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1. Introduction.

Let $q\geq 2$ be a fixed integer. A complex-valued function $a(n)$ is said to be q-additive
or q-multiplicative if

(1) $a(kq^{t}+r)=a(kq^{t})+a(r)$ , $a(O)=0$ ,

or

(2) $a(kq^{t}+r)=a(kq^{t})a(r)$ , $a(0)=1$

for any integer $k\geq 0,$ $t\geq 0$ , and $0\leq r<q^{t}$ , respectively. Furthermore, if

(3) $a(kq)=a(k)$ ,

$a(n)$ is said to be strongly q-additive or strongly q-multiplicative, respectively. We note
that the strongly q-additive or q-multiplicative function $a(n)$ is determined completely
by the initial values $a(1),$ $\cdots,$ $a(q-1)$ . This paper concems mainly with q-additive
functions.

Let $a_{1}(n),$ $\cdots,$ $a_{m}(n)$ be $m$ strongly q-additive functions. For each $a_{k}(n)$ , we define a
power series $f_{k}(z)$ by

(4) $f_{k}(z):=\sum_{n\geq 0}a_{k}(n)z^{n}\in C[[z]]$
$(1\leq k\leq m)$ .

It follows from (1) and (3) that each $f_{k}(z)$ converges in $|z|<1$ and satisfies the functional
equation

(5) $f_{k}(z)=\frac{1-z^{q}}{1-z}f_{k}(z^{q})+\frac{1}{1-z^{q}}\sum_{r=0}^{q-1}a_{k}(r)z^{r}$ $(1\leq k\leq m)$ ,

since
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$f_{k}(z)=\sum_{n\geq 0}a_{k}(n)z^{n}=\sum_{t\geq 0}\sum_{r=0}^{q-1}\{a_{k}(t)+a_{k}(r)\}z^{tq+r}$

$=\sum_{t\geq 0}a_{k}(t)z^{tq}\sum_{r=0}^{q-1}z^{r}+\sum_{t\geq 0}z^{tq}\sum_{r=0}^{q-1}a_{k}(r)z^{r}$

$=\frac{1-z^{q}}{1-z}f_{k}(z^{q})+\frac{1}{1-z^{q}}\sum_{r=0}^{q-1}a_{k}(r)z^{r}$

Putting

$g_{k}(z)=(1-z)f_{k}(z)$ $(1\leq k\leq m)$ ,

we have

(6) $g_{k}(z)=g_{k}(z^{q})+\frac{1}{\varphi(z)}\sum_{r=0}^{q-1}a_{k}(r)z^{r}$ ,

where $\varphi(z)=(1-z^{q})/(1-z)\in C[z]$ . Because of the functional equations (6), we see by a
theorem of Mahler [4] that if the functions $a_{1}(n),$ $\cdots,$ $a_{m}(n)$ are algebraic-valued and
$g_{1}(z),$ $\cdots,$ $g_{m}(z)$ are algebraically independent over $C(z)$ , then the values $g_{1}(\alpha),$ $\cdots,$ $g_{m}(\alpha)$

are algebraically independent, where $\alpha$ is an algebraic number with $0<|\alpha|<1$ .
An example of a strongly q-additive function is the sum of digits functions $s^{(q)}(n)$ ,

that is,

$s^{\langle q)}(n)=\sum_{j=0}^{t}b_{j}$ ,

where

(7) $n=b_{0}+b_{1}q+\cdots+b_{t}q^{t}$ ,

$b_{t}\neq 0$ , $b_{j}\in\{0,1, \cdots, q-1\}(0\leq j\leq t)$

is the q-adic expansion of an integer $n\geq 0$ . Another example is the function $e_{i}^{\{q)}(n)$ defined
for each $i\in\{1,2, \cdots, q-1\}$ by the number of the $b_{j}’ s(0\leq j\leq t)$ that are equal to $i$ .

We state our results.

THEOREM 1. Let $a_{k}(n)(1\leq k\leq m)$ be $m$ strongly q-additive functions and $f_{k}(z)$ be
defined by (4). The following statements are equivalent:

(i) The functions $f_{1}(z),$ $\cdots,$ $f_{m}(z)$ are algebraically dependent over $C(z)$ .
(ii) The functions $a_{1}(n),$ $\cdots,$ $a_{m}(n)$ are linearly dependent over C.
(iii) The $(q-1)$-dimensional vectors $(a_{1}(1), \cdots, a_{1}(q-1)),$ $\cdots,$ $(a_{m}(1), \cdots, a_{m}(q-1))$

are linearly dependent over C.

