <y. We also introduce a natural order on ¥#,,. For u=a, --- a, and v=b, --- b,
witha, -+ a;=b, -+ b;, and a;, , <b,,,. Then u<v if F*(y)>0 for ye{u), and u>v
otherwise. Arrange all the words in #,, in this order

Wit <Wp o< <Wpitw,,

Take

T

m,i

{0 for i=0,
Y eiw,,)  for O0<i<#¥,,.

j=1"m
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Set
Lmi—1> Cm.i) for 1<i<#¥,—1,
<wm,i>= .
Lemswn—15 1] for i=#¥4,,
d;x,i=inf{ <a2 . 'amb>} s
besf1:a2 GmbeW m
d;l,i,zsup{ <az e amb>} ’
be A 1:a2  ambeW 1,
where w, ;=a,a, - - - a,. Then for xe{w,,;>, define
A i —dm,i
Gr(X)=—"—"—(X—Cpi-1)+dm;.

m,i " Cm,i—1

Note that | G5/(x) | =(| F5(y))* and G}’ >0 if and only if F,,'(y)> 0, where the expansion
of yeIby F equals that of xe [0, 1] by G, This shows that &, (1: F}) is the Fredholm
matrix of G}, (cf. [4]). Also note that G;, is expanding and ([0, 1], G;) has the same
symbolic dynamics with (€, F).

Set for a word we %~

5.z Gp)= iOZ"J 1wy (¥)9((Gr)"(x)dx
n= 0

where {w)> <[0, 1] is the subinterval associated with a word w which is induced by G,,.
Then we can get a renewal equation of the form

(S;(Z : Gr:l))we‘ﬂf,,.:(j g(x)dx) +¢a’;ﬂ(z . F;)(S;(Z . Grtn))we'#fm .
{w) WEHW m

Now we will construct a transformation G: [0, 1]—[0, 1] which corresponds to F. For
m>k, set ¢y, o=0 and for 0</<#W,

1

Cm b1 = Z Z em(u)
i=1 ueWm:{u) = wi,id
that is, [cf, .1 1, € k1) corresponds to a word w, , with respect to the mapping G,,. Take
a subsequence which we also express by {m} such that the sequence c,, ; , converges to
a point which we express by ¢} ,. Next we choose again a subsequence {m} of the above
subsequence to converge ¢, ; , to some point ¢ ,, and so on, and we can define ¢;, for
all k£ and 0</<#W,. Then [&;,_,, ¢f,) is a new subinterval corresponding to a word
w1 € Wx. Using these subintervals, we can also define d;, and d; ;. Then we can define
mappings G} as before. From the construction, G; maps a subinterval corresponding
to a word w=a, - - - @, to the union of the subintervals corresponding to a, - - @a
(ae ;). Now we will fix a word w,,=a, ' - a,€#;,, and we assume that its image
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{a, - - a;> corresponds to a set of words w,, (/;<n<l,). Then we can choose a
subsequence {m} such that c}, , converges to ¢; , for n=I1—1,1, 1, —1,1,. Then

T T
Conkl; — Cmk, 1y —1

b

=T =T
Cri, — Cri—1

Gi'(w)=

g g = lim . t
Cka—Cri—1 m20 Cppi—Cmii—1

. - Crvkil,— Crakeily — .
inf | F/(x)|*m< | -T2 20070 < sup | F/(X) [
xelw) Comdel — Cmyk,l—1 xel{w>

Therefore, since lim,,_, ., &% =0a,, this implies

inf | F'(x)|*<| Gy (w)|< sup |F'(x)[*.
xe(w) xe(w)

For each word w, the endpoints of the subintervals corresponding to w converge.
Therefore there exists a limit G¥(x)=lim, _, ,, G{'(x), if x does not coincide with endpoints
of any word. Namely, there exists G'(x) except countably many points (that is, there
exists G’ in L! sense). It is also easy to see even for an endpoint of a word whose ex-
pansion equals s=a,a, - -, there exists a limit lim,,_ . G,/(s). However, it may not
coincide with the limit corresponding to another sequence of symbols which express
the same endpoint. Hereafter, we fix G* or G~ and denote it by G. From the construction,
G and F on % has the same symbolic dynamics. We denote the 1 to 1, onto mapping
by ¢: [0, 1]-% for which xe[0, 1] and ¢(x) €% has the same expansion. Then

G?(x)={ HIFGO)Ie if F(g()>0,
—|F(¢x)|* if F(¢(x)<0.
To emphasize the notation, we denote by {<w)y and {w) subintervals associated with

a word w which correspond to F on I and G on [0, 1], respectively.

LEMMA 7. Assume that a,>0. Then there exists a constant y' >0 such that 1/G’(x)

is of universally bound y'-variation, where a function f is of universally bounded p-variat-
ion if

n 1/p
var,(f)= sup (;1 | f(x:)—f(xi- 1) |p> <0.

