Токуо Ј. Матн. Vol. 22, No. 1, 1999

On *p* and *q*-Additive Functions

Yoshihisa UCHIDA

Keio University (Communicated by Y. Maeda)

1. Introduction.

Let q be an integer greater than 1. Let a(n) be a complex-valued arithmetical function. a(n) is said to be q-additive if

$$a(n) = \sum_{i \ge 0} a(b_i q^i)$$

for any positive integer $n = \sum_{i \ge 0} b_i q^i$ with $b_i \in \{0, 1, \dots, q-1\}$, and a(0) = 0. It follows from the definition that a(n) is q-additive if and only if

$$a(nq^{k}+r) = a(nq^{k}) + a(r)$$

for any integer $n \ge 0$ and $k \ge 0$ with $0 \le r < q^k$. a(n) is said to be *q*-multiplicative if

$$a(n) = \prod_{i \ge 0} a(b_i q^i)$$

for any positive integer n as above, and a(0)=1. a(n) is a q-multiplicative function if and only if

 $a(nq^{k}+r) = a(nq^{k})a(r)$

for any $n \ge 0$ and $k \ge 0$ with $0 \le r < q^k$. If q-additive or q-multiplicative function a(n) satisfies

$$a(bq^{i}) = a(b) \qquad (b \in \{0, 1, \cdots, q-1\}, i \ge 0),$$
(1)

then a(n) is said to be strongly q-additive or strongly q-multiplicative, respectively. We say a(n) is p and q-additive if it is p-additive and also q-additive. Similarly, a p and q-multiplicative function is defined. The notion of q-additive functions and qmultiplicative functions were introduced by Gel'fond [2] and Delange [1] respectively and has been investigated by many authors (eg. [3], [4], [5]).

If a(n) is a q-additive or q-multiplicative function, a(n) is q¹-additive or q¹-

Received May 30, 1997

multiplicative for any positive integer *l*.

Recently, Toshimitsu [8] proved that any strongly p and q-additive functions is identically zero, if log p/log q is irrational. He also obtained a similar result for strongly p and q-multiplicative functions (see Corollary 1 and 2 below). His proofs based on the deep results in the transcendence theory of Mahler functions (cf. Nishioka [6], [7]). Elementary proofs of these results are given in [9]. In this paper, we determine explicitly the form of p and q-additive or multiplicative functions without the 'strongly' condition (1).

THEOREM 1. Let p and q be integers greater than 1 such that $\log p/\log q$ is irrational. Let a(n) be a p and q-additive function. Then there exist positive integers l, m, and $g = g.c.d.(p^l, q^m)$ such that a(ng) = na(g) for each $n \ge 1$. If g is greater than 1, then a(n) is g-additive.

COROLLARY 1 (Toshimitsu [8; Theorem 3], [9]). Let p and q be as in Theorem 1. Let a(n) be a strongly p and q-additive function. Then a(n)=0 $(n \ge 0)$.

THEOREM 2. Let p and q be integers greater than 1 such that logp/logq is irrational. Let a(n) be a p and q-multiplicative function. If p and q are relatively prime, then $a(n)=a(1)^n (n \ge 1)$ or there exists a positive integer l such that $a(np^l)=0 (n \ge 1)$. If p and q are not relatively prime, then there exist positive integers l, m, and $g=g.c.d.(p^l, q^m)$ such that $a(ng)=a(g)^n$ for each $n\ge 1$ and a(n) is g-multiplicative.

COROLLARY 2 (Toshimitsu [8; Theorem 4], [9]). Let p and q be as in Theorem 2. Let a(n) be a strongly p and q-multiplicative function. Then a(n)=0 $(n \ge 1)$ or $a(n)=\gamma^n$ $(n\ge 1)$, where $\gamma^{p-1}=\gamma^{q-1}=1$.

PROOF OF COROLLARY 1. Let g, l, and m be as in Theorem 1. Since a(n) is strongly p-additive, we have by Theorem 1, a(g) = a(pg) = pa(g). So a(g) = 0, noting that $p \ge 2$. Hence we get by Theorem 1 and strongly p-additivity,

$$a(n) = a(np^{l}) = a\left(\frac{np^{l}}{g}g\right) = \frac{np^{l}}{g}a(g) = 0 \qquad (n \ge 0) \ .$$

PROOF OF COROLLARY 2. Assume that p and q are relatively prime. Since a(n) is strongly p-multiplicative, we have $a(n) = a(1)^n$ $(n \ge 1)$ by Theorem 2. Let p and q are not relatively prime. Let g, l, and m be as in Theorem 2. We write $p^l = p_1 g$. Since a(n) is strongly p-multiplicative, we have $a(1) = a(p^l) = a(p_1g) = a(g)^{p_1}$, so that $a(n) = a(np^l) = a(g)^{np_1} = a(1)^n$ $(n \ge 1)$. In any case, we get $a(n) = a(1)^n$ $(n \ge 1)$. In particular,

$$a(1) = a(p) = a(1)^{p}$$
, $a(1) = a(q) = a(1)^{q}$

Hence we get $a(1)^{p-1} = a(1)^{q-1} = 1$ if $a(1) \neq 0$.

