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Abstract. Suppose G is a 2-connected graph of order n with diameter d>2. We prove that

dn—2d—1

|EG) 2=

We also characterize the extremal graphs for d>5.

1. Introduction.

In this paper, we consider finite undirected graphs without loops or multiple edges.
(Terminologies not defined here can be found in [4] or [8]). The set of vertices (resp.
the set of edges) of a graph G is denoted by V(G) (resp. E(G)). The edge joining two
vertices x and y is denoted by xy, and for subsets 4 and B of V(G),

E(A, B):={xyeE(G) | xe 4, ye B}

denotes the set of edges joining 4 and B. The set of vertices adjacent to a vertex x is
called the neighbourhood of x, and is denoted by N(x). The degree of a vertex x is
denoted by deg(x). The minimum degree (resp. the maximum degree) of G is denoted
by 8(G) (resp. 4(G)). A subset 4 is often identified with the induced subgraph {4, and
G—x:={(V(G)—{x}) for xe V(G). For x and y in V(G), d(x, y) denotes the distance
between x and y, and diam(G) is the diameter of G. The length of a path P is denoted
by /(P). A path P=(vy, vy, ** -, ;) is called an ear if degg(v;)=2 for 1<i</—1. Two
paths P and Q connecting distinct vertices ¥ and v are called internally disjoint if
V(P) n V(Q)={u, v}. For a set X, | X| denotes the cardinality of X. For a real number
z, the greatest integer not exceeding z is denoted by | z |, and [z |:=—| —z_| is the
least integer not less than z.
Let
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%(n, d,d’):={G

| V(G)|=n, diam(G)<d, }
diam(G—x)<d’ for any xe V(G) )’

f(n,d,d"):=min{| E(G)| | Ge%(n,d,d")} .
Bollobas [2, 3] proved

limf(n’d’d)= d
n— o n d— 1
for d’>2d—1. The exact value of f(n,d, d’) is determined if d<4 and » is not small

[10, 1, 6, 5]. Applying the method introduced in [9], we prove the following theorem
([7, Conjecture 3]).

THEOREM 1. Suppose n>d’'>2d—1. Then
dn—2d—1 Ldn—d—3J
’d,dlz =
Jn )[ i1 —I d—1

Define the graph G(a, b; c, d) for positive integers a and b, an integer d>2, and an
integer ¢ with 2<c¢<d as follows: G= G(a, b; ¢, d) consists of internally disjoint paths
Py, ---, P, connecting u and v, internally disjoint paths Q,, - - -, O, connecting u and
w, and an edge vw, where u, v and w are distinct vertices, /(P;,)=d for 1 <i<a, (Q;)=d
for 1<j<b—1, (Qy)=c, and V(P,)n V(Q;)={u} for 1 <i<a, 1 <j<b. Then

n:=|V(G)|=@a+b—-1)d—1)+c—1+3,

unless n=4 and d=2.

IE(G)|=(a+b—1)d+c+1=Ld_"d__dl__3J,

and Ge%(n,d,2d—1). This implies the inequality f(n,d,d’)<[ (dn—2d—1)/(d—1)].
Note that when d and »n are given, such a, b and c exist if n>d+ 3. Define G(a, b; d): =
G(a, b; d, d). Since Theorem 1 was proved for the case d<4, f(n,d,n—1)< f(n,d,d’)
and

g(n,d,n—1)={(; 'V(G)|=",diam(G)sd,},

G is 2-connected
Theorem 1 follows from the following theorem.
THEOREM 2. Suppose G is a 2-connected graph of order n with diameter d > 5. Then

dn—2d—1

|E@)|==—

Furthermore, equality holds if and only if G is isomorphic to some G(a, b; d).
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In Section 2, we prove preliminary results that estimate the number of edges. We
prove Theorem 2 in Section 3.

2. Preliminaries.

In this section, we assume that | V(G)|=n, 6(G)=2, A(G)=3, d=5, | (=2) is the
length of longest ears, and a subset D, of V(G) is given. Set

D,:={veV(G)|d(v, Do)=r},

where d(v, Do) : =min{d(v, u) | ue D,}.

