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On Algebraic Unknotting Numbers of Knots
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Abstract. We show that the algebraic unknotting number of a classical knot $K$, defined by Murakami
[9], is equal to the minimum number of unknotting operations necessary to transform $K$ to a knot with
trivial Alexander polynomial. Furthermore, we define a new operation, called an elementary twisting operation,
for smooth $(2n-1)$-knots with $n\geq 1$ and odd, and show that this is an unknotting operation for simple
$(2n-1)$-knots. Moreover, the unknotting number of a simple \langle$2n-1$)-knot defined by using the elementary
twisting operation is equal to the algebraic unknotting number of the S-equivalence class of its Seifert matrix
ifn $\geq 3$ .

1. Introduction.
1

Let $S$ denote the set of all integral square matrices $V$ such that $\det(V-V^{T})=1$ ,
where the zero matrix is also included and $V^{T}$ denotes the transpose of $V$. Note that
$S$ is the set of Seifert matrices for oriented (tame) knots in $S^{3}$ , where $S^{3}$ is also oriented
(for a precise definition, see \S 3). In [9], Murakami has defined an algebraic unknotting
operation on an element $V$ of $S$ (for details, see \S 2). In fact, such an operation is well
defined on the set $\tilde{S}$ of all S-equivalence classes (see [11]) of elements of $S$ . Then
Murakami has shown that every two elements of $\tilde{S}$ can always be transformed to each
other by a finite iteration of algebraic unknotting operations. The algebraic unknotting
number $u^{a}(\gamma)$ of an element $\gamma\in\tilde{S}$ is defined to be the minimum number of algebraic
unknotting operations necessary to transform $\gamma$ to the S-equivalence class of the zero
matrix. Furthermore, the algebraic unknotting number $u^{a}(K)$ of a knot $K$ in $S^{3}$ is defined
to be the algebraic unknotting number $u^{a}([K])$ of the S-equivalence class $[K]$ of a
Seifert matrix for $K$. These notions have been first defined and studied by Murakami
[9]. In [1], there has been obtained a characterization of knots in $S^{3}$ which have
algebraic unknotting number one.

For two knots $K$ and $K^{\prime}$ in $S^{3}$ , we denote by $d_{G}(K, K^{\prime})$ the usual Gordian distance
between $K$ and $K^{\prime}$ (see [8]). Furthermore, for a knot $K,$ $\Delta_{K}(t)$ denotes its Alexander
polynomial. In this paper, first we will show the following.
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THEOREM 1.1. For a knot $K$ in $S^{3}$ , we have

$u^{a}(K)=\min\{d_{G}(K, K^{\prime}) : \Delta_{K^{\prime}}(t)=1\}$ .

In other words, the algebraic unknotting number of $K$ coincides with the minimum number
of (geometric) unknotting operations necessary to transform $K$ to a knot with trivial
Alexander polynomial.

As a corollary, we will obtain an estimate from above of the topological 4-ball
genus of a classical knot (see \S 4).

Let us consider an oriented homotopy $(2n-1)$-sphere $K$ smoothly embedded in
$S^{2n+1}(n\geq 1)$, where $S^{2n+1}$ is also oriented. We call such a $K$ a $(2n-1)$-knot. In \S 5, as
a generalization of the unknotting operation for classical knots, we will define an
operation, called an elementary twisting operation, which creates a new $(2n-1)$-knot
from an old one for $n\geq 1$ and odd. Unfortunately, for $n\geq 3$ , this operation will tum
out to be insufficient for transforming a given knot to the trivial knot, even if applied
successively, since this operation preserves the lower dimensional homotopy groups of
the complement. However, if we restrict ourselves to simple $(2n-1)$-knots (see [7]), for
which the i-th homotopy groups of the complements vanish for all $i\leq n-1$ , we will see
that this is in fact an unknotting operation and thus we can define the unknotting
number $u(K)$ for every simple $(2n-1)$-knot $K$ with $n\geq 1$ and odd (Theorem 5.9). The
second main result of this paper is Theorem 5.10 which states that the unknotting
number of a simple $(2n-1)$-knot with $n\geq 3$ and odd is equal to the algebraic unknotting
number of the S-equivalence class of its Seifert matrix.

Throughout the paper, we work in the smooth category except in \S 4. The homology
groups are always with integral coefficients and the symbol $‘‘\cong$ denotes a
diffeomorphism between smooth manifolds.

The author would like to thank Hitoshi Murakami for suggesting the problem.
He would also like to thank the people at the University ofLiverpool for their hospitality
during the preparation of the manuscript.

2. Preliminaries.

Let us consider two matrices $V$ and $W\in S$ . We say that $V$ and $W$ are congruent
and write $V\sim_{c}W$, if $W=PVP^{T}$ for some integral square matrix $P$ with det $P=\pm 1$ . We
say that $W$ is a row enlargement of $V$ (or $V$ is a row reduction of $W$), if

$W=\left(\begin{array}{lll}0 & 0 & 0\\1 & X & u\\0 & v^{T} & V\end{array}\right)$

for some integer $x$ and some integral row vectors $u$ and $v$ . We say that $W$ is a column
enlargement of $V$ (or $V$ is a column reduction of $W$), if
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$W=\left(\begin{array}{lll}0 & 1 & 0\\0 & X & (u^{\prime})^{T}\\0 & v’ & V\end{array}\right)$

for some integer $x$ and some integral column vectors $u^{\prime}$ and $v^{\prime}$ . When $W$ is a row (or
column) enlargement of $V$, we write $V\nearrow W$ or $W\searrow V$. The S-equivalence on $S$ is
defined to be the equivalenoe relation generated by congruences, row enlargements and
column enlargements (see [11]). We denote by $\tilde{S}$ the set of S-equivalence classes of
elements of $S$ .

For two elements $V$ and $W\in S$ and $\epsilon=\pm 1$ , we say that $W$ is obtained from $V$ by
an $(\epsilon-)algebraic$ unknotting operation and write $V\rightarrow\epsilon W$, if

$W=\left(\begin{array}{lll}\epsilon & 0 & 0\\1 & x & M\\0 & N^{T} & V\end{array}\right)$

for some integer $x$ and some integral row vectors $M$ and $N$. An algebraic unknotting
operation on $\tilde{S}$ assigns $\gamma\in\tilde{S}$ to the S-equivalence class of

$\left(\begin{array}{lll}\epsilon & 0 & 0\\1 & x & M\\0 & N^{T} & V\end{array}\right)\in S$ ,

where $V$ is some representative of $\gamma$ . Not\’e that when a knot $K$ is transformed to a
knot $K^{\prime}$ by an $(\epsilon-)unknotting$ operation, then the S-equivalence class $[K^{\prime}]$ of a Seifert
matrix for $K^{\prime}$ is obtained from $[K]$ by an $(\epsilon-)algebraic$ unknotting operation.

By [9, Lemma 1], we have the following.

LEMMA 2.1. For two elements $V$ and $W\in S$ , there always exists a sequence of
matrices $V_{0},$ $V_{1},$ $\cdots,$ $V_{k}$ in $S$ such that

(1) $V_{0}=V$ and $V_{k}=W$,
(2) for each $i$ with $0\leq i\leq k-1$ , we have $V_{i}\sim_{c}V_{i+1}$ , or $V_{i}\nearrow V_{i+1}$ , or $V_{i}\searrow V_{i+1}$ or

$V_{i}\rightarrow\epsilon V_{i+1}$ for some $\epsilon$ .

3. Proof of Theorem 1.1.

Let $F$ be an oriented compact connected surface embedded in $S^{3}$ and $\{\alpha_{1}, \cdots, \alpha_{r}\}$

a basis of $H_{1}(F)$ . A Seifert matrix for $F$ with respect to the above basis is defined to be
the matrix $(1k(\alpha_{i}, \alpha_{j}^{+}))$ , where lk denotes the linking number in $S^{3}$ and $\alpha_{j}^{+}$ is the push-off
of $\alpha_{j}$ in the positive normal direction of $F$ in $S^{3}$ . Let $K$ be an oriented knot in $S^{3}$ . Then
aSeifert matrix for an oriented Seifert surface ofKis calleda Seifert matrix of K.