2. A lemma.

In this section, we shall prove the key lemma for the proof of Theorems 1 and 2. Let p and q be as in Theorem 1.

LEMMA 1. Let L be an infinite set of positive integers and m_0 be a positive integer. Then there exist integers $l \in L$ and $m \ge m_0$ satisfying the following two conditions;

(i) $p^l > g$ and $q^m > g$, where $g = g.c.d.(p^l, q^m)$,

(ii) $bp^h \neq cq^k$ for any integers b, c, h, and k with $1 \leq b \leq p-1$, $1 \leq c \leq q-1$, $h \geq l$, and $k \geq m$.

PROOF. First step. We show that there exists a sequence $\{(l_n, m_n)\}_{n \ge 0}$ with $l_n \in L$, $l_0 < l_1 < \cdots$, and $m_n \ge m_0$ such that (i) holds for any $l = l_n$ and $m = m_n$ ($n \ge 0$).

For any $l \in L$, let $\mu(l)$ denote the smallest integer $m \ge m_0$ such that $p^l < q^m$. Let

$$p = p_1^{e_1} \cdots p_s^{e_s}, \quad q = q_1^{f_1} \cdots q_t^{f_t}$$

be the factorization of p and q into distinct primes, where $e_1, \dots, e_s, f_1, \dots, f_t$ are positive integers.

Case 1. Let $\{p_1, \dots, p_s\} \neq \{q_1, \dots, q_l\}$. If $p_i \notin \{q_1, \dots, q_l\}$ for some *i*, then $p^l \nmid q^{\mu(l)}$ for any $l \in L$. So we can choose $\{l_0, l_1, \dots\} = L$ and $m_n = \mu(l_n)$ $(n \ge 0)$. Otherwise, we have $q_j \notin \{p_1, \dots, p_s\}$ for some *j*. Let $l \in L$ be an integer such that $\mu(l) > m_0$. Since $\log p/\log q$ is irrational, we get $q^{\mu(l)-1} < p^l$, so that $q^{\mu(l)-1} \nmid p^l$. Then we choose $\{l_0, l_1, \dots\} = \{l \in L \mid \mu(l) > m_0\}$ and $m_n = \mu(l_n) - 1$ $(n \ge 0)$.

Case 2. Let $\{p_1, \dots, p_s\} = \{q_1, \dots, q_t\}$. We may put $q_i = p_i$ $(1 \le i \le s = t)$. We show that

$$p^{l} \not\mid q^{\mu(l)}$$
 or $q^{\mu(l)-1} \not\mid p^{l}$ for infinitely many $l \in L$. (2)

Assume to the contrary that there exists $l_0 \in L$ such that $p^l | q^{\mu(l)}$ and $q^{\mu(l)-1} | p^l$ for any $l_0 \leq l \in L$. Then we have

 $le_i \le \mu(l)f_i$, $(\mu(l) - 1)f_i \le le_i$ $(1 \le i \le s)$

for any *l* with $l_0 \leq l \in L$, and so

$$\frac{\mu(l) - 1}{l} \le \frac{e_i}{f_i} \le \frac{\mu(l)}{l} \qquad (1 \le i \le s, \, l_0 \le l \in L) \,. \tag{3}$$

Let $\gamma = \log_p q$. Since $p^l < q^{\mu(l)}$, we get $l < \mu(l) \log_p q = \mu(l)\gamma$ for any $l \in L$. We define the sequence $\{l_n\}_{n\geq 0}$ inductively as in the following. Let $n\geq 1$. Suppose that l_0, \dots, l_{n-1} are defined. Noting that $\mu(l_{n-1})\gamma/l_{n-1} > 1$. We can choose $l_{n-1} < l_n \in L$ and $m > m_0$ such that

$$l_n < m\gamma < \frac{\mu(l_{n-1})}{l_{n-1}} \gamma l_n \, .$$

Since

$$p^{l_n} < p^{m_{\gamma}} = q^m < q^{\mu(l_{n-1})l_n/l_{n-1}},$$

we get

$$\mu(l_n) \leq m < \frac{\mu(l_{n-1})}{l_{n-1}} l_n$$

and so

$$0 < \frac{\mu(l_n)}{l_n} < \frac{\mu(l_{n-1})}{l_{n-1}} \qquad (n \ge 1) \; .$$

Then the sequence $\{\mu(l_n)/l_n\}_{n\geq 0}$ converges to the limit $\alpha = \lim_{n \to \infty} \mu(l_n)/l_n$. It follows from (3) that $\alpha = e_i/f_i$ for any *i*, and so $e_i f_1 = e_1 f_i$ for any *i* $(1 \le i \le s)$. This contradicts the irrationality of $\log p/\log q$, and (2) is proved.

Now by (2), we can choose an infinite subset $\{l_0, l_1, \dots\}$ of L such that

$$p^{l_n} \not\mid q^{\mu(l_n)}$$
 or $q^{\mu(l_n)-1} \not\mid p^{l_n}$ $(n \ge 0)$.

We put $m_n = \mu(l_n)$ if $p^{l_n} \nmid q^{\mu(l_n)}$ and $m_n = \mu(l_n) - 1$ if $q^{\mu(l_n)-1} \nmid p^{l_n}$. Then $l = l_n$ and $m = m_n$ satisfy the condition (i).

