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Abstract. The small Kakeya maximal operator, $M_{a.N}$ , in $R^{d}$ is defined by averages on cylinders with
the width $a$ and the height $Na$ . We show that the inequality $\Vert M_{a,N}f\Vert_{d}\leq C$ log $N\Vert f\Vert_{d}$ holds for the functions
of square radialy type, where $C$ is a constant depending only on $d$.

1. Introduction and theorem.

In this note we shall prove an estimate for the Kakeya maximal operator on
functions of square radial type by applying the idea which is used in [Ta].

Fix $N\gg 1$ . For a real number $a>0$ let $\mathscr{B}_{a,N}$ be the family of all cylinders in the
d-dimensional Euclidean space $R^{d},$ $d\geq 2$ , which are congruent to

$\{x=(x_{1}, \cdots, x_{d})\in R^{d}||x_{1}|<\frac{Na}{2},$ $(\sum_{l=2}^{d}x_{l)^{1/2}<\frac{a}{2}\}}^{2}$

but with arbitrary directions and centers. Note that this cylinder has the height $Na$ and
the width $a$ .

The small Kakeya maximal operator $M_{a,N}$ is defined for function $f$ on $R^{d}$ by

$(M_{a,N}f)(x)=\sup_{x\epsilon R\in a_{a.N}}\frac{1}{|R|}\int_{R}|f(y)|dy$ ,

where $|A|$ represents the Lebesgue measure of a set $A$ .
For $x=(x_{1}, \cdots, x_{d})$ in $R^{d}$ let $|x|_{m}$ be the maximal norm of $x$ defined by

$|x|_{m}=\max_{l}|x_{l}|$ .

If a function on $R^{d}$ is of the form $f(x)=f_{0}(|x|_{m})$ we will call $f$ a function of square
radial type, where $f_{0}$ is a function on $[0, \infty$ ).
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It is conjectured that $M_{a,N}$ is bounded on $L^{d}(R^{d})$ with the norm which grows no
faster than $O((\log N)^{\alpha_{d}})$ for some $\alpha_{d}>0$ as $ N\rightarrow\infty$ . This conjecture was solved affirmatively
in the case $d=2$ by C\’ordoba [Co] with $\alpha_{d}=1/2$ but it seems to remain unsolved for
$d\geq 3$ . But for $d\geq 3$ this conjecture is known to be true for radial functions (cf. Carbery,
Hem\’andez and Soria [CHS] and Igari [Ig2]) and for functions of the form
$f(x)=\prod_{l=1}^{d}f_{l}(x_{l})$ (cf. Igari [Igl] and also Tanaka [Ta]) with some constants $\alpha_{d}$ .

The purpose of this note is to show that this conjecture is also true for functions
of square radial type.

THEOREM 1. Let $d\geq 2$ . There exists a constant $C$ depending only on the dimension
$d$ such that

$\Vert M_{a,N}f\Vert_{d}\leq C$ log $N\Vert f\Vert_{d}$

holds for all square radial functions $f$ in $L^{d}(R^{d})$ . Here $\Vert f\Vert_{d}$ denotes the $L^{d}$-norm off.
The methods to prove this theorem will be applicable to functions of polygonally

radial type, but may not be applicable to functions ofradial type considered by [CHS].
In the followong $C’ s$ will denote constants which may be different in each occasion

but depend only on the dimension $d$.
I would like to express my gratitude to professor S. T. Kuroda who simplified my

proof of the last part of Section 3.

2. Proof of Theorem 1.

In this section we shall prove Theorem 1. The method used here is an application
of the idea which is used in [Ta].