Let $V\in S$ be a Seifert matrix for a Seifert surface $F$ of a given knot $K$ in $S^{3}$ . By
Lemma 2.1, there exists a sequence of matrices $V_{0},$ $V_{1},$ $\cdots,$ $V_{k}$ in $S$ such that
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(1) $V_{0}=V$ and $V_{k}$ is the zero matrix,
(2) for each $i$ with $0\leq i\leq k-1$ , we have $V_{i}\sim_{c}V_{i+1}$ , or $V_{i}\nearrow V_{i+1}$ , or $V_{i}\searrow V_{i+1}$ , or

$V_{i}\rightarrow\epsilon V_{i+1}$ for some $\epsilon$ ,
(3) the number of elements in the set $\{0\leq i\leq k-1 : V_{i}\rightarrow\epsilon V_{i+1}\}$ is equal to $u^{a}(K)$ .
LEMMA 3.1. $Mod\iota fyingV_{i}$ and $k$ if necessary, we may assume that there exists no

$i$ with $V_{i}\searrow V_{i+1}$ , replacing the above condition (1) with the condition
(1) $V_{0}=V$ and $V_{k}$ is S-equivalent to the zero matrix.

PROOF. Suppose that $V_{i_{O}}\searrow V_{i_{O}+1}$ for some $i_{0}$ with $0\leq i_{0}\leq k-1$ and that there
exists no $i$ with $i_{0}<i\leq k-1$ with $V_{i}\searrow V_{i+1}$ . We may assume that

$V_{i_{O}}=\left(\begin{array}{lll}0 & 0 & 0\\1 & x & u\\0 & v^{T} & V_{i_{O}+1}\end{array}\right)$

for some integer $x$ and some integral row vectors $u$ and $v$ (when $V_{i_{O}}$ is a column
enlargement of $V_{i_{O}+1}$ , the argument is similar).

First, define $V_{i_{0}+1}^{\prime}=V_{i_{O}}$ . Note that, in particular, $V_{i_{O}}\sim_{c}V_{i_{O}+1}^{\prime}$ . We will define $V_{j}^{\prime}$

for $j$ with $i_{0}+2\leq j\leq k$ inductively so that $V_{j}^{\prime}$ is a row enlargement of $V_{j}$ as follows.
Note that $V_{i_{O}+1}^{\prime}$ is a row enlargement of $V_{i_{O}+1}$ . We suppose that

$V_{j-1}^{\prime}=\left(\begin{array}{lll}0 & 0 & 0\\1 & x_{j-1} & u_{j-1}\\0 & (v_{j-1})^{T} & V_{j-1}\end{array}\right)$ .

When $V_{j-1}\sim_{c}V_{j}$, suppose that $V_{j}=PV_{j-}{}_{1}P^{T}$ for an integral square matrix $P$ with
det $P=\pm 1$ . Then we set

$V_{j}^{\prime}=\left(\begin{array}{lll}0 & 0 & 0\\1 & x_{j-1} & u_{j-}{}_{1}P^{T}\\0 & P(v_{j-1})^{T} & V_{j}\end{array}\right)$ .

Note that $V_{j}^{\prime}$ is a row enlargement of $V_{j}$ and that

$\left(\begin{array}{lll}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & P\end{array}\right)V_{j-1}^{\prime}\left(\begin{array}{lll}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & P\end{array}\right)=V_{j}^{\prime}$ .

In particular, we have $V_{j-1}^{\prime}\sim_{c}V_{j}^{\prime}$ .
When $V_{j-1}\nearrow V_{j}$, suppose that

$V_{j}=\left(\begin{array}{lll}0 & 0 & 0\\1 & y & u_{1}\\0 & v_{1}^{T} & V_{j-1}\end{array}\right)$
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for some integer $y$ and integral row vectors $u_{1}$ and $v_{1}$ (when $V_{j}$ is a column enlargement
of $V_{j-1}$ , the argument is similar). Then we set

$V_{j}^{\prime}=\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0\\1 & x_{j-1} & 0 & 0 & u_{j-1}\\0 & 0 & 0 & 0 & 0\\0 & 0 & 1 & y & u_{1}\\0 & (v_{j-1})^{T} & 0 & v_{1}^{T} & V_{j-1}\end{array}\right)$ .

Note that $V_{j}^{\prime}$ is a row enlargement of $V_{j}$ . Furthermore, we have

$V_{j-1}^{\prime}=\left(\begin{array}{lll}0 & 0 & 0\\1 & x_{j-1} & u_{j-1}\\0 & (v_{j-1})^{T} & V_{j-1}\end{array}\right)\sim_{c}\left(\begin{array}{lll}V_{j-1} & 0 & (v_{j-1})^{T}\\0 & 0 & 0\\u_{j-1} & 1 & x_{j-1}\end{array}\right)=W_{j}^{\prime}$

$\nearrow W_{j}^{\prime\prime}=\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0\\1 & y & u_{1} & 0 & 0\\0 & v_{1}^{T} & V_{j-1} & 0 & (v_{j-1})^{T}\\0 & 0 & 0 & 0 & 0\\0 & 0 & u_{j-1} & 1 & x_{j-1}\end{array}\right)\sim_{c}\left(\begin{array}{lllll}0 & 0 & 0 & 0 & 0\\1 & x_{j-1} & 0 & 0 & u_{j-}\\0 & 0 & 0 & 0 & 0\\0 & 0 & 1 & y & u_{1}\\0 & (v_{j-1})^{T} & 0 & v_{1}^{T} & V_{j-}\end{array}\right)=V_{j}^{\prime}$ .

When $V_{j-1}\rightarrow\epsilon V_{j}$, we define $V_{j}^{\prime}$ similarly. Then, in this case also we have two
matrices $W_{j}^{\prime}$ and $W_{j}^{\prime\prime}\in S$ such that $V_{j-1}^{\prime}\sim_{c}W_{j}^{\prime}\rightarrow\epsilon W_{j}^{\prime\prime}\sim_{c}V_{i}^{\prime}$ .

Then, in the sequence $V_{0},$ $V_{1},$ $\cdots,$ $V_{k}$ , replacing $V_{j}$ with $V_{j}^{\prime}$ or with the sequence
$W_{j}^{\prime},$ $W_{j}^{\prime\prime},$ $V_{j}^{\prime}$ , we obtain a new sequenoe such that the number of row reductions and
column reductions is strictly smaller than that for the original sequence and that the
condition (1) is satisfied. Then, repeating this procedure, we finally get a sequence with
the required properties. This completes the proof of Lemma 3.1. $\square $

LEMMA 3.2. Let $K$ be a knot in $S^{3}$ and $V$ a Seifert matrix for a Seifert surface $F$

of K Suppose that $V\sim_{c}W$ or $V\nearrow W$. Then $W$ is a Seifert matrix for some Seifert
surface $F^{\prime}$ of the same knot $K$.

PROOF. When $V\sim_{c}W$, by a base change, we get $the\backslash $ result.
When $V\nearrow W$, we may suppose that

$W=\left(\begin{array}{lll}0 & 0 & 0\\1 & x & u\\0 & v^{T} & V\end{array}\right)$

. $*\cdot$ .. $\Psi$

(when $W$ is a column enlargement, the argument is similar). We have only to show
that some matrix congruent to $W$ satisfies the result of the lemma.