Second step. Let $\{(l_n, m_n)\}_{n\geq 0}$ be the sequence constructed in the first step. It remains to show that there exists an integer $n\geq 0$ such that (ii) holds for $l=l_n$ and $m=m_n$. We assume, to the contrary, that for any integer $n\geq 0$, there exist integers b_n , c_n , h_n , and k_n with $1\leq b_n\leq p-1$, $1\leq c_n\leq q-1$, $h_n\geq l_n$, and $k_n\geq m_n$ such that $b_np^{h_n}=c_nq^{k_n}$. Since $\{b_n\}_{n\geq 0}$, $\{c_n\}_{n\geq 0}$ are bounded, there exist integers n_1 , n_2 such that

$$b_{n_1} = b_{n_2}, \quad c_{n_1} = c_{n_2}, \quad h_{n_1} < h_{n_2}.$$

Then we have

$$p^{h_{n_2}-h_{n_1}} = \frac{b_{n_2}p^{h_{n_2}}}{b_{n_1}p^{h_{n_1}}} = \frac{c_{n_2}q^{k_{n_2}}}{c_{n_1}q^{k_{n_1}}} = q^{k_{n_2}-k_{n_1}}$$

This contradicts the irrationality of log p/log q, and the lemma is proved.

3. Some formulas for p and q-additive functions.

Let p, q and a(n) be as in Theorem 1. In this section, we may assume without loss of generality that p < q and write

$$q = dp + r$$
, $r \in \{0, 1, \cdots, p-1\}$. (4)

In the following Lemmas 2-7, we shall prove some formulas for p and q-additive functions which are necessary for the proof of Theorem 1.

LEMMA 2. We have

$$a(q) = a(dp) + a(r) , \qquad (5)$$

$$a((d+1)p) = a(dp) + a(p).$$
(6)

PROOF. (5) is obvious. We prove only (6). Since a(n) is p and q-additive, we have by (4)

$$a(q+p) = a((d+1)p+r) = a((d+1)p) + a(r),$$

and so by (5)

$$a((d+1)p) = a(q+p) - a(r)$$

= $a(q) + a(p) - a(r) = a(dp) + a(p)$.

LEMMA 3. Let $f (\leq p-1)$, h, and k be nonnegative integers such that $0 \leq f + hp - kr < p$. Then

$$a(f+hp-kr) = a(f) + ha(p) - ka(r).$$

PROOF. By induction on h+k. This is true if h+k=0. Let h+k>0 and suppose that a(f+h'p-k'r)=a(f)+h'a(p)-k'a(r) for any nonnegative integers h', k' with h'+k'< h+k and $0 \le f+h'p-k'r < p$. Since $0 \le f+hp-kr < p$, we have

$$r \le f + hp - (k-1)r < p+r$$

Case 1. Assume first that f, h, k satisfy $p \le f + hp - (k-1)r < p+r$. Then we have $0 \le f + (h-1)p - (k-1)r < r$, and so

$$a(q+f+hp-kr) = a((d+1)p+f+(h-1)p-(k-1)r),$$

using (4). Here we note that $h \ge 1$ and $k \ge 1$. So we have by p and q-additivity

$$a(q) + a(f + hp - kr) = a((d + 1)p) + a(f + (h - 1)p - (k - 1)r)$$

= $a(dp) + a(p) + a(f) + (h - 1)a(p) - (k - 1)a(r)$
= $a(q) + a(f) + ha(p) - ka(r)$

by (5), (6), and the induction hypothesis. Therefore we obtain

$$a(f+hp-kr) = a(f) + ha(p) - ka(r) .$$

Case 2. Let $r \le f + hp - (k-1)r < p$. Then we have

$$a(q+f+hp-kr) = a(dp+f+hp-(k-1)r)$$

= $a(dp) + a(f+hp-(k-1)r)$
= $a(q) + a(f) + ha(p) - ka(r)$

by (5), $k \ge 1$, and the induction hypothesis. Since a(q+f+hp-kr) = a(q) + a(f+hp-kr),

we get

$$a(f+hp-kr)=a(f)+ha(p)-ka(r).$$

LEMMA 4. If $r \neq 0$, then a(np) = na(p) $(0 \le n \le d)$.

PROOF. This is true if n=0. Let $1 \le n \le d$. We note that q > np, since $r \ne 0$. Then we have by p and q-additivity

$$a(q) + a(np) = a(q+np) = a((d+n)p+r) = a((d+n)p) + a(r);$$

namely

$$a(np) = a((d+n)p) - a(q) + a(r) .$$

By (4), Lemma 3, and $r \neq 0$, we have

$$a((d+n)p) = a(dp+r+(n-1)p+p-r)$$

= $a(q) + a((n-1)p) + a(p-r)$
= $a((n-1)p) + a(q) + a(p) - a(r)$.