Define functions s and ¢ on V(G) as follows: Let v be a vertex in D,. If either r=0,
deg(v)>3, or |N(w)nD,_,|=2, define s(v):=v and t(v):=0. If r>0, deg(v)=2 and
N@) N D,_,={u}, then define s(v):=s(u) and t(v): =¢t(u)+ 1. Note that

t(v)=d(v, s(v)) <min{r, [—1} .

If the shortest path from v to D, is unique, v is called of type U. If v is not of type U,
v is called of type M. Note that t(v)<r—1 if v is of type M.

Define a function w(u, v) for uve E(D,, D, ,), and a function w(C) for a connected
component C of D, inductively as follows:

(1) For uve E(Dy, D), w(u, v):=0.

(2) For a connected component C of D,(r=1),

w(C):=|EC)|+ Y (1—wxy).

xye E(Dy-1,0)

(3) For wweE(D,, D,,,)r=1), let C be the connected component of D, that
contains u. If w(C)>+%1| C|, then w(u, v):=0. Otherwise,

_d_ _
Wi, v): = 41 | Cl—w(C) .
| E(C9 Dr+ 1) I
LemMa 3. Suppose r<d—1—|12_| and we E(D,, D, ).
—1
1) wu )< ;(ji-i(?) In particular, w(u, v)Smin{ d: T ;:;il_ D }

) If u is of type M, then w(u, v)<(r+tu)—1)/(2(d—1)). In particular, w(u, v)<
min{(r—1)/(d—1), (r +1—2)/2(d—1))}.
(3) If deg(u) =4, then w(u, v)<max{r/(3(d—1)), (r — 1)/(2(d —1))}.

ProoF. We use induction on r. It is easily seen that the lemma holds for r=0.
Suppose r>1, and let C be the connected component of D, that contains #, and set
a:=|C| and B:=|E(D,_,, C)|—a. If w(C)=ad/(d—1), then w(u, v)=0. Hence we may
assume w(C)<ad/(d—1). If C is not a tree, we have
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w(C)=|E(C)|+|ED,_,, C)l(l‘ ;:i)

by induction. Hence C is a tree. Then

dfil >w(C)2a—l+(a+ﬂ)(1—;:i) @.1)
od r+l1-2
-1 >w(C)2a—1+(a+ﬂ)(1— 2(d—1)) 2.2)

by induction. From (2.1), we get

d—1—Lierzd—1+d—_7;,
2 a+p

and from (2.2)

d—l—LiJ2r22d—l—w.
2 a+p

Combining these inequalities, we get

a+d—2 l l / 200+2d—3
—2| = |+l = =l = |zd+ ] ——
a+p 2 2 2 a+p
This implies a(d—2)+ f(d+1)<3d—5. Since a>1, we conclude f<2. More precisely,

a=11if f=1, and a<3+1/(d—2)<4 if §=0.
First, suppose a=f=1. Then

W, v)sL—Z(l—min{r_l, r+l_2})
d—1 d—1 2d—1)

d ( r—l) ( r+l—2)
< —[1- —(1-
d—1 d—1 2Ad—1)

_ 3r—2d+1 < r+2d—1—12 )—2d+1

2d—-1) ~ 2(d—1)
r—1
< .
2d—1)

This proves (1), (2) and (3), since #u)=0 in this case.
Next, suppose f=0. First, suppose a=3. Then #(u)=0 since deg(x)>3, and
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3d r—1 r+1—2
)<—r 421" (1=
Wi V= { ( d—1)< 2(d—1))}
_Sr—ad+l+4 _r+4d—1—Ll2)—dd+1+4

2d—1) 2d—-1)

_r+l—4[_l/2_J< r—1
- 2d-1) T 2d-1°

Next, suppose a=2 and let C={u,u’}. Then #u)=0 since deg(u)=>3. If
|E(C, D, )22,

s (s, 2m0)
2\d—1 d—1 )= 2d-1)

Hence we may assume that | E(C, D, ,,)|=1. This implies deg(x’)=2, and then

2d r—1 r+1-3
wu, v)sii_—l_{l"L(l“ﬁ)“L(l_ 2d-1) >}

Sr—?.[_l/2_|+l—1 < T
2d—1) 2d—1)

Suppose furthermore that u is of type M. Then

2d r—2 r+i-3
s 2 oo 2) ()
r—2

< .
2d—1)

Finally, suppose a=1. Let k:=deg(x) and Nw)nD,_,={x}. If k=2, then
Hx)=tu)—1, and

w(u, v)= d_i_l— — (1 —w(x, u)