Let $\{\alpha_{1}^{\prime}, \beta_{1}^{\prime}, \alpha_{2}^{\prime}, \beta_{2}^{\prime}, \cdots, \alpha_{g}^{\prime}, \beta_{g}^{\prime}\}$ be a basis of $H_{1}(F)$ such that $V$ is the Seifert matrix
with respect to the basis, where $g$ is the genus of the surface $F$. Let
$\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \cdots, \alpha_{g}, \beta_{g}\}$ be a basis of $H_{1}(F)$ such that $\alpha_{i}$ and $\beta_{j}$ are represented by
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the oriented simple closed curves in $F$ as depicted in Figure 1. Then there exists a square
integral matrix $P$ with det $P=\pm 1$ such that

$(\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \cdots, \alpha_{g}, \beta_{g})=(\alpha_{1}^{\prime}, \beta_{1}^{\prime}\alpha_{2}^{\prime}, \beta_{2}^{\prime}, \cdots, \alpha_{g}^{\prime}, \beta_{g}^{\prime})P$ .
Note that $V_{1}=P^{T}VP$ is the Seifert matrix for $F$ with respect to the basis
$\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \cdots, \alpha_{g}, \beta_{g}\}$ .

FIGURE 1

Since we have

$\left(\begin{array}{lll}1 & 0 & (v-u)P\\0 & 1 & 0\\0 & 0 & P\end{array}\right)W\left(\begin{array}{lll}1 & 0 & (v-u)P\\0 & 1 & 0\\0 & 0 & P\end{array}\right)=\left(\begin{array}{lll}0 & 0 & 0\\1 & x & vP\\0 & P^{T}v^{T} & V_{1}\end{array}\right)$ ,

we may assume, from the beginning, that $V$ is the Seifert matrix for $F$ with respect to
the basis $\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \cdots, \alpha_{g}, \beta_{g}\}$ and that $u=v=(u_{1}, u_{2}, \cdots, u_{2g})$ .

Let $c$ be an oriented simple close curve in $S^{3}-F$ such that $1k(\alpha_{i}, c)=u_{2i-1}$ and
$1k(\beta_{i}, c)=u_{2i}$ for all $i$ with $1\leq i\leq g$ , where lk denotes the linking number in $S^{3}$ . Such an
oriented simple closed curve $c$ always exists. Let $A(c)$ be an oriented annulus embedded
in $S^{3}-F$ such that $c$ is the center circle of $A(c)$ and that $1k(c, c^{+})=x$, where $c^{+}$ is the
push-off of $c$ in the positive normal direction of $A(c)$ . Then consider the surface $F^{\prime}$

constructed from $F$ and $A(c)$ as depicted in Figure 2. Note that $\partial F$ and $\partial F^{\prime}$ are isotopic
to each other in $S^{3}$ and henoe $F^{\prime}$ can be regarded as a Seifert surface of $K$.

FIGURE 2

Let $\gamma\in H_{1}(F^{\prime})$ be the homology class represented by $c$ and $\delta\in H_{1}(F^{\prime})$ that represented
by the oriented simple closed curve $d$ as in Figure 2. Then it is not $difficult\backslash $ to check
that the Seifert matrix for $F^{\prime}$ with respect to the basis $\{\delta, \gamma, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \cdots, \alpha_{g}, \beta_{g}\}$
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is equal to $W$. This completes the proof of Lemma 3.2. $\square $

LEMMA 3.3. Let $K$ be a knot in $S^{3}$ and $V$ a Seifert matrix for a $Se\iota fert$ surface $F$

ofK Suppose that $V\rightarrow\epsilon W$ Then $W$ is a Seifert matrix for some Seifert surface $F^{\prime}$ of a
knot $K^{\prime}$ which is obtainedfrom $K$ by applying an $\epsilon$-unknotting operation once.

PROOF. Let $\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \cdots, \alpha_{g}, \beta_{g}\}$ be a standard basis of $H_{1}(F)$ as in the proof
of Lemma 3.2. By an argument similar to that in the proof of Lemma 3.2, we may
assume that $V$ is the Seifert matrix for $F$ with respect to the basis $\{\alpha_{1},$ $\beta_{1},$

$\alpha_{2}$ ,
$\beta_{2},$

$\cdots,$ $\alpha_{g},$
$\beta_{g}$ }. Set $V=(v_{ij})$ . Recall that $V-V^{T}$ coincides with the intersection matrix

for $F$ with respect to the same basis. Since tbe intersection numbers satisfy
$\alpha_{i}\cdot\alpha_{j}=\beta_{i}\cdot\beta_{j}=0$ and

$\alpha_{j}\cdot\beta_{j}=\left\{\begin{array}{ll}1 & if i=j,\\0 & otherwise ,\end{array}\right.$

we have

$v_{ij}-v_{ji}=\left\{\begin{array}{ll}1 & if j=l+1 and i is odd ,\\-1 & if j=i-1 and i is even ,\\0 & otherwise.\end{array}\right.$

Since $V\rightarrow\epsilon W$, we have

$W=\left(\begin{array}{lll}\epsilon & 0 & 0\\1 & x & M\\0 & N^{T} & V\end{array}\right)$

for some integer $x$ and integral row vectors $M=(m_{1}, m_{2}, \cdots, m_{2g})$ and $N=(n_{1},$ $n_{2},$
$\cdots$ ,

$n_{2g})$ . Set

$a_{1}=m_{2}-n_{2}$ , $a_{2}=n_{1}-m_{1},$ $\cdots,$ $a_{2g-1}=m_{2g}-n_{2g}$ , $a_{2g}=n_{2g-1}-m_{2g-1}$ , and

$c_{i}=m_{i}-\sum_{j=1}^{2g}a_{j}v_{ji}$

for $i=1,2,$ $\cdots,$ $2g$ . When $j$ is odd, we have

$m_{i}-n_{i}=-a_{i+1}=-\sum_{j=1}^{2g}a_{j}(v_{ij}-v_{ji})+c_{i}-c_{i}$

$=(a_{j}v_{ji}+)-(\sum_{j=1}^{2g}a_{j}v_{ij}+c_{i})$

$=m_{i}-(\sum_{j=1}^{2g}a_{j}v_{ij}+c_{i})$
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and hence

$n_{i}=\sum_{j=1}^{2g}a_{j}v_{ij}+c_{i}$ . (1)

When $i$ is even, we see that the equation (1) also holds by using a similar argument.
Let $c$ be an oriented simple closed curve in $S^{3}-F$ such that $1k(\alpha_{i}, c)=c_{2i-1}$ and

$1k(\beta_{i}, c)=c_{2i}$ for all $i$ with $1\leq i\leq g$ . Such an oriented simple closed curve $c$ always
exists. Let $A(c)$ be an oriented annulus embedded in $S^{3}-F$ such that $c$ is the center
circle of $A(c)$ . Then consider the surface $F^{\prime}$ constructed from $F$ and $A(c)$ as depicted in
Figure 3. Note that the knot $\partial F^{\prime}$ is isotopic to a knot obtained from $K$ by applying an
$\epsilon$-unknotting operation exactly once. The number 1 of full twists on $A(c)$ as in Figure
3 is determined so that $1k(\gamma^{\prime}, (\gamma^{\prime})^{+})=x$, where

$\gamma^{\prime}=\gamma+a_{1}\alpha_{1}+a_{2}\beta_{2}+\cdots+a_{2g-1}\alpha_{g}+a_{2g}\beta_{g}\in H_{1}(F^{\prime})$

and $\gamma\in H_{1}(F^{\prime})$ is the homology class represented by $c$ .

