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Abstract. We say that a partial elementary map $f$ of a structure $M$ is normal if $f$ can be extended to
an elementary map on $M$ whose domain or range is equal to $M$ . In this paper, we investigate properties for
normal elementary maps.

We prepare some notations. We fix a complete theory $T$ of a countable language
$L$ . Throughout this paper, we work in a big model $\ovalbox{\tt\small REJECT}$ of $T$. We denote subsets of $\mathscr{M}$

by $A,$ $B,$ $\cdots$ , elementary submodels of $\mathscr{M}$ by $M,$ $N,$ $\cdots$ and finite tuples $of.\parallel$ by
$\overline{a},$ $5,$ $\cdots$ . And we denote types (possibly with parameters) by $p,$ $q,$

$\cdots$ and formulas
(possibly with parameters) by $\varphi,$

$\psi,$ $\cdots$ . The set of realizations of a formula $\varphi$ in a set
$A$ is denoted by $\varphi^{A}$ . A type of $\overline{a}$ over $A$ is denoted by $tp(\overline{a}/A)$ , and for $tp(\overline{a}/\emptyset)$ we write
simply $tp(\overline{a})$ . We write $RM(p)$ for the Morley rank of a type $p$ . We denote mappings
by $f,$ $g,$

$\cdots$ and $\sigma,$ $\tau,$
$\cdots$ . We write $dom(f)$ and ran$(f)$ for the domain and the range

of a mapping $f$ respectively. We denote the group of automorphisms of a structure $M$

which leave $A$ pointwise fixed. We say a partial elementary map of $M$ is maximal if it
is maximal in the set { $g:g$ elementary map on $M$ and $g\supseteq f$ }.

LEMMA 1. Let $T$ be $\omega$-stable and $M$ a model of T. If $f$ is a maximal elementary
map on $M$ then $dom(f)\prec M$ and ran$(f)\prec M$.

PROOF. It is enough to show that $dom(f)\prec M$. Assume the contrary. Put
$S=$ { $\varphi(x,\overline{a})\in L(dom(f)):M\models\exists x\varphi(x,\overline{a})$ and $\varphi(x,\overline{a})^{M}\subseteq M\backslash dom(f)$ }. By the Tarski-
Vaught test, $S$ is not empty. Put $S_{rank}=$ { $\psi(x,$ $5):\psi(x,$ $5)$ is Morley rank minimal in $S$ }.
Take a formula $\psi_{0}(x, 5_{0})(\in S_{rank})$ whose Morley degree is minimal in $S_{rank}$ . Take an
element $c\in M\backslash dom(f)$ and an element $d\in M\backslash ran(f)$ such that $M\models\psi_{0}(c, 5_{0})$ and
$M\models\psi_{0}(d, f(5_{0}))$ . Since $\psi_{0}(x, 5_{0})$ isolates a type over $dom(f),$ $f$ can be extended to an
elementary map $f^{*}$ on $M$ such that $f^{*}(c)=d$. This contradicts the maximality of $f$ So
we have $dom(f)\prec M$. $\square $
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COROLLARY 2. Let $T$ be $\omega$-stable and $M$ an $\aleph_{O}$-saturated model to T. If $a_{J}$

elementary map $f$ on $M$ is maximal then $dom(f)$ and ran$(f)$ are $\aleph_{0}$-saturated elementar.
submodels of $M$.

PROOF. Let $D$ be the domain of $f$ and $R$ the range of $f$ By lemma 1, $D$ and 1
are elementary submodels $ofM$. Assuume that $D$ is not $\aleph_{0}$-saturated. Put $P=\{p:p\in S(A$

for some finite subset $A$ of $D$ and $p$ is not realized in $D$ }. By the assumption $ P\neq\emptyset$

Let $p$ be Morley rank minimal in $P$ . By $\omega$-stability of $T$, we may assume that $pi$

stationary. Since $M$ is $\aleph_{0}$-saturated, we can choose a tuple $\overline{a}\in M$ which realizes $p$ .
CLAIM 3. $a$ and $D$ are independent over $dom(p)$ .
PROOF OF CLAIM. Assume that $\overline{a}$ and $D$ are dependent over $dom(p)$ . Then ther

is a finite tuple $\overline{c}\in D$ such that $tp(\overline{a}/dom(p)\cup\overline{c})$ forks over $dom(p)$ . So we $hav($

