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1. Introduction.

Let $N$ be a positive integer and let $X_{0}(N)$ be the modular curve over $Q$ associated
to the modular group $\Gamma_{0}(N)$ . As a defining equation of $X_{0}(N)$ , we have the modular
equation of level $N$, which is written in the following form:

$F_{N}(j,j_{N})=0$ , $F_{N}(S, T)\in Z[S, T]$ ,

where $j=j(z)$ is the modular invariant, $j_{N}=j_{N}(z)=j(Nz)$ , and $z$ is the natural coordinate
on $\ovalbox{\tt\small REJECT}=\{z\in C|Im(z)>0\}$ . This equation has many useful properties, but its degree and
coefficients are too large to be applied to practical calculations on $X_{0}(N)$ . In the case
of a hyperelliptic modular curve, its more manageable defining equation, which we call
the normal form of the hyperelliptic curve, has been given by N. Murabayashi ([7])
and M. Shimura ([11]). In particular, for a hyperelliptic curve of the type $X_{0}(N)$ , T.
Hibino and N. Murabayashi ([4]) found a certain relation between the modular equation
of level $N$ and its normal form except for $N=40,48$ . The relation gives a formula
expressing $j$ in terms of the functions $x,$ $y$ on $X_{0}(N)$ which satisfy the normal form
$y^{2}=f(x),$ $f(T)\in Q[T]$ .

In this paper, we deal with the remaining cases to complete our task. To be specific,
for the defining equations $y^{2}=x^{8}+8x^{6}-2x^{4}+8x^{2}+1,$ $y^{2}=x^{8}+14x^{4}+1$ for $N=40$ ,
48, respectively, we give formulae expressing $j$ in terms of these $x,$ $y$ (Theorems 4.1, 4.2).

2. Basic idea for expressing $j$.
In the following, we sketch our idea ([4]) which is based on the computation of

the Fourier coefficients of some modular forms (cf. [3], [5], [9], [12]). Let $Aut(X_{0}(N))$

be the group of automorphisms of $X_{0}(N)$ over C. For a positive integer $d\neq 1$ dividing
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$N$, let $w_{d}$ be the Atkin-Lehner involution on $X_{0}(N)$ whereas we assume that $w_{1}$ means
the identity morphism over $X_{0}(N)$ . From now on we assume that $X_{0}(N)$ is hyperelliptic
with genus $g$ .

Let $S_{2}(\Gamma_{0}(N))$ be the vector space over $C$ of cusp forms of weight 2 for $\Gamma_{0}(N)$ . Let

$(\frac{1}{0})$ denote the point of $X_{0}(N)$ represented by $\sqrt{-1}\infty$ . If $(\frac{1}{0})$ is not a Weierstrass

point, one can choose a basis $h_{1},$ $\cdots,$ $h_{g}$ of $S_{2}(\Gamma_{0}(N))$ with the following Fourier
expansions:

$ h_{1}(z)=q^{g}+s_{1}^{(g+1)}q^{g+1}+\cdots+s_{1}^{\langle i)}q^{i}+\cdots$ ,

$ h_{2}(z)=q^{g-1}+s_{2}^{(g)}q^{g}+\cdots+s_{2}^{(i)}q^{i}+\cdots$ ,

.
$ h_{g}(z)=q+s_{g}^{\langle 2)}q^{2}+\cdots+s_{g}^{(i)}q^{i}+\cdots$ ,

where $q=e^{2\pi\sqrt{-1}z}$ and the coefficients $s_{k}^{\langle i)}$ are rational numbers. We put $x=h_{2}(z)/$

$ h_{1}(z)=q^{-1}+\cdots$ . Then $x$ gives a covering map of degree two from $X_{0}(N)$ to the pro-

jective line (cf. [11]). Now we put $ y=\frac{q}{h_{1}(z)}\frac{dx}{dq}=-q^{-(g+1)}+\cdots$ . Then $x$ and $y$ satisfy

an equation of the type as above, which is viewed as a defining equation of $X_{0}(N)$ .
Observing the Fourier coefficients ofx and $y$ , we can recursively determine the coefficients
of f$(x)$ .