Hence we get

$$a(np) = a((n-1)p) + a(p) = \cdots = na(p)$$

LEMMA 5. Assume that $r \neq 0$. Let $f(\leq p-1)$, h, and k be nonnegative integers such that $0 \leq f + hq - kp < p$. Then

$$a(f+hq-kp) = a(f) + ha(q) - ka(p).$$

PROOF. By induction on h+k. This is true if h+k=0. Let h+k>0 and suppose that a(f+h'q-k'p)=a(f)+h'a(q)-k'a(p) for any nonnegative integers h', k' such that h'+k'< h+k and $0 \le f+h'q-k'p < p$. We have to show that

$$a(f+hq-kp) = a(f) + ha(q) - ka(p).$$
⁽⁷⁾

Case 1. Let $0 \le f + hq - kp < r$. Since q = dp + r, we have $h \ge 1$, $k \ge d + 1$, and

$$(d+1)p \le f + hq - (k - (d+1))p < (d+1)p + r$$

and so

$$p-r \le f+(h-1)q-(k-(d+1))p < p$$
.

Hence we get

$$a((d+1)p+f+hq-kp) = a(q+f+(h-1)q-(k-(d+1))p).$$

Since a(n) is p and q-additive, we have by the induction hypothesis

$$a((d+1)p) + a(f+hq-kp) = a(q) + a(f+(h-1)q - (k-(d+1))p)$$

$$= a(q) + a(f) + (h-1)a(q) - (k - (d+1))a(p)$$

= a(f) + ha(q) - ka(p) + da(p) + a(p)

using Lemma 4 and (6). Therefore we obtain (7).

Case 2. Let $r \le f + hq - kp < p$. Since $h \ge 1$, $k \ge d$ and

$$0 \le f + (h-1)q - (k-d)p < p-r$$
,

we have

$$a(dp+f+hq-kp) = a(q+f+(h-1)q-(k-d)p)$$

= $a(q) + a(f+(h-1)q-(k-d)p)$
= $a(f) + ha(q) - ka(p) + da(p)$

by the induction hypothesis. Using Lemma 4, we obtain (7).

LEMMA 6. Assume that $r \neq 0$. Let n be a positive integer such that a(hp) = ha(p) for any $h(0 \le h \le n-1)$. Let k be a nonnegative integer such that k < np/q. Then a(kq) = ka(q).

PROOF. Let h be a nonnegative integer such that $0 \le kq - hp < p$. Since $0 \le kq - hp$, we have $h \le kq/p$. Noting that k < np/q, we get h < n. Then we have by Lemma 5,

$$a(kq) = a(hp) + a(kq - hp) = a(hp) + ka(q) - ha(p)$$

Hence we obtain a(kq) = ka(q) since h < n.

LEMMA 7. Assume that $r \neq 0$ and $bp^h \neq cq^k$ for any integers b, c, h, and k with $1 \leq b \leq p-1, 1 \leq c \leq q-1, h \geq 1$, and $k \geq 1$. Then

$$a(np) = na(p)$$
, $a(nq) = na(q)$ $(n \ge 1)$.

PROOF. We show only the first formula

$$a(np) = na(p) \qquad (n \ge 1), \tag{8}$$

since the second formula follows from the first and Lemma 6. The proof will be carried on by induction on n. (8) holds for any $n \le d$ by Lemma 4. Let $n \ge d+1$ and assume that

$$a(hp) = ha(p)$$
 ($0 \le h \le n-1$). (9)

Then we have by Lemma 6

$$a(kq) = ka(q) \qquad (0 \le k < np/q) . \tag{10}$$

We have to prove that a(np) = na(p).

Case 1. Let $q \mid np$. We expand np to base p and q;

$$np = \sum_{i=s_p}^{t_p} b_i p^i \qquad (b_i \in \{0, 1, \cdots, p-1\}, b_{s_p} \neq 0, b_{t_p} \neq 0),$$

$$=\sum_{i=s_q}^{i_q} c_i q^i \qquad (c_i \in \{0, 1, \cdots, q-1\}, c_{s_q} \neq 0, c_{t_q} \neq 0),$$

so that $s_p \ge 1$ and $s_q \ge 1$. By the assumption of this lemma, we have $s_p \ne t_p$ or $s_q \ne t_q$. We assume first that $s_p \ne t_p$. Noting that $b_i p^{i-1} < n$ $(s_p \le i \le t_p)$, we have by (9) $a(b_i p^i) = b_i p^{i-1} a(p)$. Using this we get

$$a(np) = \sum_{i=s_p}^{t_p} a(b_i p^i) = \sum_{i=s_p}^{t_p} b_i p^{i-1} a(p) = na(p)$$

Next we consider the case $s_q \neq t_q$. Since $c_i q^{i-1} < np/q$ ($s_q \leq i \leq t_q$), we have by (10) $a(c_i q^i) = c_i q^{i-1} a(q)$. Hence we get

$$a(np) = \sum_{i=s_q}^{t_q} a(c_i q^i) = \sum_{i=s_q}^{t_q} c_i q^{i-1} a(q) = \frac{np}{q} a(q)$$

