On p and q-Additive Functions

Yoshihisa UCHIDA

Keio University
(Communicated by Y. Maeda)

1. Introduction.

Let q be an integer greater than 1 . Let $a(n)$ be a complex-valued arithmetical function. $a(n)$ is said to be q-additive if

$$
a(n)=\sum_{i \geq 0} a\left(b_{i} q^{i}\right)
$$

for any positive integer $n=\sum_{i \geq 0} b_{i} q^{i}$ with $b_{i} \in\{0,1, \cdots, q-1\}$, and $a(0)=0$. It follows from the definition that $a(n)$ is q-additive if and only if

$$
a\left(n q^{k}+r\right)=a\left(n q^{k}\right)+a(r)
$$

for any integer $n \geq 0$ and $k \geq 0$ with $0 \leq r<q^{k} . a(n)$ is said to be q-multiplicative if

$$
a(n)=\prod_{i \geq 0} a\left(b_{i} q^{i}\right)
$$

for any positive integer n as above, and $a(0)=1 . a(n)$ is a q-multiplicative function if and only if

$$
a\left(n q^{k}+r\right)=a\left(n q^{k}\right) a(r)
$$

for any $n \geq 0$ and $k \geq 0$ with $0 \leq r<q^{k}$. If q-additive or q-multiplicative function $a(n)$ satisfies

$$
\begin{equation*}
a\left(b q^{i}\right)=a(b) \quad(b \in\{0,1, \cdots, q-1\}, i \geq 0), \tag{1}
\end{equation*}
$$

then $a(n)$ is said to be strongly q-additive or strongly q-multiplicative, respectively. We say $a(n)$ is p and q-additive if it is p-additive and also q-additive. Similarly, a p and q-multiplicative function is defined. The notion of q-additive functions and q multiplicative functions were introduced by Gel'fond [2] and Delange [1] respectively and has been investigated by many authors (eg. [3], [4], [5]).

If $a(n)$ is a q-additive or q-multiplicative function, $a(n)$ is q^{l}-additive or q^{l} -
multiplicative for any positive integer l.
Recently, Toshimitsu [8] proved that any strongly p and q-additive functions is identically zero, if $\log p / \log q$ is irrational. He also obtained a similar result for strongly p and q-multiplicative functions (see Corollary 1 and 2 below). His proofs based on the deep results in the transcendence theory of Mahler functions (cf. Nishioka [6], [7]). Elementary proofs of these results are given in [9]. In this paper, we determine explicitly the form of p and q-additive or multiplicative functions without the 'strongly' condition (1).

Theorem 1. Let p and q be integers greater than 1 such that $\log p / \log q$ is irrational. Let $a(n)$ be a p and q-additive function. Then there exist positive integers l, m, and $g=$ g.c.d. $\left(p^{l}, q^{m}\right)$ such that $a(n g)=n a(g)$ for each $n \geq 1$. If g is greater than 1 , then $a(n)$ is g-additive.

Corollary 1 (Toshimitsu [8; Theorem 3], [9]). Let p and q be as in Theorem 1. Let $a(n)$ be a strongly p and q-additive function. Then $a(n)=0(n \geq 0)$.

Theorem 2. Let p and q be integers greater than 1 such that $\log p / \log q$ is irrational. Let $a(n)$ be a p and q-multiplicative function. If p and q are relatively prime, then $a(n)=a(1)^{n}(n \geq 1)$ or there exists a positive integer l such that $a\left(n p{ }^{l}\right)=0(n \geq 1)$. If p and q are not relatively prime, then there exist positive integers l, m, and $g=$ g.c.d. $\left(p^{l}, q^{m}\right)$ such that $a(n g)=a(g)^{n}$ for each $n \geq 1$ and $a(n)$ is g-multiplicative.

Corollary 2 (Toshimitsu [8; Theorem 4], [9]). Let p and q be as in Theorem 2. Let $a(n)$ be a strongly p and q-multiplicative function. Then $a(n)=0(n \geq 1)$ or $a(n)=\gamma^{n}$ ($n \geq 1$), where $\gamma^{p-1}=\gamma^{q-1}=1$.

Proof of Corollary 1. Let g, l, and m be as in Theorem 1. Since $a(n)$ is strongly p-additive, we have by Theorem $1, a(g)=a(p g)=p a(g)$. So $a(g)=0$, noting that $p \geq 2$. Hence we get by Theorem 1 and strongly p-additivity,

$$
a(n)=a\left(n p^{l}\right)=a\left(\frac{n p^{l}}{g} g\right)=\frac{n p^{l}}{g} a(g)=0 \quad(n \geq 0)
$$

Proof of Corollary 2. Assume that p and q are relatively prime. Since $a(n)$ is strongly p-multiplicative, we have $a(n)=a(1)^{n}(n \geq 1)$ by Theorem 2. Let p and q are not relatively prime. Let g, l, and m be as in Theorem 2. We write $p^{l}=p_{1} g$. Since $a(n)$ is strongly p-multiplicative, we have $a(1)=a\left(p^{l}\right)=a\left(p_{1} g\right)=a(g)^{p_{1}}$, so that $a(n)=a\left(n p^{l}\right)=$ $a(g)^{n p_{1}}=a(1)^{n}(n \geq 1)$. In any case, we get $a(n)=a(1)^{n}(n \geq 1)$. In particular,

$$
a(1)=a(p)=a(1)^{p}, \quad a(1)=a(q)=a(1)^{q} .
$$

Hence we get $a(1)^{p-1}=a(1)^{q-1}=1$ if $a(1) \neq 0$.

2. A lemma.

In this section, we shall prove the key lemma for the proof of Theorems 1 and 2. Let p and q be as in Theorem 1.

Lemma 1. Let L be an infinite set of positive integers and m_{0} be a positive integer. Then there exist integers $l \in L$ and $m \geq m_{0}$ satisfying the following two conditions;
(i) $p^{l}>g$ and $q^{m}>g$, where $g=$ g.c.d. $\left(p^{l}, q^{m}\right)$,
(ii) $b p^{h} \neq c q^{k}$ for any integers b, c, h, and k with $1 \leq b \leq p-1,1 \leq c \leq q-1, h \geq l$, and $k \geq m$.

