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Abstract. In this paper, we show that the moduli space of the Weierstrass data for algebraic minimal
surfaces in Euclidean 4-space with fixed topological type, orders of branched points and ends, and total
curvature, has the structure of a real analytic variety. We provide the lower bounds of its dimension. We
also show that the moduli space of the Weierstrass data for stable algebraic minimal surfaces in Euclidean
4-space has the structure of a complex analytic variety.

1. Introduction.

Let $M$ be a Riemann surface and $f:M\rightarrow R^{n}$ a branched conformal minimal
immersion whose induced degenerate Riemannian metric $ds^{2}$ is complete in the sense
that any locally rectifiable divergent path has infinite length. Then, by modifying the
Chem-Osserman theorem [$ChOs$ , Theorem 1], we can prove that the total curvature
is finite if and only if the Gauss map $\Phi_{f}$ is algebraic, i.e. $M$ is biholomorphic to a
compact Riemann surface $M_{g}$ punctured at a finite set of points and $\Phi_{f}$ extends to a
holomorphic map from $M_{g}$ to $Q_{n-2}(C)$ . We call a branched immersed minimal surface
with finite total curvature an algebraic minimal surface.

X. Mo constructed the moduli space of pairs of certain meromorphic functions on
a compact Riemann surface which give algebraic minimal surfaces in $R^{3}$ by the
Weierstrass formula. He proved that the moduli space has the structure of a real analytic
variety and that it contains a subset having the structure of a complex analytic variety.
We can see this work in the book written by Yang [Ya2, Chapter 3]. His idea of the
proof is to clarify the conditions satisfied by the divisors of meromorphic functions.

In this paper, by following this idea, we will construct the moduli space of the
triples of certain meromorphic functions on a compact Riemann surface which give
algebraic minimal surfaces in $R^{4}$ , and give a lower bound of the dimension of the
moduli space.
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We fix a compact Riemann surface $M_{g}$ of genus $g$ , a holomorphic (if $g=0$ , then
a meromorphic) l-form $\Omega$ on $M_{g}$ , integers $k,$ $r(k\geq 0, r\geq 1)$ , and an integer vectoI
$B_{k.r}=(J_{j};I_{i})\in Z^{k}\times Z^{r}(J_{j}\geq 1, I_{i}\geq 2)$ .

We denote by $AM=AM(M_{g}, B_{k.r})$ the set of algebraic minimal surfaces
$f=(f^{1}, f^{2}, f^{3}, f^{4}):M\rightarrow(R^{4}, ds^{2})$ in $R^{4}$ satisfying the following conditions:

The Riemann surface $M$ is biholomorphic to $M_{g}-$ {$puncture$ points};
It is branched at $k$ points with order $J_{j}(i=1, \cdots, k)$ and

punctured at $r$ points with order $I_{i}(i=1, \cdots, r)$;
$f^{1}+\sqrt{-1}f^{2}$ is not holomorphic.

We denote by $FD=FD(M_{g}, \Omega, B_{k.r}, \alpha, \beta)$ the set of the triples $(F, \varphi_{1}, \varphi_{2})$ ofmeromorphic
functions on $M_{g}$ satisfying the following conditions:

$F\not\equiv O$ , $\deg(\varphi_{1})_{\infty}=\alpha$ , $\deg(\varphi_{2})_{\infty}=\beta$ ,

(D) $-(\varphi_{1})_{\infty}-(\varphi_{2})_{\infty}+(F)+(\Omega)=\sum_{j=1}^{k}J_{j}b_{j}-\sum_{i=1}^{r}I_{i}p_{i}$ ,

(P) $\frac{1}{2}\mathfrak{R}\{\int_{\gamma}E_{a}F\Omega\}=0$

for any $\gamma\in H_{1}(M_{g}-\{p_{1}, \cdots,p_{r}\})(a=1, \cdots, 4)$ ; where $\{b_{j};p_{i}\}$ are distinct points. $W\epsilon$

denote by $(\varphi)=(\varphi)_{0}-(\varphi)_{\infty}$ the divisor of a meromorphic function on $M_{g}$ where $(\varphi)_{0}i\sigma$.
the zero divisor and $(\varphi)_{\infty}$ is the polar divisor. In particular, $\deg(c)_{\infty}=0$ for $c\in C^{*}$ and
we define (0) $=0$ and $\deg(O)_{\infty}=\infty$ for later use. Similarly, $(\Omega)$ is the divisor of a
meromorphic l-form on $M_{g}$ . We define

$E_{1}=1+\varphi_{1}\varphi_{2}$ , $E_{2}=\sqrt{-1}(1-\varphi_{1}\varphi_{2})$ ,

$E_{3}=\varphi_{1}-\varphi_{2}$ , $E_{4}=-\sqrt{-1}(\varphi_{1}+\varphi_{2})$ .

We call the condition (D) divisor condition and the condition (P) period condition.
By using the result of Osserman [Os], we will show the following lemma (\S 3):

LEMMA 1.1. There is a bijective correspondence between AM$(M_{g}, B_{k,r})/\sim anc_{l}$

$\square _{\alpha,\beta}FD(M_{g}, \Omega, B_{k,r}, \alpha, \beta)$ , where for $G$ and $H\in AM(M_{g}, B_{k,r}),$ $G\sim H$ means $G$ and $Har$

congruent by a parallel transformation in $R^{4}$ .

The above lemma provides a correspondence between the space $AM/\sim of$ algebraic
minimal surfaces in $R^{4}$ and the moduli space $FD$ of triples of meromorphic functions
on a compact Riemann surface.

We fix $\alpha,$ $\beta\in\{0,1,2, \cdots\}\cup\{\infty\}$ and let $l$ be the number of $0$ or $\infty$ in $\{\alpha, \beta\}$ . Wher
$\alpha,$

$\beta$ are finite, i.e. $(F, \varphi_{1}, \varphi_{2})\in FD(M_{g}, \Omega, B_{k,r}, \alpha, \beta)$ are functions not identically zero
our results are

THEOREM 1.2. If $FD(M_{g}, \Omega, B_{k,r}, \alpha, \beta)$ is nonempty, then it has the structure of $\iota$

real analytic variety of real dimension at least $2[(k+2\alpha+2\beta+5)-\{(7-l)g+r\}]$ .
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THEOREM 1.3. If $FD(M_{g}, \Omega, B_{k,r}, \alpha, \beta)$ is nonempty, then it contains a subset which
has the structure of a complex analytic variety of complex dimension at least
$(k+2\alpha+2\beta+7)-\{(11-l)g+3r\}$ .

