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Introduction.

In this part, we will discuss and determine the signature $\tau(M)$ and the g-signature
$g-\tau(M)$ (See [AS]) ofevery compact oriented symmetric space $M$ , (making the description
of $\tau(M)$ in [N88] intelligible, in particular) as well as self-intersections SI$(N;M)$ of
subspaces $N$ in $M$ which are beautifully related to $g-\tau(M)$ by the g-signature theorem
or the generalized Lefschetz fixed point theorem of Atiyah-Singer [AS] in case $g$ is an
orientation-preserving involution of $M$ . An example of geometric applications will be
added.

Our method is basically to apply the Atiyah-Singer theory [AS], especially the
g-signature theorem (1.3) below to our geometric results ([N88] and others). We have
determined those invariants for each space in a few ways. The value of $\tau(M)$ was stated
in [N88] with a very brief explanation (involving a careless mistake), but we will give
a more detailed proof. Informations on $g-\tau(M)$ and on SI$(N;M)$ are reciprocal to some
extent. The self-intersection SI$(N;M)=[B]$ is realized by a (symmetric) subspace $B$ of
$M$ (in the cases discussed in this paper).

0.1 THEOREM ([N88], 10.1). If the signature $\tau(M)(\geqq 0)$ is positive for a simple
l-connected $M$ , then $\tau(M)$ equals the indicated value below: $\frac{1}{2}\tau(G_{2p}^{o}(R^{2n}))=\tau(G_{p}(C^{n}))=$

$\tau(G_{p}(H^{n}))=\chi(G_{p}(R^{n}))$ , the Euler number of $G_{p}(R^{n}),$ $\tau(EII)=4,$ $\tau(EIII)=3,$ $\tau(EVI)=7=$

$\tau(EVIII),$ $\tau(EIX)=8$ , and $\tau(FII)=1=\tau$ (GI). Here the symbols for the symmetric spaces
are Cartan’s [H] with a few exceptions such as $G_{p}(\nabla)$ meaning the Grassmann manifold
of the $p$ dimensional subspaces of a vector space $V$ and $G_{p}^{o}(R^{n})$ which means that of
the oriented p-subspaces of $R^{n};G_{p}^{o}(R^{n})$ is l-connected except that it consists of two
points for $p=0$ or $n$ and $G_{1}^{o}(R^{2})$ is a circle. The known Euler number $\chi(G_{p}(R^{n}))$ equals
the binomial coefficient ${}_{[n/2]}C_{[p/2]}$ if $p(n-p)=\dim G_{p}(R^{n})$ is even and $0$ otherwise.

0.2 COROLLARY. One has

$(0\leqq)3\tau(M)\leqq\chi(M)$ if dim $M>0$ ,

and this is sharp. In particular, the equality
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$\tau(M)=\chi(M)$ implies $\chi(M)=0=\tau(M)$ .

0. $2a$ REMARK. In case dimM $=4$ , one might recall the Hitachin-Thorpe-Itol
inequality $(3/2)\tau(M)\leqq\chi(M)$ for every Einstein-Weyl manifold $M$. And a good proof $i!$

wanted for 0.2.

0. $2b$ REMARK. Let us add another sharp estimate $\chi(M)\leqq\#_{2}(M)$ , where $\#_{2}(M)$ i|

the maximal cardinality of finite trivial subspaces $B$ (which are, by definition, finite $set|$

and symmetric spaces with all the point symmetries $s_{X}$ equal to the identity $1_{B}$) of $A$,

(See [N88] for the reference). In case $M$ is a group, $\#_{2}(M)$ is essentially the same a
the 2-rank of Borel-Serre. It has something to do with the homological torsion. Th $($

equality obtains if $M$ is Kaehlerian. M. Takeuchi proved $\#_{2}(M)=\dim H^{*}(M, Z_{2})$ fo
every R-space (3.1).

The concept of the signature or index has a long history; we will quote some result
in Section 1. A few years after we determined $\tau(M)$ for every symmetric space $M$ ([N88])

Hirzebruch et al. [HS] established a unified and (theoretically) practical formula fo
the symmetric spaces and determined $\tau(M)$ for most $M$; for some spaces, Bliss et al
[BMP] “had to resort to machine computation” and for the spaces the machine $coul($

not work out (and left with question marks in [HS]). Y. Shimizu used combinatoric
to determine their $\tau(M)$ by their theorem in his Master Thesis (1991). Their results agre
with ours, naturally.

Our method is geometric, appealing to the g-signature theorem of Atiyah ant

Singer (1.3), an analog of the Lefschetz fixed point theorem, and other theorems sucl
as (1.4). For determining the g-signature $g-\tau(M)$ and even the signature $\tau(M)$, we wil
always use an involution $g$ , because we know the fixed point set $F(g, M)$ of $g$ acting on
$M$ for every pair $(g, M)$ (described in [N88]). One will observe many interesting $geometri|$

facts. For an easy example, if $M$ is Kaehlerian (e.g. $M=G_{p}(C^{n})$) and $g$ is “a complex
conjugation” (e.g. $F(g,$ $M)=G_{p}(R^{n})$), then we will prove $g-\tau(M)=\chi(F(g, M))$ (Propositio]
3.2). Since the g-signature theorem involves the self-intersection SI$(N;M)$ of
submanifold $N$ , we will determine it in several cases. One of the methods is to use $a$)

appropriate double fibration as in integral geometry or the Penrose transform (or th
Klein correspondence for it) (See 4. $11a$ and Theorem 4. $11b$). Since we choose $g$ to $b$

an involutive automorphism, the related self-intersection is represented by a symmetri
space (a subspace in the sense of 1. $8a$). We will not have to use precise description $0$

the cohomology ring which is known for almost but not every $M$ or a general $formu]_{t}$

for the Euler class of a homogeneous vector bundle (to be applied to the normal bundl
to $N$).

Based on determined values of SI$(N;M)$ , we will explain certain geometri
applications (to cohomology rings and some analogs or variants of projective geometry
for a sequence of exceptional spaces, FII, EIII, EVI and EVIII (Propositions 5.1 an $($

5.4) in Section 5.
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1. Signature and preliminaries.

We will briefly explain general facts about $\tau(M)$ and $g-\tau(M)$ which we will or could
use later; see [AS] for better explanations. Also a minimum number of basic definitions
and symbols concerning the geometric theory of symmetric spaces will be recalled in
this section (See [N88] for more details).

The signature $\tau(M)$ is the index of the quadratic form on $H^{2k}(M)=H^{2k}(M;R)$

defined with the cup product and the orientation. It is reasonable to define $\tau(M)$ to be
zero if dim $M$ is not a multiple of 4. $\tau(M)$ and $g-\tau(M)$ are also defined as the indices of
certain elliptic complexes.

1.1. The g-signature $g-\tau(M)$ equals the signature $\tau(M)$ if $g$ is homotopic with $1_{M}$ ,
the identity map, $or$ , more generally, if $g$ acts on $H^{2k}(M)$ as the identity [AS], $4k:=\dim M$.

1.2. $\tau(M)$ is a certain Pontryagin number of $M$ (the Hirzebruch index theorem).
Hence (i) an m-fold covering space of $M$ has the signature $=m\tau(M)$ . (ii) $\tau(M)=0$ if
$M$ is a group or $M$ is a covering space of a non-orientable manifold. (iii)
$\tau(M\times N)=\tau(M)\times\tau(N)$ ; actually this product formula is valid in a much more general
setting ([AS], p. 580) including the case where the dimension of $M$ or $N$ is not divisible
by 4.

1.3 PROPOSITION (The g-signature theorem [AS] p. 583). Let $X$ be a compact
oriented manifold of dimension $4k$ , and let $g$ be an orientation preserving involution of $X$

Then one has

$g-\tau(X)=\tau(SI(F(g, X);X))$ ,

where $F(g, X)$ is the fixed point set of $g$ acting on $X$ and SI$(F(g, X);X)$ means the
self-intersection (See [AS] p. 583) of $F(g, X)$ in $X$.

We will use the following theorem of Hattori-Taniguchi [HT] also.

1.4 PROPOSITION ([HT] p. 722. Cf. [AS] p. 594). If the circle group $U(1)$ acts on
a compact oriented manifold $X$ , then the signature $\tau(X)$ equals the sum of $\tau(F_{j})$ for the
connected components $F_{j}$ of the fixed point set $F(U(1), X)$ such that $co\dim F_{j}\equiv 0$ mod4;
$F_{j}$ is oriented in a certain way by means of the action of $U(1)$ as in [AS]. (The sum of
$\tau(F_{k})$ for $F_{k}$ with $co\dim F_{k}\equiv 2mod 4$ equals $0$).

The twistor space was used to prove the next proposition.

1.5 PROPOSITION (Thm 2.1, [NT87]). The signature of a quaternionic Kaehler
mamfold $X$ of dimension $4n$ is equal to $b_{2n}$ , the Betti number of $X$ at the half dimension
$2n$ , up to sign.

The Hodge index theorem ([GH] p. 126) reads, for symmetric spaces:
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1.6 PROPOSITION. The signature of a symmetric Kaehler manifold $M$ is equal to
$P(i)$, the Poincar\’e polynomial $P(t)$ with the imaginary unit $i$ substituted.