$\epsilon=1$

FIGURE 3

Let $\delta\in H_{1}(F^{\prime})$ be the homology class represented by the oriented simple closed
curve $d$ as in Figure 3. Then we have

$ 1k(\delta, \delta^{+})=\epsilon$ ,

$1k(\delta, (\gamma^{\prime})^{+})=1k(\delta, \alpha_{i}^{+})=1k(\delta, \beta_{i}^{+})=0$ ,

$1k(\gamma^{\prime}, \delta^{+})=1$ ,

$1k(\gamma^{\prime}, (\gamma^{\prime})^{+})=x$ ,

$1k(\gamma^{\prime}, \alpha_{i}^{+})=1k(c, \alpha_{i})+1k(a_{1}\alpha_{1}+a_{2}\beta_{2}+\cdots+a_{2g-1}\alpha_{g}+a_{2g}\beta_{g}, \alpha_{i}^{+})$

$=c_{2i-1}+\sum_{j=1}^{2g}a_{j}v_{j.2i-1}=m_{2i-1}$ ,

$1k(\gamma^{\prime}, \beta_{i}^{+})=1k(c, \beta_{i})+1k(a_{1}\alpha_{1}+a_{2}\beta_{2}+\cdots+a_{2g-1}\alpha_{g}+a_{2g}\beta_{g}, \beta_{i}^{+})$
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$=c_{2i}+\sum_{j=1}^{2g}a_{j}v_{j,2i}=m_{2i}$ ,

$1k(\alpha_{i}, \delta^{+})=1k(\beta_{i}, \delta^{+})=0$ ,

$1k(\alpha_{i}, (\gamma^{\prime})^{+})=1k(\alpha_{l}, c)+1k(\alpha_{i}, a_{1}\alpha_{1}^{+}+a_{2}\beta_{2}^{+}+\cdots+a_{2g-1}\alpha_{g}^{+}+a_{2g}\beta_{g}^{+})$

$=c_{2i-1}+\sum_{j=1}^{2g}a_{j}v_{2i-1,j}=n_{2i-1}$ ,

$1k(\beta_{i}, (\gamma^{\prime})^{+})=1k(\beta_{i}, c)+1k(\beta_{i}, a_{1}\alpha_{1}^{+}+a_{2}\beta_{2}^{+}+\cdots+a_{2g-1}\alpha_{g}^{+}+a_{2g}\beta_{g}^{+})$

$=c_{2i}+\sum_{j=1}^{2g}a_{j}v_{2i.j}=n_{2i}$ .

Then the Seifert matrix for $F^{\prime}$ with respect to the basis $\{\delta, \gamma^{\prime}, \alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \cdots, \alpha_{g}, \beta_{g}\}$

is equal to $W$ This completes the proof of Lemma 3.3. $\square $

PROOF OF THEOREM 1.1. Suppose $n=u^{a}(K)$ . Then by Lemmas 3.1, 3.2 and 3.3, we
can obtain a knot $K^{\prime}$ with trivial Alexander polynomial by applying $n$ unknotting
operations to $K$. Thus we have

$u^{a}(K)\geq\min\{d_{G}(K, K^{\prime}):\Delta_{K’}(t)=1\}$ .
Conversely, if $K$ is transformed to a knot with trivial Alexander polynomial by applying
$k$ unknotting operations, then we have $u^{a}(K)\leq k$ , since each unknotting operation
corresponds to an algebraic unknotting operation for the corresponding Seifert matrix
(for details, see Lemma 5.6 of \S 5). Thus we have

$u^{a}(K)\leq\min\{d_{G}(K, K^{\prime}):\Delta_{K^{\prime}}(t)=1\}$ .
Hence we have the required equality. This completes the proof of Theorem 1.1. $\square $

4. An application.

Let $K$ be a tame knot in $S^{3}=\partial D^{4}$ . Then it is known that $K$ always bounds a
properly and topologically locally flatly embedded compact connected orientable surface
$F$ in $D^{4}$ . Define the topological 4-ball genus $g^{*}(K)$ of $K$ to be the minimum genus of
such embedded surfaces bounded by $K$. Note that $g^{*}(K)=0$ if and only if $K$ is a
topologically slice knot.

PROPOSITION 4.1. For a tame knot $K$ in $S^{3}$ , we always have

$g^{*}(K)\leq u^{a}(K)$ .

PROOF. Set $n=u^{a}(K)$ . By Theorem 1.1, we can transform $K$ to a knot $K^{\prime}$ with
trivial Alexander polynomial by applying $n$ unknotting operations. Then by a standard
argument, we can construct a properly and smoothly embedded compact connected
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orientable surface $F^{\prime}$ of genus $n$ in $S^{3}\times[0,1]$ such that $F^{\prime}\cap(S^{3}\times\{0\})=K\times\{0\}$ and
$F^{\prime}\cap(S^{3}\times\{1\})=K^{\prime}\times\{1\}$ . On the other hand, since $K^{\prime}$ has trivial Alexander polynomial,
by a result of Freedman [2], $K^{\prime}$ bounds a properly and topologically locally flatly
embedded 2-disk $\Delta$ in $D^{4}$ . Then the compact surface $ F=F^{\prime}\cup\Delta$ embedded in
$(S^{3}\times[0,1])\bigcup_{S^{3}x\{1\}}D^{4}\cong D^{4}$ is a properly and topologically locally flatly embedded
compact connected orientable surfaoe of genus $n$ bounded by $K$, where we identify $\partial D^{4}$

with $S^{3}\times\{1\}$ . Thus we have $g^{*}(K)\leq n=u^{a}(K)$ . This completes the proof. $\square $

REMARK 4.2. By a similar argument, we can show that the smooth 4-ball genus
of a smooth knot in $S^{3}$ is less than or equal to its (geometric) unknotting number,
which is well-known.

REMARK 4.3. We have some examples ofknots $K$with $g^{*}(K)<u^{a}(K)$ . For example,
let $K_{1}$ be an arbitrary knot with nontrivial Alexander polynomial. Then $K=K_{1}\#(-K_{1})$

is a smooth slice knot and henoe $g^{*}(K)=0$ , where $-K_{1}$ denotes the mirror image of
$K_{1}$ . However, $u^{a}(K)$ does not vanish, since $K$ has a nontrivial Alexander polynomial.

REMARK 4.4. There have been obtained some estimates from below for the smooth
4-ball genus for knots in $S^{3}$ . As has been pointed out in [10, p. 594], some of these
estimates are valid for topological 4-ball genus as well, as long as at most the G-signature
theorem is used in the proof. For example, a result of Gilmer [3, \S 4] gives such an
estimate.

REMARK 4.5. Rudolph [10] has shown that for almost all torus knots, the
topological 4-ball genus is strictly smaller than the usual genus. On the other hand, it
is known that the unknotting number of a torus knot is equal to its genus (see [5, $p$ .
775]). We do not know if the algebraic unknotting number of a torus knot is equal to
the usual unknotting number or not.

5. Unknotting high dimensional knots.

Let $K$ be a smoothly embedded homotopy $(2n-1)$-sphere in $S^{2n+1}$ . We call such
a $K$ a $(2n-1)$-knot. In this section, we define an operation for $(2n-1)$-knots when $n$ is
odd and study its relationship to the algebraic unknotting numbers for the corresponding
Seifert matrices.

Let $K$ be a (n-l)-knot with $n$ odd. Let $\Delta$ be a smoothly embedded $(n+1)$-disk in
$S^{2n+1}$ with the following properties:

(1) $\partial\Delta\cap K=\emptyset$ ,
(2) $\Delta$ intersects $K$ transversely along an $(n-1)$-dimensional sphere,
(3) there exists a smoothly embedded n-disk $\Delta_{0}$ in $\Delta$ such that $\partial\Delta_{0}=\Delta\cap K$, and
(4) whenn $=1$ , the linking number of $\partial\Delta$ andKis equal to zero.