When $\alpha$ or $\beta=\infty$ , i.e. $\varphi_{1}$ or $\varphi_{2}\equiv 0$ , our minimal surfaces are considered as branched
holomorphic curves in $C^{2}$ which is identified with $R^{4}$ in a certain manner (\S 4). In this
case, we can construct the moduli space in a similar fashion as above. Let $m$ be the
number of $\infty\in\{\alpha, \beta\}$ . Then, $1\leq m\leq l\leq 2$ . For $\alpha\in Z\cup\{\infty\}$ , we define $\alpha^{\prime}$ by $\alpha^{\prime}=0$ if
$\alpha=\infty$ and by $\alpha^{\prime}=\alpha$ otherwise. Using the results of Micallef ([Mil, Corollary 5.2] and
[Mi2, Theorem]), we can prove

THEOREM 1.4. If $\alpha$ or $\beta=\infty$ , then the element of $FD(M_{g}, \Omega, B_{k,r}, \alpha, \beta)$ corresponds
to a branched complete stable minimal surface in $R^{4}$ offinite total curvature. If $FD$ is
nonempty, then it has the structure of a complex analytic variety of complex dimension
at least $\{k+2\alpha^{\prime}+2\beta^{\prime}+2(3-m)\}-\{(2-m)r+(9-l-2m)g\}$ .

The author would like to express his gratitude to Professor Y. Ohnita for his
encouragement and for his advice on Theorem 1.4. He also would like to thank Doctor
M. Kokubu for his useful suggestion in the proof of Lemma 1.1.

2. A modified Chern-Osserman theorem.

In the theory of immersed algebraic minimal surfaces, the Chern-Osserman theorem
[$ChOs$ , Theorem 1] plays an important role. In this section, we shall modify it to apply
to the theory of branched immersed algebraic minimal surfaces.

First, we shall define a singular Hermitian metric on a Riemann surface (cf. [Yal],

p. 141). Let $M$ be a Riemann surface and $U$ a coordinate neighborhood of $M$. We
define a $(1, 0)$-form $\eta$ of meromoprhic type on $U$ as a form $\eta=z^{J_{p}}hdz$ for each $p\in U$,

where $z$ is a holomorphic coordinate with $z(p)=0,$ $h$ is a complex-valued smooth function
with $h(p)\neq 0$ , and $J_{p}$ is an integer. We call the integer $J_{p}$ the order of $\eta$ at $p$ and denote
it by $ord_{p}\eta$ . If $J_{p}>0$ for each $p\in U$, we call $\eta$ a $(1, 0)$-form of holomorphic type. We
write $(\eta)=\sum_{p\in U}(ord_{p}\eta)p$ and call it a divisor of $\eta$ . We say that $ds^{2}$ is a singular Hermitian
metric on $M$ if it is given locally as $ds^{2}=\eta\cdot\overline{\eta}$ , where $\eta\not\equiv 0$ is a $(1, 0)$-form ofmeromorphic
type. We call $ds^{2}$ degenerate at $p$ if $ord_{p}\eta>0$ , regular at $p$ if $ord_{p}\eta=0$ , and divergent
at $p$ if $ord_{p}\eta<0$ . We note that $ds^{2}$ is a Hermitian metric on $M$ if $ds^{2}$ is regular for any
$p\in M$. We call $p\in M$ asingular point of $ds^{2}$ if $ds^{2}$ is degenerate or divergent at $p$ . We
define the singular divisor $S$ of a singular Hermitian metric $ds^{2}$ as the divisor of $\eta$ , i.e.,
$S=\sum_{p\in M}(ord_{p}\eta)p$ .

Next, we generalize the Gauss-Bonnet theorem. Let $M$ be a Riemann surface,
$ds^{2}=\eta\cdot\overline{\eta}$ a singular Hermitian metric on $M$ with finitely many singular points, $dA$ the
area element of $ds^{2}$ , and $K$ the Gaussian curvature of $ds^{2}$ . We denote by $U$ an open
subset of $M$ such that its closure $\overline{U}$ is compact and that the boundary of $\overline{U}$ consists of
finitely many smooth Jordan curves $\beta_{i}(i=1, \cdots, m)$ whose orientation is chosen as $U$
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lies on the left-hand side. $Wedefinek_{g,i}$ to be the geodesic curvature of $\beta_{i}$ . We assume
that there is no singular point on each $\beta_{i}$ . Then we state a generalized local Gauss-Bonnet
theorem as follows:

LEMMA 2.1. Under the above situation, we have

$\int_{U}$ $KdA=2\pi(\chi(U)+\deg(S|_{U}))-\sum_{i=1}^{m}\int_{\beta_{i}}k_{g.i}ds$ ,

where $\chi(U)$ is the Euler number of $U$.

PROOF. Let $\{q_{1}, \cdots, q_{e}\}$ be all the singular points of $ds^{2}$ contained in $U$. Since
$ds^{2}$ is a singular Hermitian metric, we can write $\eta=z^{J_{a}}h_{a}(z)dz$ on a neighborhood of $q_{a}$

$(a=1, \cdots, e)$ , where $z$ is a holomorphic coordinate around $q_{a}$ with $z(q_{a})=0,$ $h_{a}(z)$ is a
complex valued smooth function with $h(O)\neq 0$ , and $J_{a}$ is the order of $\eta$ at $q_{a}$ . We denote
by $D(q_{a}, R)$ the set $\{|z|\leq R\}$ . We choose a sufficiently small $R>0$ such that
$ D(q_{i}, R)\cap D(q_{j}, R)=\emptyset$ for $t\neq j$. Let $\mu_{q_{a},R}=\partial D(q_{a}, R)$ where its orientation is chosen as
$D(q_{a}, R)$ lies on the left-hand side. We denote by $k_{g,q_{a},R}$ the geodesic curvature along
$\mu_{q_{a}.R}$ , and $U_{R}=U\backslash \bigcup_{a=1}^{e}D(q_{a}, R)$ . Then, by the local Gauss-Bonnet theorem, we have

$\int_{U_{R}}$ $KdA=2\pi\chi(U_{R})-\sum_{j=1}^{m}:\int_{\beta_{i}}k_{g.i}ds+\sum_{a=1}^{e}\int_{\mu_{q_{a}.R}}k_{g.q_{a},R}ds$ .