We may assume that $f_{0}\geq 0$ and $N$ is a positive integer. By dilation invariance it
suffices to consider only the case $a=1$ . We write $M_{1,N}$ as $M_{N}$ . We will linearize the
maximal function first. We divide $R^{d}$ into unit cubes $Q_{i}$ which have center at lattice
points $i\in Z^{d}$ and whose sides are parallel to the axes. By the local integrability of $f$ we
can find for every cube $Q_{i}$ a cylinder $R_{i}$ in $g_{1.N}$ such that

$ Q_{i}\cap R_{i}\neq\emptyset$

and

$(M_{N}f)(x)\leq\frac{2}{|R_{i}|}\int_{R_{i}}f(y)dy$ , $\forall x\in Q_{i}$ . (1)

Obviously, this shows that for proving the theorem it is sufficient to estimate

$\sum_{i\in Z^{d}}\frac{1}{N}\int_{R_{I}}f(y)dy\cdot\chi_{Q_{i}}(x)$ . (2)

In the proof we use the following notations.
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$\gamma_{i}=\{j\in Z^{d}|Q_{j}\cap R_{i}\neq\emptyset\}$ ,

$S_{k}=\left\{\begin{array}{ll}\{x\in R^{d}||x|_{m}\leq\frac{1}{2}\}, & k=0,\\\{x\in R^{d}|k-\frac{1}{2}<|x|_{m}\leq k+\frac{1}{2}\}, & k\geq 1.\end{array}\right.$

First we note that

$N^{d}\int_{R^{d}}(\frac{1}{N}\sum_{i\in Z^{d}}\int_{R_{i}}f(y)dy\cdot\chi_{Q}:(x))^{d}dx$

$\leq\sum_{i\in Z^{d}}(\int_{R_{i}}f(y)dy)^{d}\leq\sum_{i\in Z^{d}}(\sum_{j\in\gamma\iota}\int_{Q_{j}}f(y)dy)^{d}$ (3)

In the next step we will use the inequality

$\int_{Q_{j}}f_{0}(|y|_{m})dy\leq d\int_{j|_{m}-1/2}^{|j|_{b}+1/2}f_{0}(|r|)dr$ .

This inequality is verified easily. Now we obtain

$\sum_{i\in Z^{d}}(\sum_{j\in\gamma_{i}}\int_{Q_{j}}f(y)dy)^{d}$

$\leq d^{d}\sum_{i\in Z^{d}}(\sum_{k=0}^{\infty}card(\{j\in\gamma_{i}|Q_{j}\cap S_{k}\neq\emptyset\})\int_{k1/2}^{k1/2};f_{0}(|r|)dr)^{d}$ (4)

Let $I_{1}$ and $I_{2}$ be

$I_{1}=\{i=(i_{1}, \cdots, i_{d})\in Z^{d}|i_{l}\geq 0, l=1, \cdots, d, |i|_{m}\leq 3N\}$ ,

$I_{2}=\{i=(l_{1}, \cdots, i_{d})\in Z^{d}|i_{l}\geq 0, l=1, \cdots, d, |i|_{m}>3N\}$ .

Then by the symmetry we may restrict the first sum of the right-hand side of (4) to
$I_{1}\cup I_{2}$ . Let $c(i, k)$ be

$c(i, k)=card(\{j\in\gamma_{i}|Q_{j}\cap S_{k}\neq\emptyset\})$ .

We shall prove the following two inequalities:

$\sum_{i\epsilon I_{1}}(\sum_{k=0}^{5N}c(i, k)\int_{k-1/2}^{k+1/2}f_{0}(|r|)dr)^{d}\leq CN^{d}(\log N)^{d}\sum_{k=0}^{5N}\int_{s_{k}}f^{d}dx$ , (5)

$\sum_{i\in I_{2}}(\sum_{k^{\leftarrow-}N}^{\infty}c(i, k)\int_{k}^{k};_{1/2}^{1/2}f_{0}(r)dr)^{d}\leq CN^{d}\log N\sum_{k=N}^{\infty}\int_{s_{lc}}f^{d}dx$ . (6)

If this can be done, we will finish the proof of the theorem by (1)$-(4)$ .

1. Proof of (6). If all components $ofj\in Z^{d}$ are mutually different, then we easily
see that
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$\int_{j|_{m}-1/2}^{|j|_{m}+1/2}f_{0}(r)dr=\int_{Q_{j}}f_{0}(|y|_{m})dy$ .

