On Direct Sum Decomposition of Integers and Y. Ito's Conjecture

Masahito DATEYAMA and Teturo KAMAE

Osaka City University

(Communicated by Y. Maeda)

Let $\mathbf{N}=\{0,1,2, \cdots\}$. Every element $a \in \mathbf{N}$ can be expressed as

$$
a=\sum_{i=0}^{n} \alpha_{i} 2^{i} \quad \text { for some } n
$$

where $\alpha_{i} \in\{0,1\}$ for all i 's.
We can identify a with $\left(\alpha_{0}, \alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}, 0,0, \cdots\right) \in\{0,1\}^{\mathrm{N}}$. We also identify $\{0,1\}^{\mathbf{N}}$ in the usual way with \mathbf{Z}_{2}, the completion of \mathbf{Z} in the 2-adic valuation norm.

Thus \mathbf{N} is imbedded in \mathbf{Z}_{2} as the 0 -1-sequences with only finitely many 1's, while the negative integers are imbedded as those with finitely many 0 's. For example, if a is a positive integer corresponding to the $0-1$-sequence as above with $\alpha_{i}=0$ for any $i>n$, then $-a$ is identified with $(\underbrace{0, \cdots, 0,1}_{m+1}, \overline{\alpha_{m+1}}, \overline{\alpha_{m+2}}, \cdots)$, where m is the smallest i with $a_{i}=1$ and we denote $\overline{0}=1, \overline{1}=0$.

We denote by \bar{E} the closure of a subset E of \mathbf{Z}_{2}.
Let us denote

$$
A=\left\{\sum_{i} \varepsilon_{i} 2^{2 i+1} ; \varepsilon_{i} \in\{0,1\} \text { and } \varepsilon_{i}=1 \text { for finitely many } i \prime s\right\} .
$$

For $\omega=\left(\omega_{0}, \omega_{1}, \cdots\right) \in\{-1,1\}^{\mathbf{N}}$ with $\omega_{i}=-1$ for infinitely many times, denote

$$
B_{\omega}=\left\{\sum_{i} \varepsilon_{i} \omega_{i} 2^{2 i} ; \varepsilon_{i} \in\{0,1\} \text { and } \varepsilon_{i}=1 \text { for finitely many } i \prime \mathrm{~s}\right\} .
$$

Let us denote

$$
\mathscr{C}(A)=\{C \subset \mathbf{Z} ; 0 \in C \text { and } A \oplus C=\mathbf{Z}\},
$$

where $A \oplus C=\mathbf{Z}$ implies that any element in \mathbf{Z} can be written uniquely as a sum of elements in A and C.

Theorem 1 (Y. Ito [1]). Let C be a subset of \mathbf{Z} containing 0. Then, $C \in \mathscr{C}(A)$ if and only if all of the following conditions are satisfied:
(i) For γ and δ in C, either $\gamma=\delta$ or the maximal number i such that 2^{i} divides $\gamma-\delta$ is even,
(ii) if a subset C^{\prime} of \mathbf{Z} satisfies the condition (i) and $C^{\prime} \supset C$ then $C^{\prime}=C$,
(iii) there exists an $\omega=\left(\omega_{0}, \omega_{1}, \cdots\right) \in\{-1,1\}^{\mathrm{N}}$ with $\omega_{i}=-1$ for infinitely many times such that $A \oplus C \supset B_{\omega}$.
Y. Ito [1] conjectured that B_{ω} in the above condition (iii) can be replaced by any $D \in \mathscr{C}(A)$. The aim of this paper is to generalize the above result a little bit toward the conjecture.

Lemma 1. Let C be a subset of \mathbf{Z} with $0 \in C$. Then C satisfies the conditions (i) and (ii) in Theorem 1, if and only if $C=\bar{C} \cap \mathbf{Z}$ and
(*) there exists a unique set of $\phi_{n}:\{0,1\}^{n} \rightarrow\{0,1\}(n=1,2, \cdots)$ such that for any $n=1,2, \cdots$ and $\xi=\left(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1}\right) \in\{0,1\}^{n}$, there exists an element $c=\left(c_{0}, c_{1}\right.$, $\cdots) \in C$ such that $c_{2 i}=\xi_{i}(0 \leq i \leq n-1)$ and that for any c with this property, it holds that $c_{2 i-1}=\phi_{i}\left(\xi_{0}, \xi_{1}, \cdots, \xi_{i-1}\right)(1 \leq i \leq n)$.

