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1. Introduction.

Let $q$ be an integer greater than 1. Let $a(n)$ be a complex-valued arithmetical func-
tion. $a(n)$ is said to be q-additive if

$a(n)=\sum_{i\geq 0}a(b_{i}q^{i})$

for any positive integer $n=\sum_{i\geq 0}b_{i}q^{i}$ with $b_{i}\in\{0,1, \cdots, q-1\}$ , and $a(O)=0$ . It follows
from the definition that $a(n)$ is q-additive if and only if

$a(nq^{k}+r)=a(nq^{k})+a(r)$

for any integer $n\geq 0$ and $k\geq 0$ with $0\leq r<q^{k}$ . $a(n)$ is said to be q-multiplicative if

$a(n)=\prod_{i\geq 0}a(b_{i}q^{i})$

for any positive integer $n$ as above, and $a(O)=1$ . $a(n)$ is a q-multiplicative function if
and only if

$a(nq^{k}+r)=a(nq^{k})a(r)$

for any $n\geq 0$ and $k\geq 0$ with $0\leq r<q^{k}$ . If q-additive or q-multiplicative function $a(n)$

satisfies

$a(bq^{i})=a(b)$ $(b\in\{0,1, \cdots, q-1\}, i\geq 0)$ , (1)

then $a(n)$ is said to be strongly q-additive or strongly q-multiplicative, respectively.
We say $a(n)$ is $p$ and q-additive if it is p-additive and also q-additive. Similarly, a $p$

and q-multiplicative function is defined. The notion of q-additive functions and q-
multiplicative functions were introduced by Gel’fond [2] and Delange [1] respectively
and has been investigated by many authors (eg. [3], [4], [5]).

If $a(n)$ is a q-additive or q-multiplicative function, $a(n)$ is $q^{l}$-additive or $q^{l}-$
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multiplicative for any positive integer $l$ .
Recently, Toshimitsu [8] proved that any strongly $p$ and q-additive functions is

identically zero, if log$p/\log q$ is irrational. He also obtained a similar result for
strongly $p$ and q-multiplicative functions (see Corollary 1 and 2 below). His proofs
based on the deep results in the transcendence theory of Mahler functions (cf. Nishioka
[6], [7]). Elementary proofs of these results are given in [9]. In this paper, we determine
explicitly the form of $p$ and q-additive or multiplicative functions without the ‘strongly‘
condition (1).

THEOREM 1. Let $p$ and $q$ be integers greater than 1 such that $\log p/\log q$ is irrational.
Let $a(n)$ be a $p$ and q-additive function. Then there exist positive integers $l,$ $m$ , and
$g=g.c.d.(p^{l}, q^{m})$ such that $a(ng)=na(g)$ for each $n\geq 1$ . If $g$ is greater than 1, then $a(n)$ is
g-additive.

COROLLARY 1 (Toshimitsu [8; Theorem 3], [9]). Let $p$ and $q$ be as in Theorem
1. Let $a(n)$ be a strongly $p$ and q-additive function. Then $a(n)=0(n\geq 0)$ .

THEOREM 2. Let $p$ and $q$ be integers greater than 1 such that $1ogp/\log q$ is irra.
tional. Let $a(n)$ be a $p$ and q-multiplicative function. If $p$ and $q$ are relatively prime, then
$a(n)=a(1)^{n}(n\geq 1)$ or there exists a positive integer 1 such that $a(np^{l})=0(n\geq 1)$ . If$pana$
$q$ are not relatively prime, then there exist positive integers 1, $m$ , and $g=g.c.d.(p^{l},$ $q_{J}^{m\backslash }$

such that $a(ng)=a(g)^{n}$ for each $n\geq 1$ and $a(n)$ is g-multiplicative.

COROLLARY 2 (Toshimitsu [8; Theorem 4], [9]). Let $p$ and $q$ be as in Theorew
2. Let $a(n)$ be a strongly $p$ and q-multiplicative function. Then $a(n)=0(n\geq 1)$ or $a(n)=\gamma^{r}$

$(n\geq 1)$ , where $\gamma^{p-1}=\gamma^{q-1}=1$ .

PROOF OF COROLLARY 1. Let $g,$
$l$, and $m$ be as in Theorem 1. Since $a(n)$ is strongly

p-additive, we have by Theorem 1, $a(g)=a(pg)=pa(g)$ . So $a(g)=0$ , noting that $p\geq 2$

Hence we get by Theorem 1 and strongly p-additivity,

$a(n)=a(np^{\iota})=a(\frac{np^{l}}{g}g)=\frac{np^{l}}{g}a(g)=0$ $(n\geq 0)$ .

PROOF OF COROLLARY 2. Assume that $p$ and $q$ are relatively prime. Since $a(n)$ is
strongly p-multiplicative, we have $a(n)=a(1)^{n}(n\geq 1)$ by Theorem 2. Let $p$ and $q$ are not
relatively prime. Let $g,$

$l$, and $m$ be as in Theorem 2. We write $p^{l}=p_{1}g$ . Since $a(n)$ is
strongly p-multiplicative, we have $a(1)=a(p^{l})=a(p_{1}g)=a(g)^{p_{1}}$ , so that $a(n)=a(np^{l})=$

$a(g)^{np_{1}}=a(1)^{n}(n\geq 1)$ . In any case, we get $a(n)=a(1)^{n}(n\geq 1)$ . In particular,

$a(1)=a(p)=a(1)^{p}$ , $a(1)=a(q)=a(1)^{q}$ .
Hence we get $a(1)^{p-1}=a(1)^{q-1}=1$ if $a(1)\neq 0$ .
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2. A lemma.