Using H\"older’s inequality, this equation and the fact that the number of $Q_{j},$ $Q_{j}\subset S_{k}$ ,
such that all components ofj are mutually different is $2d(2k-1)^{d-1}$ , we have that

$\sum_{i\in I_{2}}(\sum_{k=N}^{\infty}c(i, k)\int_{k-1/2}^{k+1/2}f_{0}(r)d’)^{d}$

$=\sum_{i\in I_{2}}\{\sum_{k=N}^{\infty}c(i, k)^{1-1/d}\cdot c(i, k)^{1/d}\int_{k-1/2}^{k+1/2}f_{0}(r)dr\}^{d}$

$\leq\sum_{i\epsilon l_{2}}\{\sum_{k=N}^{\infty}c(i, k)\}^{d-1}\cdot\{\sum_{k=N}^{\infty}c(i, k)\int_{k-1/2}^{k+1/2}f_{0}(r)^{d}d’\}$

$\leq CN^{d-1}\sum_{i\epsilon I_{2}}\sum_{k=N}^{\infty}c(i, k)(2d(2k-1)^{d-1})^{-1}\cdot\{2d(2k-1)^{d-1}\int_{k-1/2}^{k+1\prime 2}f_{0}(r)^{d}d’\}$

$\leq CN^{d-1}\sum_{ieJ_{2}}\sum_{k=N}^{\infty}\frac{c(i,k)}{k^{d-1}}\int_{s_{k}}f^{d}dx=CN^{d-1}\sum_{k=N}^{\infty}\sum_{i\in I_{2}}\frac{c(i,k)}{k^{d-1}}\int_{s_{k}}f^{d}dx$ .

Now if we can prove that

$\sum_{t\in I_{2}}\frac{c(i,k)}{k^{d-1}}\leq CN\log N$ , $\forall k\geq N$ , (7)

then we will obtain the proof of (6).
Let $S_{l.k},$ $l=1,$ $\cdots,$

$d$, be the part of $S_{k}$ defined by

$S_{l,k}=(R^{l-1}x(k-\frac{1}{2},$ $k+\frac{1}{2}]\times R^{d-l})\cap S_{k}$ , $k\geq 1$ .

Let $c_{l}(i, k)$ be

$c_{l}(i, k)=card(\{j\in\gamma_{i}|Q_{j}\cap S_{l.k}\neq\emptyset\})$ , $k\geq 1$ .
Then, if we can prove

$\sum_{i\epsilon I_{2}}\frac{c_{l}(i,k)}{k^{d-1}}\leq CN\log N$ , $\forall k\geq N$ , (8)

for $l=1,$ $\cdots,$ $d,$ (7) will follow by the symmetry of the problem and by the fact that
the union $ofS_{l,k}$ is the $halfofS_{k}$ . Without the loss ofgenerality we may assume that $l=1$ .

Let $D_{k.q},$ $q=1,2$ , be the set of lattice points defined by

$D_{k,q}=([k-2N, k+2N]\times[0, k+2N]^{d-1})\cap I_{q}$ , $k\geq 1$ .
Then we may restrict the sum in (8) to $D_{k,2}$ . The rest of the proof will rely on the next
geometric inequality:
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$c_{1}(i, k)\leq C\frac{N}{1+|k-i_{1}|}$ . (9)

Proof of (9). Let the band-like domain $\Omega$ be

$\Omega=(-\frac{1}{2},$ $\frac{1}{2})\times R^{d-1}$

Choose an $i=(i_{1}, \cdots, i_{d})$ from $Z^{d}$ as $i_{1}>10$ . Let the line segment $L_{\iota}$ be

$L_{l}=\{i+t\omega|\omega=(\omega_{1}, \cdots, \omega_{d})\in S^{d-1}, -N\leq t\leq N\}$ .