1.7. We will work on the compact connected simple symmetric spaces unless
otherwise mentioned. Such a space $M$ is a homogeneous space $G/K$ of a compact
connected Lie group $G$ which acts on $M$ as isometries; the action is locally effective
usually. $M$ admits the point symmetry $s_{o}$ for every point $0$ of $M$, which is an isometry
and acts on the tangent space $T_{o}M$ as $-1$ times the identity. One knows that

1. $7a$ . $s_{o}$ is homotopic to the identity $1_{M}$ if and only if (1) the Euler number $\chi(M)$

is positive, or equivalently, (2) the rank $r(K)$ equals $r(G)$ for $M=G/K$ .

1.8. A map $f$ of a symmetric space $M$ into another is called a homomorphism if
$f$ commutes with every point symmetry; $f\circ s_{\chi}=s_{f(X)}\circ f$ Somewhat similar definition of
a homomorphism is found in [KN] at p. 227. If $M$ is connected, every $s_{X}$ is an
automorphism. Since $M$ is connected (in this paper), a homomorphism is nothing but
a totally geodesic map. Hence the automorphism group $Aut(M)$ coincides with the
affine transformation group $A(M)$ . $A(M)$ equals the isometry group $I(M)$ if $M$ is semi-
simple and connected, since an affine map preserves the Ricci tensor. A homomorphism
$f:M\rightarrow N$ gives rise to a homomorphism $I(f):I(M)^{\sim}\rightarrow I(N)$ of a covering group of the
$I(M)$ with respect to which $f$ is equivariant.

1. $8a$ . The involutions we will consider will be automorphisms; hence their fixed
point sets are subspaces (i.e. symmetric spaces whose inclusion maps are homomor-
phisms).

1.9 COROLLARY TO 1.4. Let $s\in G$ have afinite order. Then one has the signature
$\tau(M)=\sum\tau(F_{j})for$ the connected components $F_{j}$ of$F(s, M)$ if $F_{j}$ is oriented in an appropriate
way.

PROOF. $s$ is then a member of some subgroup $T\cong U(1)$ of $G$ . Since $T$ acts on
$F(s, M)$ and $F(T, M)$ is its subspace, one obtains the conclusion by using 1.4 twice; $\tau(M)$

equals the sum of the signatures of the components of $F(T, M)$ as well as $\tau(F(s, M))$ . $\square $

We call each component of $F(s_{o}, M)$ a polar of $0$ in $M$; the polars in $M$ are concretely
described in [N88].

1.10 COROLLARY. (i) The signature $\tau(M)$ equals the sum of those of the polars $oJ$

a point, $\iota f\chi(M)>0$ . (ii) One has $\tau(M)=0$ otherwise.

PROOF. (i) is immediate from 1.9. In the case of (ii), one has $r(K)<r(G)$ and hence
$G$ contains a circle group $T$ which fixes no point as was proved by Hopf-Samelson [HS]

(easy to see if $M$ is symmetric); and 1.4 gives $\tau(M)=0$ . $\square $

1. $10a$ REMARK. The polars in $M$ are thus closely related to $M$ in terms oftopology.
For another example, $M$ is orientable if and only if every polar has an even dimension
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([NT95] 5.1). Also the Lefschetz number $Lef(s_{o})$ equals the sum of their Euler numbers
([AS] p. 574); hence, in case $\chi(M)$ is positive, the sum equals $\chi(M)$ . (In case $M$ is a
group, $Lef(s_{o})$ equals 2 $r\langle M$)

$r(M)$ denoting the rank of $M.$ )

1. $10b$ . The conclusion of 1.10 (i) is true even if $M$ is a compact l-connected group
and the polars are appropriately oriented. It is not true, however, if $M$ is not.

1.11. $g-\tau(X)$ is determined by the action ofg on the real cohomology of X; hence
it depends on the homotopy class of $g$ only ([AS] p. 578).

1.12 PROPOSITION. One has $s_{o}-\tau(M)=\tau(M)$ for the point symmetry $s_{o},$
$\iota f$ dim $ M\equiv$

$0$ mod4.

PROOF. This equality obtains by 1.1, since $s_{o}$ acts trivially on $H^{p}(M)$ which consists
of the G-invariant (or, equivalently, harmonic) p-forms on $M$ , provided $p$ is even. $\square $

1.13. We will specify involutions, say $s$ , of $M$ by means of components of $F(s, M)$ ,

since just one of them uniquely determines $s$ . The correspondence with the conventional
definitions were given in [N88].

For a point $p$ of $F(s, M)$ , the connected component $F(s\circ s_{p}, M)_{\langle p)}$ through $p$ of
$F(s\circ s_{p}, M)$ meets $F(s, M)$ at $p$ in such a way that the tangent space $T_{p}F(s\circ s_{p}, M)$ is
the orthogonal complement of $T_{p}F(s, M)$ in $T_{p}M$ . We say that $F(s\circ s_{p}, M)$ is c-orthogonal
to $F(s, M)$ at $p$ .

1.14. We denote by $M^{\%}$ the bottom space (or the adjoint space [H]) of a simple
$M$ ; that is, every connected space which is locally isomorphic with $M$ is a convering
space of $M^{\%}$ (if not identical). $M^{\%}$ is the orbit space $M/C(I(M))$ by the center of $I(M)$ ;
and $C(I(M))$ is bijective with the inverse image $\pi^{-1}(0^{o})$ of apoint $0^{\%}$ of $M^{\%}$ under the
covering morphism $\pi:M\rightarrow M^{\circ}$ . In case $M$ is a group, $M^{\%}$ is thus the adjoint group $ad(M)$ .

Every space $M=G/K$ is a subspace of $G$ (which can be appropriately chosen among
the covering groups of the identity component, $I(M)_{(1)}$ of $I(M))$ (the Cartan embedding).
The monomorphism: $M\rightarrow G$ projects onto the one: $M^{\circ}\rightarrow G^{\%}$ . Theoretically, its existence
compensates for the unfortunate fact that the projection $G\rightarrow G/K$ is not a homomor-
phism.

1.15. Apolep ofa pointo isapolar which isasingleton. There existsa double
covering morphism $\pi:M\rightarrow M^{\prime\prime}$ satisfying $\pi(0)=\pi(p).$ A centriole means a connected
component of the set of the midpoints of geodesic arcsjoining $0$ with $p$ , which is known
to be a subspace; in fact the projection $\pi$ carries every centriole onto a polar of $\pi(0)$ .
In other words, a centriole is a connected component of the fixed point set $F(s_{o}\circ\gamma, M)$

where $\gamma$ is the deck transformation for $\pi$ . We used to call $F(s_{o}\circ\gamma, M)$ the centrosome
$C(0, p)$ for the pair $(0, p)$ .
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2. Determination of the signature.

We will determine the signature $\tau(M)$ for every compact symmetric space $M$ , which
we may assume is simple and l-connected with $\tau(M)\geqq 0$ to prove the theorem 0.1.

2.0. $\tau(M)=0$ if $M$ is a group $(1.2ii)$ .

2.1. $\tau(AI)=0=\tau(AII)$ by $(1.10ii)$ and $AI(2)=S^{2}$ .

2.2. $\tau(G_{p}(C^{n}))=\chi(G_{p}(R^{n}))$ .

PROOF 1. This obtains by the Hodge formula (1.6), applied to the Poincar\’e
polynomial $\prod_{1\leqq k\leqq p}(1-t^{2(n-p+k)})/(1-t^{2k})$ of $G_{p}(C^{n})$ .

PROOF 2. Altematively, one may use the involution $s:=I_{1},$ $I_{1}\in U(1)\subset U(n)$ ,
such that $F(s, G_{p}(C^{n}))=G_{p}(C^{n-1})\coprod G_{p-1}(C^{n-1})$ . The self-intersection of $F(s, G_{p}(C^{n}))$

in $G_{p}(C^{n})$ is $G_{p}(C^{n-2})\coprod G_{p-2}(C^{n-2})$ (See 4.6). Hence $\tau(G_{p}(C^{n}))=I_{1}-\tau(G_{p}(C^{n}))=$

$\tau(G_{p}(C^{n-2}))+\tau(G_{p-2}(C^{n-2}))$ . By induction, we obtain $\tau(G_{p}(C^{n}))=\chi(G_{p}(R^{n}))$ , knowing
$\tau(apoint)=1,$ $\tau(G_{1}(C^{2}))=\tau(S^{2})=0andthevaluesof\chi(G_{p}(R^{n}))$ (See O.l). $\square $

2.3. (i) $\tau(G_{r}(R^{m}))=0$ if $m$ or $r(m-r)$ is odd. (ii) If $r=2p$ and $m=2n$ are even,
then $\tau(G_{2p}(R^{2n}))=\chi(G_{p}(R^{n}))$ .

PROOF. (i) is taken care of by 1.2 (ii) and 1.10. For (ii), one has $F(J_{n}, G_{2p}(R^{2n}))=$

$G_{p}(C^{n})$ for the involution $J_{n}$ defined with a complex structure of $R^{2n}$ . Thus 2.2 gives
$\tau(G_{2p}(R^{2n}))=J_{n}-\tau(G_{2p}(R^{2n}))=\tau(G_{p}(C^{n}))=\chi(G_{p}(R^{n}))$ by 1.3. $\square $

2.4. $\tau(DIII)=0$ .

