Formulae for Relating the Modular Invariants and Defining Equations of $X_{0}(40)$ and $X_{0}(48)$

Takeshi HIBINO

Waseda University

(Communicated by T. Suzuki)

1. Introduction.

Let N be a positive integer and let $X_{0}(N)$ be the modular curve over \mathbf{Q} associated to the modular group $\Gamma_{0}(N)$. As a defining equation of $X_{0}(N)$, we have the modular equation of level N, which is written in the following form:

$$
F_{N}\left(j, j_{N}\right)=0, \quad F_{N}(S, T) \in \mathbf{Z}[S, T],
$$

where $j=j(z)$ is the modular invariant, $j_{N}=j_{N}(z)=j(N z)$, and z is the natural coordinate on $\mathscr{H}=\{z \in \mathbf{C} \mid \operatorname{Im}(z)>0\}$. This equation has many useful properties, but its degree and coefficients are too large to be applied to practical calculations on $X_{0}(N)$. In the case of a hyperelliptic modular curve, its more manageable defining equation, which we call the normal form of the hyperelliptic curve, has been given by N. Murabayashi ([7]) and M. Shimura ([11]). In particular, for a hyperelliptic curve of the type $X_{0}(N)$, T. Hibino and N. Murabayashi ([4]) found a certain relation between the modular equation of level N and its normal form except for $N=40,48$. The relation gives a formula expressing j in terms of the functions x, y on $X_{0}(N)$ which satisfy the normal form $y^{2}=f(x), f(T) \in \mathbf{Q}[T]$.

In this paper, we deal with the remaining cases to complete our task. To be specific, for the defining equations $y^{2}=x^{8}+8 x^{6}-2 x^{4}+8 x^{2}+1, y^{2}=x^{8}+14 x^{4}+1$ for $N=40$, 48, respectively, we give formulae expressing j in terms of these x, y (Theorems 4.1, 4.2).

2. Basic idea for expressing j.

In the following, we sketch our idea ([4]) which is based on the computation of the Fourier coefficients of some modular forms (cf. [3], [5], [9], [12]). Let $\operatorname{Aut}\left(X_{0}(N)\right)$ be the group of automorphisms of $X_{0}(N)$ over C. For a positive integer $d \neq 1$ dividing
N, let w_{d} be the Atkin-Lehner involution on $X_{0}(N)$ whereas we assume that w_{1} means the identity morphism over $X_{0}(N)$. From now on we assume that $X_{0}(N)$ is hyperelliptic with genus g.

Let $S_{2}\left(\Gamma_{0}(N)\right)$ be the vector space over \mathbf{C} of cusp forms of weight 2 for $\Gamma_{0}(N)$. Let $\left(\frac{1}{0}\right)$ denote the point of $X_{0}(N)$ represented by $\sqrt{-1} \infty$. If $\left(\frac{1}{0}\right)$ is not a Weierstrass point, one can choose a basis h_{1}, \cdots, h_{g} of $S_{2}\left(\Gamma_{0}(N)\right)$ with the following Fourier expansions:

$$
\begin{gathered}
h_{1}(z)=q^{g}+s_{1}^{(g+1)} q^{g+1}+\cdots+s_{1}^{(i)} q^{i}+\cdots, \\
h_{2}(z)=q^{g-1}+s_{2}^{(g)} q^{g}+\cdots+s_{2}^{(i)} q^{i}+\cdots, \\
\vdots \\
h_{g}(z)=q+s_{g}^{(2)} q^{2}+\cdots+s_{g}^{(i)} q^{i}+\cdots,
\end{gathered}
$$

where $q=e^{2 \pi \sqrt{-1}}$ and the coefficients $s_{k}^{(i)}$ are rational numbers. We put $x=h_{2}(z)$ / $h_{1}(z)=q^{-1}+\cdots$. Then x gives a covering map of degree two from $X_{0}(N)$ to the projective line (cf. [11]). Now we put $y=\frac{q}{h_{1}(z)} \frac{d x}{d q}=-q^{-(g+1)}+\cdots$. Then x and y satisfy an equation of the type as above, which is viewed as a defining equation of $X_{0}(N)$. Observing the Fourier coefficients of x and y, we can recursively determine the coefficients of $f(x)$.