Theorem 1 implies that $\{e_{1}^{\langle q)}(n), \cdots, e_{q-1}^{(q)}(n)\}$ is a base of the vector space of strongly
q-additive functions over $C$ , since $e_{i}^{\langle q)}(j)=\delta_{ij}(1\leq i, j\leq q-1)$ .
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THEOREM 2. Let $\alpha$ be an algebraic number with $0<|\alpha|<1$ . Then the values
$\{\sum_{n\geq 0}s^{(q)}(n)\alpha^{n}\}_{q\geq 2}$ are algebraically independent. For any fixed positive integer $i$, the
values $\{\sum_{n\geq 0}e_{i}^{\langle q)}(n)\alpha^{n}\}_{q>t}$ are algebraically independent.

COROLLARY. The functions $\{\sum_{n\geq 0}s^{(q)}(n)z^{n}\}_{q\geq 2}$ are algebraically independent over
$C(z)$ . For any fixed positive integer $j$ the functions $\{\sum_{n\geq 0}e_{i}^{(q)}(n)z^{n}\}_{q>i}$ are algebraically
independent over $C(z)$ .

In Theorem 2 and Corollary, if $i$ is not fixed, then the functions $\{\sum_{n\geq 0}e_{i}^{\langle q)}(n)z^{n}\}_{q>i}$

are algebraically dependent over $C(z)$ . In fact, the functions

$\{\sum_{n\geq 0}e_{i}^{(q)}(n)_{Z^{n}}\}_{\langle q,i)=\langle 2.1),\langle 4,1).\langle 4,2),\langle 4,3)}$

are algebraically dependent over $C(z)$ , since these functions are strongly 4-additive and
the dimension of the vector space of the strongly 4-additive functions is 3.

THEOREM 3. Ifa function $a(n)$ is strongly $q_{1}$ -additive and also strongly $q_{2}$ -additive,
where $\log q_{1}/\log q_{2}$ is not a rational number, then $a(n)$ must be identically zero.

THEOREM 4. If a function $a(n)$ is strongly $q_{1}$ -multiplicative and also strongly
$q_{2}$ -multiplicative, where $\log q_{1}/\log q_{2}$ is not a rational number, then $a(n)=0(n\geq 1)$ or
$a(n)=\gamma^{n}(n\geq 1)$ , where $\gamma^{q_{1}-1}=\gamma^{q_{2}-1}=1$ .

2. Lemmas.

LEMMA 1 (Kubota [1], Loxton and van der Poorten [2], see Nishioka [6]). Sup-
pose $f_{i,j}(z)\in C[[z]](1\leq i\leq n, 1\leq j\leq M_{i})$ satisfy the functional equations

$f_{i,j}(z^{d})=a_{i}f_{i,j}(z)+b_{i,j}(z)$ $(1 \leq i\leq n, 1\leq j\leq m_{i})$ ,

where $a_{i}\in C,$ $a_{i}\neq a_{j}(t\neq j)$ , and $b_{i,j}(z)\in C(z)$ . If $f_{i,j}(z)(1\leq i\leq n, 1\leq j\leq M_{i})$ are algebraically
dependent over $C(z)$ , then there exists an integer $i_{0}(1\leq i_{0}\leq n)$ and $c_{1},$ $\cdots,$ $c_{M_{i_{O}}}\in C$ , not
all zero, such that

$c_{1}f_{i_{O},1}(z)+\cdots+c_{M_{i_{O}}}f_{i_{O},M_{i_{O}}}(z)\in C(z)$ .

LEMMA 2 (Toshimitsu [7]). Let $N$ be apositive integer andput $\varphi(z)=(1-z^{q})/(1-z)$ .
$Ifa$polynomial $P(z)\in C[z]$ with deg $P(z)\leq N(q-1)$ anda rationalfunction $c(z)\in C(z)$ satisfy

$c(z)+\frac{P(z)}{\varphi(z)^{N}}=c(z^{q})$ ,

then $c(z)\in C$ and $P(z)$ is identically zero.