PROOF. DIII$(n):=SO(2n)/U(n),$ $n>1$ , may be thought of as a connected component
of the set of all the complex structures $J:R^{2n}\rightarrow R^{2n}$ which lie in $SO(2n)$ ; the set has
two components by the orientations $J$ defines. Hence DIII$(n)$ admits an involution $s$

such that $F(s, DIII(n))$ is 2 copies of DIII(2) $\times DIII(n-2)$ , and DIII(2) $\cong S^{2}$ . Thus 2.4
follows from 1.9, 1.2 (iii) and $\tau(S^{2})=0$ . $\square $

2.5. $\tau(G_{p}(H^{n}))=\chi(G_{p}(R^{n}))$ .

PROOF. The quatemion Grassmann manifold $G_{p}(H^{n})$ admits an involution whose
fixed point set is exactly $G_{p}(C^{n})$ and which lies in some $U(1)\subset Sp(n)$ . Thus one has
$\tau(G_{p}(H^{n}))=\tau(G_{p}(C^{n}))=\chi(G_{p}(R^{n}))$ by 1.9 (or 1.10 $(i)$) and 2.2. $\square $

2.6. $\tau(CI)=0$ .

PROOF. Similarly to DIII, CI$(n)=Sp(n)/U(n)$ admits an involution in $U(1)$ whose
fixed point set is CI(1) $\times CI(n-1),$ $CI(1)\cong S^{2}$ . $\square $

2. $6a$ REMARK. 2.6 and 2.4 are immediate from 1.6 if one notes that $1+t^{2}$ divides
the Poincar\’e polynomials of CI$(n)$ and of DIII$(n)$ .
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2.7. $\tau(GI)=1$ .

PROOF. The polars of GI: $=G_{2}/SO(4)$ are $\{0\}\coprod S^{2}\cdot S^{2}$ and $\tau(S^{2}\cdot S^{2})=0$ . And
1. 10 (i) applies. $\square $

2.8. $\tau(FI)=0$ .

PROOF. One has $F$( $s_{II}$ , FI) $=G_{4}^{o}(R^{9})$ and 2.3 applies along with 1.10 and 1.3. $\square $

2.9. $\tau(FII)=1$ .

PROOF. The polars of FII are $\{0\}$ LI $S^{8}$ . $\square $

2.10. $\tau(EI)=0$ by (1.10 ii).

2. $10a$ . Thus $\tau(M)=\chi(M)=0iftherootsystemR(M)isE_{6}orA_{r},$ $r>1$ .

2.11. $\tau(EII)=4$ .

PROOF. One has $F$( $s_{III}$ , EII) $=G_{4}^{o}(R^{10})\coprod DIII(5)$ and $\tau(G_{4}^{o}(R^{10}))\pm\tau(DIII(5))=$

$4+0$ . One obtains the result with 1.9, 2.3 and 2.4. $\square $

2.12. $\tau(EIII)=3$ .

PROOF. $F$( $s_{II}$ , EIII) $=G_{2}(C^{6})\coprod S^{2}\times G_{1}(C^{6})$ and $\tau(G_{2}(C^{6}))+0=3$ .

2.13. $\tau(EIV)=0$ , since $\chi(EIV)=0$ ( $1.10$ ii).

2.14. $\tau(EV)=0$ .

PROOF. $EV^{\%}$ is not orientable (1.10a), since $EV^{\%}$ has odd dimensional polars such
as $AII(4)/Z_{4}$ . Hence 1.2(ii) applies. For other proofs, one knows $\perp 2$ dimEV is odd and
that all the polars have lower dimensions than }dimEV. $\square $

2. $14a$ . Thus $\tau(M)=0iftherootsystemR(M)isA_{r},$ $E_{6}orE_{7}$ .

2.15. $\tau(EVI)=7$ .

PROOF 1. Since EVI is H-K\"ahlerian, $\tau(EVI)$ equals the Betti number $b_{32}=7$ ,

dimEVI $=64$ , by 1.5.

PROOF 2. One knows $F$( $s_{o}$ , EVI) $=\{0\}\coprod G_{4}^{o}(R^{12})\coprod S^{2}$ . DIII(6). Ignoring the
orientations of the subspaces, we obtain $\tau(EVI)=1\pm 6+0$ by 1.9, 2.3 and 2.4. One also
has $F$($s_{VlI}$ , EVI) $=EII\coprod EIII$ and hence $\tau(EVI)=\pm 4\pm 3$ by 2.11 and 2.12. From these
two we conclude $\tau(EVI)=1+6=7$ . $\square $

2.16. $\tau(EVII)=0$ .

PROOF. EVII is not orientable by 1. $9a$ . Also dimEVII $=54$ . $\square $

2.17. $\tau(EVIII)=7$ .
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PROOF. $F$($s_{1X}$ , EVIII) $=S^{2}$ . EV $\coprod EVI$ and $\tau(S^{2}\cdot EV)+\tau(EVI)=0\pm 7$ . $\square $

2.18. $\tau(EIX)=8$ .

PROOF. EIX is also H-K\"ahlerian. For another proof, one uses $F$( $s_{VI11}$ , EIX) $=$

$G_{4}^{o}(R^{16})\coprod DIII(8)^{o}$ and $\tau(G_{4}^{0}(R^{16}))+\tau(DIII(8)^{\circ})=\pm 8+0$ by 2.4 and 1.9. $\square $

We have thus determined the signature of every compact symmetric space, com.
pleting the proof of 0.1.

3. The g-signatures of symmetric spaces.

We will determine $g-\tau(M)$ , the g-signature, of each compact connected simple
symmetric space $M$ where $g$ is involutive and preserves the orientation. We may assume
$g$ is not homotopic with a point symmetry $s_{o}(1.12)$ , the identity $1_{M},$ $(1.1)$ , or a covering
transformation. Although we do not describe such a $g$ in details, we like to remark that
even if $G$ in $M=G/K$ does not admit outer involutions, it is possible that, for a member
$b$ of the connected $G$, the map $ad(b):aK\mapsto ad(b)(aK)$ gives such an involution of $M$ as
$g$ in the above; since $b$ must satisfy an obvious condition to let $ad(b)$ act on $M$, the
transformation $ad(b)$ is not necessarily homotopic to $1_{M}$ .

Since our method is, mainly, to apply the g-signature theorem (1.3), we need
self-intersections which will be determined in Section 4.

We begin with an important class of involutions $g$ such that the fixed point sets
$F(g;M)$ are what are called R-spaces (3.1 below).

3.1 DEFINITION. An R-space $N$ in a K\"ahlerian symmetric space $M$ is the fixed
point set $F(t, M)$ of an anti-holomorphic involution $t$ . Thus dim $N$ is half the dim $M$;
$M$ may be thought of as “a complexification” of $N$.

3.2 PROPOSITION. Let $N$ be an R-space in a Kahlerian symmetric space $M$ ,
$F(t, M)=N$ . Then one has (i) the normal bundle $T^{\perp}N$ is isomorphic with $TN$, and hence
$T^{\perp}N$ has the Euler number $\chi N$; (ii) $N$ is connected ([N88] 9.1); (iii) SI$(N;M)=\chi N$; and
(iv) $t-\tau(M)=\chi N$.

PROOF. (i) The complex structure $J$ of the $T_{o}M$ carries $T_{o}N$ onto its orthogonal
complement for every point $0$ of $N$, since $T_{o}^{\perp}N$ is the eigenspace for the eigenvalue
$-1$ of $t$ acting on $T_{o}M$ and this $t$ anticommutes with $J$. The linear isomorphism
$J:T_{o}N\rightarrow T_{o}^{\perp}N$ clearly extends to an isomorphism $TN\rightarrow T^{\perp}N$. (ii) Since $M=G/K$ is a
K\"ahlerian space, $K(0)=0,$ $K$ contains a circle group $U(1)$ in its center; $U(1)$ acting on
$T_{o}M$ contains $J$. First we will show that $U(1)$ acts trivially on every polar $M^{+}$ of $0$ in
$M$. Let $p$ be a point of $M^{+}$ . The corresponding meridian $M_{\langle p)}^{-}:=F(s_{p So}\circ, M)_{(p)}$ is a
complex submanifold. Hence $J$ stabilizes the tangent space $T_{o}M_{\{p)}^{-}$ . Thus $U(1)$ stabilizes
the subspace $M_{\langle p)}^{-}$ . Therefore $U(1)$ fixes the pole $p$ of $o$ in $M_{\langle p)}^{-}$ , as asserted. Now let $J_{U}$

denote a corresponding member of $U(1)$ to $J$; its differential is $J$ if restricted to $T_{o}M$.
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The subspace $J_{U}(N_{\langle 0)})$ has the tangent space $T_{o}^{\perp}N$ at $0$ , where $N_{\langle 0)}$ denotes the component
of $N$ throu $0$ ; that is, $J_{U}(N_{(0)})$ is c-orthogonal to $N_{(0)}$ at $0$ . Since $U(1)$ fixes the points
of every polar $M^{+}$ , so it stabilizes every polar $N_{(0)}^{+}\subset M^{+}$ of $0$ in $N_{(0)}$ . Hence $N_{(0)}$ shares
all the polars of $0$ with $J_{U}(N_{(0)})$ . Therefore $N$ is connected by (5.2) in [N88]. (An
alternative proof can be obtained by means of Wolf’s theorem (3.3 in [W]). (iii) is
obvious from (i) and (ii). (iv) follows from (iii) and 1.3, the Atiyah-Singer theorem. $\square $