Proof. First step. We show that there exists a sequence $\left\{\left(l_{n}, m_{n}\right)\right\}_{n \geq 0}$ with $l_{n} \in L$, $l_{0}<l_{1}<\cdots$, and $m_{n} \geq m_{0}$ such that (i) holds for any $l=l_{n}$ and $m=m_{n}(n \geq 0)$.

For any $l \in L$, let $\mu(l)$ denote the smallest integer $m \geq m_{0}$ such that $p^{l}<q^{m}$. Let

$$
p=p_{1}^{e_{1}} \cdots p_{s}^{e_{s}}, \quad q=q_{1}^{f_{1}} \cdots q_{t}^{f_{t}}
$$

be the factorization of p and q into distinct primes, where $e_{1}, \cdots, e_{s}, f_{1}, \cdots, f_{t}$ are positive integers.

Case 1. Let $\left\{p_{1}, \cdots, p_{s}\right\} \neq\left\{q_{1}, \cdots, q_{t}\right\}$. If $p_{i} \notin\left\{q_{1}, \cdots, q_{t}\right\}$ for some i, then $p^{l} \nmid q^{\mu(l)}$ for any $l \in L$. So we can choose $\left\{l_{0}, l_{1}, \cdots\right\}=L$ and $m_{n}=\mu\left(l_{n}\right)(n \geq 0)$. Otherwise, we have $q_{j} \notin\left\{p_{1}, \cdots, p_{s}\right\}$ for some j. Let $l \in L$ be an integer such that $\mu(l)>m_{0}$. Since $\log p / \log q$ is irrational, we get $q^{\mu(l)-1}<p^{l}$, so that $q^{\mu(l)-1} \nmid p^{l}$. Then we choose $\left\{l_{0}, l_{1}, \cdots\right\}=\left\{l \in L \mid \mu(l)>m_{0}\right\}$ and $m_{n}=\mu\left(l_{n}\right)-1(n \geq 0)$.

Case 2. Let $\left\{p_{1}, \cdots, p_{s}\right\}=\left\{q_{1}, \cdots, q_{t}\right\}$. We may put $q_{i}=p_{i}(1 \leq i \leq s=t)$. We show that

$$
\begin{equation*}
p^{l} \nmid q^{\mu(l)} \text { or } q^{\mu(l)-1} \nmid p^{l} \quad \text { for infinitely many } l \in L . \tag{2}
\end{equation*}
$$

Assume to the contrary that there exists $l_{0} \in L$ such that $p^{l} \mid q^{\mu(l)}$ and $q^{\mu(l)-1} \mid p^{l}$ for any $l_{0} \leq l \in L$. Then we have

$$
l e_{i} \leq \mu(l) f_{i}, \quad(\mu(l)-1) f_{i} \leq l e_{i} \quad(1 \leq i \leq s)
$$

for any l with $l_{0} \leq l \in L$, and so

$$
\begin{equation*}
\frac{\mu(l)-1}{l} \leq \frac{e_{i}}{f_{i}} \leq \frac{\mu(l)}{l} \quad\left(1 \leq i \leq s, l_{0} \leq l \in L\right) \tag{3}
\end{equation*}
$$

Let $\gamma=\log _{p} q$. Since $p^{l}<q^{\mu(l)}$, we get $l<\mu(l) \log _{p} q=\mu(l) \gamma$ for any $l \in L$. We define the sequence $\left\{l_{n}\right\}_{n \geq 0}$ inductively as in the following. Let $n \geq 1$. Suppose that l_{0}, \cdots, l_{n-1} are defined. Noting that $\mu\left(l_{n-1}\right) \gamma / l_{n-1}>1$. We can choose $l_{n-1}<l_{n} \in L$ and $m>m_{0}$ such that

$$
l_{n}<m \gamma<\frac{\mu\left(l_{n-1}\right)}{l_{n-1}} \gamma l_{n}
$$

Since

$$
p^{l_{n}}<p^{m \gamma}=q^{m}<q^{\mu\left(l_{n}-1\right) l_{n} / l_{n-1}},
$$

we get

$$
\mu\left(l_{n}\right) \leq m<\frac{\mu\left(l_{n-1}\right)}{l_{n-1}} l_{n},
$$

and so

$$
0<\frac{\mu\left(l_{n}\right)}{l_{n}}<\frac{\mu\left(l_{n-1}\right)}{l_{n-1}} \quad(n \geq 1) .
$$

Then the sequence $\left\{\mu\left(l_{n}\right) / l_{n}\right\}_{n \geq 0}$ converges to the limit $\alpha=\lim _{n \rightarrow \infty} \mu\left(l_{n}\right) / l_{n}$. It follows from (3) that $\alpha=e_{i} / f_{i}$ for any i, and so $e_{i} f_{1}=e_{1} f_{i}$ for any $i(1 \leq i \leq s)$. This contradicts the irrationality of $\log p / \log q$, and (2) is proved.

Now by (2), we can choose an infinite subset $\left\{l_{0}, l_{1}, \cdots\right\}$ of L such that

$$
p^{l_{n}} \nmid q^{\mu\left(l_{n}\right)} \quad \text { or } \quad q^{\mu\left(l_{n}\right)-1} \nmid p^{l_{n}} \quad(n \geq 0) .
$$

We put $m_{n}=\mu\left(l_{n}\right)$ if $p^{l_{n}} \nmid q^{\mu\left(l_{n}\right)}$ and $m_{n}=\mu\left(l_{n}\right)-1$ if $q^{\mu\left(l_{n}\right)-1} \nmid p^{l_{n}}$. Then $l=l_{n}$ and $m=m_{n}$ satisfy the condition (i).