We express $k_{g.q_{a},R}ds$ explicitly. Let $ds^{2}=\theta^{1}\otimes\theta^{1}+\theta^{2}\otimes\theta^{2}$ be the singular Hermitian
metric, where $\{\theta^{1}, \theta^{2}\}$ is a oriented orthonormal frame. We define $e_{i}$ to be the dual of
$\theta^{i}(i=1,2)$ . We denote by $\omega_{j}^{i}$ the Levi-Civita connection form satisfying $d\theta^{i}=-\omega_{j}^{i}\wedge\theta^{j}$,
$\omega_{j}^{i}=-\omega_{i}^{j}(i,j=1,2)$ . Let $\gamma$ be the curve in $M$ such that $d\gamma/ds=\xi^{1}e_{1}+\xi^{2}e_{2}$ where $s$ is
the arc-length parameter, and $v$ be the vector field normal to $d\gamma/ds$ expressed by
$v=-\xi^{2}e_{1}+\xi^{1}e_{2}$ . We denote by $k_{g}$ the geodesic curvature along $\gamma$ . Then we have

$k_{g}ds=[(d\xi^{1}+\xi^{2}\omega_{2}^{1})e_{1}+(d\xi^{2}+\xi^{1}\omega_{1}^{2})e_{2}]|_{\gamma}\cdot v$ .
Introducing polar coordinates $(r, t)$ to a neighborhood around $q_{a}$ , we can express the
singular Hermitian metric $ds^{2}$ in the form $ds^{2}=r^{2J_{a}}|h_{a}|^{2}(dr\otimes dr+r^{2}dt\otimes dt)$ . We assume
$\theta^{1}=d^{a}|h_{a}|dr$ and $\theta^{2}=r^{J_{a}+1}|h_{a}|dt$ . Then we have

$e_{1}=\frac{r^{-J_{a}}}{|h_{a}|}\frac{\partial}{\partial r}$ , $e_{2}=\frac{r^{-\langle J_{a}+1)}}{|h_{a}|}\frac{\partial}{\partial t}$ .

In terms of polar coordinates, we can express the curve $\mu$ in the form $\mu_{q.,R}=(R, t)$ ,
$t\in[0,2\pi]$ . Hence, $d\mu_{q_{a}.R}/ds=e_{2}$ . Since

$d\theta^{1}=-\frac{1}{r}\frac{\partial\log|h_{a}|}{\partial t}dr\wedge\theta^{2}$ , $d\theta^{2}=-((J_{a}+1)+r\frac{\partial\log|h|}{\partial r})dt\wedge\theta^{1}$ ,

we obtain
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$\omega_{2}^{1}=\frac{1}{r}\frac{\partial\log|h_{a}|}{\partial t}dr-((J_{a}+1)+r\frac{\partial\log|h_{a}|}{\partial r})dt$ .

Thus,

$k_{g,q_{a}.R}ds=((J_{a}+1)+R\frac{\partial\log|h_{a}|}{\partial r})dt$ .

Hence,

$\int_{U_{R}}$ $KdA=2\pi\chi(U_{R})-\sum_{i=1}^{m}\int_{\beta_{i}}k_{g,i}ds+\sum_{a=1}^{e}\int_{0}^{2\pi}((J_{a}+1)+R\frac{\partial\log|h_{a}|}{\partial r})dt$

$=2\pi(\chi(U)+\deg(S|_{U}))-\sum_{j=1}^{m}\int_{\beta_{i}}k_{g,i}ds+\sum_{a=1}^{e}R\int_{0}^{2\pi}\frac{\partial\log|h_{a}|}{\partial r}dt$ .

Since $\partial\log|h_{a}|/\partial r$ is bounded on $D(q_{a}, R)$ , we have

$\lim_{R\rightarrow 0}R\int_{0}^{2n}\frac{\partial\log|h_{a}|}{\partial r}dt=0$ .

Thus, as $R$ tends to $0$ , we obtain

$\int_{U}KdA=2\pi(\chi(U)+\deg(S|_{U}))-\sum_{i=1}^{m}\int_{\beta_{i}}k_{g.t}ds$ . $\square $

Immediately, we also obtain

COROLLARY 2.2. If $M$ is a compact Riemann surface with a singular Hermitian
metric $ds^{2}$ , then we have

$\int_{M}$ $KdA=2\pi(\chi(M)+\deg(S))$ .

The following lemma is an analogue of the theorem of Huber [Hu, Theorem 13]
in the case where a singular Hermitian metric with finitely many degenerate point and
no divergent point is equipped on a Riemann surface.

LEMMA 2.3. Let $M$ be an infinitely connected Riemann surface, $ds^{2}=\eta\cdot\overline{\eta}$ a singular
Hermitian metric on $M$ with finitely many degenerate points and no divergent point. If
$ds^{2}$ is complete, then

$\int_{M}K^{-}dA=+\infty$ ,

where $K^{-}=\max\{0, -K\}$ .

PROOF. We prove that if $\int_{M}K^{-}<+\infty,$ then ds $isnotcomplete$ .
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We denote by $\{U_{i}\}$ an exhaustion of M, i.e., asequence of open subsets ofMsuch
that $U_{i}\subset U_{j}$ for $i<j$, that the closure $\overline{U}_{i}$ of each $U_{i}$ is compact, that the boundary of

$\overline{U}_{i}$ consists of finitely many smooth Jordan curves $\beta_{\iota_{;^{j}}}(j=1, \cdots, m_{i})$ , and that
$\bigcup_{i=1}^{\infty}U_{i}=M$. We choose the orientation of each $\beta_{ij}$ as $U_{i}$ lles on the left-hand side. Let
$M\backslash U_{i}=\square _{j}^{m_{i}}\Omega_{ij}$, where $\partial\Omega_{ij}=\beta_{ij}$ . We assume that all the singular points $\{b_{a}\}$

$(a=1, \cdots, e)$ of $ds^{2}$ on $M$ are contained in the $U_{1}$ . By Lemma 2.1, we have

$\int_{U_{i}}$ $KdA=2\pi(\chi(U_{i})+\deg(S))-\sum_{j=1}^{m:}\int_{\beta_{ij}}k_{g,i_{J}}ds$ .