Denote the function field of $X_{0}(N)$ defined over \mathbf{Q} by $\mathbf{Q}\left(X_{0}(N)\right)$. Let w_{d}^{*} be the automorphism of $\mathbf{Q}\left(X_{0}(N)\right.$) induced by w_{d}. From the action of w_{d} on $S_{2}\left(\Gamma_{0}(N)\right.$), we explicitly describe the action of w_{d}^{*} on the generators x and y of $\mathbf{Q}\left(X_{0}(N)\right)$. Then, in the cases $N=40,48$, we obtain the following result:

Proposition 2.1. A defining equation of $X_{0}(N)$ and the action of w_{d}^{*} on x and y are given in the table below:

N	$f(x)$	$d,\left(w_{d}^{*} x, w_{d}^{*} y\right)$
40	$x^{8}+8 x^{6}-2 x^{4}+8 x^{2}+1$	$5,\left(-\frac{1}{x},-\frac{y}{x^{4}}\right) ; 8,\left(-\frac{x-1}{x+1},-\frac{4 y}{(x+1)^{4}}\right)$
48	$x^{8}+14 x^{4}+1$	$3,\left(-\frac{1}{x},-\frac{y}{x^{4}}\right) ; 16,\left(-\frac{x-1}{x+1},-\frac{4 y}{(x+1)^{4}}\right)$

When $X_{0}(N)$ is hyperelliptic with N square-free, except for $N=37$, we recall the basic idea of [4] for expressing j in terms of x, y. For a positive integer M for which w_{M} is a hyperelliptic involution, i.e. $w_{M}^{*} x=x$ and $w_{M}^{*} y=-y$, we put $j_{M}=w_{M}^{*} j$. Then $j+j_{M}$ and $\left(j-j_{M}\right) / y$ are w_{M}^{*}-invariant. Therefore they are rational functions of x,
determined explicitly by observing the pole divisors and the values at the cusps of x, y, j, and j_{M}, and also by comparing the Fourier expansions. Calculation of the values of x is as follows. For any cusp P on $X_{0}(N)$, excluding $\left(\frac{1}{0}\right)$ and $w_{M}\left(\left(\frac{1}{0}\right)\right)$, let us denote by w the Atkin-Lehner involution which satisfies $P=w\left(\left(\frac{1}{0}\right)\right)$. Since the pole divisors of x are $(x)_{\infty}=\left(\frac{1}{0}\right)+w_{M}\left(\left(\frac{1}{0}\right)\right)$, the value of $x(P)$ is calculated by $x(P)=x\left(w\left(\left(\frac{1}{0}\right)\right)\right)=$ $w^{*} x\left(\left(\frac{1}{0}\right)\right)$, where the function $w^{*} x$ is obtained as a rational function of x through the action of the Atkin-Lehner involution on $S_{2}\left(\Gamma_{0}(N)\right.$).

But this method cannot be applied to the cases $N=37,40$ or 48 , because it requires that the hyperelliptic involution should be of Atkin-Lehner type, which is not the case for these three cases.

For each level N for which $X_{0}(N)$ is hyperelliptic, A. Ogg produced a method to check whether its hyperelliptic involution is of Atkin-Lehner type ([8]) and proved:

Lemma 2.1 (A. Ogg). The hyperelliptic involutions of $X_{0}(40), X_{0}(48)$ are defined by $\left(\begin{array}{cc}-10 & 1 \\ -120 & 10\end{array}\right),\left(\begin{array}{cc}-6 & 1 \\ -48 & 6\end{array}\right)$, respectively.
3. The cases $N=40$ and 48 .

In this section, we discuss the cases $N=40,48$. In any of these cases, $\operatorname{Aut}\left(X_{0}(N)\right)$ is not generated by the Atkin-Lehner involutions.

For a positive divisor d of N with $1<d<N$ and for an integer i prime to N, let $\left(\frac{i}{d}\right)$ denote the point of $X_{0}(N)$ which is represented by $\frac{i}{d}$. Then $\left(\frac{i}{d}\right)$ is defined over $\mathbf{Q}\left(\zeta_{n}\right)$, where $n=\operatorname{gcd}(d, N / d)$ and ζ_{n} is a primitive n-th root of unity. Reducing i modulo n, we have $\varphi(n)$ Galois-conjugate cusps associated to d. Moreover denote by $\left(\frac{0}{1}\right)$ and $\left(\frac{1}{0}\right)$ the points of $X_{0}(N)$ which are represented by 0 and $\sqrt{-1} \infty$, respectively.
3.1. The case $N=40$. In case $N=40, \operatorname{Aut}\left(X_{0}(40)\right)$ is generated by the Atkin-Lehner involutions w_{5}, w_{8}, and the automorphism v which is induced from the matrix $\left(\begin{array}{cc}1 & \frac{1}{2} \\ 0 & 1\end{array}\right)$ (see [1] and [6]). The hyperelliptic involution S, defined by the matrix $\left(\begin{array}{cc}-10 & 1 \\ -120 & 10\end{array}\right)$, is factored into $v w_{8} v w_{40}$. In the above notation, the cusps of $X_{0}(40)$ are $\left(\frac{0}{1}\right),\left(\frac{1}{2}\right),\left(\frac{1}{4}\right),\left(\frac{1}{8}\right),\left(\frac{1}{5}\right),\left(\frac{1}{10}\right),\left(\frac{1}{20}\right)$ and $\left(\frac{1}{0}\right)$. It is easy to see how the generators
act on the cusps. These actions are listed in the table below, e.g. $w_{5}\left(\left(\frac{0}{1}\right)\right)=\left(\frac{1}{5}\right)$:

	$\left(\frac{0}{1}\right)$	$\left(\frac{1}{2}\right)$	$\left(\frac{1}{4}\right)$	$\left(\frac{1}{8}\right)$	$\left(\frac{1}{5}\right)$	$\left(\frac{1}{10}\right)$	$\left(\frac{1}{20}\right)$	$\left(\frac{1}{0}\right)$
w_{5}	$\left(\frac{1}{5}\right)$	$\left(\frac{1}{10}\right)$	$\left(\frac{1}{20}\right)$	$\left(\frac{1}{0}\right)$	$\left(\frac{0}{1}\right)$	$\left(\frac{1}{2}\right)$	$\left(\frac{1}{4}\right)$	$\left(\frac{1}{8}\right)$
w_{8}	$\left(\frac{1}{8}\right)$	$\left(\frac{1}{4}\right)$	$\left(\frac{1}{2}\right)$	$\left(\frac{0}{1}\right)$	$\left(\frac{1}{0}\right)$	$\left(\frac{1}{20}\right)$	$\left(\frac{1}{10}\right)$	$\left(\frac{1}{5}\right)$
v	$\left(\frac{1}{2}\right)$	$\left(\frac{0}{1}\right)$	$\left(\frac{1}{4}\right)$	$\left(\frac{1}{8}\right)$	$\left(\frac{1}{10}\right)$	$\left(\frac{1}{5}\right)$	$\left(\frac{1}{20}\right)$	$\left(\frac{1}{0}\right)$

Let x and y be the functions of $X_{0}(40)$ defined in Proposition 2.1. It is easy to see that $v^{*} x=-x$ and $v^{*} y=y$. The pole divisors of x, y are $(x)_{\infty}=\left(\frac{1}{0}\right)+\left(\frac{1}{4}\right)$, $(y)_{\infty}=4\left\{\left(\frac{1}{0}\right)+\left(\frac{1}{4}\right)\right\}$, respectively. Thus the values of x at the cusps are determined in the same way as in the square-free case:

Lemma 3.1.

	$\left(\frac{0}{1}\right)$	$\left(\frac{1}{2}\right)$	$\left(\frac{1}{4}\right)$	$\left(\frac{1}{8}\right)$	$\left(\frac{1}{5}\right)$	$\left(\frac{1}{10}\right)$	$\left(\frac{1}{20}\right)$	$\left(\frac{1}{0}\right)$
x	1	-1	∞	0	-1	1	0	∞

On the other hand, the pole divisors of j and $S^{*} j$ are

$$
\begin{gathered}
(j)_{\infty}=40\left(\frac{0}{1}\right)+10\left(\frac{1}{2}\right)+5\left(\frac{1}{4}\right)+5\left(\frac{1}{8}\right)+8\left(\frac{1}{5}\right)+2\left(\frac{1}{10}\right)+\left(\frac{1}{20}\right)+\left(\frac{1}{0}\right), \\
\left(S^{*} j\right)_{\infty}=40\left(\frac{1}{10}\right)+10\left(\frac{1}{5}\right)+5\left(\frac{1}{0}\right)+5\left(\frac{1}{20}\right)+8\left(\frac{1}{2}\right)+2\left(\frac{0}{1}\right)+\left(\frac{1}{8}\right)+\left(\frac{1}{4}\right), \\
\left(j \pm S^{*} j\right)_{\infty}=40\left\{\left(\frac{0}{1}\right)+\left(\frac{1}{10}\right)\right\}+10\left\{\left(\frac{1}{2}\right)+\left(\frac{1}{5}\right)\right\}+5\left\{\left(\frac{1}{0}\right)+\left(\frac{1}{4}\right)\right\}+5\left\{\left(\frac{1}{20}\right)+\left(\frac{1}{8}\right)\right\} .
\end{gathered}
$$