3.3 REMARK. In most cases, the equality $t-\tau(M)=\tau(M)$ obtains. Precisely, this is
valid for $(N, M)=(G_{r}(R^{2r}), G_{r}(C^{2r})),$ $(G_{r}(H^{n}), G_{2r}(C^{2n})),$ $(SO(n), DIII(n)),$ $(T\cdot AII(n)$ ,
DIII$(2n)),$ $(T\cdot AI(n), CI(n)),$ $(Sp(2n), CI(2n)),$ ( $G_{2}(H^{4})^{\%}$ , EIII), (FII, EIII), ( $ T\cdot$ EIV,
EVII), and ($AII(4)/Z_{2}$ , EVII). The other cases are $(U(r), G_{r}(C^{2r})),$ $(S^{p}\cdot S^{q}, G_{2}^{o}(R^{p+q+2}))$ ,
$(N, N\times N^{-})$ where $N$ is K\"ahlerian and the diagonal of the product of $N$ and its “complex
conjugate” $N^{-}$ in $N\times N^{-}$ . In every case, one has $t-\tau(M)=Lef(t)$ , the Lefschetz number.

3.4 ASSERTION. One has $s_{I^{-}}\tau(M)=\tau(M)$ for every l-connected space $M=E_{6}/K$,
that is, $M$ is EI, EII, EIII $or$ EIV where $s_{1}$ is an outer involution of $E_{6}$ (which can be)
induced on the spaces EI through EIV.

PROOF. We may assume that $s_{1}$ is the point symmetry at a point of EI, since the
outer involutions of $E_{6}$ are homotopic with each other. Then the equality is trivial for
EI and EIV. (For $M=EII$ , one has the result by 4.14 obviously, but we will give another
proof here.) The fixed point set $F$( $s_{1}$ , EII) is the disjoint union of CI $($4$)^{\%}$ and a lower
dimensional subspace (4.1); $2dimCI(4)^{\circ}=dimEII$ . The c-orthogonal space to CI $($4$)^{\%}$

at $0$ is isomorphic with CI $($4$)^{\%}$ and these two subspaces meet in $0,$ $G_{2}(C^{4})^{\%}\cong G_{2}(R^{6})$

and $T\cdot AI(4)/Z_{2}$ , while $G_{2}(C^{4})^{\%}$ is contained in the polar $G_{2}(C^{6})$ of $0$ in EII and
$T\cdot AI(4)/Z_{2}$ in the polar $S^{2}\cdot G_{3}(C^{6})$ . One knows SI$(G_{2}(R^{\text{\’{o}}});G_{2}(C^{6}))=\chi G_{2}(R^{6})=3$ by
3.2. $T=S^{1}$ is homologous to zero in $S^{2}$ . (See 4.19 for another proof.) Finally one has
$F$( $s_{I}$ , EIII) is $G_{2}(H^{4})^{\%}$ , which is an R-space. By (3.2), one has $s_{I^{-}}\tau(EIII)=\chi(G_{2}(H^{4})^{\circ})=$

3. $\square $

3. $4a$ REMARK. One notes $s_{I}-\tau(M)\leqq Lef(s_{I})$ for the above spaces by $Lef(s_{I})=12$ ,
12, 3 and 4 for $M=EI$ , EII, EIII and EIV respectively.

3.5 ASSERTION. Let $g$ denote $\gamma\circ s_{o}$ , where $\gamma$ is the deck transformation for a double
covering morphism: $M\rightarrow M^{\prime\prime}$ . Then one has $g-\tau(M)=0$ provided there is only one centriole
(1.15) for the pair $(0, p)$ of $0$ and its pole $p:=\gamma(0)$ (that is, the centrosome $F(g;M)$ is
connected).

PROOF. $F(g;M)$ is homologous to zero in this case by4.3. $\square $

3. $5a$ REMARK. Examples are given in 4. $3a$ .

3.6. $g-\tau(G_{p}^{o}(R^{n}))=\tau(G_{p}^{o}(R^{n-2}))$ , where $F(g;G_{p}^{o}(R^{n}))=G_{p}^{o}(R^{n-1})$ . ($g$ is defined with
the reflection $I_{1}$ in a hyperplane of $R^{n}$ . $g$ preserves the orientation if both $p$ and $n-p$

are even. Of course $p\leqq n-2.$)
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PROOF. One has SI$(G_{p}^{o}(R^{n-1});G_{p}^{o}(R^{n}))=G_{p}^{o}(R^{n-2})$ by linear algebra (4.5). $\square $

3.7. $g-\tau(G_{r}(C^{2r}))=0$ for $g$ satisfying $F(g;G_{r}(C^{2r}))=CI(r)$ . ( $g$ has $Lef(g)=2^{r}\neq$

$\chi G_{r}(C^{2r}).)$

PROOF. One knows $F(g\circ s_{o} ; G_{r}(C^{2r}))=OIII(r)(=DIII(r)\coprod DIII(r))$ for $0\in CI(r)$ .
$s_{o}$ is homotopic with the identity and OIII $(r)$ has dimension $<\neq\dim G_{r}(C^{2r})$ . $\square $

4. Self-intersections of some subspaces.

We will compute the self-intersection SI$(N;M)$ of $N$ in $M$ (See [AS] p. 583) in
several cases, where $M$ is a compact symmetric space and $N$ is one of the connected
components of the fixed point set $F(t, M)$ of an involutive automorphism $t$ of $M$.

We have various methods to find $SI$, especially 4. $11b$ and 4. $11c$ , which we find
useful. $SI$ is obvious in some cases (4.1). The g-signature theorem may work if
2dim $N=\dim M$.

4.1. Obvious facts. (i) One has SI$(N;M)=0$ if 2dim $ N<\dim$M. (ii) One has
SI$(N;M)=g-\tau(M)$ if $N$ is a component of $F(t, M)$ such that 2dim$N=\dim M$ and the
other components have dimensions $<\dim N$ , where $t$ and $g$ are orientation preserving
involutions of $M$ which are homotopic $(t\simeq g)$ . One finds $SI$ by $ g-\tau$ or $\tau$ . (iii) If the
homology class $[N]=0$ in $H_{*}(M;Z)$ , then SI$(N;M)=0$ . (iv) In case $N$ is an R-space
in a Kaehlerian space $M$ , one can use 3.2; see 3.3.

4. $1a$ EXAMPLES. (1) SI( $G_{1}(H^{3})$ ; FI) $=0$ by (i). Hence SI($S^{2}\cdot CI(3)$ ; FI) $=0$ by (ii)

and 2.8. (2) SI( $S^{8}$ ; FII) $=1$ by (ii); in this case $t=s_{o}$ and $F$( $ s_{o}\cdot$ FII) $=\{0\}\coprod S^{8}$ and
$\tau(FII)=1(2.9)$ . The fact $SI=1$ is obvious from the plane projective geometry in which
the line is $S^{8}$ . (3) $SI$( $G_{1}(H^{3})$ ; FII) $=1$ by (2) and (ii). (4) SI($FI$ ; EI) $=0$ by (iii); indeed
FI is disjoint from certain congruent $subspaces\cong FI$ (as proved in 4. $11d$). (5) Similarly
one obtains SI$(N;M)=0$ by (iii) for the pairs $(N;M)=SI$($FI$ ; EI), (FII; EIV), (EII; EV),

( $G_{4}(C^{8})^{Q}$ ; EV), (EIII, EVII) and (DIII$(p)\times DIII(q);DIII(p+q)$) (See 4.10 for details).

(5) SI( $G_{2}(H^{4})^{\%}$ ; EIII) $=3$ and SI($AII(4)/Z_{2}$ ; EVII) $=0$ both by (iv).

4. $1b$ . Other examples of 4.1 (ii). (1) SI$(G_{p}(C^{n});G_{p}(H^{n}))=\tau(G_{p}(H^{n}))$ , a fact used
to prove 2.5. (2) SI( $G_{2}(C^{\text{\’{o}}})$ ; EIII) $=\tau(EIII)(=3)$ . (3) $SI$( $G_{4}(C^{8})^{\%}$ ; EVI) $=\tau(EVI)(=7)$

(4) SI( $G_{8}(R^{16})^{\#}$ ; EVIII) $=\tau(EVIII)$ . (5) SI$(G_{p}(C^{n});G_{2p}(R^{2n}))=\tau(G_{p}(C^{n}))=\chi(G_{p}(R^{n}))$
One obtains similar formulas by replacing $G_{2p}(R^{2n})$ with $G_{2p}^{o}(R^{2n})$ and $G_{2p}(R^{2n})^{ff}$ . $(6)$

SI( $S^{2}\cdot G_{3}(C^{6})$ ; EII) $=4$ . (7) $SI(G_{2}(C^{4})\cdot G_{2}(C^{4});G_{8}^{o}(R^{12}))=6$ .