Hence,

(2.1) $-\int_{U_{i}}KdA+2\pi(\chi(U_{i})+\deg(S))=\sum_{j=1}^{:}m\int_{\beta_{ij}}k_{g,i_{J}}ds$ .

As $i$ tends to $\infty$ , the left-hand side of(2.1) tends $to-\infty$ . Therefore, for sufficiently large $I$,

$\sum_{j=1}^{m_{f}}\int_{\beta_{Jj}}k_{g,Ij}ds<-2\int_{M}K^{-}dA$ .

Hence, there exists $J,$ $\epsilon>0$ such that

$\int_{\beta_{IJ}}k_{g.IJ}ds=-2\{\int_{\Omega_{IJ}}K^{-}dA+\epsilon\}$ .

We can choose a Jordan curve $\delta$ in $\Omega_{IJ}$ homotopic to $\beta_{IJ}$ and satisfying $\int_{\langle\beta_{IJ}.\delta)}K^{+}dA<\epsilon$

where $K^{+}=\max\{0, K\},$ $(\beta_{IJ}, \delta)$ is a domain surrounded by $\beta_{IJ}$ and $\delta$ . The following
two lemmas are proved in [Hu, p. 62, Lemma 6] and [Hu, p. 23, Lemma 2]:

LEMMA 2.4. Under the above situation, there exists a number $C>0$ which $satisfie_{L}^{(}$

the following property:

For any integer $i$, there exists a rectifiable curve $\alpha_{i}$ : $[0,1$ ) $\rightarrow M$

such that $\alpha_{i}(0)\in\delta,$ $\lim_{t\rightarrow 1}\alpha_{i}(t)\in\partial U_{i},$ $\int_{\alpha_{j}}ds<C$.

LEMMA 2.5. We denote by $\Omega$ a doubly connected region in $S^{2}$ . Let $\Gamma,$
$\gamma$ denote th‘

two boundaries of $\Omega$ , and $\Omega_{0}$ the simply connected open set containing $\gamma$ and surroundec
by T. Assume that there exist a sequence of rectifiable curves $\{\sigma_{n}\},$

$\sigma_{n}$ : $[0,1$ ) $\rightarrow\Omega,$ $\ell$

compact subset $K\subset\Omega_{0}$ anda number $C>0$ such that they satisfy thefollowing conditions:

For each $\sigma_{n},$
${\rm Im}\{\sigma_{n}\}\cap K\neq\emptyset$ :

For any compact subset $L\subset\Omega_{0},$ $\bigcup_{n}{\rm Im}\{\sigma_{n}\}$ is not contained in $L$ ;
$\int..ds<C$ for all $n$ .

Then there exists a locally $rect\iota fiable$ divergent path $\sigma$ in $\Omega$ such that $\int_{\sigma}ds<+\infty$ an‘

that $\lim_{t\rightarrow 1}\sigma(t)\in\Gamma$ .

By Lemma 2.4, we obtain a sequence of curves in $\Omega_{IJ}$ , a compact set $\delta$ and $\dot{i}$
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number $C>0$ satisfying the assumption of Lemma 2.5. Hence, there is a locally
rectifiable divergent path $\sigma:[0,1$ ) $\rightarrow M$ such that $\int_{\sigma}ds<+\infty$ . Therefore, $ds^{2}$ is not
complete. $\square $

Now, we can modify the Chem-Osserman theorem as follows:

PROPOSITION 2.6. Let $f:M\rightarrow R^{n}$ be a branched conformal minimal immersion such
that the singular Riemannian metric $ds^{2}$ induced by $f$ is complete. Then, the total curvature
is finite if and only if the Gauss map $\Phi_{f}$ is algebraic.

PROOF. First, we observe that we can extend $\Phi_{f}$ over all branch points. Indeed,
a branch point $b$ is locally a common zero point ofholomorphic functions $p\mapsto(\partial f^{a}/\partial z)(p)$

$(a=1, \cdots, n)$ . Hence there exists the minimum of orders of their functions at a branch
point $b$ , which we denote by $k$ . We define

$\Phi_{f}(b)=[\frac{1}{z^{k}}\frac{\partial f^{1}}{\partial z}(b),$ $\frac{1}{z^{k}}\frac{\partial f^{2}}{\partial z}(b),$

$\cdots,$
$\frac{1}{z^{k}}\frac{\partial f^{n}}{\partial z}(b)]$ .

Then $\Phi_{f}$ becomes holomorphic at $b$ . We also observe that $ds^{2}$ is a singular Hermitian
metric on $M$ with no divergent point in this case. Indeed, we have locally

$ds^{2}=2\sum_{a=1}^{n}|\frac{\partial f^{a}}{\partial z}|^{2}dz\cdot d\overline{z}$ .

Since $\partial f^{a}/\partial z(a=1, \cdots, n)$ is holomorphic, we have $\partial f^{a}/\partial z=z^{u_{a}}h_{a}(z)(a=1, \cdots, n)$ , where
$u_{a}$ is a nonnegative integer and $h_{a}$ is a holomorphic function not equal to $0$ at $0$ . Thus,
$ds^{2}=|z|^{2u}h(z)dz\cdot d\overline{z}$, where $u=\min\{u_{a}|a=1, \cdots, n\}$ is a nonnegative integer and $h$ is
a local real-valued positive smooth function. When we set $\eta=z^{u}\sqrt{h(z)}dz$ , we see that
$ds^{2}=\eta\cdot\overline{\eta}$ is a singular Hermitian metric with no divergent point.

We assume that the total curvature is finite. Then $M$ is finitely connected by Lemma
2.3. Then, in the same way as the proof of the Chern-Osserman theorem $([ChOs]$ ,

Theorem 1), we can prove that $M$ is biholomorphic to a compact Riemann surface $M_{g}$

punctured at finite points and that $\Phi_{f}$ is extended to be holomorphic at all puncture
points. Thus $\Phi_{f}$ is algebraic.

Conversely, we assume that $\Phi_{f}$ is algebraic. Let $M_{g}$ be the compact Riemann
surface on which $\Phi_{f}$ is extended to a holomorphic map, $\{b_{1}, \cdots, b_{k}\}$ the branch points,
$\{p_{1}, \cdots,p_{1}\}$ the puncture points. Then $ds^{2}$ is a singular Hermitian metric on $M_{g}$

degenerate at $b_{j}(j=1, \cdots, k)$ and divergent at $p_{i}(i=1, \cdots, r)$ . By Corollary 2.2, we have

$\int_{M_{g}}$ $KdA=2\pi(\chi(M_{g})+\deg(S))$ .