Second step. Let $\left\{\left(l_{n}, m_{n}\right)\right\}_{n \geq 0}$ be the sequence constructed in the first step. It remains to show that there exists an integer $n \geq 0$ such that (ii) holds for $l=l_{n}$ and $m=m_{n}$. We assume, to the contrary, that for any integer $n \geq 0$, there exist integers b_{n}, c_{n}, h_{n}, and k_{n} with $1 \leq b_{n} \leq p-1,1 \leq c_{n} \leq q-1, h_{n} \geq l_{n}$, and $k_{n} \geq m_{n}$ such that $b_{n} p^{h_{n}}=c_{n} q^{k_{n}}$. Since $\left\{b_{n}\right\}_{n \geq 0},\left\{c_{n}\right\}_{n \geq 0}$ are bounded, there exist integers n_{1}, n_{2} such that

$$
b_{n_{1}}=b_{n_{2}}, \quad c_{n_{1}}=c_{n_{2}}, \quad h_{n_{1}}<h_{n_{2}} .
$$

Then we have

$$
p^{h_{n_{2}}-h_{n_{1}}}=\frac{b_{n_{2}} p^{h_{n_{2}}}}{b_{n_{1}} p^{n_{n_{1}}}}=\frac{c_{n_{2}} q^{k_{n_{2}}}}{c_{n_{1}} q^{k_{n_{1}}}}=q^{k_{n_{2}}-k_{n_{1}}} .
$$

This contradicts the irrationality of $\log p / \log q$, and the lemma is proved.

3. Some formulas for p and q-additive functions.

Let p, q and $a(n)$ be as in Theorem 1. In this section, we may assume without loss of generality that $p<q$ and write

$$
\begin{equation*}
q=d p+r, \quad r \in\{0,1, \cdots, p-1\} . \tag{4}
\end{equation*}
$$

In the following Lemmas 2-7, we shall prove some formulas for p and q-additive functions which are necessary for the proof of Theorem 1.

Lemma 2. We have

$$
\begin{gather*}
a(q)=a(d p)+a(r) \tag{5}\\
a((d+1) p)=a(d p)+a(p) \tag{6}
\end{gather*}
$$

Proof. (5) is obvious. We prove only (6). Since $a(n)$ is p and q-additive, we have by (4)

$$
a(q+p)=a((d+1) p+r)=a((d+1) p)+a(r)
$$

and so by (5)

$$
\begin{aligned}
a((d+1) p) & =a(q+p)-a(r) \\
& =a(q)+a(p)-a(r)=a(d p)+a(p)
\end{aligned}
$$

Lemma 3. Let $f(\leq p-1), h$, and k be nonnegative integers such that $0 \leq f+$ $h p-k r<p$. Then

$$
a(f+h p-k r)=a(f)+h a(p)-k a(r)
$$

Proof. By induction on $h+k$. This is true if $h+k=0$. Let $h+k>0$ and suppose that $a\left(f+h^{\prime} p-k^{\prime} r\right)=a(f)+h^{\prime} a(p)-k^{\prime} a(r)$ for any nonnegative integers h^{\prime}, k^{\prime} with $h^{\prime}+k^{\prime}<h+k$ and $0 \leq f+h^{\prime} p-k^{\prime} r<p$. Since $0 \leq f+h p-k r<p$, we have

$$
r \leq f+h p-(k-1) r<p+r .
$$

Case 1. Assume first that f, h, k satisfy $p \leq f+h p-(k-1) r<p+r$. Then we have $0 \leq f+(h-1) p-(k-1) r<r$, and so

$$
a(q+f+h p-k r)=a((d+1) p+f+(h-1) p-(k-1) r)
$$

using (4). Here we note that $h \geq 1$ and $k \geq 1$. So we have by p and q-additivity

$$
\begin{aligned}
a(q)+a(f+h p-k r) & =a((d+1) p)+a(f+(h-1) p-(k-1) r) \\
& =a(d p)+a(p)+a(f)+(h-1) a(p)-(k-1) a(r) \\
& =a(q)+a(f)+h a(p)-k a(r)
\end{aligned}
$$

by (5), (6), and the induction hypothesis. Therefore we obtain

$$
a(f+h p-k r)=a(f)+h a(p)-k a(r)
$$

Case 2. Let $r \leq f+h p-(k-1) r<p$. Then we have

$$
\begin{aligned}
a(q+f+h p-k r) & =a(d p+f+h p-(k-1) r) \\
& =a(d p)+a(f+h p-(k-1) r) \\
& =a(q)+a(f)+h a(p)-k a(r)
\end{aligned}
$$

by (5), $k \geq 1$, and the induction hypothesis. Since $a(q+f+h p-k r)=a(q)+a(f+h p-k r)$,
we get

$$
a(f+h p-k r)=a(f)+h a(p)-k a(r)
$$

Lemma 4. If $r \neq 0$, then $a(n p)=n a(p)(0 \leq n \leq d)$.
Proof. This is true if $n=0$. Let $1 \leq n \leq d$. We note that $q>n p$, since $r \neq 0$. Then we have by p and q-additivity

$$
a(q)+a(n p)=a(q+n p)=a((d+n) p+r)=a((d+n) p)+a(r)
$$

namely

$$
a(n p)=a((d+n) p)-a(q)+a(r)
$$

By (4), Lemma 3, and $r \neq 0$, we have

$$
\begin{aligned}
a((d+n) p) & =a(d p+r+(n-1) p+p-r) \\
& =a(q)+a((n-1) p)+a(p-r) \\
& =a((n-1) p)+a(q)+a(p)-a(r)
\end{aligned}
$$