$RM(p)<RM(\overline{a}/dom(p)\cup\overline{c})$ . This contradicts the choice of $p$ . $\square $

By the $\aleph_{0}$-saturation of $M$, there is a tuple $5\in M\backslash R$ which realizes $f(p)$ . By $\{$

similar argument in claim 3, 5 and $R$ are also independent over $f(dom(p))$ . Let $f$

$(\in Aut(\mathscr{M}))$ be an extension of $f$ Since $f(p)$ is stationary and 5 and $R$ are independen
over $f(dom(p))$ , we have $tp(b/R)=tp(f^{*}(a)/R)$ . Thus we get $tp(bR)=tp(f^{*}(a)R)=tp(aD)$

This contradicts the maximality of $f$ So $D$ is $\aleph_{0}$-saturated. By a similar argument, $w$

can prove thatR is $\aleph_{0}$-saturated. $\square $

DEFINITION 4. Let $M$ be a model of $T$ of $f$ an elementary map on M. $f$ is $l$

normal elementary map on $M$ if $f$ can be extended to an elementary map on $M$ whos
domain or range is equal to $M$.

We next define triples of models which are used for criteria of normality $0$

elementary maps. The following two definitions are weaker than that of the specia
triple in [2]. So we call them a weakly special triple and an almost special triple.

DEFINITION 5. Let $M_{1},$ $M_{2}$ and $N$ be models of $T$. The triple $(M_{1}, M_{2}, N)$ is $($

weakly special triple if
1. $N\prec M_{i}$ and $N\neq M_{i}(i=1,2)$ ;
$2a$ . $Thereisanelementa_{1}\in M_{1}\backslash Nsuchthatfora11elementb_{1}\in M_{2}\backslash N$,

$tp(a_{1},N)\neq tp(b_{1}/N)$ ;
$2b$ . $Thereisanelementb_{2}\in M_{2}\backslash Nsuchthatforallelementa_{2}\in M_{1}\backslash N$,

$tp(b_{2}/N)\neq tp(a_{2}/N)$ .

DEFINITION 6. Let $M_{1},$ $M_{2}$ and $N$ be models of $T$. The triple $(M_{1}, M_{2}, N)$ is $al$

almost special triple if
1. $N\prec M_{i}$ and $N\neq M_{i}(i=1,2)$ ;
2. $tp(a/N)\neq tp(b/N)$ for all element $a\in M_{1}\backslash N$ and $b\in M_{2}\backslash N$.

We say that $T$ has a weakly (almost) special triple if there are models $M_{1},$ $M_{2}$ and $f$

of $T$ such that $(M_{1}, M_{2}, N)$ is a weakly (almost respectively) special triple. Clearly ever
almost special triple is a weakly special triple.
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PROPOSITION 7. Let $T$ be $\omega$-stable. If $T$ has no almost special triple, then for any
model $M$ of $T$, all elementary maps on $M$ are normal.

PROOF. Suppose that there are a model $M$ and elementary maps on $M$ which are
not normal. Let $S$ be the set of all elementary maps on $M$ which are not normal. Take
an elementary map $f$ on $M$ which is maximal in $S$ . By lemma 1, $dom(f)$ and ran$(f)$

are proper elementary submodels of $M$. Let $f^{*}(\in Aut(\mathscr{M}))$ be an extension of $f$ Then
ran$(f)$ is a proper elementary submodel of $f^{*}(M)$ . Since $f$ is maximal in $S$, for all
element $a\in M\backslash dom(f)$ and $b\in M\backslash ran(f)$ , we have $tp(a^{\wedge}dom(f))\neq tp(b^{\wedge}ran(f))$ . On the
other hand, for every element $b^{\prime}\in f^{*}(M)\backslash ran(f)$ there is an element $a^{\prime}\in M\backslash dom(f)$ such
that $tp(a^{\prime\wedge}dom(f))=tp(b^{l\wedge}ran(f))$ . Thus, for all element $b\in M\backslash ran(f)$ and $b^{\prime}\in f^{*}(M)\backslash $

$ran(f)$ , we have $tp(b/ran(f))\neq tp(b^{\prime}/ran(f))$ . So $(M, f^{*}(M),$ $ran(f))$ is an almost special
triple. $\square $

LEMMA 8. If there is a weakly special triple $(M_{1}, M_{2}, N)$ with $\Vert N\Vert=\lambda$ then for any
$\kappa$ with $\aleph_{O}\leq\kappa\leq\lambda$ , there is a weakly special triple $(M_{1}^{*}, M_{2}^{*}, N^{*})$ with $\Vert M_{1}^{*}\Vert=\Vert M_{2}^{*}\Vert=$

$\Vert N^{*}\Vert=\kappa$ .