1 r—14+tw—1 r+t()
< + = .
d—1 2d—1) 2d—-1)

Note that u is of type M if and only if x is of type M. Therefore, if u is of type M,

1 r+t(x)—2=r+t(u)—1

w(u, v) <
d—1 2d-1) 2(d—-1)

If k>3,

1 1
w(u, v) < 5 (F——l + w(x, u)) <

2d—-1)
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If u is of type M, then x is of type M and t(x)<r—2. Hence

Wi v)<1< 1 +r—2)_ r—1
T 2\d=1 d—1) 2d-1)°

If k>4,

Wi, )< 1 ( 1 +r—1)_ r O
T3 \d=1 d—1) 3@d-1)°
A connected component C of D, is called an end-component if E(C, D, , )= .

LeMMA 4. Suppose C is an end-component of D,.

(1) If r<d—1—12], then W(C)=5%1|C|. Furthermore, suppose l>d—1 and
WC)=521|C|. Then l is odd, r=d—1—|1/2|, | C|=2, andzuect(u) I—1.
2) If r<d—|I112], then w(C)> il C|+cLil/21‘|
r=d—1/2_],|C|=2, and u)=r for all ueC.

(3) Suppose r<d—|1/2_| and all the vertices in C are of type M. Then w(C)>
d Cl+i/2 -

d—1

Jor all xe N(C).

(4) Suppose l is even, r=d—| 1/2_|, and all the vertices in C are of type M. Then
W(C)=321 | C|. Furthermore, suppose l=d—1 and wC)=4 Then |C|=1,
INC)I=2,and )y tx)=1-2.

Proor. Let a:=|C|and B:=|E(D,_,, C)|—a.

(1) Suppose w(C)<ad/(d—1). Then C is a tree and o(d—2)+B(d+1)<3d—3.
Hence f<2. More precisely, a<2 if f=1, and a<3+3/(d—2)<4 if =0. It is easily
checked that =2 and B=1 cannot occur. Suppose a=f=1, and let C={u}, Nu)=

{x1, x,}. Then
d 2 _r—1+41x;)
-0z, (‘ Sacn)

Equality holds only if

il Equality holds only if r=d—|1/2_], |C|=1, |N(C)|=2 and t(x)=r—1

This implies that
Hx)+Hx)=2d—2r—22>2[ /2 |>1-1

On the other hand, u is contained in a ear of length #(x;)+ #(x,)+2, which contradicts
the definition of /. Next, suppose f=0. It is easily checked that a =4 is not possible. If
a=13, two vertices in C are of degree 2. Hence
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r—1 r+1-3
w(C)22+<1 _;ij>+2<l — 2(d—1)>

J3d—1+2Up)+1 3d
d—1 d—1

If I>d—1,

w(C)22+3(1— r—l)Z 2d+1+3l_l/2J> 3d

d—1 d—1 d—1
Suppose =2 and C={u,, u,}. Then

This implies that
I—1>t(u)+t(uy)=>2d—2r—2>21/2|.

This is possible only if w(C) =2d/(d—1), lisodd, r=d—1—| I/2_],and #(u,) + t(u;) =1—1.
(2) Suppose
ad+ | 12 |—r—1

w(C) < 1

(2.3)

Since

w(C)Za—l+(a+ﬁ)(1 —;:D

we have

(@+B-2)12 |+ @+B—-1)d—12]-rN<a—2.
This is possible only if equality holds in (2.3), a=2, B=0, r=d—| /2], and #(u)=r for
all ueC.
(3) Suppose

< ad—|1/2_|—r .

w(C)< 11 2.4

Then we have
(a+B-2) 12 |<a—1.