Hence we get

$$
a(n p)=a((n-1) p)+a(p)=\cdots=n a(p) .
$$

Lemma 5. Assume that $r \neq 0$. Let $f(\leq p-1), h$, and k be nonnegative integers such that $0 \leq f+h q-k p<p$. Then

$$
a(f+h q-k p)=a(f)+h a(q)-k a(p)
$$

Proof. By induction on $h+k$. This is true if $h+k=0$. Let $h+k>0$ and suppose that $a\left(f+h^{\prime} q-k^{\prime} p\right)=a(f)+h^{\prime} a(q)-k^{\prime} a(p)$ for any nonnegative integers h^{\prime}, k^{\prime} such that $h^{\prime}+k^{\prime}<h+k$ and $0 \leq f+h^{\prime} q-k^{\prime} p<p$. We have to show that

$$
\begin{equation*}
a(f+h q-k p)=a(f)+h a(q)-k a(p) \tag{7}
\end{equation*}
$$

Case 1. Let $0 \leq f+h q-k p<r$. Since $q=d p+r$, we have $h \geq 1, k \geq d+1$, and

$$
(d+1) p \leq f+h q-(k-(d+1)) p<(d+1) p+r
$$

and so

$$
p-r \leq f+(h-1) q-(k-(d+1)) p<p .
$$

Hence we get

$$
a((d+1) p+f+h q-k p)=a(q+f+(h-1) q-(k-(d+1)) p) .
$$

Since $a(n)$ is p and q-additive, we have by the induction hypothesis

$$
a((d+1) p)+a(f+h q-k p)=a(q)+a(f+(h-1) q-(k-(d+1)) p)
$$

$$
\begin{aligned}
& =a(q)+a(f)+(h-1) a(q)-(k-(d+1)) a(p) \\
& =a(f)+h a(q)-k a(p)+d a(p)+a(p)
\end{aligned}
$$

using Lemma 4 and (6). Therefore we obtain (7).
Case 2. Let $r \leq f+h q-k p<p$. Since $h \geq 1, k \geq d$ and

$$
0 \leq f+(h-1) q-(k-d) p<p-r,
$$

we have

$$
\begin{aligned}
a(d p+f+h q-k p) & =a(q+f+(h-1) q-(k-d) p) \\
& =a(q)+a(f+(h-1) q-(k-d) p) \\
& =a(f)+h a(q)-k a(p)+d a(p)
\end{aligned}
$$

by the induction hypothesis. Using Lemma 4, we obtain (7).
Lemma 6. Assume that $r \neq 0$. Let n be a positive integer such that $a(h p)=h a(p)$ for any $h(0 \leq h \leq n-1)$. Let k be a nonnegative integer such that $k<n p / q$. Then $a(k q)=k a(q)$.

Proof. Let h be a nonnegative integer such that $0 \leq k q-h p<p$. Since $0 \leq k q-h p$, we have $h \leq k q / p$. Noting that $k<n p / q$, we get $h<n$. Then we have by Lemma 5,

$$
a(k q)=a(h p)+a(k q-h p)=a(h p)+k a(q)-h a(p) .
$$

Hence we obtain $a(k q)=k a(q)$ since $h<n$.
Lemma 7. Assume that $r \neq 0$ and $b p^{h} \neq c q^{k}$ for any integers b, c, h, and k with $1 \leq b \leq p-1,1 \leq c \leq q-1, h \geq 1$, and $k \geq 1$. Then

$$
a(n p)=n a(p), \quad a(n q)=n a(q) \quad(n \geq 1) .
$$

Proof. We show only the first formula

$$
\begin{equation*}
a(n p)=n a(p) \quad(n \geq 1) \tag{8}
\end{equation*}
$$

since the second formula follows from the first and Lemma 6. The proof will be carried on by induction on n. (8) holds for any $n \leq d$ by Lemma 4. Let $n \geq d+1$ and assume that

$$
\begin{equation*}
a(h p)=h a(p) \quad(0 \leq h \leq n-1) . \tag{9}
\end{equation*}
$$

Then we have by Lemma 6

$$
\begin{equation*}
a(k q)=k a(q) \quad(0 \leq k<n p / q) . \tag{10}
\end{equation*}
$$

We have to prove that $a(n p)=n a(p)$.
Case 1. Let $q \mid n p$. We expand $n p$ to base p and q;

$$
n p=\sum_{i=s_{p}}^{t_{p}} b_{i} p^{i} \quad\left(b_{i} \in\{0,1, \cdots, p-1\}, b_{s_{p}} \neq 0, b_{t_{p}} \neq 0\right)
$$

$$
=\sum_{i=s_{q}}^{t_{q}} c_{i} q^{i} \quad\left(c_{i} \in\{0,1, \cdots, q-1\}, c_{s_{q}} \neq 0, c_{t_{q}} \neq 0\right),
$$

so that $s_{p} \geq 1$ and $s_{q} \geq 1$. By the assumption of this lemma, we have $s_{p} \neq t_{p}$ or $s_{q} \neq t_{q}$. We assume first that $s_{p} \neq t_{p}$. Noting that $b_{i} p^{i-1}<n\left(s_{p} \leq i \leq t_{p}\right)$, we have by (9) $a\left(b_{i} p^{i}\right)=b_{i} p^{i-1} a(p)$. Using this we get

$$
a(n p)=\sum_{i=s_{p}}^{t_{p}} a\left(b_{i} p^{i}\right)=\sum_{i=s_{p}}^{t_{p}} b_{i} p^{i-1} a(p)=n a(p) .
$$

Next we consider the case $s_{q} \neq t_{q}$. Since $c_{i} q^{i-1}<n p / q \quad\left(s_{q} \leq i \leq t_{q}\right)$, we have by (10) $a\left(c_{i} q^{i}\right)=c_{i} q^{i-1} a(q)$. Hence we get

$$
a(n p)=\sum_{i=s_{q}}^{t_{q}} a\left(c_{i} q^{i}\right)=\sum_{i=s_{q}}^{t_{q}} c_{i} q^{i-1} a(q)=\frac{n p}{q} a(q)
$$

Noting that $q \mid n p$, we have by Lemma 5

$$
0=a\left(\frac{n p}{q} q-n p\right)=\frac{n p}{q} a(q)-n a(p),
$$

and so

$$
a(n p)=\frac{n p}{q} a(q)=n a(p)
$$

Case 2. Let $q \nmid n p$. Let h and k be nonnegative integers such that $0 \leq n p-k q<q$ and $0 \leq n p-k q-h p<p$. We note that $k \geq 1$, since $n p \geq(d+1) p>q>n p-k q$, and so $0 \leq h \leq n-1$, since $n p-h p>n p-k q-h p \geq 0$. Also $k<n p / q$, since $q \nmid n p$ implies $0<n p-k q$. Hence we have by p and q-additivity, Lemma 3, (9) and (10),

$$
\begin{aligned}
a(n p) & =a(k q+(n p-k q)) \\
& =a(k q)+a(h p+(n p-k q-h p)) \\
& =a(k q)+a(h p)+a((n-d k-h) p-k r) \\
& =k a(q)+h a(p)+(n-d k-h) a(p)-k a(r) \\
& =n a(p)+k a(q)-k(d a(p)+a(r)),
\end{aligned}
$$

and so using (4) and Lemma 4

$$
a(n p)=n a(p)+k a(q)-k(a(d p)+a(r))=n a(p) .
$$

In both cases, we obtain $a(n p)=n a(p)$, and so (8) is proved.