We call the pair $(\Delta, \Delta_{0})$ a transverse disk pair for $K$. Note that the $(n-1)$-sphere $\Delta\cap R$

is standard in the homotopy $(2n-1)$-sphere $K$. Let $N(\Delta)\cong\Delta\times D^{n}$ be a normal disk
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bundle of $\Delta$ , which we consider to be embedded in $S^{2n+1}$ . We may assume that
$N(\Delta)\cap K\cong(\Delta\cap K)\times D^{n}=\partial\Delta_{0}\times D^{n}$ . We fix a diffeomorphism $\xi:\Delta\rightarrow D^{n+1}$ with
$D^{n+1}=\{(x_{1}, \cdots, x_{n+1})\in R^{n+1} : x_{1}^{2}+\cdots+x_{n+1}^{2}\leq 1\}$ such that $\Delta_{0}$ corresponds to
$D_{0}=\{(x_{1}, \cdots, x_{n}, 0)\in D^{n+1} : x_{1}^{2}+\cdots+x_{n}^{2}\leq 1/4\}$ . Set $x_{0}=(0, \cdots, 0,1)\in S^{n}=\partial D^{n+1}$ .

We construct a smooth embedding $\varphi:\Delta_{0}\times D^{n}\rightarrow\Delta\times D^{n}$ as follows. Let $\psi:D^{n}\rightarrow S^{n}$

be a smooth map such that $\psi(U)=x_{0}$ for a neighborhood $U$ of $\partial D^{n}$ in $D^{n}$ and that $\psi$

represents a generator of $\pi_{n}(S^{n}, x_{0})$ (note that there are two choices for $\psi$ up to homotopy
relative to $\partial D^{n}$). Then define the smooth embedding $\varphi^{\prime}$ : $D_{0}\times D^{n}\rightarrow D^{n+1}\times D^{n}$ by
$\varphi^{\prime}(z, w)=(\varphi_{w}(z), w)$ , where $\varphi_{w}$ : $D_{0}\rightarrow D^{n+1}(w\in D^{n})$ is a smooth family of embeddings
such that for each $w\in D^{n}$ , its image coincides with the n-disk of radius 1/2 centered at
the origin lying on the hyperplane in $R^{n+1}$ perpendicular to $\psi(w)\in S^{n}=\partial D^{n+1}$ . Then
we define $\varphi:\Delta_{0}\times D^{n}\rightarrow\Delta\times D^{n}\cong N(\Delta)$ by $\varphi=(\xi^{-1}\times id_{D^{n}})\circ\varphi^{\prime}\circ((\xi|\Delta_{0})\times id_{D^{n}})$, where $id_{D^{n}}$

denotes the identity map of $D^{n}$ . Note that $\varphi(\partial\Delta_{0}\times\partial D^{n})=\partial\Delta_{0}\times\partial D^{n}\subset\Delta\times D^{n}\cong N(\Delta)$ .

FIGURE 4

Then set $K^{\prime}=(K-(N(\Delta)\cap K))\cup\varphi(\partial\Delta_{0}\times D^{n})$ (see Figure 4). Note that $K^{\prime}$ is a
$(2n-1)$-dimensional closed manifold smoothly embedded in $S^{2n+1}$ . We say that $K^{\prime}$ is
obtained from $K$ by an elementary twisting operation with respect to the transverse disk
pair $(\Delta, \Delta_{0})$ . Note that when $n=1$ , this is nothing but a usual unknotting operation.
Furthermore, note that, for a given transverse disk pair $(\Delta, \Delta_{0})$ , we have essentially two
choices for the elementary twisting operation, depending on the generator of $\pi_{n}(S^{n}, x_{0})$

chosen for the construction of $\varphi$ .

LEMMA 5.1. If $n$ is odd, then $K^{\prime}$ is again a homotopy $(2n-1)$-sphere.

PROOF. When $n=1$ , the result is obvious. Let us assume $n\geq 3$ . Then it is not
difficult to show that the closure of $K-(N(\Delta)\cap K)$ is diffeomorphic to $D^{n}\times S^{n-1}$ . In
other words, $K$ is identified with the smooth closed $(2n-1)$-dimensional manifold
$(D^{n}\times S^{n-1})\bigcup_{h}(S^{n-1}\times D^{n})$ obtained by attaching $D^{n}\times S^{n-1}$ and $S^{n-1}\times D^{n}\cong\partial\Delta_{0}\times D^{n}$

by using a diffeomorphism $h:\partial(S^{n-1}\times D^{n})\rightarrow\partial(D^{n}\times S^{n-1})$ . Then we see that $K^{\prime}$ is
diffeomorphic to the smooth $(2n-1)$-dimensional closed manifold $(D^{n}\times S^{n-1})\bigcup_{\hslash\circ h}$ ,

$(S^{n-1}\times D^{n})$ obtained by attaching $D^{n}\times S^{n-1}$ and $S^{n-1}\times D^{n}$ by the diffeomorphism
$h\circ h^{\prime}$ , where $h^{\prime}$ : $\partial(S^{n-1}\times D^{n})\rightarrow\partial(S^{n-1}\times D^{n})$ is a diffeomorphism of the form
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$h^{\prime}(a, b)=(h_{b}^{\prime}(a), b)((a, b)\in S^{n-1}\times\partial D^{n})$ for some smooth family of diffeomorphisms
$h_{b}^{\prime}$ : $S^{n-1}\rightarrow S^{n-1}(b\in\partial D^{n})$ .

Let $\alpha$ and $\beta\in H_{n-1}(S^{n-1}\times S^{n-1})$ be the homology classes represented by $S^{n-1}\times\{*\}$

and $\{*\}\times S^{n}$
‘ 1 respectively. Replacing $\alpha$ with $-\alpha$ if necessary, we may assume that

the intersection matrix for $S^{n-1}\times S^{n-1}$ on the $(n-1)- st$ homology group with respect
to the basis $\{\alpha, \beta\}$ is equal to

( 6) ,

sinoe $n-1$ is even. As every orientation preserving diffeomorphism of $S^{n-1}\times S^{n-1}$

preserves the intersection form, it is easy to show that its induced isomorphism on the
$(n-1)- st$ homology group must have one of the following as its representation matrix
with respect to the basis $\{\alpha, \beta\}$ :

$\pm\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ , $\pm\left(\begin{array}{ll}0 & 1\\1 & 0\end{array}\right)$ .

Sinoe $K\cong(D^{n}\times S^{n-1})\bigcup_{h}(S^{n-1}\times D^{n})$ is a homotopy $(2n-1)$-sphere, we see $tha\iota$ the
matrix corresponding to $h_{*}:$ $H_{n-1}(S^{n-1}\times S^{n-1})\rightarrow H_{n-1}(S^{n-1}\times S^{n-1})$ must coincide
with

$\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ or $-\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ .

On the other hand, sinoe $h^{\prime}$ is of the form $h^{\prime}(a, b)=(h_{b}^{\prime}(a), b)((a, b)\in S^{n-1}\times\partial D^{n})$ , the
matrix $\infty rresponding$ to $h_{*}^{\prime}$ : $H_{n-1}(S^{n-1}\times S^{n-1})\rightarrow H_{n-1}(S^{n-1}\times S^{n-1})$ must also
coincide with either of the above matrioes. Then it follows from an easy argument using
the Mayer-Vietoris exact sequenoe that

$K^{\prime}\cong(D^{n}\times S^{n-1})\bigcup_{h\circ h},(S^{n-1}\times D^{n})$

is a homology $(2n-1)$-sphere. Sinoe it is also simply $co$nnected, we see that $K^{\prime}$ is a
homotopy $(2n-1)$-sphere. This completes the proof. $\square $

REMARK 5.2. When $n$ is even, the consequenoe of the above lemma does not hold
in general.