Since both $\chi(M_{g})$ and $\deg(S)$ are finite, the total curvature is finite. $\square $
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3. Representation formula.

We shall prove Lemma 1.1. Let $CD=CD(M_{g}, B_{k,r}, \alpha, \beta)$ be the set of all th $($

quadruplets $(\zeta^{1}, \zeta^{2}, \zeta^{3}, \zeta^{4})$ of meromorphic l-forms on $M_{g}$ satisfying the following
conditions:

$\zeta^{1}-\sqrt{-1}\zeta^{2}\not\equiv 0$ ; $\sum_{a=1}^{4}\zeta^{a}\otimes\zeta^{a}=0$ ;

$\deg(\frac{\zeta^{3}+\sqrt{-1}\zeta^{4}}{\zeta^{1}-\sqrt{-1}\zeta^{2}})_{\infty}=\alpha$ , $\deg(\frac{-\zeta^{3}+\sqrt{-1}\zeta^{4}}{\zeta^{1}-\sqrt{-1}\zeta^{2}})_{\infty}=\beta$ ;

$(\zeta)=\sum_{j=1}^{k}J_{j}b_{j}-\sum_{i=1}^{r}I_{i}p_{i}$ ;

$\Re\{\int_{\gamma}\zeta^{a}\}=0$ ,

for each $\gamma\in H_{1}(M_{g}-\{p_{1}, \cdots,p_{r}\})$ and each $a(a=1, \cdots, 4)$, where for $\zeta^{a}\not\equiv 0$ , let $(\zeta)=$

$\sum_{p\in M_{g}}\min_{a}(ord_{p}\zeta^{a})p$ . Then, by the relations

$\zeta^{a}(f^{1}, f^{2}, f^{3}, f^{4})=\frac{\partial f^{a}}{\partial z}dz$ ; $f^{a}(\zeta^{1}, \zeta^{2}, \zeta^{3}, \zeta^{4})(z)=\mathfrak{R}\{\int^{z}\zeta^{a}dz\}$

$(a=1, \cdots, 4)$ , we can define a bijective correspondence between AM$(M_{g}, B_{k,r})/\sim an($

$\coprod_{\alpha,\beta}CD(M_{g}, B_{k,r}, \alpha, \beta)$ . Indeed, it is clear that an element of $ AM/\sim$ corresponds to $al$

element of some $CD$ , and an element of $CD$ corresponds to a minimal surface branche $($

at $k$ points with orders $J_{j}$ and punctured at $r$ points with orders $I_{i}$ . Let $(f^{1},$ $f^{2},$ $f^{3},$ $f^{4}$

be a minimal surface corresponding to an element of $CD$ . For a puncture point $po$

order $I$, we take a local holomorphic coordinate $z$ such that $z(p)=0$ . Then the singula
Hermitian metric $ds^{2}$ induced by $f$ becomes as follows:

$ds^{2}=\frac{h(z)}{|z|^{2I}}dz\cdot d\overline{z}$ ,

where $h(z)$ is a positive smooth function. Let $\sigma(t)=x(t)+\sqrt{-1}y(t)$ be a smooth $1ocal1^{\backslash }$.
rectifiable curve tending to $p$ as $t$ tends to $\infty$ . Then, we have

$\Vert\frac{d\sigma}{dt}\Vert^{2}=h(\sigma(t))\cdot\frac{(dx/dt)^{2}+(dy/dt)^{2}}{(x(t)^{2}+y(t)^{2})^{I}}$ .

Hence, $\Vert d\sigma/dt\Vert$ tends to $\infty$ as $t$ tends to $\infty$ . Thus $\sigma$ has infinite length, and we see tha
the induced metric is complete. Therefore, $(f^{1}, f^{2}, f^{3}, f^{4})$ gives an element of $AM$

Hence, $AM/\sim is$ in one-to-one correspondence with $\coprod CD$ through the relation $abov\epsilon$
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On the other hand, there is the relations defined by

$F(\zeta^{1}, \zeta^{2}, \zeta^{3}, \zeta^{4})=\frac{\zeta^{1}-\sqrt{-1}\zeta^{2}}{\Omega}$ ,

$\varphi_{1}(\zeta^{1}, \zeta^{2}, \zeta^{3}, \zeta^{4})=\frac{\zeta^{3}+\sqrt{-1}\zeta^{4}}{\zeta^{1}-\sqrt{-1}\zeta^{2}}$ ,

(3.1)

$\varphi_{2}(\zeta^{1}, \zeta^{2}, \zeta^{3}, \zeta^{4})=$ ;
$\underline{-\zeta^{3}+\sqrt{-1}\zeta^{4}}$

$\zeta^{1}-\sqrt{-1}\zeta^{2}$

$\zeta^{a}(F, \varphi_{1}, \varphi_{2})=\frac{1}{2}E_{a}F\Omega$ $(a=1, \cdots, 4)$ .

Using (3.1), we can define a bijective correspondnece between $CD(M_{g}, B_{k,r}. \alpha, \beta)$ and
$FD(M_{g}, \Omega, B_{k.r}, \alpha, \beta)$ (cf. [Os, Section 4] or $[HoOs$ , \S 3, Remark 4]). Then, for each
$(\zeta^{1}, \zeta^{2}, \zeta^{3}, \zeta^{4})\in CD$ and its corresponding $(F, \varphi_{1}, \varphi_{2})\in FD$ , we have

(3.2) $(\zeta)=-(\varphi_{1})_{\infty}-(\varphi_{2})_{\infty}+(F)+(\Omega)$ .

We finished proving Lemma 1.1.