In this section, we shall prove the key lemma for the proof of Theorems 1 and 2.
Let $p$ and $q$ be as in Theorem 1.

LEMMA 1. Let $L$ be an infinite set of positive integers and $m_{0}$ be a positive
integer. Then there exist integers $l\in L$ $andm\geq m_{0}$ satisfying thefollowing two conditions;

(i) $p^{l}>g$ and $q^{m}>g$ , where $g=g.c.d.(p^{l}, q^{m})$ ,
(ii) $bp^{h}\neq cq^{k}$ for any integers $b,$ $c,$

$h$ , and $k$ with $1\leq b\leq p-1,1\leq c\leq q-1,$ $h\geq l$,
and $k\geq m$ .

PROOF. First step. We show that there exists a sequence $\{(l_{n}, m_{n})\}_{n\geq 0}$ with $l_{n}\in L$ ,
$ l_{0}<l_{1}<\cdots$ , and $m_{n}\geq m_{0}$ such that (i) holds for any $l=l_{n}$ and $m=m_{n}(n\geq 0)$ .

For any $l\in L$ , let $\mu(l)$ denote the smallest integer $m\geq m_{0}$ such that $p^{\iota}<q^{m}$ . Let

$p=p_{1}^{e_{1}}\cdots p_{s}^{e_{s}}$ , $q=q_{1}^{f_{1}}\cdots q_{t}^{f_{t}}$ ,

be the factorization of $p$ and $q$ into distinct primes, where $e_{1},$ $\cdots,$ $e_{s},$ $f_{1},$ $\cdots,f_{t}$ are
positive integers.

Case 1. Let $\{p_{1}, \cdots,p_{s}\}\neq\{q_{1}, \cdots, q_{t}\}.Ifp_{i}\not\in\{q_{1}, \cdots, q_{t}\}$ for some $i$ , then $p^{l}tq^{\mu(l)}$

for any $l\in L$ . So we can choose $\{l_{0}, l_{1}, \cdots\}=L$ and $m_{n}=\mu(l_{n})(n\geq 0)$ . Otherwise, we
have $q_{j}\not\in\{p_{1}, \cdots, p_{s}\}$ for some $j$. Let $l\in L$ be an integer such that $\mu(l)>m_{o}$ . Since
$\log p/\log q$ is irrational, we get $q^{\mu\langle l)-1}<p^{l}$ , so that $q^{\mu(l)-1}\uparrow p^{l}$ . Then we choose
$\{l_{o}, l_{1}, \cdots\}=\{l\in L|\mu(l)>m_{0}\}$ and $m_{n}=\mu(l_{n})-1(n\geq 0)$ .

Case 2. Let $\{p_{1}, \cdots,p_{s}\}=\{q_{1}, \cdots, q_{t}\}$ . We may put $q_{i}=p_{i}(1\leq i\leq s=t)$ . We show
that

$p^{l}tq^{\mu\langle l)}$ or $q^{\mu(l)-1}tp^{l}$ for infinitely many $l\in L$ . (2)

Assume to the contrary that there exists $l_{0}\in L$ such that $p^{l}|q^{\mu\langle l)}$ and $q^{\mu\langle l)-1}|p^{l}$ for
any $l_{0}\leq l\in L$ . Then we have

$le_{i}\leq\mu(l)f_{i}$ , $(\mu(l)-1)f_{i}\leq le_{i}$ $(1\leq i\leq s)$

for any $l$ with $l_{0}\leq l\in L$ , and so
$\mu(l)-1$ $e_{i}$ $\mu(l)$

$\overline{l}\overline{f_{i}}\overline{l}\leq\leq$

$(1\leq i\leq s, l_{0}\leq l\in L)$ . (3)

Let $\gamma=\log_{p}q$ . Since $p^{l}<q^{\mu(l)}$ , we get $ l<\mu(l)\log_{p}q=\mu(l)\gamma$ for any $l\in L$ . We define the
sequence $\{l_{n}\}_{n\geq 0}$ inductively as in the following. Let $n\geq 1$ . Suppose that $l_{0},$ $\cdots,$ $l_{n-1}$

are defined. Noting that $\mu(l_{n-1})\gamma/l_{n-1}>1$ . We can choose $l_{n-1}<l_{n}\in L$ and $m>m_{0}$ such
that

$l_{n}<m\gamma<\frac{\mu(l_{n-1})}{l_{n-1}}\gamma l_{n}$ .
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Since

$p^{l_{n}}<p^{m\gamma}=q^{m}<q^{\mu\langle 1_{n- 1})l_{n}/l_{n- 1}}$ ,

we get

$\mu(l_{n})\leq m<\frac{\mu(l_{n-1})}{l_{n-1}}l_{n}$ ,

and so

$0<\frac{\mu(l_{n})}{l_{n}}<\frac{\mu(l_{n-1})}{l_{n-1}}$ $(n\geq 1)$ .

Then the sequence $\{\mu(l_{n})/l_{n}\}_{n\geq 0}$ converges to the limit $\alpha=\lim_{n\rightarrow\infty}\mu(l_{n})/l_{n}$ . It follows from
(3) that $\alpha=e_{i}/f_{i}$ for any $i$, and so $e_{i}f_{1}=e_{1}f_{i}$ for any $i(1\leq i\leq s)$ . This contradicts the
irrationality of log$p/\log q$, and (2) is proved.