LEMMA 3 (Nishioka [5]). Let $d_{1},$ $\cdots,$ $d_{t}$ be integers greater than 1 and suppose
that log $d_{i}/\log d_{j}\not\in Q$ if $i\neq j$. Let $K$ be an algebraic numberfield. Assume that $f_{i,j}(z)\in K[[z]]$

$(1\leq i\leq t, 1\leq j\leq M_{i})$ satisfy the functional equations
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$f_{i,j}(z^{d_{i}})=a_{i.j}(z)f_{i.j}(z)+b_{i.j}(z)$ $(1\leq i\leq t, 1\leq j\leq M_{t})$ ,

where $a_{t.j}(z),$ $b_{i,j}(z)\in K(z),$ $a_{i,j}(0)=1$ , and $f_{i,1}(z),$ $\cdots,$ $f_{i,M_{i}}(z)$ are algebraically independent
over $K(z)$ for each $j(1\leq i\leq t)$ . If $\alpha$ is an algebraic number with $0<|\alpha|<1,$ $a_{i,j}(\alpha^{d^{k}})\neq 0$

$(k\geq 0)$ and all $f_{i,j}(z)$ converge at $\alpha$ , then the values

$f_{t.j}(\alpha)$ $(1\leq i\leq t, 1\leq j\leq M_{i})$

are algebraically independent.

3. Proof of the theorems.

PROOF OF THEOREM 1. $(ii)\rightarrow(i)$ is trivial. We prove $(i)\rightarrow(iii)$ . Assume that
$f_{1}(z),$ $\cdots,$ $f_{m}(z)$ are algebraically dependent over $C(z)$ . Then $g_{1}(z),$ $\cdots,$ $g_{m}(z)$ are
algebraically dependent over $C(z)$ . By the functional equation (6) and Lemma 1 there
exist complex numbers $c_{j}(1\leq j\leq m)$ , not all zero, such that

(8) $c_{1}g_{1}(z)+\cdots+c_{m}g_{m}(z)=c(z)\in C(z)$ .

We have by (6) and (8)

$c(z)=c(z^{q})+\frac{1}{\varphi(z)}P(z)$ ,

where $P(z)=\sum_{j=1}^{m}c_{j}\sum_{r=0}^{q-1}a_{j}(r)z^{r}$ is a polynomial of $\deg P(z)\leq q-1$ . Using Lemma 2,
we see that $P(z)$ is identically zero. Henoe for any $r$ with $1\leq r\leq q-1,$ $\sum_{j=1}^{m}c_{j}a_{j}(r)=0$ ,

which implies the third statement.
Finally we prove $(iii)\rightarrow(ii)$ . By (1), (3) and (7) we get

(9) $a_{j}(n)=a_{j}(b_{0})+a_{j}(b_{1})+\cdots+a_{j}(b_{t})$ , $b_{j}\in\{0,1, \cdots, q-1\}$

for each function $a_{j}(n)(1\leq j\leq m)$ . By the assumption,

(10) $\sum_{j=1}^{m}c_{j}a_{j}(r)=0$ $(1 \leq r\leq q-1)$ ,

where $c_{j}\in C(1\leq j\leq q-1)$ are not all zero. The second statement follows from (9) and (10).

PROOF OF THEOREM 2. Define a subset of the positive integers by

$D=$ { $d\in N|d\neq a^{n}$ for any $a,$ $n\in N,$ $n\geq 2$}.

Then we have

$N\backslash \{1\}=\bigcup_{d\in D}\{d, d^{2}, \cdots\}=\{d^{j}\in N|d\in D, j\geq 1\}$ .

Here we note that if $d,$ $d^{\prime}\in D$ are distinct, then $\log d/\log d^{\prime}\not\in Q$ . We prove the first asser-
tion of the theorem. By Lemma 3, it is enough to prove the algebraic independence
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of the functions $\{f_{d^{j}}(z)=\sum_{n\geq 0}s^{(d^{j})}(n)z^{n}\}_{1\leq j\leq h}$ over $C(z)$ for a fixed $d\in D$ . Putting $H=h$ !,
we see that all the functions $s^{(d^{j})}(n)(1\leq j\leq h)$ are strongly $d^{H}$-additive. Assume that
$f_{d}(z),$ $\cdots,$ $f_{d^{b}}(z)$ are algebraically dependent over $C(z)$ . Then by Theorem 1, there exist
complex numbers $c_{i}(1\leq i\leq h)$ , not all zero, such that

(11) $c_{1}s^{(d)}(n)+c_{2}s^{\langle d^{2})}(n)+\cdots+c_{h}s^{(d^{h})}(n)=0$ $(n=1,2, \cdots)$ .