4.2. If a subspace $N$ of $M$ is isomorphic with a l-connected group, then its normaJ
bundle $T^{\perp}(N, M)$ is trivial and hence one obtains SI$(N;M)=0$ .

4.3 PROPOSITION. One has SI$(N;M)=0$ if $N$ is a centriole (1.15) which $meet_{L}^{1}$

minimal geodesic arcs from a point $0$ to one of its poles, $p$, at their midpoints.
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PROOF. We will show that $N$ is actually homologous to zero in $M$. We know
([N92]) that $N$ is an orbit of (the identity component of) the isotropy subgroup $K$ of
the connected isometry group $G$ at $0;K$ also fixes $p$ . Hence every point $q$ of $N$ is the
midpoint ofa minimal geodesic arccjoiningo to p. By the minimality, qisthe unique
point at which $c$ meets $N$ and $c$ is the unique minimal one from $0$ to $p$ that contains
$q$ . Therefore one can deformN toosmoothly by moving every pointq ofNalong the
above unique geodesic $c$ toward $0$ ; thus $N$ is contractible to the point $0$ . $\square $

4. $3a$ . Examples include the spaces which appear in the Bott periodicity. They
are $U(m)\rightarrow G_{m}(C^{2m})\rightarrow U(2m)$ and $O(m)\rightarrow G_{m}(R^{2m})\rightarrow T\cdot AI(2m)\rightarrow CI(2m)\rightarrow Sp(2m)\rightarrow$

$G_{2m}(H^{4m})\rightarrow T\cdot AII(4m)\rightarrow DIII(8m)\rightarrow O(16m)$ joined with monomorphisms, where $N$ is
a centriole satisfying the condition above in $M$ for each $N\rightarrow M$ .

The self-intersections can be determined easily with linear algebra in such cases as
the following 4.5 through 4.9. Also one knows SI( $S^{8}$ , FII) $=1$ by plane projective
geometry.

4.4. SI$(G_{r}(R^{n});G_{r}(R^{n+q}))=G_{1}(R^{n-q})$ if $r+q\leqq n$ and $=0$ if not.

PROOF. If $r+q>n,$ $(4.1)$ applies by dim $G_{r}(R^{n})=r(n-r)$ . Assume $r+q\leqq n$ . Then
$R^{n}$ is the direct sum of $R^{n-q}$ and $R^{q}$ . $R^{n+q}$ contains a q-dimensional subspace $V$ such
that the sum $V+R^{n-q}$ is n-dimensional and meets $R^{n}$ in $R^{n-q}$ . Then $G_{r}(R^{n})$ meets
$G_{r}(V+R^{n-q})$ transversely in $G_{r}(R^{n-q})$ . $\square $

Similarly, one obtains the following 4.5 through 4.7.

4.5. SI$(G_{r}^{o}(R^{n});G_{r}^{o}(R^{n+q}))=G_{r}^{o}(R^{n-q})$ if $r+q\leqq n$ and $=0$ if not.

4.6. SI$(G_{r}(C^{n});G_{1}(C^{n+q}))=G_{r}(C^{n-q})$ if $r+q\leqq n$ and $=0$ if not.

4.7. SI$(G_{r}(H^{n});G_{r}(H^{n+q}))=G_{r}(H^{n-q})$ if $r+q\leqq n$ and $=0$ if not.

4.8. SI$(G_{1}(C^{p})\times G_{1}(C^{q});G_{2}(C^{p+q}))=\min\{p, q\}$ .

PROOF. We write $[e_{1}\wedge e_{2}\wedge\cdots\wedge e_{p}]$ for the space with basis $(e_{1}, \cdots, e_{p})$ . Then
$N:=G_{1}(C^{p})\times G_{1}(C^{q})$ in $G_{2}(C^{p+q})$ is the space of the $2- dim$ . subspaces spanned by a
nonzero member of $[e_{1}\wedge\cdots\wedge e_{p}]$ and that of $[f_{1}\wedge f_{2}\wedge\cdots\wedge f_{q}]$ . We may assume $p\leqq q$ .
Let $b\in SU(p+q)$ carry $e_{i}$ into $c_{i}e_{i}+s_{i}f_{i},$ $f_{i}$ into $-s_{i}e_{i}+c_{i}f_{i}$ and $f_{j}$ into $f_{j}$ , where $i\leqq p<j$,
$c_{i}^{2}+s_{i}^{2}=1$ and $(c_{1}/s_{1})^{2},$

$\cdots,$ $(c_{p}/s_{p})^{2}$ are all distinct. Then $b(N)$ meets $N$ only at $[e_{1}\wedge f_{1}]$ ,
$[e_{2}\wedge f_{2}],$ $\cdots$ , and $[e_{p}\wedge f_{p}]$ , as is easily seen. Thus the desired $SI\leqq p$ . Moreover one has
$F(ad(I_{p});G_{2}(C^{p+q}))=G_{2}(C^{p})\coprod N\coprod G_{2}(C^{q})$ for an involutive member $I_{p}$ of $U(p+q)$ . By
4.6, $\tau SI(G_{2}(C^{q});G_{2}(C^{p+q}))=\tau G_{2}(C^{q-p})$ if $q-p\geqq 2$ and $=0$ if not. Hence $\tau G_{2}(C^{q+p})-$

$\tau G_{2}(C^{q-p})=[(p+q)/2]-[(q-p)/2]=p$ (whether or not $q-p\geqq 2$). And 1.3 applies. $\square $

4.9. SI$(G_{2}^{o}(R^{p})\cdot G_{2}^{o}(R^{q});G_{4}^{o}(R^{p+q}))=\min\{p, q\}$ if $p$ and $q$ are even.

PROOF. We assume $p\leqq q=:p+m$ . Similarly to the above proof, we use $ b\in$
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$SO(p+q)$ which carries $e_{2i-1}$ into $c_{i}e_{2i-1}+s_{i}f_{2i},$ $e_{2i}$ into $c_{i}e_{2i}+s_{i}f_{2i-1},$ $f_{2i-1}$ intc
$-s_{i}e_{2i-1}+c_{i}f_{2i},$ $f_{2i}$ into $-s_{i}e_{2i}+c_{i}f_{2i-1}$ , and $f_{j}$ into $f_{j}$ for $1\leqq i\leqq p/2$ and $j>p$

where $c_{i}^{2}+s_{i}^{2}=1,$
$c_{i}$ being all distinct. Then $N:=G_{2}^{o}(R^{p})\cdot G_{2}^{o}(R^{q})$ meets $b(N)$ in

$[\pm e_{2i-1}\wedge e_{2i}\wedge f_{2i-1}\wedge f_{2i}]$ only. $\square $

4.10. SI$(DIII(p)\times DIII(q);DIII(p+q))=0$ .

PROOF. DIII $(p)$ is the totality of the complex structures of $R^{2p}$ which define a
given orientation of $R^{2p}$ . An involution $I_{2P}\in SO(2p+2q)$ gives the $eigenspac\epsilon$

decomposition $R^{2p+2q}=R^{2p}\oplus R^{2q}$ . Correspondingly one has 2 copies of a subspace
DIII$(p)\times DIII(q)$ . These copies are isotopic with each other, since there is a membe]

of $SO(2p+2q)$ which stabilizes both $R^{2p}$ and $R^{2q}$ and reverses their orientations. $\square $

4.11. SI$(CI(p)+CI(q);CI(p+q))=CI(1)\times\cdots\times CI(1)\times CI(q-p)=CI(1)^{p}\times$

$CI(q-p)$ if $p\leqq q$ . $(CI(1)\cong S^{2}.)$

4. $11a$ . We need preliminaries before the proof, which will be used in other cases
as well. Let $s$ and $t$ be commutative involutive members of a compact Lie group $G$

Write $K$ for $F(ad(s), G)$ and $H$ for $F(ad(t), G)$ . Then one has two fibrations $\pi_{K}$ : $G/Kr$
$H\rightarrow G/K$ and $\pi_{H}$ : $G/K\cap H\rightarrow G/H$ ( $\pi_{k}$ or $\pi_{H}$ is not a homomorphism). To a point $x01$

$G/K$, there corresponds the subspace $x^{\sim}:$ $=\pi_{H}\circ\pi_{K}^{-1}(x)$ of $G/H$ which is isomorphic wit}
$K/K\cap H\cong K(0),$ $H(0)=\{0\}$ . This is not only bijective (by $K=F(ad(s),$ $G)$), but also $G$ .

equivariant diffeomorphism of $G/K$ onto those subspaces $\{x^{\sim}|x\in G/K\}$ on which $Gact_{\backslash }^{(}$

transitively. Similarly, $G/H$ is G-equivariantly diffeomorphic with $\{y$ $:=\pi_{K}\circ\pi_{H}^{-1}(y)\cong$

$H/K\cap H|y\in G/H\}$ . Moreover one has a kind of duality: the point $x$ lies on the subspact
$ y\wedge$ for a point $y\in G/H$ if and only if $x^{\sim}$ contains $y$ . (Cf. [N88] 5.8, 11.1).

Now 4.11 follows from the next theorem for the case in which $G=Sp(p+q)$

$K=U(p+q)$ , and $H=Sp(p)\times Sp(q)$ so that $H/K\cap H=CI(p)\times CI(q)$ .