4. Proof of Theorem 1.

Proof of Theorem 1. Let $L=\{1,2, \cdots\}$ and $m_{0}=1$. Then there exist positive
integers l and m satisfying the conditions (i), (ii) in Lemma 1 . We may assume that $p^{l}<q^{m}$, since, otherwise, we exchange p, l by q, m, respectively. We write

$$
\begin{equation*}
q^{m}=d p^{l}+r \quad\left(r \in\left\{1,2, \cdots, p^{l}-1\right\}\right) . \tag{11}
\end{equation*}
$$

Note that $r \neq 0$, because of (i). In what follows, we use Lemmas $2-7$, with p^{l} and q^{m} in place of p and q, respectively.

We prove the first statement of Theorem 1; namely,

$$
\begin{equation*}
a(n g)=n a(g) \quad\left(n \geq 1, g=\text { g.c.d. }\left(p^{l}, q^{m}\right)\right) . \tag{12}
\end{equation*}
$$

We put $p^{l}=p_{1} g$, so that $p_{1} \geq 2$ by (i) in Lemma 1. Let h, k be positive integers such that

$$
\begin{equation*}
k q^{m}-h p^{l}=g \tag{13}
\end{equation*}
$$

We show that

$$
\begin{gather*}
a(n g)=n a(g) \quad\left(1 \leq n \leq p_{1}-1\right) \tag{14}\\
a\left(p^{l}\right)=a\left(p_{1} g\right)=p_{1} a(g) \tag{15}
\end{gather*}
$$

Indeed, we have for n with $1 \leq n \leq p_{1}-1$

$$
a(n g)=a\left(k n q^{m}-h n p^{l}\right)=n\left(k a\left(q^{m}\right)-h a\left(p^{l}\right)\right)
$$

by Lemma 5. In particular, $a(g)=k a\left(q^{m}\right)-h a\left(p^{l}\right)$. Combining these we get (14). Next we show (15). Since $a\left(p^{l} q^{m}\right)=p^{l} a\left(q^{m}\right)$ and $a\left(q^{m} p^{l}\right)=q^{m} a\left(p^{l}\right)$ by Lemma 7, we have by (11)

$$
a\left(q^{m}\right)=\frac{q^{m}}{p^{l}} a\left(p^{l}\right)=d a\left(p^{l}\right)+\frac{r}{p^{l}} a\left(p^{l}\right) .
$$

On the other hand, we get $a\left(q^{m}\right)=d a\left(p^{l}\right)+a(r)$ by (11) and Lemma 4. Comparing the right-hand side, we find

$$
\frac{r}{p^{l}} a\left(p^{l}\right)=a(r)=\frac{r}{g} a(g),
$$

noting that g divides r; which yields (15).
Now we prove (12) using (14) and (15). Let n be a positive integer. We write $n=s p_{1}+t$ with $s \geq 0$ and $0 \leq t \leq p_{1}-1$. Then we have by p-additivity

$$
a(n g)=a\left(\left(s p_{1}+t\right) g\right)=a\left(s p^{l}+t g\right)=a\left(s p^{l}\right)+a(t g),
$$

and so

$$
a(n g)=s a\left(p^{l}\right)+t a(g)=\left(s p_{1}+t\right) a(g)=n a(g)
$$

using Lemma 7, (14), and (15). Therefore, (12) is proved.

It remains to show that $a(n)$ is g-additive provided $g \geq 2$. Let $n \geq 0$ be an integer. We write

$$
\begin{aligned}
n=s g+t & (s \geq 0, t \in\{0,1, \cdots, g-1\}), \\
s=s_{1} p_{1}+s_{2} & \left(s_{1} \geq 0, s_{2} \in\left\{0,1, \cdots, p_{1}-1\right\}\right) .
\end{aligned}
$$

Then we have

$$
a(n)=a\left(\left(s_{1} p_{1}+s_{2}\right) g+t\right)=a\left(s_{1} p^{l}+s_{2} g+t\right)=a\left(s_{1} p^{l}\right)+a\left(s_{2} g+t\right),
$$

and so by (15)

$$
a(n)=s_{1} p_{1} a(g)+a\left(s_{2} g+t\right) .
$$

Since $0 \leq s_{2} g+t=k s_{2} q^{m}-h s_{2} p^{l}+t<p^{l}$ by (13), we have by Lemma 5

$$
a\left(s_{2} g+t\right)=a\left(k s_{2} q^{m}-h s_{2} p^{l}+t\right)=k s_{2} a\left(q^{m}\right)-h s_{2} a\left(p^{l}\right)+a(t) .
$$

Hence we get by (12), (13)

$$
a\left(s_{2} g+t\right)=s_{2}\left(\frac{k q^{m}}{g}-\frac{h p^{l}}{g}\right) a(g)+a(t)=s_{2} a(g)+a(t),
$$

and so $a(n)=\left(s_{1} p_{1}+s_{2}\right) a(g)+a(t)=s a(g)+a(t)$. Therefore $a(n)$ is g-additive, and the proof is completed.

5. Additional conditions to Lemma 1 in multiplicative case.

In order to apply Lemma 1 for p and q-multiplicative functions, we need additional conditions that $a\left(p^{l}\right) \neq 0$ and $a\left(q^{m}\right) \neq 0$, which is insured by Lemma 9 below. Let p, q, and $a(n)$ be as in Theorem 2.