Proof. Assume that C satisfies the conditions (i) and (ii). Suppose that every element in C takes 0 (resp. 1) at 0th coordinate. Let $n \in \mathbf{Z}$ be any odd (resp. even) number. Then $n-c$ is odd for any $c \in C$ and so $C \cup\{n\}$ satisfies the condition (i). It contradicts the condition (ii). Thus for any $a \in\{0,1\}$ there is an element $c \in C$ whose 0 th component is a.

If two elements in C have the same 0 th coordinate and different values as the 1st coordinates, then the difference is divisible by 2^{1} and is not divisible by 2^{2}. It contradicts the condition (i). Thus, ϕ_{1} in the condition (*) is determined as the mapping from the value in the 0 th coordinate to the value in the 1 st coordinate of the elements in C.

For $n=1,2, \cdots$, we define a condition
$\left(P_{n}\right)$: there exists a unique ϕ_{n} such that for any $\left(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1}\right) \in\{0,1\}^{n}$, there exists a $c=\left(c_{0}, c_{1}, \cdots\right) \in C$ such that $c_{2 i}=\xi_{i}(i=0,1, \cdots, n-1)$ and that for any c with this property, it holds that $c_{2 n-1}=\phi_{n}\left(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1}\right)$.

Assuming $\left(P_{1}\right), \cdots,\left(P_{n}\right)$, we prove $\left(P_{n+1}\right)$. Take any $\left(\xi_{0}, \xi_{1}, \cdots, \xi_{n}\right) \in\{0,1\}^{n+1}$. If there does not exist $c=\left(c_{0}, c_{1}, \cdots\right) \in C$ such that $c_{2 i}=\xi_{i}(0 \leq i \leq n)$, then for $z=$ $\left(\xi_{0}, z_{1}, \xi_{1}, z_{3}, \cdots, \xi_{n}, 0,0, \cdots\right) \in \mathbf{Z}$ with $z_{2 i-1}=\phi_{i}\left(\xi_{0}, \xi_{1}, \cdots, \xi_{i-1}\right)(1 \leq i \leq n), C \cup\{z\}$ satisfies the condition (i) by $\left(P_{1}\right), \cdots,\left(P_{n}\right)$, contradicting the condition (ii). Thus there is an element $c=\left(c_{0}, c_{1}, \cdots\right) \in C$ such that $c_{2 i}=\xi_{i}(0 \leq i \leq n)$. Take any c like this. Then by the condition (i) and $\left(P_{1}\right), \cdots,\left(P_{n}\right), c_{2 n+1}$ is determined by $\left(\xi_{0}, \xi_{1}, \cdots, \xi_{n}\right)$. Thus, we determine $\phi_{n+1}\left(\xi_{0}, \xi_{1}, \cdots, \xi_{n}\right)=c_{2 n+1}$. Then, $\left(P_{n+1}\right)$ is satisfied with this ϕ_{n+1}.

Hence we have $\left(P_{n}\right)$ for any n. Thus the condition (*) holds.
Assume that $\xi=\left(\xi_{0}, \xi_{1}, \cdots\right) \in \bar{C} \cap \mathbf{Z}$. Then, it satisfies that $\xi_{2 n-1}=\phi_{n}\left(\xi_{0}, \xi_{2}, \cdots\right.$, $\xi_{2 n-2}$) for all $n=1,2, \cdots$ by the condition (*). Then for any $c \in C$, either $\xi=c$ or the
first nonzero component of $c-\xi$ occurs at an even coordinate. This shows that $C \cup\{\xi\}$ satisfies the condition (i). By the condition (ii), $\xi \in C$. Thus $C=\bar{C} \cap \mathbf{Z}$.

Conversely, assume that C satisfies the condition (*) together with $C=\bar{C} \cap \mathbf{Z}$. Then, (i) follows since for any $c \in C$, its odd coordinates are determined by its even coordinates before it.

To prove (ii), suppose that it is not satisfied. Then there exists $z \in \mathbf{Z} \backslash C$ satisfying that the maximum k such that 2^{k} divides $z-c$ is even for any $c \in C$. Let $z=\left(\xi_{0}, \xi_{1}, \cdots\right)$. Then, for any $n \in \mathbf{N}$, there exists an element $c=\left(c_{0}, c_{1}, \cdots\right) \in C$ such that $c_{2 i}=\xi_{2 i}$ ($0 \leq i \leq n-1$). Since the first k with $\xi_{k} \neq c_{k}$ is even, we have $k>2 n-2$ for this k. Hence, $z \in \bar{C} \cap \mathbf{Z}=C$, which is a contradiction.