PROOF. Let $(M_{1}, M_{2}, N)$ be a weakly special triple with $\Vert N\Vert=\lambda$ . Take an element
$a\in M_{1}\backslash N$ such that for all element $d\in M_{2}\backslash N,$ $tp(a/N)\neq tp(d/N)$ and an element $b\in M_{2}\backslash N$

such that for all element $c\in M_{1}\backslash N,$ $tp(b/N)\neq tp(c/N)$ . By induction on $j(<\omega)$ , we
construct models $N^{j},$ $M_{i}^{j}(i=1,2)$ of cardinality $\kappa$ with the following properties:

1. $N^{0}\prec N$;
2. $N^{0}\prec M_{i}^{0}\prec M_{i},$ $a\in M_{1}^{0}$ and $b\in M_{2}^{0}$ ;
3. $N^{j}\prec N^{j+1}\prec N,$ $tp(a/N^{j+1})\neq tp(d/N^{j+1})$ for all $d\in M_{2}^{j}\backslash N^{j}$ and

$tp(b/N^{j+1})\neq tp(c/N^{j+1})$ for all $c\in M_{1}^{j}\backslash N^{j}$ ;
4. $M_{i}^{j}\prec M_{i}^{j+1}\prec M_{i}$ and $N^{j+1}\prec M_{i}^{j+1}$ .

Clearly we can choose $N^{0},$ $M_{1}^{0}$ and $M_{2}^{0}$ which satisfy conditions 1 and 2. Suppose that $N^{j}$,
$M_{i}^{j}(j\leq k<\omega)$ are defined. Since $a\in M_{1}\backslash N$ is a witness of the weakly special triple
$(M_{1}, M_{2}, N)$ , for each element $d\in M_{2}^{k}\backslash N^{k}$ , there are a finite tuple $\overline{n}$ of $N$ and a formula
$\varphi(x,\overline{y})$ such that $\models\varphi(a,\overline{n})\wedge\neg\varphi(d,\overline{n})$ . Since $\Vert M_{i}^{k}\Vert=\kappa$ , there is a subset $D_{1}^{k}$ of $N$ of
cardinality $\kappa$ such that for all element $d\in M_{2}^{k}\backslash N^{k},$ $tp(a/N^{k}D_{1}^{k})\neq tp(d/N^{k}D_{1}^{k})$ . Similarly
there is a subset $D_{2}^{k}$ of $N$ of cardinality $\kappa$ such that for all element $c\in M_{1}^{k}\backslash N^{k}$ ,
$tp(b/N^{k}D_{2}^{k})\neq tp(c/N^{k}D_{2}^{k})$ . Thus we can choose a model $N^{k+1}$ of cardinality $\kappa$ such that
$N^{k}\prec N^{k+1}\prec N$ and for all element $c\in M_{1}^{k}\backslash N^{k}$ and $d\in M_{2}^{k}\backslash N^{k},$ $tp(a/N^{k+1})\neq tp(d/N^{k+1})$

and $tp(b/N^{k+1})\neq tp(c/N^{k+1})$ . And we can choose models $M_{i}^{k+1}$ of cardinality $\kappa$ such
that $M_{i}^{k}\prec M_{i}^{k+1}\prec M_{i}$ and $N^{k+1}\prec M_{i}^{k+1}$ . Put $M_{i}^{*}=\bigcup_{j<\omega}M_{i}^{j}$ and $N^{*}=\bigcup_{j<\omega}N^{j}$ . By
the construction of $N^{*}$ and $M_{i}^{*},$ $(M_{1}^{*}, M_{2}^{*}, N^{*})$ is a weakly special triple such that
$\Vert M_{1}^{*}\Vert=\Vert M_{2}^{*}\Vert=\Vert N^{*}\Vert=\kappa$ . $\square $

LEMMA 9. Let $T$ be $\omega$-stable. If there is a weakly special triple $(M_{1}, M_{2}, N)$ then
there is a weakly special triple $(M_{1}^{*}, M_{2}^{*}, N^{*})$ such that $\Vert M_{1}^{*}\Vert=\Vert M_{2}^{*}\Vert=\Vert N^{*}\Vert=\aleph_{0}$ and
that $M_{1}^{*}\simeq N^{*}\simeq M_{2}^{*}$ .
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PROOF. Let $(M_{1}, M_{2}, N)$ be a weakly special triple. By lemma 8 we can assume
that $M_{1},$ $M_{2}$ and $N$ are countable. Put $A=M_{1}\backslash N,$ $B=M_{2}\backslash N$ and $N_{0}=N$. Then we can
construct countable models $N_{i}(1\leq i<\omega)$ with the following properties:
For all $i$.