Lemma 8. Let $b(1 \leq b \leq p-1)$ and $l \geq 1$ be integers such that $a\left(b p^{l}\right) \neq 0$ and

$$
\begin{equation*}
b p^{l}=c_{t} q^{t}+u \quad\left(c_{t} \geq b, 1 \leq u<q^{t}\right) . \tag{16}
\end{equation*}
$$

Then $a\left(q^{t}\right) \neq 0$.
Proof. We expand u to base q

$$
\begin{equation*}
u=\sum_{i=0}^{h} c_{i} q^{i} \quad\left(c_{i} \in\{0,1, \cdots, q-1\}, c_{h} \neq 0\right), \tag{17}
\end{equation*}
$$

so that $0 \leq h \leq t-1$. Since $a\left(b p^{l}\right) \neq 0, c_{t} \geq b$, and $u \geq 1$, we have

$$
\begin{gather*}
a\left(c_{i} q^{i}\right) \neq 0 \quad(0 \leq i \leq h, i=t), \tag{18}\\
q^{t}<p^{l} . \tag{19}
\end{gather*}
$$

Let f be a positive integer such that $(f-1) c_{h}<p \leq f c_{h}$.

We show first that

$$
\begin{equation*}
a\left((f-1) c_{h} q^{h}\right) \neq 0 \tag{20}
\end{equation*}
$$

It is enough to show that $a\left(j c_{h} q^{h}\right) \neq 0$ for all $1 \leq j \leq f-1$ by induction on j. This holds for $j=1$ by (18). Suppose that $a\left((j-1) c_{h} q^{h}\right) \neq 0$ for some $2 \leq j \leq f-1$. We have by (16), (17)

$$
a\left(b p^{l}+(j-1) c_{h} q^{h}\right)=a\left(\sum_{i=s}^{h-1} c_{i} q^{i}+j c_{h} q^{h}+c_{t} q^{t}\right)
$$

and so by (19)

$$
a\left(b p^{l}\right) a\left((j-1) c_{h} q^{h}\right)=\left(\prod_{i=0}^{h-1} a\left(c_{i} q^{i}\right)\right) a\left(j c_{h} q^{h}\right) a\left(c_{t} q^{t}\right)
$$

which together with (18) leads to $a\left(j c_{h} q^{h}\right) \neq 0$, and hence (20) follows.
We put

$$
k_{c, j}=(f-1) c_{h} q^{h}+(q-1) q^{h+1}+\cdots+(q-1) q^{j-1}+c q^{j},
$$

where c and j are integers with $0 \leq c \leq q-1$ and $h+1 \leq j \leq t$. We show that if $h<t-1$,

$$
\begin{equation*}
a\left(k_{q-1, t-1}\right) \neq 0 . \tag{21}
\end{equation*}
$$

It is enough to show that

$$
\begin{equation*}
a\left(k_{c, j}\right) \neq 0 \quad(0 \leq c \leq q-1, h+1 \leq j \leq t-1) \tag{22}
\end{equation*}
$$

by induction on c and j. By (20), we have $a\left(k_{0, h+1}\right) \neq 0$. Assume that $a\left(k_{c, j}\right) \neq 0$ for some $0 \leq c \leq q-2$ and $h+1 \leq j \leq t-1$. Then it follows from (16), (17), and (19) that

$$
a\left(b p^{l}\right) a\left(k_{c, j}\right)=a\left(b p^{l}+k_{c, j}\right)=\left(\prod_{i=0}^{n-1} a\left(c_{i} q^{i}\right)\right) a\left(n q^{h}\right) a\left((c+1) q^{j}\right) a\left(c_{t} q^{t}\right),
$$

where $n=f c_{h}-q$. Hence we have $a\left((c+1) q^{j}\right) \neq 0$, so that $a\left(k_{c+1, j}\right) \neq 0$. Noting that $k_{q-1, j}=k_{0, j+1}$, we obtain (22), and so (21).

It follows from (16), (17), and (19) that

$$
a\left(b p^{l}\right) a\left(k_{0, t}\right)=a\left(b p^{l}+k_{0, t}\right)=\left(\prod_{i=0}^{n-1} a\left(c_{i} q^{i}\right)\right) a\left(n q^{h}\right) a\left(\left(c_{t}+1\right) q^{t}\right) .
$$

Noting that $k_{0, t}=(f-1) c_{h} q^{h}$ if $h=t-1,=k_{q-1, t-1}$ if $h<t-1$ and using (20) or (21), respectively, we have

$$
\begin{equation*}
a\left(\left(c_{t}+1\right) q^{t}\right) \neq 0 . \tag{23}
\end{equation*}
$$

It follows from (16) and (19) that

$$
a\left(b p^{l}\right) a\left(q^{t}\right)=a\left(b p^{l}+q^{t}\right)=a\left(\left(c_{t}+1\right) q^{t}\right) a(u) .
$$

This together with (23) leads to $a\left(q^{t}\right) \neq 0$.

Remark. Exchanging p by q, in Lemma 8, we have the following: Let m be a positive integer such that $a\left(q^{m}\right) \neq 0$ and

$$
q^{m}=b_{t} p^{t}+v \quad\left(1 \leq b_{t}<p, 1 \leq v<p^{t}\right) .
$$

Then $a\left(p^{t}\right) \neq 0$.
Lemma 9. If $a(n p) \neq 0$ for infinitely many $n \geq 1$, then there exist positive integer l and m satisfying (i) and (ii) in Lemma 1 and (iii) $a\left(p^{l}\right) \neq 0, a\left(q^{m}\right) \neq 0$.

Proof. Let $a(n p) \neq 0$ for infinitely many $n \geq 1$. Then $a(n q) \neq 0$ for infinitely many $n \geq 1$. So we may assume that $q>p$, since, otherwise, we can exchange p by q.