The following lemma follows immediately from Lemma 1 :
Lemma 2. Let C be a subset of \mathbf{Z} with $0 \in C$ satisfying the conditions (i) and (ii) in Theorem 1. Let ϕ_{n} 's be as in the condition (*). Then it holds that
$(* *) \quad \xi=\left(\xi_{0}, \xi_{1}, \cdots\right) \in \bar{C}$ if and only if $\xi_{2 n-1}=\phi_{n}\left(\xi_{0}, \xi_{2}, \cdots, \xi_{2 n-2}\right)$ for any $n=$ $1,2, \cdots$.

Lemma 3. Let C satisfy the condition (**) in Lemma 2 for some set of ϕ_{n} 's. Then

$$
\bar{A} \oplus \bar{C}=\mathbf{Z}_{2}
$$

holds.
Proof. Let ϕ_{n} 's satisfy that for any $\xi=\left(\xi_{0}, \xi_{1}, \cdots\right) \in \mathbf{Z}_{2}, \xi \in \bar{C}$ if and only if

$$
\xi_{2 n-1}=\phi_{n}\left(\xi_{0}, \xi_{1}, \cdots, \xi_{2 n-2}\right) \quad(n=1,2, \cdots)
$$

For a given $z=\left(z_{0}, z_{1}, \cdots\right) \in \mathbf{Z}_{2}$, we construct $\alpha=\left(\alpha_{0}, \alpha_{1}, \cdots\right) \in \bar{A}$ and $\gamma=\left(\gamma_{0}\right.$, $\left.\gamma_{1}, \cdots\right) \in \bar{C}$ with $z=\alpha+\gamma$ as follows.

Since $\alpha_{0}=0, \gamma_{0}=z_{0}$. By ($\left.* *\right)$, γ_{1} is determined by $\gamma_{1}=\phi_{1}\left(\gamma_{0}\right)$. So α_{1} is determined by $\alpha_{1}+\gamma_{1}=z_{1}(\bmod 2)$, and the carrier c_{2} is determined by $c_{2}=\left(\alpha_{1}+\gamma_{1}-z_{1}\right) / 2$.

For $n \geq 2$ we can determine γ_{n}, α_{n} and c_{n+1} inductively by

$$
\gamma_{n}+c_{n}=z_{n}(\bmod 2), \quad \alpha_{n}=0, \quad \text { and } \quad c_{n+1}=\left(\gamma_{n}+c_{n}-z_{n}\right) / 2
$$

if n is even, and

$$
\begin{gathered}
\gamma_{n}=\phi_{(n+1) / 2}\left(\gamma_{0}, \gamma_{2}, \cdots, \gamma_{n-1}\right), \\
\alpha_{n}+\gamma_{n}+c_{n}=z_{n}(\bmod 2), \quad \text { and } \\
c_{n+1}=\left(\alpha_{n}+\gamma_{n}+c_{n}-z_{n}\right) / 2
\end{gathered}
$$

if n is odd.
Thus, we obtain α and γ in \mathbf{Z}_{2} with $z=\alpha+\gamma$. It is clear that $\alpha \in \bar{A}$.
The uniqueness of the decomposition is proved as follows. If $\alpha+\gamma=\alpha^{\prime}+\gamma^{\prime}$ happens, then $\alpha-\alpha^{\prime}=\gamma^{\prime}-\gamma$. By $(* *), \gamma^{\prime}-\gamma$ is either 0 or the first coordinate with different values
in γ and γ^{\prime} is even. However the first coordinate with different values in α and α^{\prime} is odd if $\alpha \neq \alpha^{\prime}$. Thus we have that $\alpha^{\prime}=\alpha$ and $\gamma^{\prime}=\gamma$.

Theorem 2. Let $C \subset \mathbf{Z}$ with $0 \in C$. Then, $C \in \mathscr{C}(A)$ if and only if there exists a set of $\phi_{n}:\{0,1\}^{n} \rightarrow\{0,1\}(n=1,2, \cdots)$ satisfying the condition (**) in Lemma 2 such that
(\#) for any $n \geq 1$ and for any $\left(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1}\right) \in\{0,1\}^{n}$, there exists an $l_{0} \geq 0$ such that

$$
\phi_{n+l}(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1}, \underbrace{1,1, \cdots, 1}_{i})=1
$$

for all $l \geq l_{0}$.
Proof. Assume that $C \in \mathscr{C}(A)$. Then by Theorem 1, Lemmas 1 and 2, there exists a set of $\phi_{n}:\{0,1\}^{n} \rightarrow\{0,1\}(n=1,2, \cdots)$ satisfying (**) together with (*). Suppose that $(\#)$ does not hold for it. Then there exists an n and $\left(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1}\right) \in\{0,1\}^{n}$ such that $\phi_{n+l}(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1}, \underbrace{1,1, \cdots, 1})=0$ for infinitely many l 's.