Denote the function field of $X_{0}(N)$ defined over $Q$ by $Q(X_{0}(N))$ . Let $w_{d}^{*}$ be the
automorphism of $Q(X_{0}(N))$ induced by $w_{d}$ . From the action of $w_{d}$ on $S_{2}(\Gamma_{0}(N))$ , we
explicitly describe the action of $w_{d}^{*}$ on the generators $x$ and $y$ of $Q(X_{O}(N))$ . Then, in
the cases $N=40,48$ , we obtain the following result:

PROPOSITION 2.1. A defining equation of $X_{0}(N)$ and the action of $w_{d}^{*}$ on $x$ and $y$

are given in the table below:

When $X_{0}(N)$ is hyperelliptic with $N$ square-free, except for $N=37$ , we recall the
basic idea of [4] for expressing $j$ in terms of $x,$ $y$ . For a positive integer $M$ for which
$w_{M}$ is a hyperelliptic involution, $i.e$ . $w_{M}^{*}x=x$ and $w_{M}^{*}y=-y$, we put $j_{M}=w_{M}^{*}j$. Then
$j+j_{M}$ and $(j-j_{M})/y$ are $w_{M}^{*}$-invariant. Therefore they are rational functions of $x$,
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determined explicitly by observing the pole divisors and the values at the cusps of $x$ ,
$y,$ $j,$ $andj_{M}$ , and also by comparing the Fourier expansions. Calculation of the values

of $x$ is as follows. For any cusp $P$ on $X_{0}(N)$ , excluding $(\frac{1}{0})$ and $w_{M}((\frac{1}{0}))$ , let us denote

by $w$ the Atkin-Lehner involution which satisfies $P=w((\frac{1}{0}))$ . Since the pole divisors

of $x$ are $(x)_{\infty}=(\frac{1}{0})+w_{M}((\frac{1}{0}))$ , the value of $x(P)$ is calculated by $x(P)=x(w((\frac{1}{0})))=$

$w^{*}x((\frac{1}{0}))$ , where the function $w^{*}x$ is obtained as a rational function of $x$ through

the action of the Atkin-Lehner involution on $S_{2}(\Gamma_{0}(N))$ .
But this method cannot be applied to the cases $N=37,40$ or 48, because it requires

that the hyperelliptic involution should be of Atkin-Lehner type, which is not the case
for these three cases.

For each level $N$ for which $X_{0}(N)$ is hyperelliptic, A. Ogg produced a method to
check whether its hyperelliptic involution is of Atkin-Lehner type ([8]) and proved:

LEMMA 2.1 (A. Ogg). The hyperelliptic involutions of $X_{0}(40),$ $X_{0}(48)$ are defined by

$\left(\begin{array}{ll}-l0 & l\\-l20 & l0\end{array}\right),$ $\left(\begin{array}{ll}-6 & l\\-48 & 6\end{array}\right)$ , respectively.

3. The cases $N=40$ and 48.

In this section, we discuss the cases $N=40,48$ . In any of these cases, $Aut(X_{0}(N))$

is not generated by the Atkin-Lehner involutions.
For a positive divisor $d$ of $N$ with $1<d<N$ and for an integer $i$ prime to $N$, let

$(\frac{i}{d})$ denote the point of $X_{0}(N)$ which is represented by $\frac{i}{d}$ Then $(\frac{i}{d})$ is defined over
$Q(\zeta_{n})$ , where $n=gcd(d, N/d)$ and $\zeta_{n}$ is a primitive n-th root of unity. Reducing $i$ modulo

$n$ , we have $\varphi(n)$ Galois-conjugate cusps associated to $d$. Moreover denote by $(\frac{0}{1})$ and

$(\frac{1}{0})$ the points of $X_{0}(N)$ which are represented by $0$ and $\sqrt{-1}\infty$ , respectively.