By Lemma 1, it is enough to show that there exist an infinite set L of positive integers and a positive integer m_{0} such that $a\left(p^{l}\right) \neq 0$ and $a\left(q^{m}\right) \neq 0$ for any $l \in L$ and $m \geq m_{0}$. Let

$$
L=\left\{h \geq 1 \mid a\left(p^{h}\right) \neq 0\right\}, \quad M=\left\{k \geq 1 \mid a\left(q^{k}\right) \neq 0\right\} .
$$

We show that both L and M are infinite sets. First we prove that M is infinite. Let h_{0} be a positive integer with $p^{h_{0}} \geq q$. For any $b(1 \leq b \leq p-1)$ and $h \geq h_{0}$, we can write $b p^{h}$ as in the following form:

$$
\begin{equation*}
b p^{h}=c_{s} q^{s}+u \tag{24}
\end{equation*}
$$

where

$$
b \leq c_{s}=c_{s}(b, h)<q^{2}, \quad 0 \leq u=u(b, h)<q^{s}, \quad s=s(b, h) \geq 0
$$

Indeed, if the first digit d_{k} in the q-adic expansion

$$
b p^{h}=\sum_{i=0}^{k} d_{i} q^{i} \quad\left(d_{i} \in\{0,1, \cdots, \mathrm{q}-1\}, d_{k} \neq 0\right)
$$

is not less than b, we put $s=k, c_{s}=d_{k}$, and $u=\sum_{i=0}^{k-1} d_{i} q^{i}$; otherwise, we put $s=k-1$, $c_{s}=d_{k} q+d_{k-1}$, and $u=\sum_{i=0}^{k-2} d_{i} q^{i}$, noting that $k \geq 1$ since $p^{h} \geq q$.

Assume that $u(b, h)=0$ for infinitely many pairs (b, h). Then there exist integers b $(1 \leq b \leq p-1), h_{2}$, and $h_{3}\left(h_{2}<h_{3}\right)$ such that

$$
c_{s\left(b, h_{2}\right)}\left(b, h_{2}\right)=c_{s\left(b, h_{3}\right)}\left(b, h_{3}\right) \quad \text { and } \quad u\left(b, h_{2}\right)=u\left(b, h_{3}\right)=0,
$$

since $\left\{c_{s}(b, h)\right\}_{1 \leq b \leq p-1, h \geq h_{0}}$ is bounded; so that we have

$$
p^{h_{3}-h_{2}}=\frac{b p^{h_{3}}}{b p^{h_{2}}}=\frac{c_{s\left(b, h_{3}\right)}\left(b, h_{3}\right) q^{s\left(b, h_{3}\right)}}{c_{s\left(b, h_{2}\right)}\left(b, h_{2}\right) q^{s\left(b, h_{2}\right)}}=q^{s\left(b, h_{3}\right)-s\left(b, h_{2}\right)} .
$$

This contradicts the irrationality of $\log p / \log q$.
Hence there exists an integer $h_{1} \geq h_{0}$ such that $u(b, h) \geq 1$ for any $1 \leq b \leq p-1$ and $h \geq h_{1}$. Also we note that $a\left(b p^{h}\right) \neq 0$ for infinitely many pairs (b, h), since $a(n p) \neq 0$ for infinitely many $n \geq 1$. These facts with (24) and Lemma 8 imply that $a\left(q^{s}\right) \neq 0$ for infinitely
many s; and therefore M is an infinite set.
To show that L is infinite, we write

$$
\begin{equation*}
q^{k}=b_{t} p^{t}+v \quad\left(1 \leq b_{t}=b_{t}(k)<p, 0 \leq v=v(k)<p^{t}, t=t(k) \geq 0\right) \tag{25}
\end{equation*}
$$

for any $k \geq 1$. In the similar way as above, there exists $k_{0} \geq 1$ such that $v(k) \geq 1$ for any $k \geq k_{0}$. Since M is an infinite set, we get $a\left(q^{k}\right) \neq 0$ for infinitely many $k \geq k_{0}$. Therefore, L is also an infinite set by (25) and the remark of Lemma 8.

Next we show that $M \supset\left\{m_{0}, m_{0}+1, m_{0}+2, \cdots\right\}$ for some integer m_{0}. Let $l_{0} \in L$ satisfy $l_{0} \geq h_{1}$ and let $m_{0} \in M$ satisfy $m_{0} \geq k_{0}$ and $p^{l_{0}}<q^{m_{0}}$. We write $\left\{m \in M \mid m \geq m_{0}\right\}=$ $\left\{m_{0}, m_{1}, m_{2}, \cdots\right\}\left(m_{0}<m_{1}<m_{2}<\cdots\right)$ and put $l_{n}=\left[m_{n} \gamma\right](n \geq 1)$, where $\gamma=\log _{p} q$. We note that $\gamma>1$ since $p<q$. Let n be a positive integer. Since $m_{n}-m_{n-1} \geq 1$, we have

$$
1<m_{n} \gamma-m_{n-1} \gamma=l_{n}-l_{n-1}+\left(m_{n} \gamma-l_{n}\right)-\left(m_{n-1} \gamma-l_{n-1}\right),
$$

and so $l_{n}>l_{n-1}$, noting that $0<m_{n-1} \gamma-l_{n-1}, m_{n} \gamma-l_{n}<1$. Assume that $\left[l_{n} / \gamma\right]<m_{n-1}$. Then we get $l_{n} / \gamma<m_{n-1}$, and so $l_{n} \leq\left[m_{n-1} \gamma\right]=l_{n-1}$. It is a contradiction to $l_{n-1}<l_{n}$. Hence we obtain

$$
\begin{equation*}
m_{n-1} \leq\left[l_{n} / \gamma\right]<m_{n} \quad(n \geq 1) \tag{26}
\end{equation*}
$$

noting that $l_{n}<m_{n} \gamma<l_{n}+1$. Since $k_{0} \leq m_{n} \in M$ and $p^{l_{n}}<p^{m_{n} \gamma}=q^{m_{n}}<p^{l_{n}+1}$, we have $a\left(p^{l_{n}}\right) \neq 0$ by the remark of Lemma 8 , and so $l_{n} \in L$. Since $h_{1} \leq l_{n}$ and $q^{\left[l_{n} / \gamma\right]}<q^{l_{n} / \gamma}=$ $p^{l_{n}}<q^{\left[l_{n} / \gamma\right]+1}$, we get $a\left(q^{\left[l_{n} / \gamma\right]}\right) \neq 0$ by Lemma 8 , and so $\left[l_{n} / \gamma\right] \in M$. Then we have $m_{n-1}=\left[l_{n} / \gamma\right]$ by (26). Hence we obtain

