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1. Introduction.

Let g>2 be a fixed integer. A complex-valued function a(n) is said to be g-additive
or g-multiplicative if

ey akq' +r)=alkq")+a(r), a0)=0,

or

) atkq' +r)=atkqa(r),  a0)=1

for any integer k>0, t>0, and 0<r<gq’, respectively. Furthermore, if
3) ’ alkq)=alk) ,

a(n) is said to be strongly q-additive or strongly q-multiplicative, respectively. We note
that the strongly g-additive or g-multiplicative function a(n) is determined completely

by the initial values a(1), - - -, a(¢g—1). This paper concerns mainly with g-additive
functions.
Let a,(n), - - -, a,,(n) be m strongly g-additive functions. For each a,(n), we define a
power series f,(z) by
4) 2= Y amz"eC[z]] (1<k<m).
n>0 )

It follows from (1) and (3) that each f,(z) converges in | z| <1 and satisfies the functional
equation
g—1

Z a,(nz" I<k<m),

l—Zq r=0

&) fl2)=

1—2z1
SlzD+
1—z

since
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fil2)= Z a(n)z"= z Z {ayt)+ayr)}z'a*r

n=>0 t>0r=
= ()" Z z'+ ) 2 Z alrz"
t>0 t>0
1 — 1 —1
fk(Z") + ;0 ar)z" .
Putting
gi(2)=(1—2)fi(2) (I<k<m),
we have
1 el
(6) g(2) =gz +—— Z a(rnz"

@(2) r=o

where ¢(z)=(1—2z%/(1 —z)e C[z]. Because of the functional equations (6), we see by a
theorem of Mabhler [4] that if the functions a,(n), - - -, a,(n) are algebraic-valued and
91(2), - - -, gm(2) are algebraically independent over C(z), then the values g,(®), - * -, gnm(®)
are algebraically independent, where « is an algebraic number with 0<|a|<1.

An example of a strongly g-additive function is the sum of digits functions s9(n),
that is,

t
s“”(n): z bj ,
j=0

where
@) n=by+b,q+---+bgq',
b#0, b;e{0,1,---,9—1} (0<j<1)

is the g-adic expansion of an integer n > 0. Another example is the function e{?(n) defined
for each i€ {1, 2, - - -, g—1} by the number of the b;’s (0 <j<¢t) that are equal to i.
We state our results.

THEOREM 1. Let ai(n) (1 <k<m) be m strongly q-additive functions and fi(z) be
defined by (4). The following statements are equivalent:

(1) The functions f\(z), - - -, f,.(2) are algebraically dependent over C(z).

(i1) The functions a,(n), - - -, a,(n) are linearly dependent over C.

(iii) The (q—1)-dimensional vectors (a,(1), - - -, a,(g—1)), - -, (@x(1), - - -, aul@g—1))
are linearly dependent over C.

Theorem 1 implies that {e{?(n), - - -, 2 ,(n)} is a base of the vector space of strongly
g-additive functions over C, since ei‘q’(]) 6,; (1<i, j<q-—1).
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THEOREM 2. Let o be an algebraic number with 0<|wa|<1. Then the values
D ns0sPm)a},, , are algebraically independent. For any fixed positive integer i, the
values {)",  ,e®(n)a"},. ; are algebraically independent.

COROLLARY. The functions {).,, ,s9n)z"},., are algebraically independent over
C(z). For any fixed positive integer i, the functions {).,_ ,eln)z"},; are algebraically
independent over C(z).

In Theorem 2 and Corollary, if i is not fixed, then the functions {)_ ,e/®(n)z"},;
are algebraically dependent over C(z). In fact, the functions

{ > eéq’(n)z"}
nz0 (g, )=(2,1),(4,1),(4,2),(4,3)

are algebraically dependent over C(z), since these functions are strongly 4-additive and
the dimension of the vector space of the strongly 4-additive functions is 3.

THEOREM 3. If a function a(n) is strongly q,-additive and also strongly q,-additive,
where logq,/logq, is not a rational number, then a(n) must be identically zero.