4. $11b$ THEOREM. Let $M=G/K$ and $N=G/H$ be compact symmetric spaces such tha
$K=F(\sigma, G)$ $andH=F(\tau, G)for$ commuting involutions $\sigma$ and $\tau$ ofG. Assume that (1) $H$ an‘

$K$ are connected, (2) $G/H$ has an equal rank to the subspace $K(0)\cong K/K\cap H,$ $N\ni 0=H(0)$

and (3) the Weyl group of $K(0)$ coincides with that of N. Then one has

SI$(H/K\cap H;M)=[H_{o}/H_{o}\cap K]$

and this is connected, where $H_{0}$ is the centralizer $C(A, H)$ of a maximal torus $A\subset G/f_{2}$

in $H,$ $A\ni 0$ .

PROOF. In the notations of (4.11a), $0^{\wedge}$ is an H-orbit which may be identified witl
$H/K\cap H$. The maps $x\mapsto x^{\sim}$ and $y\mapsto y^{\wedge}$ are injective, since $H$ and $K$ are maxima
subgroups of $G$ . A point $x$ of $M$ lies in the intersection $0^{\prime}\cap y^{\wedge}$ if and only if $x^{\sim}$ contain
both $0$ and $y$ by (4.11a).

We want to place $y^{\wedge}$ close to $0^{\wedge}$ and in a generic position; then $ y\wedge$ will meet $0$

transversely. As the first step, we choose $y$ in a maximal torus $A\subset N$ so the geodesic
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in $A$ which pass through $y$ and $0$ are dense in $A$ . We may assume that $y$ lies in a
neighborhood $U$ of $0$ which satisfies these conditions: (U1) $U$ is open and convex, (U2)
$U$ does not meet the cut locus of $0$ (This is the case if $U$ is “small”) and (U3) $U\cap x^{\sim}$

is also convex for every $x^{\sim}\ni 0$ . We can make $U$ satisfy (U3), since $x^{\sim}$ is compact and
totally geodesic; and (U3) will follow easily if one notes that $\tilde{x}$ is obtained by rotating
the orbit $K(0)$ with some $h\in H;hK(0)=x^{\sim}$ .

Now we choose $y$ in $U\cap A$ and, by (2), $A$ in $K(0)$ . If $x^{\sim}=hK(0)$ contains $y$ , then
$x^{\sim}$ contains the whole $A$ . The isotropy subgroup $h(K\cap H)h^{-1}$ contains some $h_{1}$ which
carries $h(A)$ back to $A$ . Moreover the same $h(K\cap H)h^{-1}$ contains some $h_{2}$ such that
$h_{2}\circ h_{1}\circ h$ restricted to $A$ is the identity map $1_{A}$ by (3). Therefore the centralizer $H_{0}$ of
$A$ contains some $h_{0}$ which carries $K(0)$ onto $x^{\sim}$ . That is, the totality of the subspaces
$x^{\sim}$ which contain both $0$ and $y$ is $H_{o}$-equivariantly diffeomorphic with the space
$H_{0}/H_{0}\cap K$

We will show that this is connected by (1). Let $A^{\prime}$ denote a subgroup of $G$ which
is a covering group of $A$ . Then $H_{0}A^{\prime}$ is the union of all the maximal tori of $G$ which
contain $A^{\prime}$ ; hence $H_{0}A^{\prime}$ is connected. Thus $H_{0}/H_{o}\cap K=H_{0}A^{\prime}/(H_{0}\cap K)A^{\prime}$ is also
connected $(A^{\prime}\subset K)$ . Therefore $y^{\wedge}$ meets $0^{\wedge}$ in a connected $subspace\cong H_{0}/H_{0}\cap K$

Besides, $y^{\wedge}$ does transversely; that is, dim $H_{o}/H_{o}\cap K=2\dim o^{\wedge}$ -dim $M$ . The proof
is done with easy calculations in view ofdim $H_{0}=\dim H$-dim$N+\dim A$ , the assumption
(2) and the fact to the effect that $H_{0}\cap K$ is the $K(0)$ counterpart of $H_{0}$ . $\square $

4. $11c$ REMARK. Although the assumption (3) may look too strong, the theorem is
useful in determining SI$(N;M)$ in case 2dim$N>\dim M$ . One might get a better theorem
by replacing $H_{0}$ with the normalizer $N(A, H)$ , that is, by adding the Weyl group $W(N)$

of $N$ to $H_{0}$ . We will also write $W(R)$ for $W(N)$, since $W(N)$ depends on the root system
$R=R(N)$ only. If 2dim $0^{\wedge}=\dim M$ (for simplisity), then, without assumption (3) in 4. $11b$ ,
one can find $y\in N$ such that $0‘‘\cap y\wedge$ consists of points which are $\# W(N)/\# W(K(0))$ , the
quotient of the orders, in number; hence one has

$(0\leqq)SI(H/K\cap H;M)\leqq\# W(N)/\# W(K(0))$ .

The equality obtains in many cases. For example, one has SI($FII$ ; EIII) $=\chi(FII)=3$ ,
since FII is an R-space (3.2 iii), while $W(N)=W(EIV)=W(A_{2})$ and $W(K(0))=$

$W(T\cdot S^{9})=W(A_{1})$ give $\# W(N)/\# W(K(0))=\chi(G_{1}(C^{3}))=3$ . For another example (4.8) for
$p=q$ , one recalls $N=G_{p}(C^{p+q})$ and $K(0)=S^{2}\times G_{p-1}(C^{p+q}$

‘ 2
$)$ to have $\# W(N)/$

$\# W(K(0))=\# W(Sp(p))/\# W(Sp(1)\times Sp(p-1))=\chi(G_{1}(H^{p}))=p$ . $4.20$ and 4.21 are other
examples.

There are, however, cases in which the equality fails such as 4.19, 4.22 (ii), 4.23,
4.24 and 4.25. In these cases $H/K\cap H$ are C-spaces (which are not globally K\"ahlerian)
in H-K\"ahler spaces $M$ , where a C-space means a locally K\"ahlerian subspace of an
H-K\"ahler space whose complex structure is related to the quaternion structure of $M$

in a certain way; $G_{1}(C^{n})$ in $G_{1}(H^{n})$ and CI $($4$)^{\circ}$ in EII are examples.
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4. $11d$ REMARK. The “duality” $(4.11a)$ may be used to prove SI($FI$ ; EI) $=0(Se($

$4.1a(4))$ more directly. Thus consider the double fibration $N:=EIV\leftarrow E_{6}/H\cap K\rightarrow M:=$

EI. One has $K/H\cap K\cong G_{1}(H^{3})$ and $H/H\cap K\cong FI$ . One knows the root systen
$R(G_{1}(H^{3}))$ is $BC_{1}$ and that of EIV is $A_{2}$ ; hence the rank $r(G_{1}(H^{3}))$ is less than $r(N)$

Thus $N$ contains a point $y$ such that no geodesic passing through $y$ and $0,$ $H(0)=0,$ $i^{t}$

congruent with any geodesic in $G_{1}(H^{3})$ ; hence no subspace $x^{\sim}\cong G_{1}(H^{3})$ contains $\{y, 0\}$

By the duality, $0^{\wedge}\cong FI$ does not meet $ y\wedge$ . (The non-existence of the geodesic is also seen
by observing that the dimension of the principal orbit $\approx H/H_{0}$ of $H$ acting on $N$, whicl
admits a fibration $S^{8}\rightarrow H/H_{0}\rightarrow FII$ , equals $8+16<25<\dim N-1.$)

4. $11e$ ACKNOWLEDGEMENT. We owe the computations of $H_{O}$ in all the cases $t($

Hiroshi Tamaru, for which we thank him.

We will give a few applications of 4. $11b:4.12$ through 4.18 (as well as 4.4, 4.5, etc.)

4.12. SI( $G_{4}^{0}(R^{9})$ ; FI) $=G_{4}^{o}(R^{7})$ .

PROOF. The subspace $X^{\wedge}\cong G_{1}(H^{3})$ has the same root system $BC_{1}$ as $N=FII$

Hence the subspace $y^{\prime}=G_{4}^{o}(R^{9})$ of FI meets $0^{\wedge}$ in a subspace $\cong H_{0}/H_{0}\cap K\cong SO(7)^{\sim}$

$SO(3)^{\sim}\cdot SO(4)^{\sim}=G_{4}^{o}(R^{7})$ , as claimed. $\square $

4. $12a$ . SI( $S^{8}$ ; FII) $=1$ .

4.13. SI( $G_{4}^{o}(R^{10})$ ; EII) $=G_{4}^{o}(R^{6})$ .

4. $13a$ . SI( $T\cdot G_{5}^{o}(R^{10})$ ; EI) $=UI(4):=U(4)/O(4)$ .
$T\cdot G_{5}^{o}(R^{10})=F$( $s_{III}$ ; EI) (misprinted in [N88]). Sinoe EI is l-connected, UI(4) $i$

homologous to zero, which reaffirms $\tau(EI)=0$ .

4.14. SI($FI$ ; EII) $=SI$($EII$ ; EVI) $=SI$($EVI$ ; EIX) $=G_{4}^{o}(R^{8})$ .

PROOF. $H_{0}isSO(8)^{\sim}$ in these three cases. $\square $

4. $14a$ REMARK. The spaces in 4.14 and 4.13 are all H-K\"ahlerian.