Noting that $q \mid np$, we have by Lemma 5

$$0 = a\left(\frac{np}{q}q - np\right) = \frac{np}{q}a(q) - na(p),$$

and so

$$a(np) = \frac{np}{q} a(q) = na(p) .$$

Case 2. Let $q \nmid np$. Let h and k be nonnegative integers such that $0 \le np - kq < q$ and $0 \le np - kq - hp < p$. We note that $k \ge 1$, since $np \ge (d+1)p > q > np - kq$, and so $0 \le h \le n-1$, since $np - hp > np - kq - hp \ge 0$. Also k < np/q, since $q \nmid np$ implies 0 < np - kq. Hence we have by p and q-additivity, Lemma 3, (9) and (10),

$$a(np) = a(kq + (np - kq))$$

= $a(kq) + a(hp + (np - kq - hp))$
= $a(kq) + a(hp) + a((n - dk - h)p - kr)$
= $ka(q) + ha(p) + (n - dk - h)a(p) - ka(r)$
= $na(p) + ka(q) - k(da(p) + a(r))$,

and so using (4) and Lemma 4

$$a(np) = na(p) + ka(q) - k(a(dp) + a(r)) = na(p).$$

In both cases, we obtain a(np) = na(p), and so (8) is proved.

4. Proof of Theorem 1.

PROOF OF THEOREM 1. Let $L = \{1, 2, \dots\}$ and $m_0 = 1$. Then there exist positive

integers l and m satisfying the conditions (i), (ii) in Lemma 1. We may assume that $p^{l} < q^{m}$, since, otherwise, we exchange p, l by q, m, respectively. We write

$$q^{m} = dp^{l} + r \qquad (r \in \{1, 2, \cdots, p^{l} - 1\}).$$
(11)

Note that $r \neq 0$, because of (i). In what follows, we use Lemmas 2–7, with p^{l} and q^{m} in place of p and q, respectively.

We prove the first statement of Theorem 1; namely,

$$a(ng) = na(g)$$
 $(n \ge 1, g = g.c.d.(p^{l}, q^{m})).$ (12)

We put $p^{l}=p_{1}g$, so that $p_{1}\geq 2$ by (i) in Lemma 1. Let h, k be positive integers such that

$$kq^m - hp^l = g . aga{13}$$

We show that

$$a(ng) = na(g)$$
 $(1 \le n \le p_1 - 1)$, (14)

$$a(p^{l}) = a(p_{1}g) = p_{1}a(g)$$
. (15)

Indeed, we have for *n* with $1 \le n \le p_1 - 1$

$$a(ng) = a(knq^{m} - hnp^{l}) = n(ka(q^{m}) - ha(p^{l}))$$

by Lemma 5. In particular, $a(g) = ka(q^m) - ha(p^l)$. Combining these we get (14). Next we show (15). Since $a(p^lq^m) = p^la(q^m)$ and $a(q^mp^l) = q^ma(p^l)$ by Lemma 7, we have by (11)

$$a(q^{m}) = \frac{q^{m}}{p^{l}} a(p^{l}) = da(p^{l}) + \frac{r}{p^{l}} a(p^{l}).$$

On the other hand, we get $a(q^m) = da(p^l) + a(r)$ by (11) and Lemma 4. Comparing the right-hand side, we find

$$\frac{r}{p^l}a(p^l)=a(r)=\frac{r}{g}a(g),$$

noting that g divides r; which yields (15).

Now we prove (12) using (14) and (15). Let *n* be a positive integer. We write $n = sp_1 + t$ with $s \ge 0$ and $0 \le t \le p_1 - 1$. Then we have by *p*-additivity

$$a(ng) = a((sp_1 + t)g) = a(sp' + tg) = a(sp') + a(tg),$$

and so

$$a(ng) = sa(p^{l}) + ta(g) = (sp_{1} + t)a(g) = na(g)$$

using Lemma 7, (14), and (15). Therefore, (12) is proved.

It remains to show that a(n) is g-additive provided $g \ge 2$. Let $n \ge 0$ be an integer. We write

$$n = sg + t \qquad (s \ge 0, t \in \{0, 1, \dots, g-1\}),$$

$$s = s_1 p_1 + s_2 \qquad (s_1 \ge 0, s_2 \in \{0, 1, \dots, p_1 - 1\}).$$

Then we have

$$a(n) = a((s_1p_1 + s_2)g + t) = a(s_1p^l + s_2g + t) = a(s_1p^l) + a(s_2g + t),$$

and so by (15)

$$a(n) = s_1 p_1 a(g) + a(s_2 g + t)$$

Since $0 \le s_2 g + t = k s_2 q^m - h s_2 p^l + t < p^l$ by (13), we have by Lemma 5

$$a(s_2g+t) = a(ks_2q^m - hs_2p^l + t) = ks_2a(q^m) - hs_2a(p^l) + a(t)$$

Hence we get by (12), (13)

$$a(s_2g+t) = s_2\left(\frac{kq^m}{g} - \frac{hp^l}{g}\right)a(g) + a(t) = s_2a(g) + a(t),$$

and so $a(n) = (s_1p_1 + s_2)a(g) + a(t) = sa(g) + a(t)$. Therefore a(n) is g-additive, and the proof is completed.

5. Additional conditions to Lemma 1 in multiplicative case.

In order to apply Lemma 1 for p and q-multiplicative functions, we need additional conditions that $a(p^{l}) \neq 0$ and $a(q^{m}) \neq 0$, which is insured by Lemma 9 below. Let p, q, and a(n) be as in Theorem 2.