Define $z=\left(z_{0}, z_{1}, \cdots\right) \in \mathbf{Z}_{2}$ so that $z_{2 i}=\xi_{i}, z_{2 i+1}=\phi_{i+1}\left(\xi_{0}, \xi_{1}, \cdots, \xi_{i}\right)(0 \leq i \leq n-1)$ and $z_{i}=1(i \geq 2 n)$. Then, z is a negative integer.

Define $\gamma=\left(\gamma_{0}, \gamma_{1}, \cdots\right) \in \bar{C}$ by $\gamma_{2 i}=\xi_{i}(0 \leq i \leq n-1), \gamma_{2 i}=1(i \geq n)$ and $\gamma_{2 i-1}=$ $\phi_{i}\left(\gamma_{0}, \gamma_{2}, \cdots, \gamma_{2 i-2}\right)$ for any $i=1,2, \cdots$. Define $\alpha=\left(\alpha_{0}, \alpha_{1}, \cdots\right) \in \bar{A}$ by $\alpha_{i}=1$ for $i \geq 2 n$ with $\gamma_{i}=0$, and $\alpha_{i}=0$ otherwise.

Then, $\alpha+\gamma=z$ and $\alpha \in \bar{A} \backslash A$. This is a contradiction by Lemma 3, since by our assumption, we have another decomposition of z into elements in A and C.

Conversely, assume that there exist ϕ_{n} 's satisfying the conditions (**) and (\#). By Lemma 3, we have $\bar{A} \oplus \bar{C}=\mathbf{Z}_{2}$. Therefore, for any $z=\left(z_{0}, z_{1}, \cdots\right) \in \mathbf{Z}$ there is an $\alpha=\left(\alpha_{0}, \alpha_{1}, \cdots\right) \in \bar{A}$ and a $\gamma=\left(\gamma_{0}, \gamma_{1}, \cdots\right) \in \bar{C}$ such that $\alpha+\gamma=z$. There are two cases for z.

Case 1. $z \geq 0$. There exists an n_{0} such that $z_{n}=0$ for all $n \geq n_{0}$.
Assume that there exists an even n with $n \geq n_{0}$ such that there is a carrier to the n-th coordinate in the addition $\alpha+\gamma$. Since $z_{n}=0$ and $\alpha_{n}=0, \gamma_{n}=1$ and there is a carrier to the ($n+1$)-th coordinate. So γ_{n+1} must be $1-\alpha_{n+1}$ since $z_{n+1}=0$, and there is a carrier to the ($n+2$)-th coordinate. Thus $n+2$ satisfies the assumption again. Therefore $\gamma_{m}=1$ for all even $m \geq n$. By the condition (\#), there exists an $l_{0} \geq 0$ such that $\gamma_{2 i-1}=1$ for all $i \geq n / 2+l_{0}$. This shows that γ is a negative integer.

Now assume that there is no carrier to the n-th coordinate for all even n with $n \geq n_{0}$. Then, $\gamma_{n}=0$ and there is no carrier to the ($n+1$)-th coordinate for all even n with $n \geq n_{0}$, since $z_{n}=0$ and $\alpha_{n}=0$. Thus the fact $z_{n+1}=0$ implies $\alpha_{n+1}=\gamma_{n+1}$. If $\alpha_{n+1}=\gamma_{n+1}=1$, there must be a carrier to the ($n+2$)-th coordinate. Hence we have $\alpha_{n+1}=\gamma_{n+1}=0$. Therefore $\gamma_{n}=0$ for all $n \geq n_{0}$. This shows that γ is a nonnegative integer.

Case 2. $z<0$. There exists an n_{0} such that $z_{n}=1$ for all $n \geq n_{0}$.
Let $n \geq n_{0}$ be even.
Assume that there is no carrier to the n-th coordinate in the addition $\alpha+\gamma$. Since
$z_{n}=1, \gamma_{n}=1$ and there is no carrier to the ($n+1$)-th coordinate. So γ_{n+1} must be $1-\alpha_{n+1}$ and there is no carrier to the $(n+2)$-th coordinate. Therefore, in this case, $\gamma_{m}=1$ for all even $m \geq n$. By the condition (\#), $\gamma_{2 i-1}=1$ for all $i \geq n / 2+l_{0}$. This shows that γ is a negative integer.