Now by (2), we can choose an infinite subset $\{l_{0}, l_{1}, \cdots\}$ of $L$ such that

$p^{l_{n}}tq^{\mu\langle l_{n})}$ or $q^{\mu\{l_{n})-1}tp^{l_{n}}$ $(n\geq 0)$ .
We put $m_{n}=\mu(l_{n})$ if $p^{l_{n}}tq^{\mu\langle l_{n})}$ and $m_{n}=\mu(l_{n})-1$ if $q^{\mu\{l_{n})-1}\{^{\prime}p^{l_{n}}$ . Then $l=l_{n}$ and $m=m_{n}$

satisfy the condition (i).
Second step. Let $\{(l_{n}, m_{n})\}_{n\geq 0}$ be the sequence constructed in the first step. It

remains to show that there exists an integer $n\geq 0$ such that (ii) holds for $l=l_{n}$ and
$m=m_{n}$ . We assume, to the contrary, that for any integer $n\geq 0$ , there exist integers $b_{n}$ ,
$c_{n},$

$h_{n}$ , and $k_{n}$ with $1\leq b_{n}\leq p-1,1\leq c_{n}\leq q-1,$ $h_{n}\geq l_{n}$ , and $k_{n}\geq m_{n}$ such that $b_{n}p^{h_{n}}=c_{n}q^{k_{n}}$ .
Since $\{b_{n}\}_{n\geq 0},$ $\{c_{n}\}_{n\geq 0}$ are bounded, there exist integers $n_{1},$ $n_{2}$ such that

$b_{n_{1}}=b_{n_{2}}$ , $c_{n_{1}}=c_{n_{2}}$ , $h_{n_{1}}<h_{n_{2}}$ .

Then we have

$p^{h_{n_{2}}-h_{n_{1}}}=\frac{b_{n_{2}}p^{h_{n_{2}}}}{b_{n_{1}}p^{h_{n_{1}}}}=\frac{c_{n_{2}}q^{k_{n_{2}}}}{c_{n_{1}}q^{k_{n_{1}}}}=q^{k_{n_{2}}-k_{n_{1}}}$ .

This contradicts the irrationality $of\log p/\log q$ , and the lemma is proved.

3. Some formulas for $p$ and q-additive functions.

Let $p,$ $q$ and $a(n)$ be as in Theorem 1. In this section, we may assume without loss
of generality that $p<q$ and write

$q=dp+r$ , $r\in\{0,1, \cdots,p-1\}$ . (4)

In the following Lemmas 2-7, we shall prove some formulas for $p$ and q-additive func-
tions which are necessary for the proof of Theorem 1.
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LEMMA 2. We have

$a(q)=a(dp)+a(r)$ , (5)

$a((d+1)p)=a(dp)+a(p)$ . (6)

PROOF. (5) is obvious. We prove only (6). Since a$(n)$ isp and q-additive, we have
by (4)

$a(q+p)=a((d+1)p+r)=a((d+1)p)+a(r)$ ,

and so by (5)

$a((d+1)p)=a(q+p)-a(r)$

$=a(q)+a(p)-a(r)=a(dp)+a(p)$ .

LEMMA 3. Let $f(\leq p-1),$ $h$ , and $k$ be nonnegative integers such that $0\leq f+$

hp-kr $<p$ . Then

$a(f+hp-kr)=a(f)+ha(p)-ka(r)$ .

PROOF. By induction on $h+k$ . This is true if $h+k=0$ . Let $h+k>0$ and suppose
that $a(f+h^{\prime}p-k^{\prime}r)=a(f)+h^{\prime}a(p)-k^{\prime}a(r)$ for any nonnegative integers $h^{\prime},$ $k^{\prime}$ with
$h^{\prime}+k^{\prime}<h+k$ and $0\leq f+h^{\prime}p-k^{\prime}r<p$ . Since $0\leq f+hp-kr<p$ , we have

$r\leq f+hp-(k-1)r<p+r$ .

Case 1. Assume first that $f,$ $h,$ $k$ satisfy $p\leq f+hp-(k-1)r<p+r$ . Then we
have $0\leq f+(h-1)p-(k-1)r<r$ , and so

$a(q+f+hp-kr)=a((d+1)p+f+(h-1)p-(k-1)r)$ ,

using (4). Here we note that $h\geq 1$ and $k\geq 1$ . So we have by $p$ and q-additivity

$a(q)+a(f+hp-kr)=a((d+1)p)+a(f+(h-1)p-(k-1)r)$

$=a(dp)+a(p)+a(f)+(h-1)a(p)-(k-1)a(r)$

$=a(q)+a(f)+ha(p)-ka(r)$

by (5), (6), and the induction hypothesis. Therefore we obtain

$a(f+hp-kr)=a(f)+ha(p)-ka(r)$ .

Case 2. Let $r\leq f+hp-(k-1)r<p$ . Then we have

$a(q+f+hp-kr)=a(dp+f+hp-(k-1)r)$

$=a(dp)+a(f+hp-(k-1)r)$

$=a(q)+a(f)+ha(p)-ka(r)$

by (5), $k\geq 1$ , and the induction hypothesis. Since $a(q+f+hp-kr)=a(q)+a(f+hp-kr)$ ,
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we get

$a(f+hp-kr)=a(f)+ha(p)-ka(r)$ .