LEMMA 8. Let
$$b (1 \le b \le p-1)$$
 and $l \ge 1$ be integers such that $a(bp^{l}) \ne 0$ and

$$bp^{l} = c_{t}q^{t} + u \qquad (c_{t} \ge b, \ 1 \le u < q^{t}).$$
 (16)

Then $a(q^{t}) \neq 0$.

PROOF. We expand u to base q

$$u = \sum_{i=0}^{h} c_i q^i \qquad (c_i \in \{0, 1, \cdots, q-1\}, c_h \neq 0), \qquad (17)$$

so that $0 \le h \le t-1$. Since $a(bp^{l}) \ne 0$, $c_{t} \ge b$, and $u \ge 1$, we have

$$a(c_i q^i) \neq 0 \qquad (0 \le i \le h, i = t), \tag{18}$$

$$q^{t} < p^{l} . \tag{19}$$

Let f be a positive integer such that $(f-1)c_h .$

We show first that

$$a((f-1)c_hq^h) \neq 0$$
. (20)

It is enough to show that $a(jc_hq^h) \neq 0$ for all $1 \leq j \leq f-1$ by induction on j. This holds for j = 1 by (18). Suppose that $a((j-1)c_hq^h) \neq 0$ for some $2 \leq j \leq f-1$. We have by (16), (17)

$$a(bp^{l} + (j-1)c_{h}q^{h}) = a\left(\sum_{i=s}^{h-1} c_{i}q^{i} + jc_{h}q^{h} + c_{t}q^{t}\right)$$

and so by (19)

$$a(bp^{l})a((j-1)c_{h}q^{h}) = \left(\prod_{i=0}^{h-1} a(c_{i}q^{i})\right)a(jc_{h}q^{h})a(c_{i}q^{i}),$$

which together with (18) leads to $a(jc_hq^h) \neq 0$, and hence (20) follows.

We put

$$k_{c,j} = (f-1)c_h q^h + (q-1)q^{h+1} + \dots + (q-1)q^{j-1} + cq^j$$

where c and j are integers with $0 \le c \le q-1$ and $h+1 \le j \le t$. We show that if h < t-1,

$$a(k_{q-1,t-1}) \neq 0$$
. (21)

It is enough to show that

 $a(k_{c,j}) \neq 0 \qquad (0 \le c \le q - 1, h + 1 \le j \le t - 1)$ (22)

by induction on c and j. By (20), we have $a(k_{0,h+1}) \neq 0$. Assume that $a(k_{c,j}) \neq 0$ for some $0 \le c \le q-2$ and $h+1 \le j \le t-1$. Then it follows from (16), (17), and (19) that

$$a(bp^{l})a(k_{c,j}) = a(bp^{l} + k_{c,j}) = \left(\prod_{i=0}^{h-1} a(c_{i}q^{i})\right)a(nq^{h})a((c+1)q^{j})a(c_{i}q^{i})$$

where $n = fc_h - q$. Hence we have $a((c+1)q^j) \neq 0$, so that $a(k_{c+1,j}) \neq 0$. Noting that $k_{q-1,j} = k_{0,j+1}$, we obtain (22), and so (21).

It follows from (16), (17), and (19) that

$$a(bp^{l})a(k_{0,t}) = a(bp^{l} + k_{0,t}) = \left(\prod_{i=0}^{h-1} a(c_{i}q^{i})\right)a(nq^{h})a((c_{t}+1)q^{t})$$

Noting that $k_{0,t} = (f-1)c_h q^h$ if h=t-1, $=k_{q-1,t-1}$ if h < t-1 and using (20) or (21), respectively, we have

$$a((c_t+1)q^t) \neq 0$$
. (23)

It follows from (16) and (19) that

$$a(bp^{l})a(q^{t}) = a(bp^{l} + q^{t}) = a((c_{t} + 1)q^{t})a(u)$$
.

This together with (23) leads to $a(q^t) \neq 0$.

REMARK. Exchanging p by q, in Lemma 8, we have the following: Let m be a positive integer such that $a(q^m) \neq 0$ and

$$q^{m} = b_{t}p^{t} + v$$
 $(1 \le b_{t} < p, 1 \le v < p^{t})$.

Then $a(p^t) \neq 0$.

LEMMA 9. If $a(np) \neq 0$ for infinitely many $n \geq 1$, then there exist positive integer l and m satisfying (i) and (ii) in Lemma 1 and (iii) $a(p^{l}) \neq 0$, $a(q^{m}) \neq 0$.

PROOF. Let $a(np) \neq 0$ for infinitely many $n \ge 1$. Then $a(nq) \neq 0$ for infinitely many $n \ge 1$. So we may assume that q > p, since, otherwise, we can exchange p by q.

By Lemma 1, it is enough to show that there exist an infinite set L of positive integers and a positive integer m_0 such that $a(p^l) \neq 0$ and $a(q^m) \neq 0$ for any $l \in L$ and $m \ge m_0$.

Let

$$L = \{h \ge 1 \mid a(p^h) \ne 0\}, \quad M = \{k \ge 1 \mid a(q^k) \ne 0\}$$

We show that both L and M are infinite sets. First we prove that M is infinite. Let h_0 be a positive integer with $p^{h_0} \ge q$. For any $b \ (1 \le b \le p-1)$ and $h \ge h_0$, we can write bp^h as in the following form:

$$bp^{h} = c_{s}q^{s} + u , \qquad (24)$$

where

$$b \le c_s = c_s(b, h) < q^2$$
, $0 \le u = u(b, h) < q^s$, $s = s(b, h) \ge 0$.