THEOREM 4. If a function a(n) is strongly q,-multiplicative and also strongly
q,-multiplicative, where logq,/logq, is not a rational number, then a(n)=0 (n>1) or
a(n)y=y" (n=1), where y* "1 =y271=1,

2. Lemmas.

LemMma 1 (Kubota [1], Loxton and van der Poorten [2], see Nishioka [6]). Sup-
pose f; i (2)eC[[z]] (1<i<n, 1 <j<M,) satisfy the functional equations
fii@)=a.f; (2)+b; (2) (I<ign l<j<m;),
where a;€ C, a;#a; (i#]), and b; (2)e C(z). If f; j(z) (1 <i<n, 1 <j<M,) are algebraically
dependent over C(z), then there exists an integer iy, (1<iy<n) and c,, - -, cm,, €C, not
all zero, such that
C1fiot @+ - -+ Caty fromo () ECE)

LemMA 2 (Toshimitsu [7]). Let N be a positive integer and put ¢(z)=(1 —z9)/(1 —z).
If a polynomial P(z) € C[z] with deg P(z) < N(q — 1) and a rational function c(z) € C(z) satisfy

@)+ oz,
®(2)
then c(z)e C and P(z) is identically zero.
LemMMmA 3 (Nishioka [5]). Let d,, - - -, d, be integers greater than 1 and suppose

that logd;/logd; ¢ Q if i#j. Let K be an algebraic number field. Assume that f; ;(z)e K[[z]]
(I1<i<t, 1 <j<M,;) satisfy the functional equations
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£ j(zdi)=ai i@ (2 +b; ;(2) (I<i<t1gj<M,y),

where a; (2), b; (z)e K(2), a; ;(0)=1, and f; ,(2), - - -, f; m(2) are algebraically mdependent
over K(z) for each i (1<i<t). If  is an algebratc number with 0<|a|<1, a; j(&° )0
(k=0) and all f; ,(z) converge at o, then the values

fi,@  (<i<t 1<j<M)

are algebraically independent.

3. Proof of the theorems.

Proor oF THEOREM 1. (ii)— (i) is trivial. We prove (i) — (iii). Assume that
fi1(), - - -, f(z) are algebraically dependent over C(z). Then g,(z), - -, gu(z) are
algebraically dependent over C(z). By the functional equation (6) and Lemma 1 there
exist complex numbers c; (1 <j<m), not all zero, such that

) €191(2)+ - - - +Cmgm(2) =c(2) e C(2) .
We have by (6) and (8)

az)=c(z9+ —l— P(z),
®(2)

where P(z)=)" i=1Cidur= 0 a;(r)z" is a polynomial of degP(z)<g—1. Using Lemma 2,
we see that P(z) is identically zero. Hence for any r with 1 <r<g-—1, Z, ,¢;a;(r)=0,
which implies the third statement.

Finally we prove (iii) — (ii). By (1), (3) and (7) we get

®) an)=a;(bo)+a;b,)+ - +a;(b), b;e{0,1, -, q—1}

for each function a;(n) (1 <j<m). By the assumption,
(10) Y ca)=0 (1<rsq—1),
ji=1

where ¢;e C(1 <j<q—1)arenot all zero. The second statement follows from (9) and (10).
ProOOF OF THEOREM 2. Define a subset of the positive integers by
={deN | d#a" for any a,neN,n>2} .

Then we have
N\{1}={) {d,d?, ---}={d’eN|deD, j=1}.
deD

Here we note that if d, d’ € D are distinct, then logd/logd’ ¢ Q. We prove the first asser-
tion of the theorem. By Lemma 3, it is enough to prove the algebraic independence
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of the functions { f;(2)=Y,, ;5 (M)z"}, < ;<1 Over C(z) for a fixed de D. Putting H=~h!,
we see that all the functions s’(n) (1<j<h) are strongly d¥-additive. Assume that
Ji2), - -, fan(z) are algebraically dependent over C(z). Then by Theorem 1, there exist
complex numbers ¢; (1 <i<h), not all zero, such that

(11) 18D n)+ s M)+ - - - + oM =0  (n=1,2, ).

Let s, be the smallest index with ¢, #0. Substituting n=1 in (11), we have
Cho+ - - - +¢,=0, since s5"(1)= - - . =s¥)(1)=1. Putting n=d" in (11), we get

ch0+dh0ch0+1+ c v +dhoch=0 .

Hence ¢, =0, a contradiction.

We prove the second assertion of the theorem. We may prove the algebraic
independence of the functions {g4(2)=Y,. ;€ (1)z"}10g,i< ;< By the same argument
as above, we have

(12) @i+ -+ aelm)=0  (n=1,2,--),

n>0

where i (1<i<d") is fixed and ¢, #0. Putting n=id"™ in (12), we get ¢,,=0, since
el@oN(id") =1, e * V(idho)= . . . = ¢{@(id")=0; which is a contradiction and the proof
is completed.