Observing the pole divisors and the values of x, y, j, and $S^{*} j$ at the cusps, it is easy to see that we can take polynomials F, G over \mathbf{Q} which satisfy the following:

$$
j+S^{*} j=\frac{2 F(x)}{(x-1)^{40}(x+1)^{10} x^{5}} \quad, \quad \frac{j-S^{*} j}{y}=\frac{2 G(x)}{(x-1)^{40}(x+1)^{10} x^{5}},
$$

$$
\begin{array}{cl}
F(T)=\sum_{i=0}^{60} a_{i} T^{i}, & G(T)=\sum_{i=0}^{56} b_{i} T^{i} \\
\operatorname{deg} F=60, & \operatorname{deg} G=56
\end{array}
$$

Therefore,

$$
j=\frac{F(x)+G(x) y}{(x-1)^{40}(x+1)^{10} x^{5}} .
$$

Observing the action of w_{5}^{*}, we see

$$
\begin{gathered}
j_{5}=\frac{F_{5}(x)+G_{5}(x) y}{(x-1)^{10}(x+1)^{40} x^{5}}, \quad F_{5}(T)=-\sum_{i=0}^{60} a_{60-i}(-T)^{i} \\
G_{5}(T)=\sum_{i=0}^{56} b_{56-i}(-T)^{i} .
\end{gathered}
$$

Finally, using the Fourier expansions of x, y, j and j_{5}, we can determine the coefficients of F and G. Note that, in determining the coefficients a_{i}, b_{i}, the use of the Fourier expansion of j_{5} is more effective than the use of those of $S^{*} j$ since the coefficients of F are just a rearrangement of those of F_{5} up to sign in reverse order and since the same goes for the coefficients b_{i} of the polynomials G and G_{5}.
3.2. The case $N=48$. In case $N=48, \operatorname{Aut}\left(X_{0}(48)\right)$ is generated by the Atkin-Lehner involutions w_{3}, w_{16}, and the automorphism v which is induced from the matrix $\left(\begin{array}{cc}1 & \frac{1}{4} \\ 0 & 1\end{array}\right)$ (see [1] and [6]). The hyperelliptic involution S, defined by the matrix $\left(\begin{array}{cc}-6 & 1 \\ -48 & 6\end{array}\right)$, is factored into $v^{2} w_{16} v^{2} w_{48}$. We note that v is not an involution, but so is v^{2}. In the notation as above, the cusps are $\left(\frac{0}{1}\right),\left(\frac{1}{2}\right),\left(\frac{1}{4}\right),\left(\frac{3}{4}\right),\left(\frac{1}{8}\right),\left(\frac{1}{16}\right),\left(\frac{1}{3}\right),\left(\frac{1}{6}\right)$, $\left(\frac{1}{12}\right),\left(\frac{7}{12}\right),\left(\frac{1}{24}\right)$ and $\left(\frac{1}{0}\right)$. Let x and y be the modular functions of $X_{0}(48)$ defined in Proposition 2.1. It is easy to see that $v^{2 *} x=-x$ and $v^{2 *} y=y$. The pole divisors of x, y are $(x)_{\infty}=\left(\frac{1}{0}\right)+\left(\frac{1}{8}\right),(y)_{\infty}=4\left\{\left(\frac{1}{0}\right)+\left(\frac{1}{8}\right)\right\}$. Thus the values of x at the cusps, except for $\left(\frac{1}{4}\right),\left(\frac{3}{4}\right),\left(\frac{1}{12}\right)$ and $\left(\frac{7}{12}\right)$, are determined in the same way as in the square-free case:

Lemma 3.2.

	$\left(\frac{0}{1}\right)$	$\left(\frac{1}{2}\right)$	$\left(\frac{1}{8}\right)$	$\left(\frac{1}{16}\right)$	$\left(\frac{1}{3}\right)$	$\left(\frac{1}{6}\right)$	$\left(\frac{1}{24}\right)$	$\left(\frac{1}{0}\right)$
x	1	-1	∞	0	-1	1	0	∞