Indeed, if the first digit d_k in the q-adic expansion

$$bp^{h} = \sum_{i=0}^{k} d_{i}q^{i}$$
 $(d_{i} \in \{0, 1, \cdots, q-1\}, d_{k} \neq 0)$

is not less than b, we put s=k, $c_s=d_k$, and $u=\sum_{i=0}^{k-1} d_i q^i$; otherwise, we put s=k-1, $c_s=d_kq+d_{k-1}$, and $u=\sum_{i=0}^{k-2} d_i q^i$, noting that $k\ge 1$ since $p^h\ge q$.

Assume that u(b, h) = 0 for infinitely many pairs (b, h). Then there exist integers $b (1 \le b \le p-1)$, h_2 , and $h_3 (h_2 < h_3)$ such that

$$c_{s(b,h_2)}(b,h_2) = c_{s(b,h_3)}(b,h_3)$$
 and $u(b,h_2) = u(b,h_3) = 0$,

since $\{c_s(b, h)\}_{1 \le b \le p-1, h \ge h_0}$ is bounded; so that we have

$$p^{h_3-h_2} = \frac{bp^{h_3}}{bp^{h_2}} = \frac{c_{s(b,h_3)}(b,h_3)q^{s(b,h_3)}}{c_{s(b,h_2)}(b,h_2)q^{s(b,h_2)}} = q^{s(b,h_3)-s(b,h_2)}.$$

This contradicts the irrationality of $\log p / \log q$.

Hence there exists an integer $h_1 \ge h_0$ such that $u(b, h) \ge 1$ for any $1 \le b \le p-1$ and $h \ge h_1$. Also we note that $a(bp^h) \ne 0$ for infinitely many pairs (b, h), since $a(np) \ne 0$ for infinitely many $n \ge 1$. These facts with (24) and Lemma 8 imply that $a(q^s) \ne 0$ for infinitely

many s; and therefore M is an infinite set.

To show that L is infinite, we write

$$q^{k} = b_{t}p^{t} + v \qquad (1 \le b_{t} = b_{t}(k) < p, \ 0 \le v = v(k) < p^{t}, \ t = t(k) \ge 0)$$
(25)

for any $k \ge 1$. In the similar way as above, there exists $k_0 \ge 1$ such that $v(k) \ge 1$ for any $k \ge k_0$. Since M is an infinite set, we get $a(q^k) \ne 0$ for infinitely many $k \ge k_0$. Therefore, L is also an infinite set by (25) and the remark of Lemma 8.

Next we show that $M \supset \{m_0, m_0+1, m_0+2, \cdots\}$ for some integer m_0 . Let $l_0 \in L$ satisfy $l_0 \ge h_1$ and let $m_0 \in M$ satisfy $m_0 \ge k_0$ and $p^{l_0} < q^{m_0}$. We write $\{m \in M \mid m \ge m_0\} = \{m_0, m_1, m_2, \cdots\}$ $(m_0 < m_1 < m_2 < \cdots)$ and put $l_n = [m_n \gamma]$ $(n \ge 1)$, where $\gamma = \log_p q$. We note that $\gamma > 1$ since p < q. Let n be a positive integer. Since $m_n - m_{n-1} \ge 1$, we have

$$1 < m_n \gamma - m_{n-1} \gamma = l_n - l_{n-1} + (m_n \gamma - l_n) - (m_{n-1} \gamma - l_{n-1}),$$

and so $l_n > l_{n-1}$, noting that $0 < m_{n-1}\gamma - l_{n-1}$, $m_n\gamma - l_n < 1$. Assume that $[l_n/\gamma] < m_{n-1}$. Then we get $l_n/\gamma < m_{n-1}$, and so $l_n \le [m_{n-1}\gamma] = l_{n-1}$. It is a contradiction to $l_{n-1} < l_n$. Hence we obtain

$$m_{n-1} \le [l_n/\gamma] < m_n \qquad (n \ge 1),$$
 (26)

noting that $l_n < m_n \gamma < l_n + 1$. Since $k_0 \le m_n \in M$ and $p^{l_n} < p^{m_n \gamma} = q^{m_n} < p^{l_n+1}$, we have $a(p^{l_n}) \ne 0$ by the remark of Lemma 8, and so $l_n \in L$. Since $h_1 \le l_n$ and $q^{[l_n/\gamma]} < q^{l_n/\gamma} = p^{l_n} < q^{[l_n/\gamma]+1}$, we get $a(q^{[l_n/\gamma]}) \ne 0$ by Lemma 8, and so $[l_n/\gamma] \in M$. Then we have $m_{n-1} = [l_n/\gamma]$ by (26). Hence we obtain

$$1 \le m_n - m_{n-1} < m_n - \left(\frac{l_n}{\gamma} - 1\right) < m_n - \left(\frac{m_n \gamma - 1}{\gamma} - 1\right) = 1 + \frac{1}{\gamma},$$

and so $m_n - m_{n-1} = 1$ since $\gamma > 1$, so that $M \supset \{m_0, m_0 + 1, m_0 + 2, \cdots\}$.