When there is a carrier to the n-th coordinate, $n+2$ satisfies the above assumption. Indeed, $\gamma_{n}=0$ since $\alpha_{n}=0$ and there is no carrier to the ($n+1$)-th coordinate. Since $z_{n+1}=1, \gamma_{n+1}=1-\alpha_{n+1}$ and there is no carrier to the ($n+2$)-th coordinate.

Definition. Let $\psi=\left\{\psi_{n}\right\}_{n \geq 0}$ be a set of maps $\psi_{n}:\{-1,0,1\}^{n} \rightarrow\{-1,1\}$ such that for any $\left(\varepsilon_{0}, \varepsilon_{1}, \cdots\right) \in\{-1,0,1\}^{\mathrm{N}}, \psi_{n}\left(\varepsilon_{0}, \varepsilon_{1}, \cdots, \varepsilon_{n-1}\right)=-1$ for infinitely many n 's.

For a $\psi=\left\{\psi_{n}\right\}_{n \geq 0}$ as above, let $B_{\psi} \subset \mathbf{Z}$ be the set of

$$
\beta=\sum_{n=0}^{\infty} \varepsilon_{n} 2^{2 n}=\left(\beta_{0}, \beta_{1}, \beta_{2}, \cdots\right)
$$

such that $\varepsilon_{n} \in\{-1,0,1\}$ satisfies that either $\varepsilon_{n}=0$ or $\varepsilon_{n}=\psi_{n}\left(\varepsilon_{0}, \varepsilon_{1}, \cdots, \varepsilon_{n-1}\right)$ where the constant ψ_{0} can be ± 1.

Theorem 3. Suppose that C is an infinite set of \mathbf{Z} containing 0 . Then, $C \in \mathscr{C}(A)$ if and only if all of the following conditions are satisfied.
(i) For γ and δ in C, either $\gamma=\delta$ or the maximal number k such that 2^{k} divides $\gamma-\delta$ is even,
(ii) if a subset C^{\prime} of \mathbf{Z} satisfies the condition (i) and $C^{\prime} \supset C$ then $C^{\prime}=C$,
(iii)' there is a B_{ψ} as in Definition such that $A \oplus C \supset B_{\psi}$.

Lemma 4. Let B_{ψ} be as in Definition and $\beta=\left(\beta_{0}, \beta_{1}, \beta_{2}, \cdots\right)=\sum \varepsilon_{i} 2^{2 i} \in \overline{B_{\psi}}$. Then, for any $n=0,1,2, \cdots$,
(i) $\beta_{2 n}=\beta_{2 n-1}$ if and only if $\varepsilon_{n}=0$, while $\varepsilon_{n}=0$ implies $\beta_{2 n+1}=\beta_{2 n}$,
(ii) $\beta_{2 n} \neq \beta_{2 n-1}$ if and only if $\varepsilon_{n} \neq 0$, while $\varepsilon_{n} \neq 0$ implies $\beta_{2 n+1}=\left(1-\varepsilon_{n}\right) / 2$, where we put $\beta_{-1}=0$.

Proof. Since $\beta \equiv 0,1,3(\bmod 4)$ according to $\varepsilon_{0}=0,1,-1$, respectively, we have (i) and (ii) for $n=0$. Let $n \geq 1$. Denote by $s(n)$, the maximal number i with $0 \leq i \leq n-1$ such that $\varepsilon_{i} \neq 0$. Put $s(n)=-1$ if $\varepsilon_{i}=0$ for all $0 \leq i \leq n-1$. Then $\beta_{2 n-1}=1$ if and only if $s(n) \geq 0$ and $\varepsilon_{s(n)}=-1$. For, $\beta_{2 n-1}=1$ is equivalent to the fact that β is congruent to a negative integer not less than $-2^{2 n-1}$ modulo $2^{2 n}$, and that $\beta_{2 n-1}=0$ otherwise.
(i) If $\beta_{2 n}=\beta_{2 n-1}$, then β is congruent to an integer whose absolute value is not greater than $2^{2 n-1}$ modulo $2^{2 n+1}$. Hence we have $\varepsilon_{n}=0$. The converse is also true. If $\varepsilon_{n}=0$, then $\beta_{2 n+1}=\beta_{2 n}$ since $s(n+1)=s(n)$.
(ii) By (i), $\beta_{2 n} \neq \beta_{2 n-1}$ if and only if $\varepsilon_{n} \neq 0$. Moreover $\varepsilon_{n} \neq 0$ implies $s(n+1)=n$, and so $\beta_{2 n+1}=0$ if $\varepsilon_{n}=1$, and $\beta_{2 n+1}=1$ if $\varepsilon_{n}=-1$.