AO. $N_{i}\cap AB=\emptyset,$ $N_{i}\prec N_{i+1}\prec \mathscr{M}$ and $N_{i}A,$ $N_{i}B\prec \mathscr{M}$ ;
When $i$ is even.

El. For every tuple $\overline{a}$, element $a\in N_{i}A$ and tuple $\overline{c}\in N_{i}$ , there is an element
$c\in N_{i+1}$ such that if $tp(\overline{a})=tp(\overline{c})$ then $tp(\overline{a}a)=tp(\overline{c}c)$ ;

E2. For every tuple 5, element $b\in N_{i}B$ and tuple $\overline{c}\in N_{i}$ , there is an element
$c\in N_{i+1}$ such that if $tp(5)=tp(\overline{c})$ then $tp(5b)=tp(\overline{c}c)$ ;

When $i$ is odd.
Ol. For every tuple $\overline{c}$, element $c\in N_{i}$ and tuple $\overline{a}\in N_{i}A$ , there is an element

$a\in N_{i+1}A$ such that if $tp(\overline{c})=tp(\overline{a})$ then $tp(\overline{c}c)=tp(\overline{a}a)$ ;
O2. For every tuple $\overline{c}$, element $c\in N_{i}$ and tuple $5\in N_{i}B$, there is an element

$b\in N_{i+1}B$ such that if $tp(\overline{c})=tp(5)$ then $tp(\overline{c}c)=tp(5b)$ .
Let $N_{i}(i<\aleph_{1})$ be such countable models. Put $N^{*}=\bigcup_{i<\omega}N_{i},$ $M_{1}^{*}=\bigcup_{i<\omega}N_{i}A$ and
$M_{2}^{*}=\bigcup_{i<\omega}N_{i}B$ . By the construction of $N_{i},$ $(M_{1}^{*}, M_{2}^{*}, N^{*})$ is a weakly special triple such
that $\Vert M_{1}^{*}\Vert=\Vert M_{2}^{*}\Vert=\Vert N^{*}\Vert=\aleph_{0}$ . By a back-and-forth argument, we have $N^{*}\simeq M_{1}^{*}$ by
El and Ol and $N^{*}\simeq M_{2}^{*}$ by E2 and O2. $\square $

Next theorem shows a relation between special triples and normality of elementary
maps on a model.

THEOREM 10. Let $T$ be $\omega$-stable. The following are equivalent.
1. $T$ has no weakly special triple.
2. $T$ has no almost special triple.
3. For any model $M$ of $T$, all elementary maps on $M$ are normal.

PROOF. $1$ ) $\Rightarrow 2$) is clear. By proposition 7, we have $2$) $\Rightarrow 3$). We prove $3$) $\Rightarrow 1$ ).
Suppose that there is a weakly special triple $(M_{1}, M_{2}, N)$ . By lemma 9, we may assume
that $\Vert M_{1}\Vert=\Vert M_{2}\Vert=\Vert N\Vert=\aleph_{0}$ and $M_{1}\simeq N\simeq M_{2}$ . Let $g:M_{1}\rightarrow M_{2}$ be the isomorphism.
Put $f=g^{-1}|N$.

CLAIM 11. $f$ is not normal on $M_{1}$ .
PROOF OF CLAIM. Since $(M_{1}, M_{2}, N)$ is a weakly special triple, we can choose

an element $a\in M_{1}\backslash N$ such that for all $d\in M_{2}\backslash N,$ $tp(a/N)\neq tp(d/N)$ and an element
$b\in M_{2}\backslash N$ such that for all $c\in M_{1}\backslash N,$ $tp(b/N)\neq tp(c/N)$ . Assume that $f$ is normal on $M_{1}$ .
Case 1) Assume that $f$ can be extended to an elementary map $h_{1}$ on $M_{1}$ whose domain
is $M_{1}$ . Then we have $tp(aN)=tp(h_{1}(aN))=tp(h_{1}(a)g^{-1}(N))=tp(g\circ h_{1}(a)N)$ . But $ g\circ h_{1}(a)\in$