LEMMA 4. If $r\neq 0$ , then $a(np)=na(p)(0\leq n\leq d)$ .
PROOF. This is true if $n=0$ . Let $1\leq n\leq d$. We note that $q>np$ , since $r\neq 0$ . Then

we have by $p$ and q-additivity

$a(q)+a(np)=a(q+np)=a((d+n)p+r)=a((d+n)p)+a(r)$ ;

namely

$a(np)=a((d+n)p)-a(q)+a(r)$ .
By (4), Lemma 3, and $r\neq 0$ , we have

$a((d+n)p)=a(dp+r+(n-1)p+p-r)$

$=a(q)+a((n-1)p)+a(p-r)$

$=a((n-1)p)+a(q)+a(p)-a(r)$ .
Hence we get

$a(np)=a((n-1)p)+a(p)=\cdots=na(p)$ .
LEMMA 5. Assume that $r\neq 0$ . Let $f(\leq p-1),$ $h$ , and $k$ be nonnegative integers such

that $0\leq f+hq-kp<p$ . Then

$a(f+hq-kp)=a(f)+ha(q)-ka(p)$ .

PROOF. By induction on $h+k$ . This is true if $h+k=0$ . Let $h+k>0$ and suppose
that $a(f+h^{\prime}q-k^{\prime}p)=a(f)+h^{\prime}a(q)-k^{\prime}a(p)$ for any nonnegative integers $h^{\prime},$ $k^{\prime}$ such that
$h^{\prime}+k^{\prime}<h+k$ and $0\leq f+h^{\prime}q-k^{\prime}p<p$ . We have to show that

$a(f+hq-kp)=a(f)+ha(q)-ka(p)$ . (7)

Case 1. Let $0\leq f+hq-kp<r$ . Since $q=dp+r$, we have $h\geq 1,$ $k\geq d+1$ , and

$(d+1)p\leq f+hq-(k-(d+1))p<(d+1)p+r$ ,

and so

$p-r\leq f+(h-1)q-(k-(d+1))p<p$ .

Hence we get

$a((d+1)p+f+hq-kp)=a(q+f+(h-1)q-(k-(d+1))p)$ .
Since $a(n)$ is $p$ and q-additive, we have by the induction hypothesis

$a((d+1)p)+a(f+hq-kp)=a(q)+a(f+(h-1)q-(k-(d+1))p)$
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$=a(q)+a(f)+(h-1)a(q)-(k-(d+1))a(p)$

$=a(f)+ha(q)-ka(p)+da(p)+a(p)$

using Lemma 4 and (6). Therefore we obtain (7).
Case 2. Let $r\leq f+hq-kp<p$ . Since $h\geq 1,$ $k\geq d$ and

$0\leq f+(h-1)q-(k-d)p<p-r$ ,

we have

$a(dp+f+hq-kp)=a(q+f+(h-1)q-(k-d)p)$

$=a(q)+a(f+(h-1)q-(k-d)p)$

$=a(f)+ha(q)-ka(p)+da(p)$

by the induction hypothesis. Using Lemma 4, we obtain (7).

LEMMA 6. Assume that $r\neq 0$ . Let $n$ be a positive integer such that $a(hp)=ha(p)$

for any $h(0\leq h\leq n-1)$ . Let $k$ be a nonnegative integer such that $k<np/q$ . Then $a(kq)=ka(q)$ .

PROOF. Let $h$ be a nonnegative integer such that $0\leq kq-hp<p$ . Since $0\leq kq-hp$ ,
we have $h\leq kq/p$ . Noting that $k<np/q$ , we get $h<n$ . Then we have by Lemma 5,

$a(kq)=a(hp)+a(kq-hp)=a(hp)+ka(q)-ha(p)$ .

Hence we obtain $a(kq)=ka(q)$ since $h<n$ .

LEMMA 7. Assume that $r\neq 0$ and $bp^{h}\neq cq^{k}$ for any integers $b,$ $c,$
$h$ , and $k$ with

$1\leq b\leq p-1,1\leq c\leq q-1,$ $h\geq 1$ , and $k\geq 1$ . Then

$a(np)=na(p)$ , $a(nq)=na(q)$ $(n\geq 1)$ .

PROOF. We show only the first formula

$a(np)=na(p)$ $(n\geq 1)$ , (8)

since the second formula follows from the first and Lemma 6. The proof will be carried
on by induction on $n$ . (8) holds for any $n\leq d$ by Lemma 4. Let $n\geq d+1$ and assume that

$a(hp)=ha(p)$ $(0\leq h\leq n-1)$ . (9)

Then we have by Lemma 6

$a(kq)=ka(q)$ $(0\leq k<np/q)$ . (10)

We have to prove that $a(np)=na(p)$ .
Case 1. Let $q|np$ . We expand $np$ to base $p$ and $q$ ;

$np=\sum_{i=s_{p}}b_{i}p^{i}t$ $(b_{i}\in\{0,1, \cdots,p-1\}, b_{s_{p}}\neq 0, b_{t_{p}}\neq 0)$ ,
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$=\sum_{i=s_{q}}c_{i}q^{i}t$ $(c_{i}\in\{0,1, \cdots, q-1\}, c_{s_{q}}\neq 0, c_{t_{q}}\neq 0)$ ,

so that $s_{p}\geq 1$ and $s_{q}\geq 1$ . By the assumption of this lemma, we have $s_{p}\neq t_{p}$ or
$s_{q}\neq t_{q}$ . We assume first that $s_{p}\neq t_{p}$ . Noting that $b_{i}p^{i-1}<n(s_{p}\leq i\leq t_{p})$, we have by
(9) $a(b_{i}p^{i})=b_{i}p^{i-1}a(p)$ . Using this we get

$a(np)=\sum_{i=s_{p}}a(b_{i}p^{i})=t\sum_{i=s_{p}}b_{i}p^{i-1}a(p)=na(p)t$ .