Lemma 5. Let B_{ψ} be as in Definition. Then, B_{ψ} satisfies the condition (**).
Proof. Let $\left\{\psi_{n}\right\}_{n \geq 0}$ be as in Definition. Let $\beta=\sum_{n=0}^{\infty} \varepsilon_{n} 2^{2 n}=\left(\beta_{0}, \beta_{1}, \cdots\right)$
$\left(\varepsilon_{n} \in\{-1,0,1\}\right)$ be a number in $\overline{B_{\psi}}$.
If $\beta_{0}=0$, then $\varepsilon_{0}=0$ and so $\phi_{1}(0)=\beta_{1}=0$. If $\beta_{0}=1$, then $\varepsilon_{0}=1$ or $\varepsilon_{0}=-1$ according to the constant value ψ_{0}. Hence $\phi_{1}(1)=0$ if $\varepsilon_{0}=1$ and $\phi_{1}(1)=1$ if $\varepsilon_{0}=-1$.

Assume that $\phi_{1}, \phi_{2}, \cdots, \phi_{n}$ are already defined.
If $\beta_{2 n}=\beta_{2 n-1}$, then $\beta_{2 n+1}=\beta_{2 n}$ by Lemma 4. If $\beta_{2 n} \neq \beta_{2 n-1}$, then $\beta_{2 n+1}=\left(1-\varepsilon_{n}\right) / 2$ and $\varepsilon_{n} \neq 0$. In this case, $\varepsilon_{n}=\psi_{n}\left(\varepsilon_{0}, \varepsilon_{1}, \cdots, \varepsilon_{n-1}\right)$ by the definition of B_{ψ}. We define ϕ_{n+1} by $\phi_{n+1}\left(\beta_{0}, \beta_{2}, \cdots, \beta_{2 n}\right)=\beta_{2 n}$ if $\beta_{2 n}=\phi_{n}\left(\beta_{0}, \beta_{2}, \cdots, \beta_{2 n-2}\right)$ and $\phi_{n+1}\left(\beta_{0}, \beta_{2}, \cdots, \beta_{2 n}\right)$ $=\left(1-\psi_{n}\left(\varepsilon_{0}, \varepsilon_{1}, \cdots, \varepsilon_{n-1}\right)\right) / 2$ otherwise.

Thus we have a set of maps $\phi_{n}:\{0,1\}^{n} \rightarrow\{0,1\}(n=1,2, \cdots)$.
By the construction of ϕ_{n} 's, it is obvious that any $\beta=\left(\beta_{0}, \beta_{1}, \cdots\right) \in \overline{B_{\psi}}$ satisfies $\beta_{2 n-1}=\phi_{n}\left(\beta_{0}, \beta_{1}, \cdots, \beta_{2 n-2}\right)(n \geq 1)$.

Conversely assume that $\beta=\left(\beta_{0}, \beta_{2}, \cdots\right) \in \mathbf{Z}_{2}$ satisfies that $\beta_{2 n-1}=\phi_{n}\left(\beta_{0}, \beta_{2}, \cdots\right.$, $\left.\beta_{2 n-2}\right)$ for any $n=1,2, \cdots$. We define $\varepsilon_{n}(n=0,1,2, \cdots)$ by

$$
\varepsilon_{n}= \begin{cases}0 & \left(\beta_{2 n}=\beta_{2 n-1}\right) \\ 1-2 \beta_{2 n+1} & \left(\beta_{2 n} \neq \beta_{2 n-1}\right) .\end{cases}
$$

Then, by the definition of ϕ_{n} 's, $\varepsilon_{n} \neq 0$ implies that $\varepsilon_{n}=\psi_{n}\left(\varepsilon_{0}, \varepsilon_{1}, \cdots, \varepsilon_{n-1}\right)$.
Moreover, it is not difficult to prove that

$$
\sum_{i=0}^{n} \varepsilon_{i} 2^{2 i} \equiv \sum_{i=0}^{2 n} \beta_{i} 2^{i} \quad\left(\bmod 2^{2 n}\right)
$$

for any $n=1,2, \cdots$.
Hence we have $\beta=\sum_{i=0}^{\infty} \varepsilon_{i} 2^{2 i} \in \overline{B_{\psi}}$.
Lemma 6. For any B_{ψ} as in Definition, we have $B_{\psi} \in \mathscr{C}(A)$.
Proof. By Lemma 5, we can take ϕ_{n} 's satisfying the condition ($* *$) for this B_{ψ}. By Theorem 2, it is sufficient to prove the condition (\#) for this ϕ_{n} 's.