4.15. (i)SI($DIII(5)$ ; EIII) $=G_{2}(C^{4})$ . (ii)SI$(G_{2}^{o}(R^{10});EIII)=1$ .

PROOF. $M\cong EIII\cong N$. $H_{0}\cong U(4)\cong U(1)\cdot SO(6)^{\sim}.(i)K\cap H\cong U(1)\cdot U(5).H_{O}/H_{0}($

$K\cong G_{2}(C^{4})$ . (ii) $K\cap H\cong U(1)\cdot U(1)\cdot SO(8)^{\sim}$. $H_{0}/H_{O}\cap K=1$ . $\square $

4.16. SI$(CI(n);G_{n}(C^{2n}))=[S^{2}\times\cdots\times S^{2}]=[(S^{2})^{n}]$ .

4.17. Let $M$ be a compact, l-connected and simple Lie group and $B$ be its subspac
with the same root system as $M$. Then one has

SI$(B;M)=$ [$the$ maximal torus] $=0$ .

PROOF. Let $G$ denote the group $M\times M$. We write $H$ for its diagonal subgrou
$\{(x, x)\in G\}$ . Let $\tau$ be the involution of $M$ for the space $B$; thus $B\cong M/F(\tau, M)$ . Let $\iota b$

the involution: $(x, y)\mapsto(y, x)$ of $G$ . And we write $K$ for $F(\iota\circ(\tau\times\tau), G)$ . Noting that $G/l$
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is a symmetric space which is isomorphic with $M$ , we identify $M$ with $G/K$ . Now we
have the setting in Theorem 4. $11b$ . Hence SI$(B;M)=H_{0}/H_{0}\cap K$ . $H_{0}$ is a maximal torus
in $H$ obviously. Therefore SI$(B;M)$ is amaximal torus in M. $\square $

4.18. SI( $G_{8}^{o}(R^{10})$ ; EIII) $=1$ .

PROOF. The root systems of $G_{8}^{o}(R^{10})$ and $N\cong EIII$ are $B_{2}$ and $BC_{2}$ respectively,
q.e. $d$ . A more geometric observation makes the result obvious. $G_{8}^{o}(R^{10})$ is isomorphic
with a polar in EIII and the corresponding meridian, which meets the polar at a single
point (transversely). $\square $

4.19. SI(CI(4) ; EII) $=4$ . (Hence $s_{I^{-}}\tau(EII)=s_{IV}-\tau(EII)=4.$)

PROOF. One knows $F$( $s_{I}$ , FII) $=CI(4)^{\%}\coprod G_{1}(H^{4})$ . Thus $s_{I^{-}}\tau(EII)=\tau SI$($CI(4)^{\%}$ ; EII)
by 1.3 and 4.1 (ii). On the other hand, one has $s_{I^{-}}\tau(EII)=s_{IV}-\tau(EII)=\tau SI$($FI$ ; EII) $=$

$\tau(G_{4}^{o}(R^{8}))=4$ by 4.14. $\square $

4.20. SI(DIII(5); EII) $=2$ .

PROOF. Applying 1.3 to $F$( $s_{1II}$ , EII) $=DIII(5)$ LI $G_{4}^{o}(R^{10})$ , one obtains $4=\tau(EII)=$

$\tau(SI(DIII(5);EII))+\tau$($SI(G_{4}^{o}(R^{10})$ ; EII)), for which we know $\tau$($SI(G_{4}^{o}(R^{10})$ ; EII)) $=$

$\tau(G_{4}^{o}(R^{6}))=2$ by 4.13 and 0.1. $\square $

4. $20a$ . Incidentally, $\# W(N)/\# W(K(0))=2$ in this case (4.11c), $N$ being EIII, $K(0)=$

$S^{2}\cdot CP^{5}$ .
4.21. $3=SI$($FII$ ; EIII) $=SI$($EIII$ ; EVI) $=SI$($EVI$ ; EVIII) $=3$ .

PROOF. The first equality obtains by 4. $1a$ (iv). One sees $\# W(N)/\# W(K(0))=3$ in
all the three cases (4.11c). As to EIII in EVI, the $ g-\tau$ theorem 1.3 applied to
$F$( $s_{VII}$ , EVI) $=EII\coprod EIII$ gives $7=\tau(EVI)=4+SI$($EIII$ ; EVI) by 4.14. For EVI in EVIII,
we use the similar fact: $F$( $s_{IX}$ , EVIII) $=S^{2}$ . EV $\coprod EVI$ . For a point $0\in EVI$ , the con-
nected component $F_{o}:=F(s_{o}\circ s_{1X}, EVIII)_{\langle 0)}$ , the c-orthogonal space to EVI at $0$ , happens
to be isomorphic with EVI. $F_{o}$ meets EVI in their common polar $G_{4}^{o}(R^{12})$ and $\{0\}$ .
$G_{4}^{o}(R^{12})\cong G_{8}^{o}(R^{12})$ is a subspace of a polar $G_{8}(R^{16})^{ff}$ in EVIII and hence has
SI$(G_{8}^{o}(R^{12});G_{8}(R^{16})^{\#})=\pm 2$ by 4.5. We thus infer that SI($EVI$ ; EVIII) $=1\pm 2$ . But EVI
cannot meet a congruent EVI at a single point, say $0$ . Indeed if it did, those two
$subspaces\cong EVI$ would meet the polar $G_{8}(R^{16})^{\#}$ of $0$ in disjoint $subspaces\cong G_{8}^{o}(R^{12})$ ,
contrary to the above fact $SI=2$ . $\square $

4.$21a$ COROLLARY. (i) SI( $ S^{2}\cdot$ EV; EVIII) $=G_{4}^{o}(R^{8})$ , whose $\tau$ equals 4. (ii)
SI$(G_{2}^{o}(R^{4})\cdot G_{6}^{o}(R^{12}))/Z_{2}$ ; $G_{8}(R^{16})^{\#})=G_{4}^{o}(R^{8})$ .

PROOF. By the above proof, we have $7=\tau(EVIII)=3+\tau SI$( $ S^{2}\cdot$ EV; EVIII); hence
this $\tau SI=4$ . Trying to find this $SI$ , we use the double fibration and the notation in
4. $11b$ and 4. $11c$ for $N=EIX$ and $K/H\cap K=DIII(8)^{\%}$ . We obtain $H_{0}/H_{O}\cap K=G_{4}^{o}(R^{8})$
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and $\# W(N)/\# W(K(0))=\# W(F_{4})/\# W(B_{4})=\chi(FII)=3$ . Since we know $\tau(G_{4}^{o}(R^{8}))=4$ , we
conclude (i): $SI=G_{4}^{o}(R^{8})$ . For (ii), one notes that the $components\cong S^{2}$ . EV of $F(s_{IX}$ ,
EVIII) and $F$( $s_{o}\circ s_{1X}$ , EVIII) meet in the connected subspace $(G_{2}^{o}(R^{4})\cdot G_{6}^{o}(R^{12}))/Z_{2}$ . Thus
(ii) follows from (i).

4. $21b$ REMARK. Let us add a sort of reaffirmation of (ii). By definition, $G_{8}(R^{16})^{r}$

consists of the oriented 8-dimensional linear subspaces of $R^{16}$ , identified with their
orthogonal complements. We work on the covering space $G_{8}^{o}(R^{16})$ , in which $B:=$

$G_{2}^{o}(R^{4})\cdot G_{6}^{o}(R^{12})isacomponentofF(I_{4}, G_{8}^{o}(R^{16}))togetherwithG_{a}^{o}(R^{4})\cdot G_{b}^{o}(R^{12})$ for
$(a, b)=(0,8)$ and $(4, 4)$ . Both of these are $G_{8}^{o}(R^{12})\cong G_{4}^{o}(R^{12})$ and have $SI=2$ by 4.5,
while we know $\tau G_{8}^{o}(R^{16})=12$ . Hence the $SI$ in (ii) has the signature $\tau(SI)=\neq(12-2-2)=$

$4=\tau(G_{4}^{o}(R^{8}))$ .

4.22. (i) SI( $G_{8}^{o}(R^{12})$ ; EVI) $=3$ . (ii) SI( $ S^{2}\cdot$ DIII(6); EVI) $=4$ .