Next we consider the case $s_{q}\neq t_{q}$ . Since $c_{i}q^{i-1}<np/q(s_{q}\leq l\leq t_{q})$ , we have by (10)
$a(c_{i}q^{i})=c_{i}q^{i-1}a(q)$ . Hence we get

$a(np)=\sum_{i=s_{q}}a(c_{i}q^{i})=\sum_{i=s_{q}}c_{i}q^{i-1}a(q)=\frac{np}{q}a(q)tt$ .

Noting that $q|np$ , we have by Lemma 5

$0=a(\frac{np}{q}q-np)=\frac{np}{q}a(q)-na(p)$ ,

and so

$a(np)=\frac{np}{q}a(q)=na(p)$ .

Case 2. Let qtnp. Let $h$ and $k$ be nonnegative integers such that $0\leq np-kq<q$

and $0\leq np-kq-hp<p$ . We note that $k\geq 1$ , since $np\geq(d+1)p>q>np-kq$ , and so
$0\leq h\leq n-1$ , since np-hp $>np-kq-hp\geq 0$ . Also $k<np/q$ , since qtnp implies
$0<np-kq$ . Hence we have by $p$ and q-additivity, Lemma 3, (9) and (10),

$a(np)=a(kq+(np-kq))$

$=a(kq)+a(hp+(np-kq-hp))$

$=a(kq)+a(hp)+a$($(n-dk-h)$p-kr)

$=ka(q)+ha(p)+(n-dk-h)a(p)-ka(r)$

$=na(p)+ka(q)-k(da(p)+a(r))$ ,

and so using (4) and Lemma 4

$a(np)=na(p)+ka(q)-k(a(dp)+a(r))=na(p)$ .

In both cases, we obtain $a(np)=na(p)$, and so (8) is proved.

4. Proof of Theorem 1.

PROOF OF THEOREM 1. Let $L=\{1,2, \cdots\}$ and $m_{O}=1$ . Then there exist positive
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integers 1 and $m$ satisfying the conditions (i), (ii) in Lemma 1. We may assume that
$p^{l}<q^{m}$ , since, otherwise, we exchange $p,$

$l$ by $q,$ $m$ , respectively. We write

$q^{m}=dp^{l}+r$ $(r\in\{1,2, \cdots,p^{l}-1\})$ . (11)

Note that $r\neq 0$ , because of (i). In what follows, we use Lemmas 2-7, with $p^{l}$ and $q^{m}$

in place of $p$ and $q$ , respectively.
We prove the first statement of Theorem 1; namely,

$a(ng)=na(g)$ $(n\geq 1, g=g.c.d.(p^{l}, q^{m}))$ . (12)

We put $p^{l}=p_{1}g$ , so that $p_{1}\geq 2$ by (i) in Lemma 1. Let $h,$ $k$ be positive integers
such that

$kq^{m}-hp^{l}=g$ . (13)

We show that

$a(ng)=na(g)$ $(1 \leq n\leq p_{1}-1)$ , (14)

$a(p^{l})=a(p_{1}g)=p_{1}a(g)$ . (15)

Indeed, we have for $n$ with $1\leq n\leq p_{1}-1$

$a(ng)=a(knq^{m}-hnp^{l})=n(ka(q^{m})-ha(p^{l}))$

by Lemma 5. In particular, $a(g)=ka(q^{m})-ha(p^{l})$ . Combining these we get (14). Next
we show (15). Since $a(p^{l}q^{m})=p^{l}a(q^{m})$ and $a(q^{m}p^{l})=q^{m}a(p^{\iota})$ by Lemma 7, we have
by (11)

$a(q^{m})=\frac{q^{m}}{p^{l}}a(p^{l})=da(p^{l})+\frac{r}{p^{l}}a(p^{l})$ .

On the other hand, we get $a(q^{m})=da(p^{l})+a(r)$ by (11) and Lemma 4. Comparing the
right-hand side, we find

$\frac{r}{p^{l}}a(p^{l})=a(r)=\frac{r}{g}a(g)$ ,

noting that $g$ divides $r$ ; which yields (15).
Now we prove (12) using (14) and (15). Let $n$ be a positive integer. We write

$n=sp_{1}+t$ with $s\geq 0$ and $0\leq t\leq p_{1}-1$ . Then we have by p-additivity

$a(ng)=a((sp_{1}+t)g)=a(sp^{1}+tg)=a(sp^{l})+a(tg)$ ,

and so
$a(ng)=sa(p^{l})+ta(g)=(sp_{1}+t)a(g)=na(g)$

using Lemma 7, (14), and (15). Therefore, (12) is proved.
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It remains to show that $a(n)$ is g-additive provided $g\geq 2$ . Let $n\geq 0$ be an integer.
We write

$n=sg+t$ $(s\geq 0, t\in\{0,1, \cdots, g-1\})$ ,

$s=s_{1}p_{1}+s_{2}$ $(s_{1}\geq 0, s_{2}\in\{0,1, \cdots,p_{1}-1\})$ .

Then we have

$a(n)=a((s_{1}p_{1}+s_{2})g+t)=a(s_{1}p^{l}+s_{2}g+t)=a(s_{1}p^{l})+a(s_{2}g+t)$ ,

and so by (15)

$a(n)=s_{1}p_{1}a(g)+a(s_{2}g+t)$ .
Since $0\leq s_{2}g+t=ks_{2}q^{m}-hs_{2}p^{l}+t<p^{l}$ by (13), we have by Lemma 5

$a(s_{2}g+t)=a(ks_{2}q^{m}-hs_{2}p^{l}+t)=ks_{2}a(q^{m})-hs_{2}a(p^{l})+a(t)$ .