Take any n and $\xi=\left(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1}\right) \in\{0,1\}^{n}$. Then by the definition for ϕ_{n} 's, it holds that if there exists $l_{0} \geq 0$ such that

$$
\phi_{n+l_{0}}(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1}, \underbrace{1,1, \cdots, 1}_{l_{0}})=1,
$$

then $\phi_{n+l}(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1}, \underbrace{1,1, \cdots, 1}_{l})=1$ for any $l \geq l_{0}$ by Lemma 4 (i). In this case, the condition (\#) holds. Suppose to the contrary that $\phi_{n+l}\left(\xi_{0}, \xi_{1}, \cdots, \xi_{n-1}\right.$, $\underbrace{1,1, \cdots, 1})=0$ for any $l \geq 0$. This implies the existence of $\left(\varepsilon_{0}, \varepsilon_{1}, \cdots\right)$ such that $\psi_{n+l}\left(\varepsilon_{0}, \varepsilon_{1}, \cdots, \varepsilon_{n+l-1}\right)=1$ for any $l \geq 0$, which contradicts the condition stated in Definition. Hence, we have the condition (\#).

Proof of Theorem 3.

Assume that $C \subset \mathbf{Z}$ satisfies the conditions (i), (ii) and (iii)'. By Lemmas 2 and 3, there exist ϕ_{n} 's such that C satisfies the condition ($* *$) as well as $\bar{A} \oplus \bar{C}=\mathbf{Z}_{2}$. By Theorem 2 , it remains only to show that ϕ_{n} 's satisfy the condition (\#).

Suppose that ϕ_{n} 's do not satisfy the condition (\#). Then there exist an m and $\left(\xi_{0}, \xi_{1}, \cdots, \xi_{m-1}\right) \in\{0,1\}^{m}$ such that $\phi_{m+l}(\xi_{0}, \xi_{2}, \cdots, \xi_{m-1}, \underbrace{1,1, \cdots, 1}_{l})=0$ for infinitely many l 's.

Let $\gamma=\left(\gamma_{0}, \gamma_{1}, \gamma_{2} \cdots\right) \in \bar{C}$ be the element defined by

$$
\gamma_{2 i}=\xi_{i}(i=0,1, \cdots, m-1) \quad \text { and } \quad \gamma_{2 i}=1 \quad(i \geq m)
$$

Note that $\gamma \notin \mathbf{Z}$.
We denote $\tau_{n}(n=1,2, \cdots)$ in the place of ϕ_{n} in the condition (**) for B_{ψ}. We can define $\alpha=\left(\alpha_{0}, \alpha_{1}, \cdots\right) \in \bar{A}$ and $\beta=\left(\beta_{0}, \beta_{1}, \cdots\right) \in \overline{B_{\psi}}$ such that $\alpha+\gamma=\beta$ in a similar way as in the proof of Lemma 3 as follows.

Since $\alpha_{0}=0, \beta_{0}=\gamma_{0}$. Let $\beta_{1}=\tau_{1}\left(\beta_{0}\right)$ and define α_{1} by $\alpha_{1}+\gamma_{1}=\beta_{1}(\bmod 2)$, and the carrier c_{2} is determined by $c_{2}=\left(\alpha_{1}+\gamma_{1}-\beta_{1}\right) / 2$.

For $n \geq 2$, we can determine β_{n}, α_{n} and c_{n+1} inductively by

$$
\gamma_{n}+c_{n}=\beta_{n}(\bmod 2), \quad \alpha_{n}=0, \quad \text { and } \quad c_{n+1}=\frac{\gamma_{n}+c_{n}-\beta_{n}}{2}
$$

if n is even, and

$$
\begin{gathered}
\beta_{n}=\tau_{(n+1) / 2}\left(\beta_{0}, \beta_{2}, \cdots, \beta_{n-1}\right), \\
\alpha_{n}+\gamma_{n}+c_{n}=\beta_{n}(\bmod 2), \text { and } \\
c_{n+1}=\frac{\alpha_{n}+\gamma_{n}+c_{n}-\beta_{n}}{2}
\end{gathered}
$$

if n is odd. We denote also $\beta=\sum_{n=0}^{\infty} \varepsilon_{i} 2^{2 i}$ where $\varepsilon_{i} \in\{-1,0,1\}$ satisfying Definition and determined by $\beta_{2 i-1}, \beta_{2 i}$, and $\beta_{2 i+1}$ by Lemma 4.

We shall show that $\alpha+\gamma \in \mathbf{Z}$. Then, α and γ must be integers by the fact that $A \oplus C \supset B_{\psi}$. It contradicts the fact that $\gamma \notin \mathbf{Z}$.