Then, if this line segment $L_{i}$ penetrates $\Omega$, we have

$|\Omega\cap L_{i}|=\frac{1}{|\omega_{1}|}$ ,

$i_{1}+\frac{1}{2}\leq|\omega_{1}|N$

and hence

$|\Omega\cap L_{i}|\leq\frac{N}{i_{1}+1/2}\leq 2\frac{N}{i_{1}+1}$ .

(9) follows easily from this inequality. $\square $

Inserting (9) into the left hand side of (8), we have

$\sum_{i\epsilon I_{2}}\frac{c_{1}(i,k)}{k^{d-1}}=\sum_{ieD_{k.2}}\frac{c_{1}(i,k)}{k^{d-1}}\leq c(\frac{k+2N}{k})^{d-1}\sum_{i_{1}=k-2N}^{k+2N}\frac{N}{1+|k-i_{1}|}\leq CN\log N$ .

Thus, we obtain (6).

2. Proof of (5). It follows by H\"older’s inequality and the definition of $c(i, k)$ that

$\sum_{i\in I_{1}}(\sum_{k=0}^{5N}c(i, k)\int_{k-1/2}^{k+1/2}f_{0}(|r|)dr)^{d}$

$\leq CN^{d}\int_{s_{0}}f^{d}dx+C\sum_{i\epsilon I_{1}}(\sum_{k=1}^{5N}c(i, k)\int_{k}^{k};_{1/2}^{1/2}f_{0}(r)dr)^{d}$ (10)

In the same way as in the first part of the proof of (6) we have

$\sum_{i\in I_{1}}(\sum_{k=1}^{5N}c(i, k)\int_{k-1/2}^{k+1/2}f_{0}(r)dr)^{d}$

$=\sum_{i\in I_{1}}\{\sum_{k=1}^{5N}(\frac{c(i,k)}{2k-1})^{1-1/d}\cdot(c(i, k)(2k-1)^{d-1})^{1/d}\int_{k-1/2}^{k+1/2}f_{0}(r)dr\}^{d}$
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$\leq C\sum_{i\in I_{1}}\{\sum_{k=1}^{5N}\frac{c(i,k)}{k}\}^{d-1}\cdot\{\sum_{k=1}^{5N}c(i, k)\int_{s_{k}}f^{d}dx\}$ . (11)

We shall prove the following two inequalities:

$\sum_{k=1}^{5N}\frac{c(i,k)}{k}\leq C$ log $N$ , $\forall i\in I_{1}$ ; (12)

$\sum_{i\in I_{1}}c(i, k)\leq CN^{d}$ log $N$ , $\forall k$ , $1\leq k\leq 5N$ . (13)

If this can be done, we will finish the proof of (5) by (10) and (11).
(13) follows in the same way as in the last part of the proof of (6). Indeed, for

every $1\leq k\leq 5N$ we obtain

$\sum_{i\in I_{1}}c_{1}(i, k)=\sum_{i\in D_{k1}},c_{1}(i, k)\leq C(k+2N)^{d-1}\sum_{i_{1}=k-2N}^{k+2N}\frac{N}{1+|k-i_{1}|}\leq CN^{d}$ log $N$ .

3. Proof of (12). As in the proof of (6) it is sufficient to show that

$\sum_{l=1}^{d}\sum_{k=1}^{5N}\frac{c_{l}(i,k)}{k}\leq C$ log $N$ , $\forall i\in I_{1}$ . (14)

Fix $i\in I_{1}$ and fix 1. Let $\omega_{i}=(a_{1}, \cdots, a_{d})$ be a unit vector which is parallel to the axis of
$R_{i}$ . Then we easily see that

$c_{l}(i, k)\leq C\min\{k,$ $\frac{1}{|a_{l}|}\}$ . (15)

If $S_{l,k}\cap R_{i}=\emptyset,$ $\forall k\in[1,5N]$ , we have nothing to prove. Therefore, we assume that
$ S_{l,k}\cap R_{i}\neq\emptyset$ , for some $k\in[1,5N]$ . All such $S_{l,k}$ can be listed as $S_{l,k_{1}},$ $S_{l,k_{1}+1},$ $\cdots,$ $S_{l,k_{2}-1}$ ,
$S_{l,k_{2}}$ . If $k_{2}-k_{1}\leq 2d$, then we have