Hence we get by (12), (13)

$a(s_{2}g+t)=s_{2}(\frac{kq^{m}}{g}-\frac{hp^{l}}{g})a(g)+a(t)=s_{2}a(g)+a(t)$ ,

and so $a(n)=(s_{1}p_{1}+s_{2})a(g)+a(t)=sa(g)+a(t)$ . Therefore $a(n)$ is g-additive, and the proof
is completed.

5. Additional conditions to Lemma 1 in multiplicative case.

In order to apply Lemma 1 for $p$ and q-multiplicative functions, we need additional
conditions that $a(p^{l})\neq 0$ and $a(q^{m})\neq 0$ , which is insured by Lemma 9 below. Let $p,$ $q$ ,
and $a(n)$ be as in Theorem 2.

LEMMA 8. Let $b(1\leq b\leq p-1)$ and $l\geq 1$ be integers such that $a(bp^{l})\neq 0$ and

$bp^{l}=c_{t}q^{t}+u$ $(c_{t}\geq b, 1\leq u<q^{t})$ . (16)

Then $a(q^{t})\neq 0$ .

PROOF. We expand $u$ to base $q$

$u=\sum_{i=0}^{h}c_{i}q^{i}$ $(c_{i}\in\{0,1, \cdots, q-1\}, c_{h}\neq 0)$ , (17)

so that $0\leq h\leq t-1$ . Since $a(bp^{l})\neq 0,$ $c_{t}\geq b$ , and $u\geq 1$ , we have
$a(c_{i}q^{i})\neq 0$ $(0\leq i\leq h, i=t)$ , (18)

$q^{t}<p^{l}$ (19)

Let $f$ be a positive integer such that $(f-1)c_{h}<p\leq fc_{h}$ .



p-AND q-ADDITIVE FUNCTIONS 93

We show first that

$a((f-1)c_{h}q^{h})\neq 0$ . (20)

It is enough to show that $a(jc_{h}q^{h})\neq 0$ for all $1\leq j\leq f-1$ by induction on $j$. This holds
forj $=1$ by (18). Suppose that $a((j-1)c_{h}q^{h})\neq 0$ for some $2\leq j\leq f-1$ . We have by (16), (17)

$a(bp^{l}+(j-1)c_{h}q^{h})=a(\sum_{i=s}^{h-1}c_{i}q^{i}+jc_{h}q^{h}+c_{i}q^{t})$ ,

and so by (19)

$a(bp^{l})a((j-1)c_{h}q^{h})=(\prod_{i=0}^{h-1}a(c_{i}q^{j}))a(jc_{h}q^{h})a(c_{t}q^{t})$ ,

which together with (18) leads to $a(jc_{h}q^{h})\neq 0$ , and hence (20) follows.
We put

$k_{c.j}=(f-1)c_{h}q^{h}+(q-1)q^{h+1}+\cdots+(q-1)q^{j-1}+cq^{j}$ ,

where $c$ and $j$ are integers with $0\leq c\leq q-1$ and $h+1\leq j\leq t$ . We show that if $h<t-1$ ,

$a(k_{q-1,t-1})\neq 0$ . (21)

It is enough to show that

$a(k_{c,j})\neq 0$ $(0\leq c\leq q-1, h+1\leq j\leq t-1)$ (22)

by induction on $c$ and $j$ . By (20), we have $a(k_{0,h+1})\neq 0$ . Assume that $a(k_{c.j})\neq 0$ for some
$0\leq c\leq q-2$ and $h+1\leq j\leq t-1$ . Then it follows from (16), (17), and (19) that

$a(bp^{l})a(k_{c.j})=a(bp^{l}+k_{c.j})=(\prod_{i=0}^{h-1}a(c_{i}q^{i}))a(nq^{h})a((c+1)q^{j})a(c_{t}q^{t})$ ,

where $n=fc_{h}-q$ . Hence we have $a((c+1)q^{j})\neq 0$ , so that $a(k_{c+1.j})\neq 0$ . Noting that
$k_{q-1,j}=k_{0,j+1}$ , we obtain (22), and so (21).

It follows from (16), (17), and (19) that

$a(bp^{l})a(k_{O.t})=a(bp^{l}+k_{0.t})=(\prod_{i=0}^{h-1}a(c_{i}q^{i}))a(nq^{h})a((c_{t}+1)q^{t})$ .

Noting that $k_{O,t}=(f-1)c_{h}q^{h}$ if $h=t-1,$ $=k_{q-1,t-1}$ if $h<t-1$ and using (20) or (21),
respectively, we have

$a((c_{t}+1)q^{t})\neq 0$ . (23)

It follows from (16) and (19) that

$a(bp^{l})a(q^{t})=a(bp^{l}+q^{t})=a((c_{t}+1)q^{t})a(u)$ .

This together with (23) leads to $a(q^{t})\neq 0$ .
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REMARK. Exchanging $p$ by $q$ , in Lemma 8, we have the following: Let $m$ be $\ell$

positive integer such that $a(q^{m})\neq 0$ and

$q^{m}=b_{t}p^{t}+v$ $(1\leq b_{t}<p, 1\leq v<p^{t})$ .
Then $a(p^{t})\neq 0$ .

LEMMA 9. If $a(np)\neq 0$ for infinitely many $n\geq 1$ , then there exist positive integer
and $m$ satisfying (i) and (ii) in Lemma 1 and (iii) $a(p^{l})\neq 0,$ $a(q^{m})\neq 0$ .