0<xg<-<xp<1

Proor. For x <y which do not coincide with endpoints of any word,

|1/G'(x)=1/G'(y) | =1 F(@(x) | —| F(@(») | *|
<|IF'(@C) |~ = F'(@(y)|~" "
<UF(P) |~ F' (@) |Ie 2%,

Since F' is Holder continuous with Holder exponent y, it is also of universally bounded
1/y variation (cf. [3]), therefore 1/G’ is of universally y'=7/x, bounded variation. This
proves the lemma.
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4. Hausdorff dimension.

First we will mention easy lemmas.

LemMA 8. For O<a<, and x;>0 (1 <i<k), we get
k k a k
k“‘1< Y x;’)S( Y x,-) <Y xf.
i=1 i=1 i=1
LEMMA 9. There exists a constant K> 1 such that

1 < Lebes({wa))

— <K,
K Lebes({wb))
for any word w and any symbols a, be o such that wa, wb are admissible.

The proofs of both lemmas are trivial.

For a probability measure u on I, we define another Hausdorff dimension dim, as
follows. Let for 6 >0

/"a(c’ 6) = lnfz .u(<vi >)az s

where infimum is taken over all covering by words {v;} such that u({v;>)<é. Then as
usual we can define the Hausdorff dimension dim (%) of € with respect to the probability
measure u as a critical point whether lim;_, o 4,(%, 6) converges or diverges.

We will use the following theorem.

TreoReM 1 (Billingsley [1]). For probability measures p,, u, such that
(gc{x . llm 10g/"'1(<a [19 n]>) _a}

n=o log uy(Ka (1, m1>)
Jor some 0 <a< oo,
dim,,(¥¢)=adim,, (%),
where a*[1, n] is a word with length n such that {a*[1, n])> x.
We will fix e {+, —} and express F, and G/, simply by F,, and G,

LeMMA 10. Let ¢>0 be any constant. Then for sufficiently large m and any word
wew (w|>m)

<(1+™K2| F(w) |71,
>(1—™K " Fi(w)|~?
<(1+a™K>| Girw)| 7,
>(1—g™K 2" Gl w) |1,

Lebes({w)p) {

Lebes({w)g) {
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where

K=max{sup|F'(x)|, sup| F'(x)| '} .
xel xel

Proor. The proofs of above four inequalities are almost the same, so we will only
show the first one. Note first

Lebes({w)g)= | F™"(wx) |~ tdx .
FWIKw))
Therefore for any m and for any word w with |[w|>m
Iw)
Lebes({wyy) = [11F@, - anml|tdx
Fwiwyyn=1
|lw|—m
<K™ H IF’(an a|w|x)|—ldxa
n=1
where w=a, - a;,. Thus by Lemma 2, we take sufficiently large m, and get
Lebes({w)p) < (1 + &)™ —mK2m| Flwl(w)|~1 |
This proves the lemma.

Now take u; as Lebesgue measure on 7, and u, the measure induced by ¢ from
the Lebesgue measure on [0, 1] where G acts. Then for xe %,

log u,(<a”[1, n1>) _ log(Lebes({a*[1, n])>F))
log u,(<a*[1,n1>) log(Lebes({a™[1, n])e))
tends to 1/a, as n—o0. Because for example, from Lemma 10

log(Lebes({a*[1, n]>F)) < nlog(l+¢)+2mlog K—log| F,/(x)|
log(Lebes({a*[1, n]>g)) ~ nlog(l —&)—2mlog K—atlog| F2/(x)|

where we take G,,=Gy,. Taking n— o0, and as we can take ¢ arbitrarily small, we get
the left hand term is less than or equal to 1/x,. We can get the opposite inequality
in a same way. Therefore, by Billingsley’s theorem, we get

dim,, (¥) =0, dim,,,(%) = oo dimy ([0, 1]) =, .
THEOREM 2. The Hausdorff dimension of € equals o,.

ProOOF. Since dim, (%) is greater than or equal to the Hausdorff dimension of &,
we only need to show the opposite inequality. Let {J;} be a covering by intervals such
that > (Lebes(J;))*<M < co. For each J;, let

n=min{n:|wl=n,{wycJ;}.



228 MAKOTO MORI

If J; intersects with {u, ), - - -, <> with |u;|=n;—1, we divide J; into k intervals J;nu;
(1 <j<k). Note that k < #.o/. We denote new covering by intervals also by {J;}. Therefore
we can assume that J; is contained in some {u) with |u|=n;—1, and that contains at
least one {v) with |v|=n;. Then by Lemma 8 and the assumption,

Y (Lebes(J)) <#oA! " *M<tod - M.