4. Proof of the theorems.

We shall prove Theorem 1.2, Theorem 1.3, and Theorem 1.4. We fix $M_{g}$ , $\Omega,$ $k,$ $r$ ,
$B_{k,r},$ $\alpha$ , and $\beta$ as above. We denote by $Div_{+}^{d}(M_{g})$ the space of effective divisors of degree
$d$ on $M_{g}$ . We observe that $\mathcal{D}=\mathcal{D}(M_{g}, B_{k.r}, \alpha, \beta)=Div_{+}^{J}(M_{g})\times Div_{+}^{I}(M_{g})\times Div_{+}^{\alpha^{\prime}}(M_{g})\times$

$Div_{+}^{\alpha^{\prime}}(M_{g})\times Div_{+}^{\beta^{\prime}}(M_{g})\times Div_{+}^{\beta}’(M_{g})$ , where $J=\sum_{j=1}^{k}J_{j}$ and $I=\sum_{i=1}^{r}I_{i}$ , has the structure
of a compact complex manifold of dimension $J+I+2\alpha^{\prime}+2\beta^{\prime}$ (cf. $[GrHa$ , p. 236]). Let
$L=L(M_{g}, B_{k,r}, \alpha, \beta)$ be the open subset of $M_{g}\times\cdots\times M_{g}$ ($k+r+2\alpha^{\prime}+2\beta^{\prime}$ times)
consisting of the elements $(b_{j};p_{i};s_{\delta};t_{\delta};x_{\epsilon};y_{\epsilon})$ such that $\{b_{j};p_{i}\}$ are distinct points and
that $\{s_{\delta}\}\cap\{t_{\delta}\}=\{x_{\epsilon}\}\cap\{y_{\epsilon}\}=\emptyset$ . We will see that $\{s_{\delta};t_{\delta}\}$ ( $\{x_{\epsilon};y_{\epsilon}\}$ , respectively) cor-
responds to the support of the divisor of $\varphi_{1}$ ( $\varphi_{2}$ , respectively). Let $DAD^{\prime}(M_{g}, \Omega, B_{k.r}, \alpha, \beta)$

be the set of $\tilde{D}’ s$ defined by

$\tilde{D}=\left\{\begin{array}{l}(D_{1},0,0)if\alpha^{\prime}=\beta^{\prime}=0\\(D_{1},D_{2},0),if\alpha^{\prime}\neq 0and\beta^{\prime}=0\\(D_{1},0,D_{3}),if\alpha^{\prime}=0and\beta’\neq 0\\(D_{1},D_{2},D_{3}),otherwise\end{array}\right.$

where $D_{1},$ $D_{2}$ , and $D_{3}$ are divisors on $M_{g}$ satisfying the following conditions:

$D_{1}=\sum_{j=1}^{k}J_{j}b_{j}-\sum_{i=1}^{r}I_{i}p_{i}+\sum_{\delta=1}^{\alpha’}t_{\delta}+\sum_{\epsilon=1}^{\beta^{\prime}}y_{\epsilon}-(\Omega)$ ,
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$D_{2}=\sum_{\delta=1}^{\alpha^{\prime}}s_{\delta}-\sum_{\delta=1}^{\alpha’}t_{\delta}$ , $D_{3}=\sum_{\epsilon=1}^{\beta^{\prime}}x_{\epsilon}-\sum_{\epsilon=1}^{\beta’}y_{\epsilon}$ ,

for $(b_{j};p_{i};s_{\delta};t_{\delta};x_{\epsilon};y_{\epsilon})\in L$ . When $(\zeta^{1}, \cdots, \zeta^{4})\in CD$ and $(F, \varphi_{1}, \varphi_{2})\in FD$ are the element}
corresponding to each other such that $(\varphi_{1})=D_{2}$ and that $(\varphi_{2})=D_{3}$ , we have

(4.1) $(F)=D_{1}$ ,

by (3.1) and (3.2). We will prove the following lemma:

LEMMA 4.1. The set $DAD^{\prime}$ has the structure of a complex analytic subvariety $0_{d}$

$\mathcal{D}$ with the complex dimension $k+r+2\alpha^{\prime}+2\beta^{\prime}$ .

PROOF. Let $\mathscr{C}=\mathscr{C}(M_{g}, B_{k.r}, \alpha, \beta)$ be the subset of $\mathcal{D}$ consisting of the elements

$\sum_{j=1}^{k}J_{j}b_{j},\sum_{i=1}^{r}I_{i}p_{i},\sum_{\delta=1}^{\alpha^{\prime}}s_{\delta},\sum_{\delta=1}^{\alpha’}t_{\delta},\sum_{\epsilon=1}^{\beta^{\prime}}x_{\epsilon},\sum_{\epsilon=1}^{\beta’}y_{\epsilon}$

such that $(b_{j};p_{i};s_{\delta};t_{\delta};x_{\epsilon};y_{\epsilon})\in L$ . Then $\mathscr{C}$ is an analytic subvariety of $\mathcal{D}$ and

$\dim_{\mathbb{C}}\mathscr{C}=k+r+2\alpha^{\prime}+2\beta^{\prime}$

Clearly, we can define a bijective correspondence between $\mathscr{C}$ and $DAD^{\prime}$ . We have
$thu:\subset$

proved Lemma 4.1.

Let $DAD(M_{g}, \Omega, B_{k,r}, \alpha, \beta)$ be the subset of $DAD^{\prime}$ such that each element consist:
of principal divisors on $M_{g}$ .

LEMMA 4.2. The set DAD is a complex analytic subvariety of $DAD^{\prime}$ . If DAD is
nonempty, then

$\dim_{\mathbb{C}}$ $DAD\geq k+r+2\alpha^{\prime}+2\beta^{\prime}-(3-l)g$ .

PROOF. Let $J(M_{g})$ be the Jacobian variety of $M_{g}$ and $u:Div(M_{g})\rightarrow J(M_{g})$ the
Jacobi map. We define $\tilde{u}:DAD\rightarrow J(M_{g})^{3}$ by

$\tilde{u}(\tilde{D})=\left\{\begin{array}{l}(u(D_{1}),0,0)\\(u(D_{1}),u(D_{2}),0)\\(u(D_{1}),0,u(D_{3}))\\(u(D_{1}),u(D_{2}),u(D_{3}))\end{array}\right.$
$otherwiseif\alpha^{\prime}=0and\beta’\neq 0if\alpha^{\prime}\neq 0and\beta^{\prime}=0if\alpha^{\prime}=\beta^{\prime}=0$

We note that $\deg D_{1}=\deg D_{2}=\deg D_{3}=0$ . Indeed, by (4.1), $\deg D_{1}=0$ . $\deg D_{2}=$

deg $D_{3}=0$ is clear. By Abel’s theorem (see $[GrHa]$ , p. 225), $D\in Div^{0}(M_{g})$ is a principa
divisor if and only if $u(D)=0$ . Thus, $DAD=\tilde{u}^{-1}(0,0,0)$ . Since $\tilde{u}$ is holomorphic wit}
respect to the complex structure induced as above, DAD is a complex analytic subvarietJ
of $DAD^{\prime}$ . By the definition of $l$, we also have
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$\dim_{\mathbb{C}}$ $DAD\geq\dim_{C}DAD^{\prime}-\dim_{\mathbb{C}}(J(M_{g}))^{3-i}$