This is possible only if f<1. Suppose f=0. Then | Mu) nD,_,|=1 for all ue C, and
all the vertices in N(C)n D,_, are of type M. Hence we have
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w(C)zot—1+oc(l _ r—2> ,
d—1

which implies that
(@—1)d—12)—r+@=2)L 2 |+1<0,

a contradiction. Suppose f=1. Then |N(u,)nD,_,|=2 for some u,eC and
|N(w)~D,_,|=1 for all ue C—{u,}. Furthermore, all the vertices in N(C— {u,}) "D, _,
are of type M. Hence we have

r—1 r—2
w(C)Zoz—l+2<1——d—l>+(oz—l)(1—d_l) R

which implies

ald— 12 ]—r)+(@—1)|1/2_|<0.
This is possible only if r=d—| /2 | and a=1. In this case, we have
d+ 12 |—r wC)z ¥ (1 _r—=1+¢(x) ) ’
d—1 xeN(O) 2d-1)
which implies

Y (0)=2d—2112 |-22>2r—1).

xeN(C)

This is possible only if #(x)=r—1 for all xe N(C).
(4) Suppose w(C)<421| C|. Then, as in the proof of (1), we get o(d —3)+pd<
3d—3. This implies B<2. Suppose f=2. Then a=1, and

r—1 r+1-2
MOz1—2—7 2<1_ 2(d—1))

_3d—l-2r _ d
T d—1 d—1-

Equality holds only if #x)=r—1=I—1 for all xe N(C), but this cannot happen when
I=d—1.

Suppose f=1. Using the fact that a—1 vertices in N(C) n D,_, are of type M, we
easily get a<2. Suppose a=2 and let C={u,, u,} with N(u;)={x,, u,}. Since x, is of
type M and #(x,)</—1,

r—1 r+1-2 r+1—4 2d
O)=1+(1-2"")+(1- +(1- = .
W) +< d—l) ( 2(d—1)) ( 2(d—1)) d—1
Equality holds only if #{x)=r—1=1I—1 for all xe N(u;) n D,_,. This cannot happen
when /=d— 1. Suppose a =1 and let C={u} and N(u)= {x,, x,}. Since #(x,) + #(x,) <[—2,
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2 r—1+1(x;)
WC)= i; <1 C2d—1) >

_4d=2r=2—1x)—tx;) 4
B 2d—1) “d-1

Equality holds only if #(x,)+t(x,)=[—1. Finally, suppose f=0. Using the fact that all
the vertices in N(C)n D,_, are of type M, and the fact that at least two vertices in C
have degree 2, it is easily checked that the only possibility is «=2. Let C={u;, u,} and
N@u;)nD,_,={x;}, i=1, 2. Since #(x,)+t(x,)<]-3,

2 r—2+1x;)
w(C)>1+ i;(l——-_—z(d__l) )
_ 6d —2r—2—1t(x;)—t(x,)

2d—1)

4d+1  2d
> > .
2d—1) " d—1

3. Proof of Theorem 2.

Let G be a 2-connected graph of order n with diam(G)<d (d=5). Then 6(G)=>2.
- If (G)=3, we have

|E(G)| 2> 1241
2 d—1

Hence we may assume that §(G)=2. If A(G)=2, G is a cycle and diam(G)=| n/2_|<d.
This implies that

dn—2d—1
|EG)|=nz 2"
d—1
Equality holds only if n=2d+ 1, and then G is isomorphic to G(1, 1; d). In the rest of
the proof, we assume that A(G)>3. Let P=(v,, vy, ', V;) be a longest ear, and we

shall apply the results in Section 2 by setting D, := V(P). Note that />2 since 6(G)=2.
Moreover, all the vertices in D,_,;,, are of type M when /is odd, and Dy, ;= J.

Case 1. l>d+1. Let C be an end-component of D,. If r<d—| /2 |—1,

WC)> d|C|+l_l/2J—d(d;|_l/2_]_1)_1 . dICI:i—i—ld—l

by Lemma 4(2). Suppose r=d—| 1/2 |. If [ is even,
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d|Cl+1—d—1
d—1
by Lemma 4(2). If / is odd, all the vertices in C are of type M. Hence

d|Cl+ 2 ]—-@d-112])) - dC|+1—-d—1
d—1 - d—1

by Lemma 4(3). In every case, w(C)=(d|C|+I!—d—1)/[(d—1)>d|C|/(d—1) for any
end-component C. Let C, be an end-component. Then

w(C) >

w(C)=>

| E(G)| = | E(P)|+ (= V(P)| =1 Co ) +mW(Co)

d—1
dn—1—-1) Il—d—1 dn—-2d—1

+ + = .

d—1 d—1 d—1
If | E(G)|=(dn—2d—1)/(d—1), then /I=d+1 or C, is the unique end-component. First,
suppose C, is the unique end-component. Then
d|Col+1—d—1

d—1 '
This is possible only if either (i) r=d—1—|1/2 |, l is odd, | C|=2 and Y e ctw=I1-1,