REMARK 5.3. For $n\geq 3$ and odd, there exist at most two diffeomorphism types
of homotopy $(2n-1)$-spheres which can be embedded in $S^{2n+1}$ (see [4, \S 8]). More
precisely, we have the following. For a $(2n-1)$-knot $K$ in $S^{2n+1}$ , let $\Delta_{K}(t)$ denote its
Alexander polynomial (see [6]). Then we always have $\Delta_{k}(-1)\equiv 1$ or 5 (mod8) and if
$\Delta_{K}(-1)\equiv 1$ (mod8), then $K$ is diffeomorphic to the standard $(2n-1)$-sphere, while if
$\Delta_{K}(-1)\equiv 5$ (mod8), then $K$ is diffeomorphic to the unique homotopy $(2n-1)$-sphere
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possibly not diffeomorphic to the standard $S^{2n-1}$ which bounds a compact parallelizable
$2n$-dimensional manifold (see [6, \S 3] and [4, \S 8]).

LEMMA 5.4. Suppose that $K^{\prime}$ is obtainedfrom Kby an elementary twisting operation.
Then the homotopy groups $\pi_{i}(S^{2n+1}-K)$ and $\pi_{i}(S^{2n+1}-K^{\prime})$ are isomorphic to each other
for all $l\leq n-1$ .

PROOF. Suppose that $(\Delta, \Delta_{0})$ is the transverse disk pair with respect to which the
elementary twisting operation is performed. Consider the inclusion map $\iota:S^{2n+1}-$

$(K\cup\Delta_{0})\rightarrow S^{2n+1}-K$. Since the codimension of $\Delta_{0}$ in $S^{2n+1}$ is equal to $n+1$ , we see
that $l$ induces an isomorphism on the i-th homotopy group for all $i\leq n-1$ . Since
$S^{2n+1}-(K\cup N(\Delta))$ is a deformation retract of $S^{2n+1}-(K\cup\Delta_{0})$ , we see that the inclusion
map $S^{2n+1}-(K\cup N(\Delta))\rightarrow S^{2n+1}-K$ induoes an isomorphism on the i-th homotopy
group for all $i\leq n-1$ . By the same argument, we see that the inclusion map
$S^{2n+1}-(K^{\prime}\cup N(\Delta))\rightarrow S^{2n+1}-K^{\prime}$ also induces an isomorphism on the i-th homotopy
group for all $i\leq n-1$ . Sinoe $S^{2n+1}-(K\cup N(\Delta))=S^{2n+1}-(K^{\prime}\cup N(\Delta))$, we have the
conclusion. $\square $

In view of the above lemma, the elementary twisting operation is not an unknotting
operation for $n\geq 3$ and odd, sinoe it does not affect the fundamental group of the
complement. This observation leads us to consider the restricted class of $(2n-1)$-knots
as follows.

DEFINITION 5.5. A $(2n-1)$-knot $K$ is called simple if $\pi_{i}(S^{2n+1}-K)$ vanishes for
all $i\leq n-1$ (see [7]).

$ByLemma5.4$, ifKisasimple $(2n-1)$-knot withn odd, then every $(2n-1)$-knot
$K^{\prime}$ obtained from $K$ by an elementary twisting operation is also simple.

Let $K$ be a simple $(2n-1)$-knot and $V$ a Seifert matrix, which is defined to be a
representation matrix of the Seifert linking form defined on the n-th homology group
of a Seifert surface of $K$. It is known that when $n$ is odd, we have $V\in S$ and that the
S-equivalenoe class of such a Seifert matrix is well-defined for a given simple $(2n-1)$-knot
$K$ (see [7]). In particular, we can apply algebraic unknotting operations to such a Seifert
matrix.

LEMMA 5.6. Suppose that a simple $(2n-1)$-knot $K^{\prime}$ is obtained from a simple
$(2n-1)$-knot $K$ by an elementary twisting operation. Then a Seifert matrix for an
appropriate Seifert surface of $K^{\prime}$ is obtainedfrom a Seifert matrix for $K$ by applying an
algebraic unknotting operation once.

PROOF. Since $K$ is simple, there exists an $(n-1)$-connected Seifert surface $F$ of $K$

(see [7]). Note that $F$ has a handlebody decomposition consisting of one O-handle and
some n-handles. Let $(\Delta, \Delta_{0})$ be the transverse disk pair with respect to which the
elementary twisting operation on $K$ is performed. Sinoe $F$ has an n-dimensional spine,
we may assume that $\Delta_{0}\cap F=\partial\Delta_{0}$ . Then there exists an embedding $\eta:\Delta_{0}\times D^{n}\rightarrow S^{2n+1}$
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such that $\eta(x, 0)=x$ for all $x\in\Delta_{0}$ , that $\eta(\Delta_{0}\times D^{n})\cap F=\eta(\Delta_{0}\times D^{n})\cap\partial F=\eta(\partial\Delta_{0}\times D^{n})$

and that $\Delta\cap\eta(\Delta_{0}\times D^{n})=\Delta_{0}$ . Furthermore, there exists an embedding $\tilde{\eta}:\Delta_{0}\times D^{n}\times$

$[0,1]\rightarrow S^{2n+1}$ such that $\tilde{\eta}|(\Delta_{0}\times D^{n}\times\{0\})=\eta$ and that $\tilde{\eta}(\partial\Delta_{0}\times D^{n}\times(0,1$ ]) lies on the
negative side of the oriented Seifert surface $F$. Set $\tilde{F}=F\cup\tilde{\eta}(\Delta_{0}\times\partial(D^{n}\times[0,1]))$ . Then
it is easy to see that $K$ is isotopic to the $(2n-1)$-knot $\tilde{K}=\partial\tilde{F}$, and $\tilde{F}$ is regarded as a
Seifert surface of $\tilde{K}$. Moreover, $K\cup\Delta_{0}$ is isotopic to $\tilde{K}\cup\tilde{\eta}(\Delta_{0}\times\{0\}\times\{1\})$ . We set
$\Delta_{0}^{\prime}=\tilde{\eta}(\Delta_{0}\times\{0\}\times\{1\})$ and let $\Delta^{\prime}$ denote the embedded $(n+1)$-disk corresponding to $\Delta$

under the isotopy. We may assume, by a further isotopy, that $\Delta^{\prime}\cap\tilde{F}=\Delta_{0}^{\prime}$ (soe Figure 5).

FIGURE 5

Let $N(\Delta^{\prime})\cong\Delta^{\prime}\times D^{n}$ be a normal disk bundle of $\Delta^{\prime}$ embedded in $S^{2n+1}$ . We may
assume that $N(\Delta^{\prime})\cap\tilde{F}$ corresponds to $\Delta_{O}^{\prime}\times D^{n}$ . Let $\varphi:\Delta_{\acute{O}}\times D^{n}\rightarrow\Delta^{\prime}\times D^{n}\cong N(\Delta^{\prime})$ be the
embedding as defined in the definition of the elementary twisting operation, where we
replaoe $\Delta$ and $\Delta_{0}$ with $\Delta^{\prime}$ and $\Delta_{0}^{\prime}$ respectively. Then set
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$\tilde{F}^{\prime}=(\tilde{F}-(N(\Delta^{\prime})\cap\tilde{F}))\cup\varphi(\Delta_{\acute{0}}\times D^{n})$ .

It is not difficult to see that the $(2n-1)$-knot $K^{\prime}$ , which is the result of the elementary
twisting operation applied to $K$ with respect to the transverse disk pair $(\Delta, \Delta_{0})$ , is isotopic
to $\partial\tilde{F}^{\prime}$ , which is the result of the elementary twisting operation applied to $\tilde{K}$ with respect
to the transverse disk pair $(\Delta^{\prime}, \Delta_{\acute{0}})$ . Thus we have only to show that an appropriate
Seifert matrix for $\tilde{F}^{\prime}$ is obtained from an appropriate Seifert matrix for $F$ by applying
an algebraic unknotting operation once.