$=k+r+2\alpha^{\prime}+2\beta^{\prime}-(3-l)g$ . $\square $

We assume $\alpha^{\prime}\neq 0$ and $\beta^{\prime}\neq 0$ . Other cases are similar. Let $AD(M_{g}, \Omega, B_{k,r}, \alpha, \beta)$

be the set of triples $(F, \varphi_{1}, \varphi_{2})$ of meromorphic functions on $M_{g}$ such that
$((F), (\varphi_{1}),$ $(\varphi_{2}))\in DAD,$ $\deg(\varphi_{1})_{\infty}=\alpha$ , and $\deg(\varphi_{2})_{\infty}=\beta$ . We define $\eta:AD\rightarrow DAD$ by the
projection $\eta(F, \varphi_{1}, \varphi_{2})=((F), (\varphi_{1}),$ $(\varphi_{2}))$ and we set $V=DAD-$ { $al1$ singular points}.

LEMMA 4.3. The set $AD$ has the structure of a complex analytic variety, and then
$\eta:\eta^{-1}(V)\rightarrow V$ becomes a holomorphic principal $(C^{*})^{3-m}$ bundle. If $AD$ is nonempty, then

$\dim_{\mathbb{C}}AD\geq k+r+2\alpha^{\prime}+2\beta^{\prime}-(3-l)g+(3-m)$ .

PROOF. Assume $(F, \varphi_{1}, \varphi_{2})\in AD$ . Then $((F), (\varphi_{1}),$ $(\varphi_{2}))=((w_{1}\cdot F), (w_{2}\cdot\varphi_{1}),$ $(w_{3}\cdot$

$\varphi_{2}))$ for any $(w_{1}, w_{2}, w_{3})\in(C^{*})^{3}$ . Hence $(C^{*})^{3}$ acts on $AD$ . Moreover, we can easily see
that $(C^{*})^{3}$ acts on $\eta^{-1}(V)$ .

To simplify the proof, we prove the claim for only one of the factors corresponding
to the functions not vanishing identically. We locally induce a complex structure from
DAD and prove that this complex structure is globally defined on $AD$ .

First, we assume that $g\geq 1$ . Let $\theta$ be the Riemann theta function, and
$D=\sum_{i=1}^{d}b_{i}-\sum_{i=1}^{d}p_{i}$ a divisor of $M_{g}$ with $u(D)=0$ . The following lemma is proved in
[Mu, Chapter 2, \S 3].

LEMMA 4.4. There exists a constant $\Delta$ in $C^{g}$ depending only on the choice of the
normalized basis for the space ofholomorphic l-forms on $M_{g}$ and satisfying the following
conditions:

For a point $v=(v_{1}, \cdots, v_{g-1})$ in $(M_{g})^{g-1}$ with $\{b_{1}, \cdots, b_{d},p_{1}, \cdots,p_{d}\}\cap\{v_{1},$
$\cdots$ ,

$ v_{g-1}\}=\emptyset$ , the mapping $h_{v}$ : $V\times M_{g}\rightarrow C\cup\{\infty\}\cong CP^{1}$ defined by

$h_{v}(D)(z)=\frac{\prod_{i=1}^{d}\theta(\Delta-\sum_{j=1}^{g-1}u(v_{j})+u(z)-u(b_{i}))}{\prod_{i=1}^{d}\theta(\Delta-\sum_{j=1}^{g-1}u(v_{j})+u(z)-u(p_{i}))}$

is a meromorphic function on $M_{g}$ such that $(h_{v}(D))=D$ .

We define $h_{v}(0)=1$ . We fix such a $v$ for each divisor $B$ in $V$ and denote it by $v_{B}$ .
Then $h_{v_{B}}(D)(z)$ is locally a holomorphic function with respect to $D$ . Assume that $U_{B}$ is
a sufficiently small neighborhood of $B$ in $V$. Then $(h_{v_{B}}(D))=D$ for $D$ in $U_{B}$ .

We define

$\tau_{U_{B}}$ : $\eta^{-1}(U_{B})\rightarrow U_{B}\times C^{*}$ , $f\mapsto((f),$ $\frac{f}{h_{v_{B}}((f))})$ .

Then this is a bijective map between $\eta^{-1}(U_{B})$ and $U_{B}\times C^{*}$ . Hence we can give $\eta^{-1}(U_{B})$

a complex structure $c(v_{B})$ . If $H$ is another divisor and $ U_{B}\cap U_{H}\neq\emptyset$ , then $U_{B}\cap U_{H}$ has
two complex structures $c(v_{B})$ and $c(v_{H})$ . But
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$\tau_{U_{B}}\circ\tau_{U_{H}}^{-1}(D, w)=(D, (g_{U_{B}.U_{H}}(D))\cdot w)$ , $g_{U_{B}.U_{H}}=h_{v_{H}}/h_{v_{B}}$

for each $D\in U_{B}\cap U_{H}$ and $w\in C^{*}$ , and $g_{U.,U}$. is holomorphic with respect to $D$ . Hence
the two complex structures are compatible. In the same fashion as above, this complex
structure is independent of the choice of $\{v_{B}\}$ . Therefore, we can induoe the complex
structure $c$ to $\eta^{-1}(V)$ , where $\eta:(\eta^{-1}(\eta, c)\rightarrow V$ and $\tau_{U_{B}}$ : $(\eta^{-1}(U_{B}), c)\rightarrow U_{B}\times C^{*}$ are
holomorphic and the following becomes a commutative diagram.