(i) r=d—|1/2 ], ] is even, | C|=2 and #u)=r for all ue C, or (iii) r=d—| /2], I is odd,
|Cl=1, | N(C)|=2 and #x)=r—1 for all xe N(C). In case (i),

>1

w(Co)=

I-1=) t(u)s2r=2<d—1—l-Tl)sl—3 ,

ueC

a contradiction. In case (ii) or (iii), the uniqueness of the end-component implies that
deg(vo) =deg(v,) =2, which contradicts the definition of P.
Next, suppose /=d+ 1. Then

d|C|+l—-d—1_ d
d—1 T d—1

w(C)= | Cl

for any end-component C. By Lemma 4, any such end-component is contained in
D, 11219 Dy 5, Suppose an end-component C is contained in D,_; _,;,,. Then
by Lemma 4(1), / is odd, |C|=2 and ), _.#(u)=I1—1. However, tu)<d—1—|1/2 |<
(I—1)/2. So, this cannot happen. Suppose an end-component C is contained in D,_ 2.
Then either (i) / is even, |C|=2 and #u)=r for all ueC, or (i) / is odd, |C|=1,
| N(C)|=2and #(x)=r—1for all xe N(C). It is easily seen that G is isomorphic to G(a, 1; d),
where a is the number of end-components. []

In the rest of the proof, we assume that /<d. Suppose that the two end-vertices
vo and v, of P are adjacent. Then
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H:=G—{vy, ",y }edn—1+1,d,n-1),

dn'—2d—1 _ dn—2d—1
\E(G)|=I+| EH) |21+ 2 =241 dn

d—1 — d-1
by induction, where n’ =| V(H)|=n—I+ 1. Furthermore, equality holds only if /=d and
dn'—2d—1
EH)|=—————.
| E(H) | =——=

By induction, H is isomorphic to some G(a, b; d). However, it is easily seen that if we
add an ear of length / to an edge of G(a, b; d), the diameter of the resulting graph is
greater than d. Hence we may assume that the two end-vertices of any ear of length /
are nonadjacent.

If w(C)=54+| C| for any end-component C, we have
(n—1—1)>dn=24=1
d—1 d—1
Hence we may assume that some end-component C of D, satisfies w(C)< 741 | C|. By
Lemma 4(1), r=d—| /2 |. It is easily seen (by the proof of Lemma 3) that C must be
~atree. Let a:=|C|and f:=|E(D,-, C)|—a. Then

(r=1 r+i=2
w(c)zoc—l+(fx+ﬂ)<1_mm{d_1’ 2(d—1) }>

|E(G)| =1+

which implies that

@+plLl2l<d+a-2, (3.1
(@+B 12 1=2(@+B—2)d—20+3. 3.2
Case 11. I=d. By (3.1), we have
d+o—2
ﬂSTl/i_l__a<2 .

Subcase 11-1. [is odd. Suppose B=0. Since all the vertices in C are of type M,

r—2
C)za—14o 1———).
w(C)=a oz< d—1>

This implies that /—2>a(l—1)/2, a contradiction. Suppose §=1. Then a=1. Let C={u}
and N(u)={x,, x,}. Then

d 2 r+t(x;)—1
ﬁ”‘c)zi;(l‘w)’

which implies that #(x,)+#(x,)>/—2. On the other hand, #(x;)<r—1=(I—1)/2. Hence
we may assume that #(x,)=(/—3)/2 and #(x,)=(I—1)/2. This means that s(x;)e D; and



12 HIKOE ENOMOTO AND YOKO USAMI

s(x,)€ Dy. Let s(C) be the connected component of D, that contains s(x,). If | s(C)|>1,
then w(x,, u) <(r—2)/(d—1), which implies that w(C)>d/(d—1). Hence we may assume
that |s(C)|=1. let {C,, ---, C,, C{, - -, C;} be the set of end-components such that
wWC) <747 | G| for 1<i<a and W(C})>741|C;j| for 1<j<b, and set C;={u;} for
1<i<a. Since d(u; u;)<d=I1<2r, we have s(C;)=s(C;) for all i and j (1<i, j<a).
Let k be the degree of the vertex in s(C;). Then k>a+1 and

d 1

w(Cy)= - .