We take all the words w; y, - - -, w;;, contained in J; with length n;. Then take all the
words w;; 44, ", W;;, contained in J,~\Uj.’=1 {w; ;> with length n;+1, and continue
this procedure. Then we get a sequence of words {w; ;}. Note that, from Lemma 9, the
length of any word w with length n; which intersect with J; (not only words w; ;, - - -, w; ;,
is less than or equal to KLebes({w;,))<KLebes(J;). Also noticing Lebes({wa))<
e *°Lebes({w)) for any word w and ae€ </, we get

Z Z (Lebes({w; ;»))* <24/ K" Z (Lebes(J,))*/(1 —e™ %)

<2(42)2K*M/(1 —e™%0%) .

Now take any a which is greater than the Hausdorff dimension of 4. Then for any ¢>0
there exists a covering by intervals {J;} such that ), (Lebes(J;))* <&. Then we can choose
a covering by words {{w;;>} such that

3 Y. (Lebes({wyy ) < 2K () /(1 —e5%).

This proves a, smaller than or equal to the Hausdorff dimension of €. This proves the
theorem.

5. Invariant measures.

We have proved in Lemma 7 that 1/G’ is of universally bounded y’-variation, that
is, G satisfies the assumptions of Theorem 3.5 in [3]. Hence, there exists an invariant
probability measure ug which is absolutely continuous with respect to the Lebesgue
measure, and the dynamical system ([0, 1], ug, G) is weakly mixing. We will denote by
ur the induced measure of ug; to € by ¢: [0, 1]>% such that xe[0, 1] and ¢(x)e¥
has same expansion by G and F, respectively.

LEMMA 11. The measure u,, the induced measure on € from the Lebesgue measure
on [0, 1] by ¢, is ay-conformal measure. Here, we call a measure u o,-conformal if

UF (A))=J | F'(x)|*°dp
A
holds for any of =<{a) (ae ).
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PrOOF. Since the Lebesgue measure on [0, 1] is 1-conformal measure with respect
to G and | G'(x)|=| F'(y)|* for y=¢p(x), it is easy to prove the lemma.

Thus combining the results, we get:

THEOREM 3. The measure up is an invariant probability measure absolutely
continuous with respect to the ay-conformal measure u,, and the dynamical system
(¥, up, F) is weakly mixing.

Now we will study the relations between the conformal measure and the Hausdorff
measure.

DEerFINITION. (1) - The Cantor set ¥ has Darboux property if F({a)n%)=
F({a))n®.
(2) A transformation F satisfies the Misiurewicz condition if the set

(vj {lime(x) :jzl} U NOI {liij(x):jzl}

i=1 (xTci i=0 (xlc

has empty intersection with
N-1 N
U (cir ci+e) U U (ci—e c)
i=0 i=1

for some ¢>0, where {c;}). is the set of endpoints of <{a) (ae.¥,).

It is easy to see that our ¥ has Darboux property and F satisfies Misiurewicz
condition. Then from Theorem 6 of [2], there exists a constant ¢ # 0 such that v, = cpu,.
Thus, summarizing the results, we get:

THEOREM 4. The Hausdorff measure v,, is non-zero finite, up is an invariant
probability measure absolutely continuous with respect to v,,, and the dynamical system
(%, ug, F) is weakly mixing.

6. Example.

We will calculate the Hausdorff dimension of the set which has only symbols 1

and 2 in continued fraction expansion. We can restrict this map to the interval

[/ +ﬁ ), —1 +ﬁ ] into itself as in the figure. Namely, all the points which have
symbols only 1 and 2 in continued fraction expansion are contained in this interval.

We denote the set [1/(1++/3), (1++/3)/3+2/3)], (1 +/3)/(3+2/3),1//3)
and [1/4/3, —1+./3] by symbols <0, (1) and {2}, respectively. Denote «/ = {0, 1, 2},

o1 ={0,2} and I=[1/(1+,/3), —1+./3),

F(x)={1/x—2 if xed0),
1x—1 if xed2).
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1 1+v3 1 -
1+V3 3423 V3 1+Vv3

Then the Cantor set which we want to calculate can be expressed by
€={xel: F'(x)¢{1)}.

We can approximate this map by formal piecewise linear transformations. First
approximation is formal piecewise linear transformations F;, F; which are linear on
each <{0) and <2), and the second approximation is formal piecewise linear
transformations F; , F; which are linear on {00), <02, (20> and {22) and so on. The
Hausdorff dimension «, which we calculate by computer satisfies the following:

approximation minimum maximum
1 0.4599714039 0.6429535391
2 0.5066200906 0.5573891372
3 0.5239108226 0.5395066173
4 0.528895873377809917692 0.53355218785466499004 1
5 0.530600797037892992251 0.532010237643201833751

The program to get these values is very simple, but to get i-th approximation, we
need to calculate determinants of 2° dimensional matrices. Thus, it is not so easy to
calculate more precise value. However, we can imagine that o, is not so far from the
mean value of the fifth approximation 0.531305517- - -.
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