Therefore, by Lemma 1, there exist integers $l \in L$ and $m \ge m_0$ satisfying (i), (ii), and (iii), and the proof is completed.

6. Some formulas for p and q-multiplicative functions.

In this section, we assume as we may that p < q and write

$$q = dp + r$$
, $r \in \{0, 1, \dots, p-1\}$.

The following lemmas can be proved by transforming the arguments in Section 3 into q-multiplicative case. So we omit the proofs.

LEMMA 10. If $a(r) \neq 0$, then

$$a(q) = a(dp)a(r)$$
, $a((d+1)p) = a(dp)a(p)$.

LEMMA 11. Assume that $a(q) \neq 0$. Let $f(\leq p-1)$, h and k be nonnegative integers

such that $0 \le f + hp - kr < p$. Then

$$a(f+hp-kr)=\frac{a(f)a(p)^{h}}{a(r)^{k}}.$$

LEMMA 12. If $r \neq 0$ and $a(q) \neq 0$, then $a(np) = a(p)^n$ $(1 \le n \le d)$.

REMARK. By Lemma 10 and 12, if $r \neq 0$ and $a(q) \neq 0$, then $a(p) \neq 0$.

LEMMA 13. Assume that $r \neq 0$ and $a(q) \neq 0$. Let $f(\leq p-1)$, h and k be nonnegative integers such that $0 \leq f + hq - kp < p$. Then

$$a(f+hq-kp) = \frac{a(f)a(q)^{h}}{a(p)^{k}}$$

LEMMA 14. Assume that $r \neq 0$ and $a(q) \neq 0$. Let n be a positive integer such that $a(hp) = a(p)^h$ for any $h \ (0 \le h \le n-1)$. Let k be a nonnegative integer such that k < np/q. Then $a(kq) = a(q)^k$.

LEMMA 15. Assume that $r \neq 0$, $a(q) \neq 0$, and $bp^h \neq cq^k$ for any integers b, c, h, and k with $1 \leq b \leq p-1$, $1 \leq c \leq q-1$, $h \geq 1$, and $k \geq 1$. Then

 $a(np) = a(p)^n, \quad a(nq) = a(q)^n \qquad (n \ge 1).$

7. Proof of Theorem 2.

PROOF OF THEOREM 2. Case 1. Assume first that there exists a positive integer h such that $a(np^h)=0$ for $n \ge 1$. If p and q are relatively prime, then Theorem 2 holds for l=h. Let p and q are not relatively prime. Since $a(np^h)=0$ for $n\ge 1$, we have $a(nq^k)=0$ for some $k\ge 1$ and any $n\ge 1$. Then there exists a positive integer j such that $g.c.d.(p^{jh}, q^{jk})=g.c.d.(p^h, q^k)^j > p^h$, noting that p and q are not relatively prime. Hence we obtain $a(ng)=0=a(g)^n$ for $n\ge 1$, and so a(n) is g-multiplicative, where $g=g.c.d.(p^{jh}, q^{jk})$. Therefore Theorem 2 holds for l=jh and m=jk.

Case 2. Next we assume that $a(np) \neq 0$ for infinitely many $n \ge 1$. By Lemma 9, there exist positive integers l and m satisfying (i), (ii), and (iii). Hence Lemmas 10–15 hold for $p = p^{l}$ and $q = q^{m}$. We put $g = g.c.d.(p^{l}, q^{m})$. In the same way as the proof of Theorem 1, we can prove that $a(ng) = a(g)^{n}$ $(n \ge 1)$ and a(n) is g-multiplicative provided that $g \ge 2$, using Lemmas 10–15 in place of Lemmas 2–7 respectively. The proof is completed.

References

- [1] H. DELANGE, Sur les fonctions q-additives ou q-multiplicatives, Acta Arith. 21 (1972), 285-298.
- [2] A. O. GELFOND, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1967/1968), 259-265.

p- AND *q*-ADDITIVE FUNCTIONS

- [3] P. J. GRABNER, Completely q-multiplicative functions: the Mellin transform approach, Acta Arith. 65 (1993), 85–96.
- [4] I. KATAI, Distribution of q-additive function, Probability Theory and Applications, Math. Appl. 80 (1992), Kluwer.
- [5] J. L. MAUCLAIRE and L. MURATA, On q-additive functions I; II, Proc. Japan Acad. Ser. A 59 (1983), 274–276; 441–444.
- [6] K. NISHIOKA, Algebraic independence by Mahler's method and S-unit equations, Compositio Math.
 92 (1994), 87-110.
- [7] ——, Mahler Functions and Transcendence, Lecture Notes in Math. 1631 (1996), Springer.
- [8] T. TOSHIMITSU, Strongly q-additive functions and algebraic independence, Tokyo J. Math. 21 (1998), 107–113.
- [9] Y. UCHIDA, Elementary proofs of some theorems on strongly q-additive or q-multiplicative functions, Keio Sci. Tech. Rep. 50 (1997), 1–9.

Present Address:

Department of Mathematics, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama, 223–8522 Japan.