$$
1 \leq m_{n}-m_{n-1}<m_{n}-\left(\frac{l_{n}}{\gamma}-1\right)<m_{n}-\left(\frac{m_{n} \gamma-1}{\gamma}-1\right)=1+\frac{1}{\gamma},
$$

and so $m_{n}-m_{n-1}=1$ since $\gamma>1$, so that $M \supset\left\{m_{0}, m_{0}+1, m_{0}+2, \cdots\right\}$.
Therefore, by Lemma 1, there exist integers $l \in L$ and $m \geq m_{0}$ satisfying (i), (ii), and (iii), and the proof is completed.

6. Some formulas for p and q-multiplicative functions.

In this section, we assume as we may that $p<q$ and write

$$
q=d p+r, \quad r \in\{0,1, \cdots, p-1\} .
$$

The following lemmas can be proved by transforming the arguments in Section 3 into q-multiplicative case. So we omit the proofs.

Lemma 10. If $a(r) \neq 0$, then

$$
a(q)=a(d p) a(r), \quad a((d+1) p)=a(d p) a(p)
$$

Lemma 11. Assume that $a(q) \neq 0$. Let $f(\leq p-1), h$ and k be nonnegative integers
such that $0 \leq f+h p-k r<p$. Then

$$
a(f+h p-k r)=\frac{a(f) a(p)^{h}}{a(r)^{k}} .
$$

Lemma 12. If $r \neq 0$ and $a(q) \neq 0$, then $a(n p)=a(p)^{n}(1 \leq n \leq d)$.
Remark. By Lemma 10 and 12 , if $r \neq 0$ and $a(q) \neq 0$, then $a(p) \neq 0$.
Lemma 13. Assume that $r \neq 0$ and $a(q) \neq 0$. Let $f(\leq p-1), h$ and k be nonnegative integers such that $0 \leq f+h q-k p<p$. Then

$$
a(f+h q-k p)=\frac{a(f) a(q)^{h}}{a(p)^{k}}
$$

Lemma 14. Assume that $r \neq 0$ and $a(q) \neq 0$. Let n be a positive integer such that $a(h p)=a(p)^{h}$ for any $h(0 \leq h \leq n-1)$. Let k be a nonnegative integer such that $k<n p / q$. Then $a(k q)=a(q)^{k}$.

Lemma 15. Assume that $r \neq 0, a(q) \neq 0$, and $b p^{h} \neq c q^{k}$ for any integers b, c, h, and k with $1 \leq b \leq p-1,1 \leq c \leq q-1, h \geq 1$, and $k \geq 1$. Then

$$
a(n p)=a(p)^{n}, \quad a(n q)=a(q)^{n} \quad(n \geq 1)
$$

7. Proof of Theorem 2.

Proof of Theorem 2. Case 1. Assume first that there exists a positive integer h such that $a\left(n p^{h}\right)=0$ for $n \geq 1$. If p and q are relatively prime, then Theorem 2 holds for $l=h$. Let p and q are not relatively prime. Since $a\left(n p^{h}\right)=0$ for $n \geq 1$, we have $a\left(n q^{k}\right)=0$ for some $k \geq 1$ and any $n \geq 1$. Then there exists a positive integer j such that g.c.d. $\left(p^{j h}, q^{j k}\right)=$ g.c.d. $\left(p^{h}, q^{k}\right)^{j}>p^{h}$, noting that p and q are not relatively prime. Hence we obtain $a(n g)=0=a(g)^{n}$ for $n \geq 1$, and so $a(n)$ is g-multiplicative, where $g=$ g.c.d. $\left(p^{j h}, q^{j k}\right)$. Therefore Theorem 2 holds for $l=j h$ and $m=j k$.

Case 2. Next we assume that $a(n p) \neq 0$ for infinitely many $n \geq 1$. By Lemma 9, there exist positive integers l and m satisfying (i), (ii), and (iii). Hence Lemmas 10-15 hold for $p=p^{l}$ and $q=q^{m}$. We put $g=$ g.c.d. $\left(p^{l}, q^{m}\right)$. In the same way as the proof of Theorem 1, we can prove that $a(n g)=a(g)^{n}(n \geq 1)$ and $a(n)$ is g-multiplicative provided that $g \geq 2$, using Lemmas $10-15$ in place of Lemmas $2-7$ respectively. The proof is completed.

References

[1] H. Delange, Sur les fonctions q-additives ou q-multiplicatives, Acta Arith. 21 (1972), 285-298.
[2] A. O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1967/1968), 259-265.
[3] P. J. Grabner, Completely q-multiplicative functions: the Mellin transform approach, Acta Arith. 65 (1993), 85-96.
[4] I. Katai, Distribution of q-additive function, Probability Theory and Applications, Math. Appl. 80 (1992), Kluwer.
[5] J. L. Mauclaire and L. Murata, On q-additive functions I; II, Proc. Japan Acad. Ser. A 59 (1983), 274-276; 441-444.
[6] K. Nishioka, Algebraic independence by Mahler's method and S-unit equations, Compositio Math. 92 (1994), 87-110.
[7] , Mahler Functions and Transcendence, Lecture Notes in Math. 1631 (1996), Springer.
[8] T. Toshimitsu, Strongly q-additive functions and algebraic independence, Tokyo J. Math. 21 (1998), 107-113.
[9] Y. UChida, Elementary proofs of some theorems on strongly q-additive or q-multiplicative functions, Keio Sci. Tech. Rep. 50 (1997), 1-9.

Present Address:

Department of Mathematics, faculty of Science and Technology, Keio University, Hiyoshi, Конокu-ku, Yoкоhama, 223-8522 Japan.