PROOF. These subspaces are the polars $M^{+}(p)$ and $M^{+}(q)$ as in the proof 2 of
2.15. They are also congruent with the meridians $M^{-}(p)$ and $M^{-}(q)$ . The intersection
$M^{+}(p)\cap M^{-}(p)$ is $\{p\}\coprod G_{4}^{o}(R^{8})$ , the polars of $M^{+}(p)$ , while $M^{+}(q)\cap M^{-}(q)$ is
$\{q\}$ LI $G_{2}(C^{6})\coprod T\cdot T$ . AII(3). Hence 1.3 gives SI($M^{+}(p)$ ; EVI) $=1+SI(G_{4}^{o}(R^{8});M^{+}(p))$

$=1\pm 2$ by 4.5 (actually, 4. $11c$ applies to show this $SI=3$ ) and SI( $M^{+}(q)$ ; EVI) $=1+$
$SI(G_{2}(C^{6});M^{+}(q))+SI$( $ T\cdot T\cdot$ AII(3); $M^{+}(q)$) $=1+SI(G_{2}(C^{\text{\’{o}}});M^{+}(q))+0$ by 4.1 (iii).
$ThesubspaceG_{2}(C^{6})1iesinthepolarG_{8}^{o}(R^{12})$ of q. Hence SI$(G_{2}(C^{6});M^{+}(q))=\pm 3by$

$4.1b(5)$ . Therefore $7=\tau(EVI)=(1\pm 2)+(1\pm 3)$ ; the question of the $signs\pm(or$ the
orientations) is resolved. (Let us add that, conceming $S^{2}$ in $S^{2}$ . DIII(6), its homology
class $[S^{2}]=0inH_{2}(EVI, R)$ but $[S^{2}]\neq 0inH_{2}(EVI, Z_{2}).)$ $\square $

4.23. SI( $G_{4}(C^{8})^{Q}$ ; EVI) $=7$ .

PROOF. Since $F$( $s_{V}$ , EVI) $=G_{2}(C^{8})\coprod G_{4}(C^{8})^{Q}$ , we have the self-intersection $=$

$\tau(EVI)$ by 1.3 and 4. $1b$ . $\square $

4.24. SI( $S^{2}$ . EVII; EIX) $=1+3=4$ .

PROOF. $S^{2}$ . EVII is a polar together with EVI in EIX. Hence $8=\tau(EIX)=$

$\tau G_{4}^{o}(R^{8})+\tau SI$( $ S^{2}\cdot$ EVII; EIX) by 4.14. One knows $\tau G_{4}^{o}(R^{8})=4$ . $\square $

Note $[S^{2}]\neq 0$ in $H_{2}(EIX, Z_{2})$ .

4.25. SI(DIII(8) ; EIX) $=8$ .

PROOF. DIII $($8 $)^{\%}\coprod G_{4}^{o}(R^{16})$ is the fixed point set of an inner involution of EIX.
Since $G_{4}^{o}(R^{16})$ has a lower dimension, one has $8=\tau(EIX)=\tau SI$($DIII(8)^{\%}$ ; EIX); also
$2dimDIII(8)^{\%}=dimEIX$ . $\square $

In the diagrams below, the arrows mean monomorphisms. The lower indices in
parentheses as in $M_{\langle s)}$ indicate the signature $\tau M$ . The number attached to each
monomorphism $N\rightarrow M$ denotes $\tau(SI(N;M))$ .
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$ S^{8}=G_{8}^{o}(R^{9})\rightarrow$ $G_{8}^{o}(R^{10})-$ $G_{8}^{o}(R^{12})$ – $G_{8}(R^{16})^{ff}$

$\downarrow 1$

2
$\downarrow 1$

2
$\downarrow 3$

2
$\downarrow 7$

$FII_{\langle 1)}\rightarrow^{3}$

$EIII_{\langle 3)}|2$
$\rightarrow^{3}$

$EVI_{\langle 7)}|4$
$\rightarrow^{3}$

$EVIII_{\langle 7)}\uparrow 0$

DIII(5) $\rightarrow S^{2}\cdot DIII(6)_{(0)}0\rightarrow^{0}DIII(8)_{\langle 0)}^{o}$

$FII_{\{1)}\uparrow 1$

$\rightarrow^{3}$
$EIII_{\langle 3)}\uparrow 3$ $\overline{3}EVIII_{(7)}|3$

$G_{1}(H^{3})_{(1)}\rightarrow^{3}G_{2}(C^{6})_{3)}\rightarrow^{\rightarrow 33}G_{4}^{o}(R^{12})_{(6)}EVI_{\langle 7)}\uparrow 3\overline{3}EVI_{\langle 7)}$

H-K\"ahler

$G_{1}(H^{3})_{\langle 1)}\downarrow 0$ 3 $G_{2}(c_{1^{0}}^{6})_{(3)}$
$\rightarrow^{3}$

$c_{4(R^{12})_{(6)}}^{0_{I^{3}}}$

$\rightarrow^{3}$

$EVI_{\langle 7)}\downarrow 4$

H-K\"ahler

$FI_{\langle 0)}\uparrow 0$

$\rightarrow^{4}$
$EII_{\langle 4)}\uparrow 4$

$\rightarrow^{4}$
$EVI_{\langle 7)}\uparrow 4$

$\rightarrow^{4}$
$EIX_{\langle 8)}|4$

H-K\"ahler

$S^{2}\cdot CI(3)_{\langle 0)}\rightarrow S^{2}\cdot G_{3}(C^{6})_{\langle 0)}S^{2}\cdot DIII(6)_{(0)}0\overline{0}\rightarrow^{0}S^{2}\cdot EVII_{\langle 0)}$ C-spaces

REMARK. Let $(N, M)$ be the pair (FI, EII), (EII, EVI) or (EVI, EIX). Then
$\tau(SI(N;M))=\sum_{p}\tau(SI(N^{+}(p);M^{+}(p)))$ summed up for the polars of $0$ (including $\{0\}$ ).

$c_{4(R^{9})_{\langle 0)}}^{0_{I^{0}}}\rightarrow^{2}$ $c_{4(R^{10})_{(4)}}^{0_{I^{2}}}$
$\rightarrow^{2}$

$c_{4(R^{12})_{(6)}}^{0_{I^{3}}}$
$\overline{2}$

$c_{4(R^{16})_{(8)}}^{0_{1^{0}}}$

H-K\"ahler

$FI_{(0)}$ $\rightarrow$ $EII_{(4)}$ $\rightarrow$ $EVI_{\langle 7)}$ $\rightarrow$ $EIX_{(8)}$ H-K\"ahler
4

$\uparrow 2$

4
$\uparrow 4$

4
$\uparrow 8$

DIII $($5 $)_{\langle O)}$

$\overline{0}\overline{0}S^{2}\cdot DIII(6)_{\langle O)}$ DIII(8) C-spaces

5. An application.

5.1 PROPOSITION. There exists a harmonic 8-form $\omega\in H^{8}(EVIII)$ on EVIII such
that its pullbacks by the monomorphisms $S^{8}\rightarrow FII\rightarrow EIII\rightarrow EVI\rightarrow EVIII$ induce $\omega$ to a
harmonicform (denotedby $\omega$) on each ofthese spaces, $M$ , whose $exteriorpower\wedge^{m}\omega=\omega^{m}$ ,
$8m=\dim M$, does not vanish. Naturally, every power $\wedge^{k}\omega$ induced on $M$ is harmonic
(hence invariant under $G=I(M)_{\langle 1)}$).

PROOF. Each space $M^{\prime}$ in the sequence $\cdots$ $\rightarrow M^{\prime}\rightarrow M\rightarrow has$ nonzero self- inter-
section in the next ambient space $M$ , dim $M=2\dim M^{\prime};$ SI( $S^{8}$ ; FII) $=1$ , and SI$(M^{\prime} ; M)$

$=3$ for the other $M^{\prime}$ by 4.21. Hence there is a harmonic 8-form $\omega_{1}\in H^{8}(FII)$ such that
$\omega_{1}\wedge\omega_{1}\neq 0$ and its induced form is not zero on $S^{8}$ . $\omega_{1}$ extends to a harmonic form
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$\omega_{2}$ on EIII with $\omega_{2}\wedge\omega_{2}\neq 0$ , and so forth. Eventually $\omega_{1}$ extends to the desired form
$\omega$ on EVIII $(with\wedge^{16}\omega\neq 0)$ . $\square $

5.2 PROBLEM. $M^{\prime}$ probably has the smallest volume among the submanifolds ir
the homology class $[M^{\prime}]$ , as M. Berger proved in the case of $(M^{\prime}, M)=$ ( $S^{8}$ , FII).

5.3 DEFINITION. A regular triplet in $M$ is a set $\{0, x, y\}$ of three points of the
connected symmetric space which satisfies $s_{o}\circ s_{x}\circ s_{y}=1_{M}$ .

5. $3a$ REMARK. One sees $s_{o},$ $s_{x}$ and $s_{y}$ act on $\{0, x, y\}$ as the identity, since the poin)

symmetries $s_{o},$
$\cdots$ are automorphisms, 1.8. If $M$ is one of the four projective planes

then a regular triplet exists and is unique up to congruence by $\#_{2}M=3$ (See 0. $2b$). $A$

regular triplet is a sort of regular orthogonal triangle.

5.4 PROPOSITION. Let $M^{\prime}\rightarrow M$ be a part of $ the\cdot monomorphismsFII\rightarrow EIII\rightarrow EVI\rightarrow$

EVIII. Then the intersection $M^{\prime}\cap bM^{\prime}$ of $M^{\prime}$ with an arbitrary congruent space, $b\in G$

contains a regular triplet.

5. $4a$ REMARK. This is an easy consequence of 4.21; a detailed proof will be giver
in a forthcoming paper. Let us add that the linear isotropy representation of thost
spaces $S^{8},$ $FII,$ $\cdots$ , EVIII are spinor (or half-spinor). We want to understand ’

Clifford-K\"ahler’’ structures generalizing the complex and the quatemionic K\"ahle]

structures; for instance, some constant multiple of $\omega$ in 5.1 might deserve the name $0$

the fundamental form.
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