Let $\{\alpha_{i}\}$ be abasis of $H_{n}(F)$ . Sinoe $F$ is contained in $\tilde{F}$ and $\tilde{F}^{\prime}$ , we may assume that
they are elements of $H_{n}(\tilde{F})$ and $H_{n}(\tilde{F}^{\prime})$ . Let $\beta\in H_{n}(\tilde{F})$ be the homology class represented
by the n-sphere consisting of $\Delta_{0}$ and a properly embedded n-disk in $F$. Furthermore,
let $\gamma\in H_{n}(\tilde{F})$ be the homology class represented by $\eta(\{r\}\times\partial(D^{n}\times[0,1]))$ , where $r\in\Delta_{0}$ is
the center of the n-disk $\Delta_{0}(seeFigure5)$ . We orient $\beta$ and $\gamma sothatlk(\beta, \gamma^{+})=1$ . Then
it is easily seen that the Seifert matrix for $\tilde{F}$ with respect to the basis $\{\gamma, \beta, \alpha_{i}\}$ is equal to

$\left(\begin{array}{lll}0 & 0 & 0\\1 & X & M\\0 & N^{T} & V\end{array}\right)$

for some integer $x$ and some integral row vectors $M$ and $N$, where $V$ is the Seifert
matrix for $F$ with respect to the basis $\{\alpha_{i}\}$ . Furthermore, we have a basis for $H_{n}(\tilde{F}^{\prime})$

corresponding to $\{\gamma, \beta, \alpha_{i}\}$ and, with respect to this basis, the Seifert matrix for $\tilde{F}^{\prime}$ is
equal to

$\left(\begin{array}{lll}\epsilon & 0 & 0\\1 & x & M\\0 & N^{T} & V\end{array}\right)$

which is obtained from $V$ by applying an algebraic unknotting operation once, where
$\epsilon=\pm 1$ . This completes the proof. $\square $

The following is a generalization of Lemma 3.2. Recall that every simple
$(2n-1)$-knot admits a Seifert surface which is $(n-1)$-connected (see [7]).

LEMMA 5.7. Let $K$ be a simple $(2n-1)$-knot in $S^{2n+1}$ with $n\geq 1$ and odd and $V$ a
Seifert matrix for some $(n-1)$-connected Seifert surface $F$ ofK Suppose that $V\sim_{c}W$ or
$V\nearrow W$ Then $W$ is a Seifert matrix for some $(n-1)$-connected Seifert surface $F^{\prime}$ of the
same $(2n-1)$-knot $K$

PROOF. For $n=1$ , this is nothing but Lemma 3.2. For $n\geq 3$ and odd, we proceed
as in the proof of Lemma 3.2. When $V\sim_{c}W$, the result is obvious. Suppose that $V\nearrow W$

and let $x,$ $u$ and $v$ be as in the proof of Lemma 3.2. Sinoe $F$ is $(n-1)$-connected, we
may assume that $F$ has a handlebody decomposition consisting of a O-handle and $2g$

n-handles (see [7]). Let $\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \cdots, \alpha_{g}, \beta_{g}\}$ be a basis of $H_{n}(F)$ such that each
element corresponds to the core of an n-handle of $F$. By the same argument as in the
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proof of Lemma 3.2, we may assume that $V$ is the Seifert matrix for $F$ with respect to
the above basis and that $u=v=(u_{1}, u_{2}, \cdots, u_{2g})$ . Then there exists an oriented n-sphere
$c$ smoothly embedded in $S^{2n+1}-F$ such that $1k(\alpha_{i}, c)=u_{2i-1}$ and $1k(\beta_{i}, c)=u_{2i}$ for all $\iota$

with $1\leq i\leq g$ , where lk denotes the linking number in $S^{2n+1}$ . Such an oriented embedded
n-sphere can be consructed as follows. Let $D_{i}(i=1,2, \cdots, 2g)$ be an embedded
$(n+1)$-disk in $S^{2}‘‘+1$ which is disjoint from the O-handle of $F$ such that $D_{i}$ does not
intersect the J-th n-handle of $F$ for all $j\neq i$ and that $D_{i}$ intersects the core of the i-th
n-handle of $F$ transversely in one point. We may assume that $\partial D_{i}\cap F=\emptyset$ . Then set
$c_{i}^{\prime}=\partial D_{i}\subset S^{2n+1}-F(i=1,2, \cdots, 2g)$ . We orient $c_{i}^{\prime}$ so that the linking number in $S^{2n+1}$

of $c_{i}^{\prime}$ and the homology class corresponding to the core of the i-th n-handle of $F$ is
equal to 1. Then consider $u_{i}$ parallel copies of $c_{i}^{\prime}$ for each $i$, where for $i$ with $u_{i}<0$, we
consider $|u_{i}|$ parallel copies of $c_{i}^{\prime}$ with the orientation reversed. Then take the oriented
connected sum of these oriented n-spheres in $S^{2n+1}-F$. The resulting oriented n-sphere
embedded in $S^{2n+1}-F$ has the required properties.

We fix an orientation for $S^{n}\times D^{n}$ and let $\zeta_{1}$ : $S^{n}\times D^{n}\rightarrow S^{2n+1}-F$ be a smooth
embedding such that $\zeta_{1}(S^{n}\times\{0\})=c$ and that $1k(c, c^{+})=x$, where $0$ is the center of $D^{n}$

and $c^{+}$ is the push-off of $c$ in the positive normal direction of $\zeta_{1}(S^{n}\times D^{n})$ . We can
construct such an embedding by using an operation similar to the elementary twisting
operation in order to adjust $1k(c, c^{+})$ . Let $D_{0}^{n}$ be an n-disk embedded in $S^{n}$ and let
$\zeta_{2}$ ; $D_{O}^{n}\times D^{n}\times[0,1]\rightarrow S^{2n+1}-F$ be a smooth embedding such that $\zeta_{2}|D_{0}^{n}\times D^{n}\times\{0\}=$

$\zeta_{1}|D_{O}^{n}\times D^{n}$ and that $\zeta_{2}(D_{0}^{n}\times D^{n}\times(0,1$ ]) lies on the negative side of $\zeta_{1}(S^{n}\times D^{n})$ . Then
set $E=\zeta_{1}(S^{n}\times D^{n})\cup\zeta_{2}(D_{0}^{n}\times\partial(D^{n}\times[0,1]))$ . Note that $\partial E$ is diffeomorphic to the
$(2n-1)$-sphere. Furthermore, by considering the smooth family of $(2n-1)$-knots
$L_{t}=\partial(\zeta_{1}(S^{n}\times D^{n})\cup\zeta_{2}(D_{0}^{n}\times\partial(D^{n}\times[0, t])))(t\in(O, 1])$ and $ L_{O}=\partial$( $\zeta_{1}($( $S^{n}$ -Int $D_{0}^{n})\times D^{n})$),
we see that $\partial E=L_{1}$ is isotopic to $L_{O}$ in $S^{2n+1}$ . In particular, $\partial E$ is the trivial $(2n-1)$-knot.