Let $h_{0}$ be the smallest index with $c_{h_{O}}\neq 0$ . Substituting $n=1$ in (11), we have
$c_{h_{O}}+\cdots+c_{h}=0$ , since $s^{(d^{h}o)}(1)=\cdots=s^{(d^{b})}(1)=1$ . Putting $n=d^{h_{O}}$ in (11), we get

$c_{h_{O}}+d^{h_{O}}c_{h_{O}+1}+\cdots+d^{h_{O}}c_{h}=0$ .

Hence $c_{h_{O}}=0$ , a contradiction.
We prove the second assertion of the theorem. We may prove the algebraic

independence of the functions $\{g_{d^{j}}(z)=\sum_{n\geq 0}e_{i}^{\langle d^{j})}(n)z^{n}\}_{\log_{d}i<j\leq h}$ . By the same argument
as above, we have

(12) $c_{h_{0}}e_{i}^{\langle d^{h}O)}(n)+\cdots+c_{h}e_{i}^{\langle d^{h})}(n)=0$ $(n=1,2, \cdots)$ ,

where $i(1\leq i<d^{h_{O}})$ is fixed and $c_{h_{O}}\neq 0$ . Putting $n=id^{h_{0}}$ in (12), we get $c_{h_{O}}=0$ , since
$e_{i}^{\langle d^{h_{O}})}(id^{h_{O}})=1,$ $e_{i}^{\langle d^{h}o+1)}(id^{h_{O}})=\cdots=e_{i}^{\langle d^{h})}(id^{h_{O}})=0$ ; which is a contradiction and the proof
is completed.

PROOF OF THEOREM 3. First we assume that $a(n)$ takes algebraic-values and $a(n)$

is not identically zero. Since $a(n)$ is determined completely by $a(1),$ $\cdots,$ $a(q_{1}-1)$ , we
have $\{a(n)\}_{n\geq 0}\subset K$ for some algebraic number field $K$. Putting

$f(z)=(1-z)\sum_{n\geq 0}a(n)z^{n}$

we see that $f(z)$ is transcendental over $C(z)$ by Theorem 1. Since $a(n)$ is strongly
$q_{1}$ -additive and strongly $q_{2}$-additive, we have

$f(z)=f_{i}(z)=f_{i}(z^{q_{i}})+\frac{1-z}{1-z^{q_{i}}}\sum_{r=0}^{q_{i}-1}a(r)z^{r}$ $(i=1,2)$

by (5). Applying Lemma 3, we see that the values $f_{1}(\alpha)$ and $f_{2}(\alpha)$ are algebraically
independent for an algebraic number $\alpha$ with $0<|\alpha|<1$ , which contradicts $f_{1}(z)=$

$f(z)=f_{2}(z)$ .
Next we treat general case. Suppose $a(n)$ is not identically zero. Then we have

$a(r_{0})\neq 0$ for some $r_{0}(1\leq r_{0}\leq q_{1}-1)$ . Let $s_{1},$ $\cdots,$ $s_{q_{1}-1},$ $t_{1},$ $\cdots,$ $t_{q_{2}-1},$ $u$ be variables. Let
$P(s_{1}, \cdots, s_{q_{1}-1};n)$ be a strongly $q_{1}$ -additive function satisfying $P(s_{1}, \cdots, s_{q_{1}-1};r)=s_{r}$

for $1\leq r\leq q_{1}-1$ and $Q(t_{1}, \cdots, t_{q_{2}-1};n)$ be a strongly $q_{2}$ -additive function satisfying
$Q(t_{1}, \cdots, t_{q_{2}-1};r)=t_{r}$ for $1\leq r\leq q_{2}-1$ . For each non-negative integer $n,$ $P(s_{1},$ $\cdots$ ,
$s_{q_{1}-1}$ ; n) and $Q(t_{1}, \cdots, t_{q_{2}-1};n)$ are polynomials in $Q[s_{1}, \cdots, s_{q_{1}-1}, t_{1}, \cdots, t_{q_{2}-1}]$ . Let
$I$ be an ideal of $Q[s_{1}, \cdots, s_{q_{1}-1}, t_{1}, \cdots, t_{q_{2}-1}, u]$ which is generated by
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(13) $\{P(s_{1}, \cdots, s_{q_{1}-1}; n)-Q(t_{1}, \cdots, t_{q_{2}-1}; n)\}_{n\geq 1}\cup\{s_{r_{O}}u-1\}$ .
Since $(a(1), \cdots, a(q_{1}-1), a(1), \cdots, a(q_{2}-1), a(r_{0})^{-1})\in C^{q_{1}+q_{2}-1}$ is a zero of the ideal $I$