$\sum_{k=k_{1}}^{k_{2}}\frac{c_{l}(i,k)}{k}\leq C(k_{2}-k_{1}+1)\leq C$

by (15). And if $|a_{l}|\geq 1/(2\sqrt{d})$, then we have

$\sum_{k=k_{1}}^{k_{2}}\frac{c_{l}(i,k)}{k}\leq C\sum_{k=1}^{5N}\frac{1}{k}\leq C$ log $N$

by (15).
Now, we assume that $k_{2}-k_{1}>2d$ and $|a_{l}|<1/(2\sqrt{d})$ . We assume also that

$|a_{j}|=|\omega_{i}|_{m}$ . Since $|a_{j}|\geq 1/\sqrt{d}$, we have $l\neq j$. Let $B(x, r)$ be the open ball of radius $r$

centered at $x$ . Let $p=(p_{1}, \cdots,p_{d})$ be the center of $R_{i}$ . We note that

$R_{i}\subset\{b+t\omega_{i}|b\in B(p,$ $\frac{1}{2}),$ $-\frac{N}{2}<t<\frac{N}{2}\}$ . (16)
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We shall examine the projections of $S_{l.k}$ and $R_{i}$ to the $(x_{l}, x_{j})$-plain in $R^{d}$ . In this
proof we write $(0, \cdots, 0, x_{l}, 0, \cdots, 0, x_{j}, 0, \cdots, 0)$ as $(x_{l}, x_{j})$ . $S_{l.k}^{\prime}$ and $R_{i}^{\prime}$ will denote the
projections to $(x_{l}, x_{j})$-plain of $S_{l,k}$ and $R_{i}$ , respectively. Without the loss of generality
we may assume that $a_{l},$ $a_{j}>0$ . We see that $R_{i}^{\prime}$ is contained in the strip of width 1 by
(16). Let $R$ be the strip of width 1 which is parallel to $(a_{l}, a_{j})$ and whose left side meets
the lower right corner of $S_{l,k_{1}}$ . Then by a simple computation we see that the condition
$ R\cap S_{k_{2}}\neq\emptyset$ is equivalent to

$\frac{2k_{2}+1}{2}\geq\frac{a_{j}}{a_{l}}(k_{2}-k_{1}-1)-\frac{2k_{1}+1(a_{l}^{2}+a_{j}^{2})^{1/2}}{2a_{l}}$

Hence it follows from $a_{j}\geq 1/\sqrt{d}$ that

$\frac{k_{2}-k_{1}-2d}{\sqrt{d}a_{l}}\leq k_{1}+k_{2}+1$ . (17)

Using $|a_{l}|<1/(2\sqrt{d})$ and (17), we first see that

$2(k_{2}-k_{1}-2d)\leq k_{1}+k_{2}+1$ ,

and hence
$k_{2}\leq 3k_{1}+C$ .

Inserting this inequality to the right hand side of (17) we have

$\frac{k_{2}-k_{1}-2d}{\sqrt{d}a_{l}}\leq k_{1}+k_{2}+1\leq 4k_{1}+C$

and hence

$k_{2}-k_{1}-2d\leq\sqrt{d}(4k_{1}+C)a_{l}$ .

From these inequalities and (15) we obtain

$\sum_{k=k_{1}}^{k_{2}}\frac{c_{l}(i,k)}{k}=\sum_{k=k_{1}}^{k_{2}-2d-1}\frac{c_{i}(i,k)}{k}+\sum_{k=k_{2}-2d}^{k_{2}}\frac{c_{l}(i,k)}{k}$

$\leq C\frac{1}{a_{l}}(\sum_{k=k_{1}}^{k_{2}-2d-1}\frac{1}{k})+C\leq C\frac{1}{a_{l}}\cdot(k_{2}-k_{1}-2d)\cdot\frac{1}{k_{1}}+C\leq C$ .

Thus, we finish the proof of (14).
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