It is hard to see the action of v^{*} on x, y. Since we cannot obtain $\left(v w_{48}\right)^{*} x$ as a rational function in x, the value $x\left(\left(\frac{1}{4}\right)\right)$ is not determined, though $\left(\frac{1}{4}\right)=v w_{48}\left(\left(\frac{1}{0}\right)\right)$. The cases $\left(\frac{3}{4}\right),\left(\frac{1}{12}\right)$ and $\left(\frac{7}{12}\right)$ are in a similar situation to this. Thus we cannot determine the values of x at these four cusps by our method. However, we can obtain a few relations among the values as follows. The values $x\left(\left(\frac{1}{4}\right)\right)$ and $x\left(\left(\frac{1}{3}\right)\right), x$ $\left(\left(\frac{1}{12}\right)\right)$ and $x\left(\left(\frac{7}{12}\right)\right)$, which are in $\mathbf{Q}\left(\zeta_{4}\right)$, are conjugate over \mathbf{Q}, respectively. Since $S\left(\left(\frac{1}{4}\right)\right)=\left(\frac{1}{12}\right)$ and $w_{3}\left(\left(\frac{1}{4}\right)\right)=\left(\frac{1}{12}\right)$, we see that $x\left(\left(\frac{1}{4}\right)\right)=x\left(\left(\frac{1}{12}\right)\right)=x\left(w_{3}\left(\left(\frac{1}{4}\right)\right)\right)=$ $w_{3}^{*} x\left(\left(\frac{1}{4}\right)\right)=-1 / x\left(\left(\frac{1}{4}\right)\right)$. Then the value $x\left(\left(\frac{1}{4}\right)\right)$ satisfies the equation $x\left(\left(\frac{1}{4}\right)\right)^{2}+1=0$. Moreover, since $v^{2}\left(\left(\frac{1}{4}\right)\right)=\left(\frac{3}{4}\right)$, we see that $x\left(\left(\frac{1}{4}\right)\right)=x\left(v^{2}\left(\left(\frac{3}{4}\right)\right)\right)=v^{2 *} x\left(\left(\frac{3}{4}\right)\right)=$ $-x\left(\left(\frac{3}{4}\right)\right)$, i.e. $x\left(\left(\frac{1}{4}\right)\right)=-x\left(\left(\frac{3}{4}\right)\right)$. Similarly we obtain $x\left(\left(\frac{1}{12}\right)\right)^{2}+1=0$ and $x\left(\left(\frac{1}{12}\right)\right)=$ $-x\left(\left(\frac{7}{12}\right)\right)$. On the other hand, the pole divisors of j and $j \pm S^{*} j$ are

$$
\begin{aligned}
(j)_{\infty}= & 48\left(\frac{0}{1}\right)+12\left(\frac{1}{2}\right)+16\left(\frac{1}{3}\right)+3\left(\frac{1}{4}\right)+3\left(\frac{3}{4}\right)+4\left(\frac{1}{6}\right) \\
& +3\left(\frac{1}{8}\right)+\left(\frac{1}{12}\right)+\left(\frac{7}{12}\right)+3\left(\frac{1}{16}\right)+\left(\frac{1}{24}\right)+\left(\frac{1}{0}\right) \\
\left(j \pm S^{*} j\right)_{\infty}= & 48\left\{\left(\frac{0}{1}\right)+\left(\frac{1}{6}\right)\right\}+16\left\{\left(\frac{1}{2}\right)+\left(\frac{1}{3}\right)\right\}+3\left\{\left(\frac{1}{4}\right)+\left(\frac{1}{12}\right)\right\} \\
& +3\left\{\left(\frac{3}{4}\right)+\left(\frac{7}{12}\right)\right\}+3\left\{\left(\frac{1}{0}\right)+\left(\frac{1}{8}\right)\right\}+3\left\{\left(\frac{1}{16}\right)+\left(\frac{1}{24}\right)\right\} .
\end{aligned}
$$

Observing the pole divisors and the values at the cusps of x, y, j and $S^{*} j$, it is easy to see that we can take polynomials F, G over \mathbf{Q} which satisfy the following:

$$
\begin{aligned}
& j+S^{*} j=\frac{2 F(x)}{(x-1)^{48}(x+1)^{16}\left(x^{2}+1\right)^{3} x^{3}}, \\
& \frac{j-S^{*} j}{y}=\frac{2 G(x)}{(x-1)^{48}(x+1)^{16}\left(x^{2}+1\right)^{3} x^{3}}, \\
& F(T)=\sum_{i=0}^{76} a_{i} T^{i}, G(T)=\sum_{i=0}^{72} b_{i} T^{i}, \\
& \operatorname{deg} F=76, \operatorname{deg} G=72 .
\end{aligned}
$$

Therefore,

$$
j=\frac{F(x)+G(x) y}{(x-1)^{48}(x+1)^{16}\left(x^{2}+1\right)^{3} x^{3}} .
$$

Observing the action of w_{3}^{*},

$$
\begin{gathered}
j_{3}=\frac{F_{3}(x)+G_{3}(x) y}{(x+1)^{48}(x-1)^{16}\left(x^{2}+1\right)^{3} x^{3}}, \quad F_{3}(T)=-\sum_{i=0}^{76} a_{76-i}(-T)^{i} \\
G_{3}(T)=\sum_{i=0}^{72} b_{72-i}(-T)^{i} .
\end{gathered}
$$

In the same way as in $\S 3.1$, by using the Fourier expansions of x, y, j and j_{3}, we can determine the coefficients of F and G.