d—1 (k—1)d—1)
Hence
|E(G)|2l+dd1 (n—I—1—a)+ ) w(C)

- . i=1
d 1 dn—2d—1

>1 —I—-1)— = ;

ta B

Equality holds only if k=a+1 and w(Cj)=321|C;| for 1<j<b. By Lemma 4, Cjis
contained in Dy_yy;,-1 UD,;_ 1y, Suppose veD,_,,—\ )i, C. Then d(v,u;)>
2(d—| /2 )=d+1, a contradiction. Hence C; is contained in D,_;,-,. By Lemma
4(1), |Cj|=2 and ), _ tu)=I—1=2(d—| l/2_|]—1). This means that G is isomorphic
to Ga,b+1;d). O

Subcase 11-2. [ is even. In this case, we have (a+ f—2)d<2a—4 by (3.1). This
implies =0 and a=2. Let C={u,, u,} and N(w;) " D,_,={x;}. Then

2 _r—1+t(xi)
W(C)Zl+i;l(l —2(61—1) ),

Huay)+ ) = 10x,) + 2(x) +2>2d—2r—1=1—1.

which implies that

On the other hand, #(u,)+#u,)<I—1 and #u;)<r=1/2. Hence we may assume that
Hu;)=1/2—1 and #(u,)=1/2. Note that s(u;)e D, and s(u,)e D,. Since s(u,) and s(u,) are
Joined by an ear of length [, s(u,) and s(u,) are not adjacent. Since w(x,, u,)>(r—2)/(d—1),
{s(u,)} is a connected component of D,. Let {C,, -+, C,, Cj, - - -, C;} be the set of
end-components such that w(C;) <327 | G|, for 1 <i<a, w(C})=7%1|C}| for 1<j<b.
We can conclude that G is isomorphic to G(a, b+ 1; d) by the same way as in Subcase
II-1. 4J

Case III. I<d—1. We shall show that some end-vertex of an ear of length / is
of degree 3.

Subcase 11I-1. [is even. By (3.1) and (3.2),
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d+oa—2>(a+p—2)d—2a+3,

which implies f<1.

Suppose B=1. Then a<2. Suppose a=2, and let C={u, v} with deg(u)=3 and
deg(v)=2. If t(v)=1—1, then the end-vertex u of an ear of length / is of degree 3. Hence
we may assume that #(v)</—1. Then

r+1-2 r+l—4

From this, we get d<-/ instead of (3.2). This contradicts (3.1). Suppose a=1, C={u}

and N(u)={x,, x,}. Then
2 r—1+t(x;)
w(C)= 21(1 =1 )

which implies that #(x,)+ #(x,)=/—1, a contradiction.
Suppose f=0. If x>2, at least two vertices of C are of degree 2. Hence

d+oa—2>a| 12 |=a[ /2 |>(x—2)d—20+5 .

This implies that « <4, but for a=4, there is no integral solution. Suppose a=3 and
C={u,, u,, v} with deg(v)=3. Then we may assume that #x)</—1 for all xe N(v). Then
we get d<-3/—4 instead of (3.2). This contradicts (3.1). Suppose a=2 and C={u,, u,}.
Then by the same argument as in Subcase II-2, we get #(u,)+ Hu,)=I/—1. We may
assume that deg(s(y;)) >4 for i=1, 2. Then

2 r—tu;) r—1—tu;) t(u;)—1
W(C)Zl+i§1(1_max{3(d—1)’ 2d—1) }_ i—1 )

S = i max{;_t(ui), "—'l_t(ui)}.
i=1 (d—1) 2(d—-1)

by Lemma 3(3). Let

If

_r—tuy)  r—tuy) 2r—I+1
T 3d—1)  3d-1) 3d-1 "

we have
d—21+2|1/2]-1<0,
which contradicts the assumption that /<d—1. If

_r—=1—tuy)  r—1—-tu) 2r—I-1
T 2d-1) 2d—1)  2d-1°
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we have 2| I/2 |<I—1, a contradiction. Suppose

_r—tuy) | r—1—tuy)
T 3d—1) 2d—1)

Then we have
S5r—6d+6l—3>2t(u,)+ 3t(u,)=>31—3—r,
a contradiction. [

Subcase III-2. [is odd. By (3.1) and (3.2), we have f<2. Suppose f=2. Then
there are at least « —2 vertices # in C such that | N(u) n D,_,|=1. Since all the vertices

in C are of type M,
w(C)Za—l+4(l—min{r_1, ’”_2})
d—1 2d-1)

+(oz—2)<l—min{r_2, r+1-3 })
d—1 2d-1)

which implies that a<1+3/(d—2)<3. Suppose a=2. Then d=5 and [/=7/2, a
contradiction.
Suppose a=1 and C={u}. Then we may assume that #x)</—1 for all xe N(u).