Finally let $F^{\prime}$ be the oriented boundary connected sum of $F$ and $E$ in $S^{2n+1}$ . More
precisely, let $\zeta_{3}$ : $D^{2n-1}\times[-1,1]\rightarrow S^{2n+1}$ be a smooth embedding such that
$\zeta_{3}(D^{2n-1}\times[-1,1])\cap F=\zeta_{3}(D^{2n-1}\times[-1,1])\cap\partial F=\zeta_{3}(D^{2n-1}\times\{-1\})$ , $\zeta_{3}(D^{2n-1}\times$

$[-1,1])\cap E=\zeta_{3}(D^{2n-1}\times[-1,1])\cap\partial E=\zeta_{3}(D^{2n-1}\times\{1\})$ , that $\zeta_{3}(D^{2n-1}\times[-1,1])\cap$

$\zeta_{2}(D_{O}^{n}\times D^{n}\times[0,1])=\emptyset$ , and that the orientations of $\zeta_{3}(D^{2n-1}\times[-1,1])$ induced by
those of $F$ and $E$ coincide with each other. Then set $F^{\prime}=F\cup\zeta_{3}(D^{2n-1}\times[-1,1])\cup E$.
Note that $F^{\prime}$ is $(n-1)$-connected and that $\partial F^{\prime}$ is isotopic to $\partial F=K$. In other words, $F^{\prime}$

can be regarded as a Seifert surfaoe of $K$.
Let $\gamma\in H_{n}(F^{\prime})$ be the homology class represented by $c$ and $\delta\in H_{n}(F^{\prime})$ that represented

by the n-sphere $\zeta_{2}(\{p_{0}\}\times\partial(D^{n}\times[0,1]))$, where $p_{0}$ is a point in the interior of $D_{0}^{n}$ . Then
we have that the Seifert matrix for $F^{\prime}$ with respect to the basis $\{\delta,$

$\gamma,$ $\alpha_{1},$
$\beta_{1},$

$\alpha_{2}$ ,
$\beta_{2},$ $\cdots,$ $\alpha_{g},$

$\beta_{g}$ } is equal to $W$, replacing $\delta$ with $-\delta$ if necessary. This completes the
proof. $\square $

The following is a generalization of Lemma 3.3.
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LEMMA 5.8. Let $K$ be a simple $(2n-1)$-knot in $S^{2n+1}$ with $n\geq 1$ and odd and $V$ a
$Se\iota fert$ matrix for some $(n-1)$-connected Seifert surface $F$ of K Suppose that $V\rightarrow\epsilon W$.
Then $W$ is a Seifert matrixfor some $(n-1)$-connected Seifert surface $F^{\prime}$ ofa $(2n-1)$-knot

$K^{\prime}$ which is obtainedfrom $K$ by applying an elementary twisting operation once.

PROOF. By Poincar\’e duality, there exists a basis $\{\alpha_{1}, \beta_{1}, \alpha_{2}, \beta_{2}, \cdots, \alpha_{g}, \beta_{g}\}$ of
$H_{n}(F)$ such that the intersection numbers satisfy $\alpha_{i}\cdot\alpha_{j}=\beta_{i}\cdot\beta_{j}=0$ and

$\alpha_{i}\cdot\beta_{j}=\left\{\begin{array}{l}lifi=j\\0otherwise\end{array}\right.$

for some $g$ . By an argument similar to that in the proof of Lemma 3.2, we may assume
that $V$ is the Seifert matrix for $F$ with respect to this basis. Furthermore, when $n\geq 3$

and odd, sinoe $F$ is $(n-1)$-connected, we may assume that $F$ has a handlebody
decomposition consisting of a O-handle and $2g$ n-handles and that each element of the
above bais corresponds to the core of an n-handle, by applying handle slides if neoessary.
We determine the integers $c_{i}(i=1,2, \cdots, 2g)$ as in the proof of Lemma 3.3. Then there
exists an oriented n-sphere $c$ smoothly embedded in $S^{2n+1}$ such that $1k(\alpha_{i}, c)=c_{2i-1}$ and
$1k(\beta_{i}, c)=c_{2i}$ for all $i$ with $1\leq i\leq g$ .

Then construct $E$ as in the proof of Lemma 5.7 using $c$ , where we adjust the linking
number $1k(c, c^{+})$ appropriately as in the proof of Lemma 3.3. Let $(\Delta, \Delta_{o})$ be a transverse
disk pair for $\partial E$ such that $\Delta\subset S^{2n+1}-F$, $\Delta\cap E=\Delta_{0}=\zeta_{2}(D_{O}^{n}\times\{0\}\times\{1\})$ and
$\Delta\cap\zeta_{3}(D^{2n-1}\times[-1,1])=\emptyset$ . Then let $E^{\prime}$ be the Seifert surface of the $(2n-1)$-knot
obtained from $\partial E$ by an elementary twisting operation with respect to the transverse
disk pair $(\Delta, \Delta_{0})$, where $E^{\prime}$ is naturally obtained from $E$ as $\tilde{F}^{\prime}$ is obtained from $\tilde{F}$ in the
proof of Lemma 5.6. Then let $F^{\prime}$ be the oriented boundary connected sum of $F$ and $E^{\prime}$

in $S^{2n+1}$ . Note that $F^{\prime}$ is $(n-1)$-connected and that $\partial F^{\prime}$ is isotopic to a $(2n-1)$-knot
which is obtained from $K$ by applying an elementary twisting operation onoe.

Then as in the proof of Lemma 3.3, we obtain the required result. This completes
the proof. $\square $

Now we are ready to show the following.

THEOREM 5.9. The elementary twisting operation for simple $(2n-1)$-knots is an
unknotting operation for $n\geq 1$ and odd. In other words, every such simple $(2n-1)$-knot
can be transformed to the trivial knot by afinite iteration ofelementary twisting oprations.

PROOF. For $n=1$ , the result is obvious, sinoe the elementary twisting operations
are nothing but the usual unknotting operations for classical knots.

Let $K$ be a simple $(2n-1)$-knot with $n\geq 3$ and odd. Let $V$ be a Seifert matrix for
an $(n-1)$-connected Seifert surface of $K$. Then there exists a sequence of matrioes in $S$

as in Lemma 3.1. By Lemmas 5.7 and 5.8, by a finite iteration of elementary twisting
operations, we obtain a simple $(2n-1)$-knot $K_{O}$ whose Seifert matrix is S-equivalent
to the zero matrix. By Levine [7], such a knot $K_{0}$ is trivial. This completes the
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proof. $\square $

For a simple $(2n-1)$-knot $K$ with $n$ odd, let $u(K)$ denote the minimum number of
elementary twisting operations neoessary to transform $K$to the trivial knot. The invariant
$u(K)$ is called the unknotting number of $K$ This terminology is justified by Theorem 5.9.
Then we obtain the following.

THEOREM 5.10. For a simple $(2n-1)$-knot $K$ with $n\geq 3$ and odd, we have
$u(K)=u^{a}([K])$, where $[K]\in\tilde{S}$ is the S-equivalence class of a Sefert matrix for K In
other words, the unknotting number of $K$ coincides with the algebraic unknotting number
of its Seifert matrix.

PROOF. By the proof of Theorem 5.9, we have

$u(K)\leq u^{a}([K])$ .
On the other hand, by Lemma 5.6, we have

$u(K)\geq u^{a}([K])$ .
Thus we obtain the required equality. This completes the proof. $\square $

REMARK 5.11. Using a result of Fogel [1, Theorem], we can characterize those
simple $(2n-1)$-knots with $n\geq 3$ and odd which have unknotting number one, in terms
of their Alexander modules and Blanchfield pairings.

We end this paper by posing some problems.

PROBLEM 5.12. (1) Are there some operations which generalize the elementary
twisting operation and which can transform an arbitrary $(2n-1)$-knot to the trivial
knot when applied sucoessively? How about the case where $n$ is even?

(2) Is the algebraic unknotting number of a knot additive under connected sum?
In other words, for $\gamma$ and $\Psi e\tilde{S}$, if we denote by $\gamma\oplus\Psi$ the S-equivalence class
represented by the matrix $V\oplus W\in S$ with $ Ve\gamma$ and We $\psi^{\rightarrow}$ then do we have
$u^{a}(\gamma\oplus\Psi)=u^{a}(\mathscr{V})+l(\nu^{-})$?

Added in proof. After the acceptance of the paper, the author was informed that
the results in \S 3 conoeming classical knots had already been obtained independently
by Micah Fogel in his thesis (M. E. Fogel, The algebraic unknotting number, PhD
thesis, Univ. of California, Berkeley, 1993). Other than the results contained in [1], he
also studied algebraic unknotting numbers of genus one two-bridge knots and gave an
explicit example of classical knots which show that the algebraic unknotting number is
not additive under connected sum; i.e., the answer to Problem 5.12 (2) is negative in
general. The author would like to thank Micah Fogel for having kindly sent his thesis
to the author.
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