PROOF. Let $a(np)\neq 0$ for infinitely many $n\geq 1$ . Then $a(nq)\neq 0$ for infinitely manj
$n\geq 1$ . So we may assume that $q>p$ , since, otherwise, we can exchange $p$ by $q$ .

By Lemma 1, it is enough to show that there exist an infinite set $L$ of positivt
integers and a positive integer $m_{0}$ such that $a(p^{l})\neq 0$ and $a(q^{m})\neq 0$ for any $l\in L$ and $m\geq m_{0}$

Let

$L=\{h\geq 1|a(p^{h})\neq 0\}$ , $M=\{k\geq 1|a(q^{k})\neq 0\}$ .

We show that both $L$ and $M$ are infinite sets. First we prove that $M$ is infinite. Let $h_{(}$

be a positive integer with $p^{h_{O}}\geq q$ . For any $b(1\leq b\leq p-1)$ and $h\geq h_{0}$ , we can write $bp$

as in the following form:
$bp^{h}=c_{s}q^{s}+u$ , (24

where

$b\leq c_{s}=c_{s}(b, h)<q^{2}$ , $0\leq u=u(b, h)<q^{s}$ , $s=s(b, h)\geq 0$ .

Indeed, if the first digit $d_{k}$ in the q-adic expansion

$bp^{h}=\sum_{i=0}^{k}d_{i}q^{i}$ $(d_{i}\in\{0,1, \cdots, q-1\}, d_{k}\neq 0)$

is not less than $b$ , we put $s=k,$ $c_{s}=d_{k}$ , and $u=\sum_{i=0}^{k-1}d_{i}q^{i}$ ; otherwise, we put $s=k-1$

$c_{s}=d_{k}q+d_{k-1}$ , and $u=\sum_{i=0}^{k-2}d_{i}q^{i}$ , noting that $k\geq 1$ since $p^{h}\geq q$ .
Assume that $u(b, h)=0$ for infinitely many pairs $(b, h)$ . Then there exist integers 1

$(1 \leq b\leq p-1),$ $h_{2}$ , and $h_{3}(h_{2}<h_{3})$ such that

$c_{s\langle b.h_{2})}(b, h_{2})=c_{s(b.h_{3})}(b, h_{3})$ and $u(b, h_{2})=u(b, h_{3})=0$ ,

since $\{c_{s}(b, h)\}_{1\leq b\leq p-1.h\geq h_{O}}$ is bounded; so that we have

$p^{h_{3}-h_{2}}=\frac{bp^{h_{3}}}{bp^{h_{2}}}=\frac{c_{s(b,h_{3})}(b,h_{3})q^{s\langle b.h_{3})}}{c_{s\{b.\hslash_{2})}(b,h_{2})q^{s\langle b,h_{2})}}=q^{s\langle b,h_{3})-s(b.h_{2})}$ .

This contradicts the irrationality of log$p/\log q$ .
Hence there exists an integer $h_{1}\geq h_{0}$ such that $u(b, h)\geq 1$ for any $1\leq b\leq p-1$ ant

$h\geq h_{1}$ . Also we note that $a(bp^{h})\neq 0$ for infinitely many pairs $(b, h)$ , since $a(np)\neq 0$ fo
infinitely many $n\geq 1$ . These facts with (24) and Lemma 8 imply that $a(q^{s})\neq 0$ for $infinite$] $1$
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many $s$ ; and therefore $M$ is an infinite set.
To show that $L$ is infinite, we write

$q^{k}=bp^{t}+v$ $(1\leq b_{t}=b_{t}(k)<p, 0\leq v=v(k)<p^{t},$ $t=t(k)\geq 0)$ (25)

for any $k\geq 1$ . In the similar way as above, there exists $k_{0}\geq 1$ such that $v(k)\geq 1$ for any
$k\geq k_{0}$ . Since $M$ is an infinite set, we get $a(q^{k})\neq 0$ for infinitely many $k\geq k_{0}$ . Therefore,
$L$ is also an infinite set by (25) and the remark of Lemma 8.

Next we show that $M\supset\{m_{0}, m_{0}+1, m_{0}+2, \cdots\}$ for some integer $m_{0}$ . Let $l_{0}\in L$

satisfy $l_{0}\geq h_{1}$ and let $m_{0}\in M$ satisfy $m_{0}\geq k_{0}$ and $p^{l_{O}}<q^{m_{O}}$ . We write $\{m\in M|m\geq m_{0}\}=$

$\{m_{0}, m_{1}, m_{2}, \cdots\}(m_{0}<m_{1}<m_{2}<\cdots)$ and put $l_{n}=[m_{n}\gamma](n\geq 1)$ , where $\gamma=\log_{p}q$ . We
note that $\gamma>1$ since $p<q$ . Let $n$ be a positive integer. Since $m_{n}-m_{n-1}\geq 1$ , we have

$1<m_{n}\gamma-m_{n-1}\gamma=l_{n}-l_{n-1}+(m_{n}\gamma-l_{n})-(m_{n-1}\gamma-l_{n-1})$ ,

and so $l_{n}>l_{n-1}$ , noting that $0<m_{n-1}\gamma-l_{n-1},$ $m_{n}\gamma-l_{n}<1$ . Assume that $[l_{n}/\gamma]<m_{n-1}$ .
Then we get $l_{n}/\gamma<m_{n-1}$ , and so $l_{n}\leq[m_{n-1}\gamma]=l_{n-1}$ . It is a contradiction to $l_{n-1}<l_{n}$ .
Hence we obtain