Hence
w(C)23(1— ’+’_3),
2(d—1)

which implies that 3d >2d +4. This contradicts (3.1).
Next, suppose B=1. If a>2, there are a—1 wvertices u in C satisfying
|N(w)~D,_,|=1, one of which is of degree 2. Since all the vertices in C are of type M,

L \r—1 r+1-2
w(C)2a+2(1_mm{d_1’ 2(d—1)})

+(a—2)(1—min{r”2,’+l_3}>
d—1 2d-1)
( . {r—2 r+l—4}>
+{ 1 —min X ,
d—1 2d-1)
which implies that

d—1=@+ D)2 =@+ 1)[1)2 |- =(@—1)d—2a+2.

Hence
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1
<24+ —-<3.
d—2

Suppose a=2 and C={u, v} with deg(u)=2 and deg(v)=3. Then we may assume that
t(x)<l—1 for all xe N(v). Hence

— —11
w(C)24——min{3r 4 3r+3l },

d—1" 2d-1

which is impossible. Suppose a=1, C={u}, and N(u)={x,, x,}. By the same argument
as in Subcase II-1, we have #(x,)+#(x,)=1—2, and we may assume that deg(s(x;))=>4
for i=1, 2. Then

2 —1-tx;) r—2—1tx; t(x;
WOz Y. (1 —max{" ) 7 (xz)}_ x) )
i=1 3d-1) 2(d—1) d—1
by Lemma 3(3). It is easily verified that this leads to a contradiction as in Subcase I1I-1.

Finally, suppose f=0. Then for all xe C, x is of type M and |N(x)nD,_;|=1.
Furthermore, at least two vertices in C are of degree 2. Hence

. (r—2 r+1-3
W(C)fo—l+(a—2)(1—mm{d_1’ 2d—-1) }>

. yr—2 r+1—-4
+2<1 ——mm{ . }),
d—1 2d-1)

which implies that « <(3d—7)/(d—2)<3. Suppose a=2 and C={u,, u,}. Then

2 r—3+t(u;)
w(C)=1+ ,;1 (1 —W>’

which implies that
Huy)+ Huy)>2d—2r=1-1,
a contradiction. [

We have proved that there exists an ear of length /, one of whose end vertices is
of degree 3. Hence we may assume that N(v;)={v,_{, U+, Uj+1}- Set Dy:=V(P) U N(v)),
and apply the results in Section 2. If / is odd, D,;_;,,= . If I is even, all the vertices
in D,;_\y,, are of type M. By Lemma 4(1) and (4), w(C) =421 | C| for any end-component
C. Hence '

(n_l~3)2ff__2$l_

E@G)|=zl+2+
| E(G) 1_1 11

Equality holds only if /=d—1 and w(C)=4%3| C| for any end-component C. Suppose
/is odd, and C is an end-component. By Lemma 4(1), C is contained in D;_; _ .,
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|C|=2, and ), _.tu)=I—1. It is easily verified that all the vertices in C are of
type U. Since deg(v;4;)=>2 and deg(v;,,)>2, there are end-components C;={u,, u,}
and C,={uj,u3} such that d(uy,v,,,)=d(uy, v/,)=d—1—|1/2]. Then d(u,,u})=
2d—1—|l/2_)+2=d+2, a contradiction. Suppose / is even. By Lemma 4(4), any
end-component is contained in D,_y,,), and consists of a single vertex. In this
case, there are end-components C;={u;} and C,={u;} such that d(u,,v,;,)=
d(uy, v )=d—|1/2_]. Since all the vertices in N(u,) U N(u}) are of type U, d(u,, u|)=
2(d—|1/2 ))=d+1, a contradiction. [

This completes the proof of Theorem 2. []
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