$M_{2}\backslash N$. This contradicts the choice of $a$ .
Case 2) Assume that $f$ can be extended to an elementary map $h_{2}$ on $M_{1}$ whose
range is $M_{1}$ . By a similar argument in case 1, this contradicts the choice of $b$ . $\square $

This completes the proof of the theorem. $\square $
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We next concentrate on elementary maps on $\aleph_{0}$-saturated models. Corollary 12
shows a relation between triples of $\aleph_{0}$-saturated models and normality of elementary
maps on $\aleph_{0}$-saturated models.

COROLLARY 12. Let $T$ be $\omega$-stable. The following are equivalent.
1. There is no weakly special triple of $\aleph_{O}$ -saturated models.
2. There is no almost special triple of $\aleph_{0}$-saturated models.
3. For any $\aleph_{0}$ -saturated model $M$ of $T$, all elementary maps on $M$ are normal.

PROOF. By corollary 2 and a similar argument in the proof of theorem 10, we
obtain the proof. $\square $

In the proof of $3$ ) $\Rightarrow 1$ ) in theorem 10, we constructed a non-normal elementary
map $f$ on a countable model $M$ . But $f$ may have a property that $|M\backslash dom(f)|=|M\backslash $

$ran(f)|=|dom(f)|$ because there is a theory which has no almost special triple
$(M_{1}, M_{2}, N)$ such that $|M_{1}\backslash N|=|M_{2}\backslash N|<\Vert N\Vert$ .

EXAMPLE. Let $G$ be a proper elementary extension of $(Z_{2}^{\omega}, +)$ and $H$ a proper
elementary extension of $(Z_{3}^{\omega}, +)$ . Put $N=Z_{2}^{\omega}\oplus Z_{3}^{\omega},$ $M_{1}=G\oplus Z_{3}^{\omega}$ and $M_{2}=Z_{2}^{\omega}\oplus H$.
Then, it can be seen that $(M_{1}, M_{2}, N)$ is an almost special triple of models of Th$(N)$ .

We next think about a non-normal elementary map $f$ on a model $M$ such that
$|M\backslash dom(f)|=|M\backslash ran(f)|<|dom(f)|$ . We construct a model $M^{*}$ and an elementary
map $f$ on $M^{*}$ such that $|M^{*}\backslash dom(f)|=|M^{*}\backslash ran(f)|\leq\aleph_{0},$ $|dom(f)|=\aleph_{1}$ and $f$ is not
normal.

THEOREM 13. Let $T$ be $\omega$-stable. If $T$ has an almost special triple $(M_{1}, M_{2}, N)$

of countable models with the following properties:
1. $N$ is $\aleph_{0}$-saturated;
2. $M_{1}\simeq M_{2}$ ;
3. There is a finite tuple $\overline{c}\in N$ such that $AB\downarrow_{\overline{c}}N$ where $A=M_{1}\backslash N$ and $B=M_{2}\backslash N$.

Then there are a model $M^{*}$ of $T$ and an elementary map $f$ on $M^{*}$ such that $f$ is not
normal, $|dom(f)|=|ran(f)|=\aleph_{1}and|M^{*}\backslash dom(f)|,$ $|M^{*}\backslash ran(f)|\leq\aleph_{O}$ .

PROOF. Let $(M_{1}, M_{2}, N)$ be an almost special triple of countable models which
satisfies condition 1 and 2. Since $T$ is $\omega$-stable, we can construct $\{N_{\alpha};\alpha<\aleph_{1}\}$ with
following properties:

$i$ . $N_{0}=N$;
ii. $N_{\alpha+1}(\supset N_{\alpha})$ is countably saturated and $N_{\alpha+1}\downarrow_{N_{\alpha}}$ AB;

iii. $N_{\delta}=\bigcup_{\alpha<\delta}N_{\alpha}$ ( $\delta$ is limit).
It is clear that $N_{\delta}$ is also $\aleph_{0}$-saturated when $\delta$ is limit.