$\eta^{-1}(U_{B})\rightarrow U_{B}\times C^{*}\tau_{U_{B}}$

$\eta\downarrow$ $\downarrow projection$

$U_{B}$

$\overline{id}$

$U_{B}$

We also have

$\tau_{U_{B}}^{-1}(D, w_{1}w_{2})=w_{1}\cdot w_{2}\cdot h_{v_{B}}=\tau_{U_{B}}^{-1}(D, w_{1})\cdot w_{2}$ .
Hence, we can give $\eta:(\eta^{-1}(V), c)\rightarrow V$ a structure of a holomorphic principal $C^{*}$

bundle. $IfB^{\prime}$ isasingular point of DAD, then B’ $\times C^{*}isasingularlocusofU_{B^{\prime}}\times C^{*}$ .
Thus we can give $AD$ the structure of a complex analytic variety. Since the number
of components $AD$ is $3-m$ , we have

$\dim_{\mathbb{C}}AD\geq k+r+2\alpha^{\prime}+2\beta^{\prime}-(3-l)g+(3-m)$ .
In the case where $g=0$, we can prove the lemma in a similar fashion as above only
by taking $\prod_{i=1}^{d}(z-b_{i})/\prod_{\dot{t}}^{d}=1(z-p_{i})$ instead of $h_{v_{B}}$ . $\square $

Now, we shall prove our theorems. We note that $FD(M_{g}, \Omega, B_{k.r}, \alpha, \beta)$ consists of
all the triples of meromorphic functions in $AD$ satisfying the period condition.

PROOF OF THEOREM 1.2. We note that $m=0,$ $\alpha^{\prime}=\alpha,$ $\beta^{\prime}=\beta$ in this case. We fix
$(F_{0}, \varphi_{10}, \varphi_{20})\in FD$ and denote $-(\varphi_{10})_{\infty}-(\varphi_{20})_{\infty}+(F_{0})+(\Omega)=\sum J_{j}b_{j0}-\sum I_{i}p_{i0}$ . Let
$\Gamma:=\{\gamma_{1}, \cdots, \gamma_{2g};\gamma_{2g+1}, \cdots, \gamma_{2g+r-1}\}$ be a basis for $H_{1}(M_{g}-\{p_{10}, \cdots,p_{r0}\})$ such that
$\{\gamma_{1}, \cdots, \gamma_{2g}\}$ is a basis for $H_{1}(M_{g})$ and that $\gamma_{2g+i}$ is a simple closed curve around $p_{i0}$

$(i=1, \cdots, r-1)$ . We denote by $W_{0}$ a neighborhood of $(F_{0}, \varphi_{10}, \varphi_{20})$ in $AD$ such that
for $(F, \varphi_{1}, \varphi_{2})\in W_{0},$ $\Gamma$ is still a basis for $H_{1}(M_{g}-\{p_{1}, \cdots, p_{r}\})$ where $p_{i}$ are puncture
points of $(F, \varphi_{1}, \varphi_{2})$ . We define holomorphic functions $\lambda_{i}^{a}$ : $W_{0}\rightarrow C(i=1,$ $\cdots,$ $2g+$

$r-1,$ $a=1,$ $\cdots,$
$4$) as

$\lambda_{i}^{a}(F, \varphi_{1}, \varphi_{2})=\int_{\gamma_{i}}\zeta^{a}(F, \varphi_{1}, \varphi_{2})$ .

Then,

$FD\cap W_{0}=\bigcap_{i,a}(\mathfrak{R}\{\lambda_{i}^{a}\})^{-1}(0)$ .
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Hence, $FD$ is a real analytic subvariety of $AD$ and

$\dim_{R}FD\geq 2\{k+r+2\alpha^{\prime}+2\beta^{\prime}-(3-l)g+3\}-4(r+2g-1)$

$=2[(k+2\alpha+2\beta+5)-\{(7-l)g+r\}]$ . $\square $

PROOF OF THEOREM 1.3. We pay attention to the elements of $W_{0}$ whose periods
are equal to the $(F_{0}, \varphi_{10}, \varphi_{20})s$ . Since

$ FD\cap W_{0}\supset\bigcap_{i,a}(\lambda_{i}^{a})^{-1}(\int_{\gamma i}\zeta^{a}(F_{0}, \varphi_{10}, \varphi_{20}))\neq\emptyset$ ,

we have that $FD\cap W_{0}$ contains a complex analytic subvariety of $AD$ and

$\dim_{\mathbb{C}}FD\geq\dim_{C}FD\cap W_{0}$

$\geq\{k+r+2\alpha^{\prime}+2\beta^{\prime}-(3-l)g+3\}-4(r+2g-1)$

$=(k+2\alpha+2\beta+7)-\{(11-l)g+3r\}$ $\square $

PROOF OF THEOREM 1.4. We may assume that $\varphi_{2}\equiv 0$ . Then, $E_{1}=1,$ $E_{2}=\sqrt{-1}$ ,
$E_{3}=\varphi_{1}$ , and $E_{4}=-\sqrt{-1}\varphi_{1}$ . Hence, the period condition becomes as follows:

$\int_{\gamma}F\Omega=0$ , $\int_{\gamma}\varphi_{1}F\Omega=0$ for any $\gamma\in H_{1}$ ($M_{g}-\{puncture$ points}).

Since

$FD\cap W_{0}=\bigcap_{i.a}(\lambda_{i}^{a})^{-1}(0)$ ,

we know that FD isacomplex analytic subvariety of AD and since the number of $\lambda_{i}^{a}’ s$

not vanishing identically is at least $(3-m)(r+2g-1)$ , we obtain

$\dim_{\mathbb{C}}FD\geq k+r+2\alpha^{\prime}+2\beta^{\prime}-(3-l)g+(3-m)-(3-m)(r+2g-1)$

$=\{k+2\alpha^{\prime}+2\beta^{\prime}+2(3-m)\}-\{(2-m)r+(9-l-2m)g\}$ .

For the corresponding $(f_{1}, f_{2}, f_{3}, f_{4})\in AM$, we see that $f^{1}-\sqrt{-1}f^{2}$ and $f^{3}+\sqrt{-1}f^{4}$

are holomorphic functions on $M_{g}-$ {$puncture$ points}. Hence $(F, \varphi_{1}, \varphi_{2})$ corresponds
to a branched complete holomorphic surface in $R^{4}$ of finite total curvature via
identiPcation $R^{4}$ and $C^{2}$ by $(x_{1}, x_{2}, x_{3}, x_{4})\sim(x_{1}-\sqrt{-1}x_{2}, x_{3}+\sqrt{-1}x_{4})$ . It is known
that such a surface is a stable minimal surface (cf. [La, Chapter I, \S 7, Corollary 28]).
Micallef showed that any branched complete stable minimal surface of finite total
curvature in $R^{4}$ is congruent to such a surface by an isometry of $R^{4}$ (see [Mil, Corollary
5.2] and [Mi2, Theorem]). Hence, we obtain Theorem 1.4. $\square $
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