3.1. The case $N=40$ . In case $N=40$ , $Aut(X_{0}(40))$ is generated by the
Atkin-Lehner involutions $w_{5},$ $w_{8}$ , and the automorphism $v$ which is induced from the

matrix $\left(\begin{array}{l}1\frac{1}{2}\\0l\end{array}\right)$ (see [1] and [6]). The hyperelliptic involution $S$, defined by the matrix

$\left(\begin{array}{ll}-10 & l\\-l20 & 10\end{array}\right)$ , is factored into $vw_{8}vw_{40}$ . In the above notation, the cusps of $X_{0}(40)$ are

$(\frac{0}{1}),$ $(\frac{1}{2}),$ $(\frac{1}{4}),$ $(\frac{1}{8}),$ $(\frac{1}{5}),$ $(\frac{1}{10}),$ $(\frac{1}{20})$ and $(\frac{1}{0})$ . it is easy to see how the generators
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act on the cusps. These actions are listed in the table below, e.g. $w_{5}((\frac{0}{1}))=(\frac{1}{5})$ :

Let $x$ and $y$ be the functions of $X_{0}(40)$ defined in Proposition 2.1. It is easy to see
that $v^{*}x=-x$ and $v^{*}y=y$ . The pole divisors of $x,$ $y$ are $(x)_{\infty}=(\frac{1}{0})+(\frac{1}{4})$ ,

$(y)_{\infty}=4\{(\frac{1}{0})+(\frac{1}{4})\}$ , respectively. Thus the values of $x$ at the cusps are determined in

the same way as in the square-free case:

LEMMA 3.1.

On the other hand, the pole divisors ofj and $S^{*}j$ are

$(j)_{\infty}=4o(\frac{0}{1})+Io(\frac{1}{2})+5(\frac{1}{4})+5(\frac{1}{8})+8(\frac{1}{5})+2(\frac{1}{10})+(\frac{1}{20})+(\frac{1}{0})$ ,

$(S^{*}j)_{\infty}=4o(\frac{1}{10})+1o(\frac{1}{5})+5(\frac{1}{0})+5(\frac{1}{20})+8(\frac{1}{2})+2(\frac{0}{1})+(\frac{1}{8})+(\frac{1}{4})$ ,

$[j\pm S^{*}j)_{\infty}=40\{(\frac{0}{1})+(\frac{1}{10})\}+10\{(\frac{1}{2})+(\frac{1}{5})\}+5\{(\frac{1}{0})+(\frac{1}{4})\}+5\{(\frac{1}{20})+(\frac{1}{8})\}$ .

Observing the pole divisors and the values of $x,$ $y,j$, and $S^{*}j$ at the cusps, it is easy to
see that we can take polynomials $F,$ $G$ over $Q$ which satisfy the following:

$j+S^{*}j=\frac{2F(x)}{(x-1)^{40}(x+1)^{10}x^{5}}$ $\frac{j-S^{*}j}{y}=\frac{2G(x)}{(x-1)^{40}(x+1)^{10}x^{5}}$ ,
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$F(T)=\sum_{i=0}^{60}$ a $iT^{i}$ $G(T)=\sum_{i=0}^{56}b_{i}T^{i}$ ,

degF$=60$ , deg $G=56$ .
Therefore,

$j=\frac{F(x)+G(x)y}{(x-1)^{40}(x+1)^{10}x^{5}}$ .

Observing the action of $w_{5}^{*}$ , we see

$j_{5}=\frac{F_{5}(x)+G_{5}(x)y}{(x-1)^{10}(x+1)^{40}x^{5}}$ , $F_{5}(T)=-\sum_{i=0}^{60}a_{60-i}(-T)^{i}$ ,

$G_{5}(T)=\sum_{i=0}^{56}b_{56-i}(-T)^{i}$ .

Finally, using the Fourier expansions of $x,$ $y,$ $j$ and $j_{5}$ , we can determine the
coefficients of $F$ and $G$ . Note that, in determining the coefficients $a_{i},$

$b_{i}$ , the use of the
Fourier expansion $ofj_{5}$ is more effective than the use of those of $S^{*}j$ since the coefficients
of $F$ are just a rearrangement of those of $F_{5}$ up to sign in reverse order and since the
same goes for the coefficients $b_{i}$ of the polynomials $G$ and $G_{5}$ .