CLAIM 14. $tp(N_{\alpha}/\overline{c}AB)=tp(N/\overline{c}AB)$ for all $\alpha<\aleph_{1}$ .
PROOF OF CLAIM. By the $\omega$-stability of $T$, we can assume that $tp(AB/N)$ is the

unique non-forking extension of $tp(AB/\overline{c})$ . We fix $\alpha<\aleph_{1}$ . Since $N$ and $N_{\alpha}$ are countably
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saturated, we have $N_{\alpha}\simeq_{\overline{c}}N$. So there is an automorphism $f(\in Aut_{c}\langle \mathscr{M}))$ with $f:N\rightarrow N_{\alpha}$ .
By the construction of $N_{\alpha},$ $tp(AB/N_{\alpha})$ is the unique non-forking extension of $tp(AB/\overline{c})$ .
Since $AB\downarrow_{\overline{c}}N$, we have $f(AB)\downarrow_{\overline{c}}N_{\alpha}$ . Then $tp(f(AB)/N_{\alpha})$ is also the unique non-forking
extension of $tp(f(AB)/\overline{c})(=tp(AB/\overline{c}))$ . So we have $tp(f(AB)/N_{\alpha})=tp(AB/N_{\alpha})$ . Thus we
have $tp(ABN/\overline{c})=tp(f(AB)N_{\alpha}/\overline{c})=tp(ABN_{\alpha}/\overline{c})$ . $\square $

Put $N_{\aleph_{1}}=\bigcup_{\alpha<\aleph_{1}}N_{\alpha}$ .
CLAIM 15. $N_{\aleph_{1}}A\simeq N_{\aleph_{1}}B$ .
PROOF OF CLAIM. By claim 14, we have $N_{\alpha}A\simeq N_{\alpha}B$ for $al1\alpha<\aleph_{1}$ . Let $g_{\alpha}$ : $N_{\alpha}A\rightarrow N_{\alpha}B$

be an isomorphism for each $\alpha<\aleph_{1}$ . By the elementary chain principle, for all $\alpha<\aleph_{1}$ ,
$N_{\alpha}A$ and $N_{\alpha}B$ are elementary submodels of $N_{\aleph_{1}}A$ and $N_{\aleph_{1}}B$ respectively. Let $\varphi(\overline{a})$ be
an $L(N_{\aleph_{1}}A)$-sentence. For every $L(N_{\aleph_{1}}A)$-sentence $\psi$ , there is $\beta(<\aleph_{1})$ such that
$\psi\in L(N_{\beta}A)$ . So we have, for some $\gamma<\aleph_{1},$ $N_{\aleph_{1}}A\models\varphi(\overline{a})$ if and only if $N_{\gamma}A\models\varphi(\overline{a})$ . Thus
we have $N_{\aleph_{1}}A\models\varphi(\overline{a})$ if and only if $N_{\aleph_{1}}B\models\varphi(g_{\gamma}(\overline{a}))$ . $\square $

Let $\sigma:N_{\aleph_{1}}A\rightarrow N_{\aleph_{1}}B$ be an isomorphism and $\tau:N_{\aleph_{1}}\rightarrow\sigma^{-1}(N_{\aleph_{1}})$ an elementary
map on $N_{\aleph_{1}}A$ .

CLAIM 16. The model $N_{\aleph_{1}}A$ and the elementary map $\tau$ on $N_{\aleph_{1}}A$ are what we lookfor.
PROOF OF CLAIM. By the construction of $N_{\aleph_{1}}A$ and $\tau$ , we $have|dom(\tau)|=|N_{\aleph_{1}}|=\aleph_{1}$

and $|N_{\aleph_{1}}A\backslash dom(\tau)|=|A|\leq\aleph_{0}$ . Assume that $\tau$ is normal. Then, for example, $\tau$ can be
extended to an elementary map $\rho$ on $N_{\aleph_{1}}A$ whose domain is $N_{\aleph_{1}}A$ . Then we have
$tp(aN_{\aleph_{1}})=tp(\rho(aN_{\aleph_{1}}))=tp(p(a)\sigma^{-1}(N_{\aleph_{1}^{\backslash }}))=tp(\sigma\circ\rho(a)N_{\aleph_{1}})$ for all $a\in A$ . Since $\sigma\circ\rho(a)\in B$,
this is a contradiction. When $\tau$ can be extended to an elementary map $p^{\prime}$ whose range
is $N_{\aleph_{1}}A$ , we can prove similarly. $\square $

This completes the proof of theorem 13. $\square $

QUESTION. Is there another condition for a theory to have an elementary map $f$

on a model $M$ such that $|M\backslash dom(f)|=|M\backslash ran(f)|<|dom(f)|$ and $f$ is not normal?
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