there exists an algebraic zero $(b_{1}, \cdots, b_{q_{1}-1}, c_{1}, \cdots, c_{q_{2}-1}, d)\in Q^{q_{1}+q_{2}-1}$ of $I$. We nott
that $b_{r_{O}}\neq 0$ by $b_{r_{O}}d=1$ . Let $b(n)$ be a strongly $q_{1}$ -additive function satisfying $b(r)=b$

$(1\leq r\leq q_{1}-1)$ and $c(n)$ be a strongly $q_{2}$ -additive function satisfying $c(r)=c_{r}(1\leq r\leq q_{2}-1)$

Noting

$P(b_{1}, \cdots, b_{q_{1}-1};n)=b(n)$ , $Q(c_{1}, \cdots, c_{q_{2}-1};n)=c(n)$ ,

and (13), we have $b(n)=c(n)(n\geq 1)$ . Hence $b(n)$ is an algebraic-valued $q_{1}$ -additive anc
$q_{2}$-additive function and so $b(n)$ must be identically zero. This contradicts $b_{r_{O}}\neq 0$ anc
the proof is completed.

PROOF OF THEOREM 4. Putting $f(z)=\sum_{n\geq 0}a(n)z^{n}$ , we have

$f(z)=\prod_{k\geq 0}(1+a(1)z^{q_{i}^{k}}+\cdots+a(q_{i}-1)z\langle q_{i}-1)q^{k}:)$ $(i=1,2)$ ,

$f(z^{q_{i}})=\frac{f(z)}{1+a(1)z+\cdots+a(q_{i}-1)z^{q_{i}-1}}$ $(i=1,2)$

by (2) and (3). First we assume that $a(n)$ takes algebraic-values. If $f(z)$ is transcendenta
over $C(z)$ , we get a contradiction by the same argument as in the proof of Theorem 3
Hence $f(z)$ is algebraic over $C(z)$ . By Example 1.3.1 in Nishioka [6], we have $a(n)=\mathfrak{c}$

$(n\geq 1)$ or $a(n)=\gamma^{n}(n\geq 1)$ , where $\gamma^{q_{1}-1}=\gamma^{q_{2}}$
‘

$1=1$ .
Next we treat general case. Define polynomials $P(s_{1}, \cdots, s_{q_{1}-1}; n),$ $Q(t_{1},$ $\cdots$

$t_{q_{2}-1};n)$ in the same way as in the proof of Theorem 3. Assume that

$1+a(1)z+\cdots+a(q_{1}-1)z^{q_{1}-1}\neq 1+\gamma z+\cdots+z^{q_{1}-1}$ ,

$1+a(1)z+\cdots+a(q_{1}-1)z^{q_{1}-1}\neq 1$ .

Then $(a(1), \cdots, a(q_{1}-1))$ is not a zero of at least one of the polynomials $s_{1}^{q_{1}}-s_{1},$ $s_{r}-s^{l}J$

$(r=2, \cdots, q_{1}-1)$ , say $R(s_{1}, \cdots, s_{q_{1}-1})$ . Considering $R(s_{1}, \cdots, s_{q_{1}-1})u-1$ in place ol
$s_{r_{O}}u-1$ in the proof of Theorem 3, we can prove the theorem in the similar way.

As for the algebraic case, a similar argument is found in Loxton [3]. The deductior
of the general case from the algebraic case is suggested by Kumiko Nishioka.

REMARK (by Kumiko Nishioka). By considering the rational function field $C(t$

in place of an algebriac number field $K$, the similar argument as in [5] leads to tht
following: if $f(z)\in C[[z]]$ satisfies the functional equations

$f(z^{q;})=a_{i}(z)f(z)+b_{i}(z)$ $(i=1,2)$ ,

where $\log q_{1}/\log q_{2}$ is not a rational number and $a_{i}(z),$ $b_{i}(z)\in C(z),$ $a_{i}\langle 0$) $=1$ , ther
$f(z)\in C(t)(z)$ , and so $f(z)\in C(z)$ .
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