4. Relations for Fricke's cases.

Displaying our results in $\S 3$ requires so much space. Instead, we give relations between our data and Fricke's work.
4.1. The case $N=40$. We define as follows:

$$
\begin{gathered}
p_{5}(t)=\frac{\left(t^{2}+10 t+5\right)^{3}}{t} \\
p_{10}(t)=\frac{t(2 t+5)^{2}}{t+2} \\
p_{20}(t, s)=\frac{t^{2}-13-s}{4}
\end{gathered}
$$

Lemma 4.1 (Fricke). We have the following sequence of covering maps between modular curves:

$$
\begin{gathered}
X_{0}(20) \longrightarrow X_{0}(10) \longrightarrow X_{0}(5) \longrightarrow X_{0}(1) \\
\left(\tau_{20}, \sigma_{20}\right) \longmapsto \tau_{10} \longmapsto \tau_{5} \longmapsto j,
\end{gathered}
$$

where $\mathbf{Q}\left(X_{0}(1)\right)=\mathbf{Q}(j), \mathbf{Q}\left(X_{0}(5)\right)=\mathbf{Q}\left(\tau_{5}\right), \mathbf{Q}\left(X_{0}(10)\right)=\mathbf{Q}\left(\tau_{10}\right)$, and $\mathbf{Q}\left(X_{0}(20)\right)=\mathbf{Q}\left(\tau_{20}, \sigma_{20}\right)$ which $\left(\tau_{20}, \sigma_{20}\right)$ satisfy the equation $\sigma_{20}{ }^{2}=\tau_{20}{ }^{4}-12 \tau_{20}{ }^{3}+28 \tau_{20}{ }^{2}-32 \tau_{20}+16$. Moreover, the following relations hold:

$$
\begin{aligned}
j & =p_{5}\left(\tau_{5}\right), \\
\tau_{5} & =p_{10}\left(\tau_{10}\right), \\
\tau_{10} & =p_{20}\left(\tau_{20}, \sigma_{20}\right)
\end{aligned}
$$

Proposition 4.1. Writing defining equations of $X_{0}(20), X_{0}(40)$ as $\sigma^{2}=\tau^{4}-$ $12 \tau^{3}+28 \tau^{2}-32 \tau+16, y^{2}=x^{8}+8 x^{6}-2 x^{4}+8 x^{2}+1$, respectively, we have a covering map φ_{40} from $X_{0}(40)$ to $X_{0}(20)$ as $\varphi_{40}(x, y)=(\tau, \sigma)$, where

$$
\begin{aligned}
\tau= & \frac{x^{4}-4 x^{3}+10 x^{2}-4 x+1-y}{2(x-1)^{2} x}, \\
\sigma= & \left(x^{8}-4 x^{7}+4 x^{6}-20 x^{5}+22 x^{4}-20 x^{3}+4 x^{2}-4 x+1\right. \\
& \left.-\left(x^{2}+1\right)\left(x^{2}-4 x+1\right) y\right) /\left(2(x-1)^{4} x^{2}\right) .
\end{aligned}
$$

Proof. In the same way as in $\S 3.1$, observing the Fourier expansions of τ, σ, x and y, we obtain the relations.

Theorem 4.1. Writing a defining equation of $X_{0}(40)$ as $y^{2}=x^{8}+8 x^{6}-2 x^{4}+$ $8 x^{2}+1$, we have a covering map from $X_{0}(40)$ to $X_{0}(1)$ as follows:

$$
\begin{aligned}
j= & -64\left(3 x^{24}+580 x^{23}+3132 x^{22}+3580 x^{21}+30278 x^{20}-36180 x^{19}\right. \\
& +129100 x^{18}-261740 x^{17}+674765 x^{16}-1008280 x^{15}+1343352 x^{14} \\
& -1319400 x^{13}+1405908 x^{12}-1319400 x^{11}+1343352 x^{10}-1008280 x^{9} \\
& +674765 x^{8}-261740 x^{7}+129100 x^{6}-36180 x^{5}+30278 x^{4}+3580 x^{3} \\
& +3132 x^{2}+580 x+3+2\left(x^{20}+300 x^{19}+1470 x^{18}+1100 x^{17}+7405 x^{16}\right. \\
& -15120 x^{15}+38760 x^{14}-46160 x^{13}+82450 x^{12}-103960 x^{11}+133044 x^{10} \\
& -103960 x^{9}+82450 x^{8}-46160 x^{7}+38760 x^{6}-15120 x^{5}+7405 x^{4} \\
& \left.\left.+1100 x^{3}+1470 x^{2}+300 x+1\right) y\right)^{3} /\left((x - 1) ^ { 4 0 } (3 x ^ { 4 } + 2 x ^ { 2 } + 3 - 2 y) ^ { 2 } \left(x^{4}+2 x^{3}\right.\right. \\
& \left.\left.-2 x^{2}+2 x+1-y\right)^{5}\left(x^{4}-10 x^{3}+14 x^{2}-10 x+1+y\right)\right) .
\end{aligned}
$$

Proof. By Lemma 4.1 and Proposition 4.1, we have the relation $j=p_{5} \circ p_{10}{ }^{\circ}$ $p_{20}{ }^{\circ} \varphi_{40}(x, y)$. Eliminating y^{2}, we obtain the formula.
4.2. The case $\mathrm{N}=48$. We define as follows:

$$
\begin{aligned}
p_{3}(t) & =\frac{27(t+1)(9 t+1)^{3}}{t}, \\
p_{6}(t) & =\frac{t(2 t+9)^{2}}{27(t+4)}, \\
p_{12}(t) & =\frac{t(t+6)}{2}, \\
p_{24}(t, s) & =\frac{t^{2}-11-s}{2} .
\end{aligned}
$$

Lemma 4.2 (Fricke). We have the following sequence of covering maps between modular curves:

$$
\begin{array}{cllll}
X_{0}(24) & \longrightarrow & X_{0}(12) & \longrightarrow & X_{0}(6) \\
\left(\tau_{24}, \sigma_{24}\right) & \longmapsto X_{0}(3) & \longrightarrow & X_{0}(1) \\
\tau_{12} & \longmapsto & \tau_{6} & \longmapsto & \tau_{3}
\end{array} \longmapsto j, ~
$$

where $\quad \mathbf{Q}\left(X_{0}(1)\right)=\mathbf{Q}(j), \quad \mathbf{Q}\left(X_{0}(3)\right)=\mathbf{Q}\left(\tau_{3}\right), \quad \mathbf{Q}\left(X_{0}(6)\right)=\mathbf{Q}\left(\tau_{6}\right), \quad \mathbf{Q}\left(X_{0}(12)\right)=\mathbf{Q}\left(\tau_{12}\right), \quad$ and $\mathbf{Q}\left(X_{0}(24)\right)=\mathbf{Q}\left(\tau_{24}, \sigma_{24}\right)$ which $\left(\tau_{24}, \sigma_{24}\right)$ satisfy the equation $\sigma_{24}{ }^{2}=\tau_{24}{ }^{4}-22 \tau_{24}{ }^{2}$ $48 \tau_{24}$-23. Moreover, the following relations hold:

$$
\begin{aligned}
j & =p_{3}\left(\tau_{3}\right) \\
\tau_{3} & =p_{6}\left(\tau_{6}\right) \\
\tau_{6} & =p_{12}\left(\tau_{12}\right) \\
\tau_{12} & =p_{24}\left(\tau_{24}, \sigma_{24}\right)
\end{aligned}
$$

Proposition 4.2. Writing defining equations of $X_{0}(24), X_{0}(48)$ as $\sigma^{2}=\tau^{4}-22 \tau^{2}-$ $48 \tau-23, y^{2}=x^{8}+14 x^{4}+1$, respectively, we have a covering map φ_{48} from $X_{0}(48)$ to $X_{0}(24)$ as $\varphi_{48}(x, y)=(\tau, \sigma)$, where

$$
\begin{aligned}
t= & \frac{x^{4}-4 x^{3}+10 x^{2}-4 x+1-y}{2(x-1)^{2} x}, \\
s= & \left(x^{8}-4 x^{7}+4 x^{6}-4 x^{5}-10 x^{4}-4 x^{3}+4 x^{2}-4 x+1\right. \\
& \left.-\left(x^{2}+1\right)\left(x^{2}-4 x+1\right) y\right) /\left(2(x-1)^{4} x^{2}\right) .
\end{aligned}
$$

Proof. Similarly with $\S 3.1$, observing the Fourier expansions of τ, σ, x and y, we obtain the relations.