ProoF oF THEOREM 3. First we assume that a(n) takes algebraic-values and a(n)
is not identically zero. Since a(n) is determined completely by a(l), - - -, a(g, —1), we
have {a(n)},- o< K for some algebraic number field K. Putting

f@)=(1-2) 3 am):",

n=>0

we see that f(z) is transcendental over C(z) by Theorem 1. Since a(n) is strongly
g,-additive and strongly g,-additive, we have

gi—1

Z a(r)z" (i=1,2)

r=0

z

==+

by (5). Applying Lemma 3, we see that the values f;(¢) and f,(«) are algebraically
independent for an algebraic number a with 0<]|a|<1, which contradicts f(z)=
f(@2)=1>2).

Next we treat general case. Suppose a(n) is not identically zero. Then we have
a(ro) #0 for some ro (1<ro<q,—1). Lets,, -, 5, -1, ¢y, ~**, t,,—1, u be variables. Let
P(sy, - ", 54,—1; 1) be a strongly g,-additive function satisfying P(s;, ' -, 5,,=1; 1) =5,
for l<r<q1——1 and Q(fy, -, t,,—1; 1) be a strongly g,-additive function satisfying
oy, -, t,,—-1;r)=t, for 1<r<gq,—1. For each non-negative integer n, P(s, -,
Sg,—1;n)yand Q(t4, - tq2 1; 1) are polynomials in Q[s,, ~ -, 8,, -1, t;, "5 {5, - 1] Let
I be an ideal of Q[s,, -, 5, 5,5, = u] which is generated by

’42 1>
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(13) {P(sy, 2 Sq-1mM)—Qty, "+ sty 13 M }s 1 U {s,u—1} .
Since (a(l), - - -, a(q, —1), a(l), - - -, a(g,—1), a(ro)"')e C*9271 s a zero of the ideal I,
there exists an algebraic zero (by, - - -, by, 1, ¢y, " *, €g,— 1, d)€Q4 4271 of I. We note

that b,,#0 by b, d=1. Let b(n) be a strongly g,-additive function satisfying b(r)=b,
(1 <r<gq,—1)and c(n) be a strongly g,-additive function satisfying c(r)=c, (1 <r<gq, —1).
Noting

P(bl’ B bql—l; n)=b(n) s Q(Cla B cqz—l; n)=c(n) ’

and (13), we have b(n)=c(n) (n=>1). Hence b(n) is an algebraic-valued ¢,-additive and
g,-additive function and so b(rn) must be identically zero. This contradicts b, ,#0 and
the proof is completed.

PROOF OF THEOREM 4. Putting f(z)=) _ a(n)z", we have

n=0

f@=T1 0 +a)z+ - - +alg=z* V%) (i=1,2),

k=0

/@
1+a(l)z+ - - - +a(g;—1)z% 1

fiz)=

by (2) and (3). First we assume that a(n) takes algebraic-values. If f(z) is transcendental
over C(z), we get a contradiction by the same argument as in the proof of Theorem 3.
Hence f(z) is algebraic over C(z). By Example 1.3.1 in Nishioka [6], we have a(n)=0
(n=1) or a(n)=y" (n>1), where y9* " 1=y22"1=1,

Next we treat general case. Define polynomials P(s,, - -, s,,_1;n), Qfy, -,

t,,-1; 1) in the same way as in the proof of Theorem 3. Assume that

q
1+a(1)2+. . .+a(ql_1)qu—l¢l+yz+ .. ‘+qu—1 ,
L+a(l)z+ - +alg,— ) #1.

Then (a(1), - - -, a(q, — 1)) is not a zero of at least one of the polynomials s{' —s,, s, — 5]
(r=2,---,9,—1), say R(sy, -, s,,-1)- Considering R(s;, - -, s, - )u—1 in place of
s,,u—1 in the proof of Theorem 3, we can prove the theorem in the similar way.

As for the algebraic case, a similar argument is found in Loxton [3]. The deduction
of the general case from the algebraic case is suggested by Kumiko Nishioka.

REeMARK (by Kumiko Nishioka). By considering the rational function field C(¢)
in place of an algebriac number field K, the similar argument as in [5] leads to the
following: if f(z)e C[[z]] satisfies the functional equations

fE)=a,(2)f(2)+bi(z) (i=1,2),

where logg,/logg, is not a rational number and a;(z), b,(z)eC(z), a(0)=1, then

f(2)e C(t)(z), and so f(z)e C(2).
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