For $i \geq m$, we call i of type (b, e, c) if $\beta_{2 i-1}=b, \varepsilon_{i}=e$ and if $c_{2 i}=c$. We use the symbol ' $*$ ' to define a type which is indifferent to the values in the position of ' $*$ '. For example, i is of type $(*, 1,1)$ if and only if $\varepsilon_{i}=1$ and $c_{2 i}=1$.

Case 1. If there exists $i(i \geq m)$ of type $(0, *, 1)$ or of type $(*, 1,1)$, then $\beta \in \mathbf{Z}$.
Indeed, $\beta_{2 i}=0$ since there is a carrier to the $2 i$-th coordinate, $\alpha_{2 i}=0$ and $\gamma_{2 i}=1$. By Lemma 4, we have that $\beta_{2 i+1}=0$. Since there is a carrier to the $(2 i+1)$-th coordinate, there must be a carrier to the $(2 i+2)$-th coordinate. This shows that $i+1$ is of type
$(0, *, 1)$. Therefore we have $\beta_{k}=0$ for all $k \geq 2 i$ inductively. In this case, β is a nonnegative integer.

Case 2. If there exists $i(i \geq m)$ of type $(1, *, 0)$ or of type $(*,-1,0)$, then $\beta \in \mathbf{Z}$.
Indeed, $\beta_{2 i}=1$ since there is no carrier to the $2 i$-th coordinate, $\alpha_{2 i}=0$ and $\gamma_{2 i}=1$. By Lemma 4, we have that $\beta_{2 i+1}=1$. Since there is no carrier to the ($2 i+1$)-th coordinate, there must be no carrier to the $(2 i+2)$-th coordinate. This shows that $i+1$ is of type $(1, *, 0)$. Therefore we have $\beta_{k}=1$ for all $k \geq 2 i$ inductively. In this case, β is a negative integer.

It remains to show that Case 1 or Case 2 always happen.
If $i(i \geq m)$ is of type $(1,-1,1)$, then $\beta_{2 i}=0$ since there is a carrier to the $2 i$-th coordinate, $\alpha_{2 i}=0$ and $\gamma_{2 i}=1$. By Lemma 4, we have that $\beta_{2 i+1}=1$. Since there is a carrier to the $(2 i+1)$-th coordinate, $\alpha_{2 i+1}+\gamma_{2 i+1}=0(\bmod 2)$. There will be two cases.

If $\alpha_{2 i+1}=\gamma_{2 i+1}=0$, then there is no carrier to the $(2 i+2)$-th coordinate. This shows that $i+1$ is of type $(1, *, 0)$ in the Case 2 .

If $\alpha_{2 i+1}=\gamma_{2 i+1}=1$, then there is a carrier to the $(2 i+2)$-th coordinate. This shows that $i+1$ is of type $(*, 1,1)$ in the Case 1 or of type $(1,-1,1)$. However, type $(1,-1,1)$ cannot last indefinitely because of the assumption that $\gamma_{2 m+2 l-1}=$ $\phi_{m+l}(\xi_{0}, \xi_{1}, \cdots, \xi_{m-1}, \underbrace{1,1, \cdots, 1})=0$ for infinitely many l 's.

If $i(i \geq m)$ is of type $(0,1,0)$, then $\beta_{2 i}=1$ since there is no carrier to the $2 i$-th coordinate. $\alpha_{2 i}=0$ and $\gamma_{2 i}=1$. By Lemma 4, we have that $\beta_{2 i+1}=0$. Since there is no carrier to the $(2 i+1)$-th coordinate, $\alpha_{2 i+1}+\gamma_{2 i+1}=0(\bmod 2)$. There will be two cases.

If $\alpha_{2 i+1}=\gamma_{2 i+1}=1$, then there is a carrier to the $(2 i+2)$-th coordinate. This shows that $i+1$ is of type $(0, *, 1)$ in the Case 1 .

If $\alpha_{2 i+1}=\gamma_{2 i+1}=0$, then there is no carrier to the $(2 i+2)$-th coordinate. This shows that $i+1$ is of type $(*,-1,0)$ in the Case 2 or of type $(0,1,0)$ again. However, type $(0,1,0)$ cannot last indefinitely because of the assumption that $\psi_{i}\left(\varepsilon_{0}, \varepsilon_{1}, \cdots, \varepsilon_{i-1}\right)=-1$ for infinitely many i 's.

References

[1] Y. Ito, Direct sum decomposition of the integers, Tokyo J. Math. 18 (1995), 259-270.