TheOrem 4.2. Writing a defining equation of $X_{0}(48)$ as $y^{2}=x^{8}+14 x^{4}+1$, we have a covering map from $X_{0}(48)$ to $X_{0}(1)$ as follows:

$$
\begin{aligned}
j= & -16\left(x^{8}+12 x^{7}-36 x^{6}+84 x^{5}-58 x^{4}+84 x^{3}-36 x^{2}+12 x\right. \\
& \left.+1-2\left(x^{4}+6 x^{2}+1\right) y\right)^{3}\left(x^{24}+348 x^{23}-972 x^{22}+5028 x^{21}\right. \\
& -11070 x^{20}+44148 x^{19}-94620 x^{18}+256908 x^{17}-415761 x^{16} \\
& +874968 x^{15}-1216152 x^{14}+1964328 x^{13}-1765732 x^{12} \\
& +1964328 x^{11}-1216152 x^{10}+874968 x^{9}-415761 x^{8}+256908 x^{7} \\
& -94620 x^{6}+44148 x^{5}-11070 x^{4}+5028 x^{3}-972 x^{2}+348 x+1 \\
& -2\left(x^{4}+6 x^{2}+1\right)\left(x^{16}+168 x^{15}-456 x^{14}+1272 x^{13}-1124 x^{12}\right. \\
& +4392 x^{11}-7800 x^{10}+18744 x^{9}-14010 x^{8}+18744 x^{7}-7800 x^{6} \\
& \left.\left.+4392 x^{5}-1124 x^{4}+1272 x^{3}-456 x^{2}+168 x+1\right) y\right)^{3} /\left((x - 1) ^ { 4 8 } \left(x^{4}+6 x^{2}\right.\right. \\
& +1-2 y)^{4}\left(x^{4}-2 x^{3}+6 x^{2}-2 x+1-y\right)^{3}\left(2 x\left(x^{2}+1\right)-y\right)^{3}\left(2 \left(x^{4}\right.\right. \\
& \left.\left.\left.-3 x^{3}+6 x^{2}-3 x+1\right)-y\right)\left(x^{4}-6 x^{3}+6 x^{2}-6 x+1+y\right)\right) .
\end{aligned}
$$

Proof. By Lemma 4.2 and Proposition 4.2, we have the relation $j=p_{3} \circ p_{6} \circ p_{12} \circ$ $p_{24} \circ \varphi_{48}(x, y)$. Eliminating y^{2}, we obtain the formula.

Acknowledgment. I would like to thank Professors Y. Hasegawa and F. Momose for their patience in explaining some facts about the group of automorphisms of $X_{0}(N)$ over C.

References

[1] A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma_{0}(m)$, Math. Ann. 185 (1970), 134-160.
[2] R. Fricke, Die Elliptischen Funktionen und ihre Anwendungen, Teubner (1922).
[3] K. Нashimoto, On Brandt matrices of Eichler orders, Memoirs of the School of Sci. and Engn. Waseda Univ. (1995), 143-165.
[4] T. Hibino and N. Murabayashi, Modular equations of hyperelliptic $X_{0}(N)$ and an application, Acta Arith. 82 (1997), 279-291.
[5] H. Hinikata, Explicit formula of the traces of Hecke operators for $\Gamma_{0}(N)$, J. Math. Soc. Japan 26 (1974), 56-82.
[6] M. A. Kenku and F. Momose, Automorphism groups of the modular curve $X_{0}(N)$, Compositio Math. 65 (1988), 51-80.
[7] N. Murabayashi, On normal forms of modular curves of genus 2, Osaka J. Math. 29 (1992), 405-418.
[8] A. Ogg, Hyperelliptic modular curves, Bull. Soc. Math. France 102 (1974), 449-462.
[9] A. Pizer, An algorithm for computing modular forms on $\Gamma_{0}(N)$, J. Algebra 64 (1980), 340-390.
[10] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami/Princeton Univ. Press (1971).
[11] M. Shimura, Defining equations of modular curves $X_{0}(N)$, Tokyo J. Math. 18 (1995), 443-456.
[12] M. Yamauchi, On the traces of Hecke operators for a normalizer of $\Gamma_{0}(N)$, J. Math. Kyoto Univ. 13 (1973), 403-411.

Present Address:

Advanced Research Institute for Science and Engineering, Waseda University, Oкиво, Shinjuku-ku, Toкyo, 169-8555 Japan.