$m_{n-1}\leq[l_{n}/\gamma]<m_{n}$ $(n\geq 1)$ , (26)

noting that $l_{n}<m_{n}\gamma<l_{n}+1$ . Since $k_{0}\leq m_{n}\in M$ and $p^{l_{n}}<p^{m_{n}\gamma}=q^{m_{n}}<p^{l_{n}+1}$ , we have
$a(p^{l_{n}})\neq 0$ by the remark of Lemma 8, and so $l_{n}\in L$ . Since $h_{1}\leq l_{n}$ and $q^{[l_{n}/\gamma]}<q^{l_{n}/\gamma}=$

$p^{l_{n}}<q^{[l_{n}/\gamma]+1}$ , we get $a(q^{[l_{n}/\gamma]})\neq 0$ by Lemma 8, and so $[l_{n}/\gamma]\in M$. Then we have
$m_{n-1}=[l_{n}/\gamma]$ by (26). Hence we obtain

$1\leq m_{n}-m_{n-1}<m_{n}-(\frac{l_{n}}{\gamma}-1)<m_{n}-(\frac{m_{n}\gamma-1}{\gamma}1)=1+\frac{1}{\gamma}$ ,

and so $m_{n}-m_{n-1}=1$ since $\gamma>1$ , so that $M\supset\{m_{0}, m_{O}+1, m_{0}+2, \cdots\}$ .
Therefore, by Lemma 1, there exist integers $l\in L$ and $m\geq m_{0}$ satisfying (i), (ii), and

(iii), and the proof is completed.

6. Some formulas for $p$ and q-multiplicative functions.

In this section, we assume as we may that $p<q$ and write

$q=dp+r$ , $r\in\{0,1, \cdots,p-1\}$ .

The following lemmas can be proved by transforming the arguments in Section 3 into
q-multiplicative case. So we omit the proofs.

LEMMA 10. If $a(r)\neq 0$ , then

$a(q)=a(dp)a(r)$ , $a((d+1)p)=a(dp)a(p)$ .
LEMMA 11. Assume that $a(q)\neq 0$ . Let $f(\leq p-1),$ $h$ and $k$ be nonnegative integers
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such that $0\leq f+hp-kr<p$ . Then

$a(f+hp-kr)=\frac{a(f)a(p)^{h}}{a(r)^{k}}$ .

LEMMA 12. If $r\neq 0$ and $a(q)\neq 0$, then $a(np)=a(p)^{n}(1\leq n\leq d)$ .

REMARK. By Lemma 10 and 12, if $r\neq 0$ and $a(q)\neq 0$ , then $a(p)\neq 0’$ .
LEMMA 13. Assume that $r\neq 0$ and $a(q)\neq 0$ . Let $f(\leq p-1),$ $h$ and $k$ be nonnegative

integers such that $0\leq f+hq-kp<p$ . Then

$a(f+hq-kp)=\frac{a(f)a(q)^{h}}{a(p)^{k}}$ .

LEMMA 14. Assume that $r\neq 0$ and $a(q)\neq 0$ . Let $n$ be a positive integer such thaj
$a(hp)=a(p)^{h}$ for any $h(0\leq h\leq n-1)$ . Let $k$ be a nonnegative integer such that $k<np/q$

Then $a(kq)=a(q)^{k}$ .

LEMMA 15. Assume that $r\neq 0,$ $a(q)\neq 0$ , and $bp^{h}\neq cq^{k}$ for any integers $b,$ $c,$
$h$ , an $\iota$

$k$ with $1\leq b\leq p-1,1\leq c\leq q-1,$ $h\geq 1$ , and $k\geq 1$ . Then

$a(np)=a(p)^{n}$ , $a(nq)=a(q)^{n}$ $(n\geq 1)$ .

7. Proof of Theorem 2.

PROOF OF THEOREM 2. Case 1. Assume first that there exists a positive intege]
$h$ such that $a(np^{h})=0$ for $n\geq 1$ . If $p$ and $q$ are relatively prime, then Theorem 2 holds
for $l=h$ . Let $p$ and $q$ are not relatively prime. Since $a(np^{h})=0$ for $n\geq 1$ , we have $a(nq^{k})=t$

for some $k\geq 1$ and any $n\geq 1$ . Then there exists a positive integer $j$ such $tha\uparrow$

$g.c.d.(p^{jh}, q^{jk})=g.c.d.(p^{h}, q^{k})^{j}>p^{h}$ , noting that $p$ and $q$ are not relatively prime. Henct
we obtain $a(ng)=0=a(g)^{n}$ for $n\geq 1$ , and so $a(n)$ is g-multiplicative, where $g=$

$g.c.d.(p^{jh}, q^{jk})$ . Therefore Theorem 2 holds for $l=jh$ and $m=jk$ .
Case 2. Next we assume that $a(np)\neq 0$ for infinitely many $n\geq 1$ . By Lemma 9

there exist positive integers $l$ and $m$ satisfying (i), (ii), and (iii). Hence Lemmas 10-1.
hold for $p=p^{l}$ and $q=q^{m}$ . We put $g=g.c.d.(p^{l}, q^{m})$ . In the same way as the proof $0$

Theorem 1, we can prove that $a(ng)=a(g)^{n}(n\geq 1)$ and $a(n)$ is g-multiplicative providee
that $g\geq 2$ , using Lemmas 10-15 in place of Lemmas 2-7 respectively. The proof $i($

completed.
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