3.2. The case $N=48$ . In case $N=48$ , $Aut(X_{0}(48))$ is generated by the
Atkin-Lehner involutions $w_{3},$ $w_{16}$ , and the automorphism $v$ which is induced from the

matrix $\left(\begin{array}{l}l\frac{1}{4}\\01\end{array}\right)$ (see [1] and [6]). The hyperelliptic involution $S$, defined by the matrix

$\left(\begin{array}{ll}-6 & 1\\-48 & 6\end{array}\right)$ , is factored into $v^{2}w_{16}v^{2}w_{48}$ . We note that $v$ is not an involution, but so is

$v^{2}$ . In the notation as above, the cusps are $(\frac{0}{1}),$ $(\frac{1}{2}),$ $(\frac{1}{4}),$ $(\frac{3}{4}),$ $(\frac{1}{8}),$ $(\frac{1}{16}),$ $(\frac{1}{3}),$ $(\frac{1}{6})$ ,

$(\frac{1}{12}),$ $(\frac{7}{12}),$ $(\frac{1}{24})$ and $(\frac{1}{0})$ . Let $x$ and $y$ be the modular functions of $X_{0}(48)$ defined in

Proposition 2.1. It is easy to see that $v^{2*}x=-x$ and $v^{2*}y=y$ . The pole divisors of $x,$ $y$

are $(x)_{\infty}=(\frac{1}{0})+(\frac{1}{8}),$ $(y)_{\infty}=4\{(\frac{1}{0})+(\frac{1}{8})\}$ . Thus the values of $x$ at the cusps, except

for $(\frac{1}{4}),$ $(\frac{3}{4}),$ $(\frac{1}{12})$ and $(\frac{7}{12})$ , are determined in the same way as in the square-free case:

LEMMA 3.2.
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It is hard to see the action of $v^{*}$ on $x,$ $y$ . Since we cannot obtain $(vw_{48})^{*}x$ as a
rational function in $x$, the value $x((\frac{1}{4}))$ is not determined, though $(\frac{1}{4})=vw_{48}((\frac{1}{0}))$ .

The cases $(\frac{3}{4}),$ $(\frac{1}{12})$ and $(\frac{7}{12})$ are in a similar situation to this. Thus we cannot

determine the values of $x$ at these four cusps by our method. However, we can obtain
a few relations among the values as follows. The values $x((\frac{1}{4}))$ and $x((\frac{1}{3})),$ $x$

$((\frac{1}{12}))$ and $x((\frac{7}{12}))$ , which are in $Q(\zeta_{4})$, are conjugate over $Q$ , respectively. Since

$s((\frac{1}{4}))=(\frac{1}{12})$ and $w_{3}((\frac{1}{4}))=(\frac{1}{12})$ , we see that $x((\frac{1}{4}))=x((\frac{1}{12}))=x(w_{3}((\frac{1}{4})))=$

$w_{3}^{*}x((\frac{1}{4}))=-1/x((\frac{1}{4}))$ . Then the value $x((\frac{1}{4}))$ satisfies the equation $x((\frac{1}{4}))^{2}+1=0$ .

Moreover, since $v^{2}((\frac{1}{4}))=(\frac{3}{4})$ , we see that $x((\frac{1}{4}))=x(v^{2}((\frac{3}{4})))=v^{2*}x((\frac{3}{4}))=$

$-x((\frac{3}{4})),$ $i.e$. $x((\frac{1}{4}))=-x((\frac{3}{4}))$ . Similarly we obtain $x((\frac{1}{12}))^{2}+1=0$ and $x((\frac{1}{12}))=$

$-x((\frac{7}{12}))$ . On the other hand, the pole divisors ofj and $j\pm S^{*}j$ are

$(j)_{\infty}=48(\frac{0}{1})+12(\frac{1}{2})+16(\frac{1}{3})+3(\frac{1}{4})+3(\frac{3}{4})+4(\frac{1}{6})$

$+3(\frac{1}{8})+(\frac{1}{12})+(\frac{7}{12})+3(\frac{1}{16})+(\frac{1}{24})+(\frac{1}{0})$ ,

$(j\pm S^{*}j)_{\infty}=48\{(\frac{0}{1})+(\frac{1}{6})\}+16\{$ $(\frac{1}{2})+(\frac{1}{3})\}+3\{$$(\frac{1}{4})+(\frac{1}{12})\}$

$+3\{(\frac{3}{4})+(\frac{7}{12})\}+3\{(\frac{1}{0})+(\frac{1}{8})\}+3\{$$(\frac{1}{16})+(\frac{1}{24})\}$ .

Observing the pole div\’isors and the values at the cusps of $x,$ $y,$ $j$ and $S^{*}j$, it is easy to
see that we can take polynomials $F,$ $G$ over $Q$ which satisfy the following:

$j+S^{*}j=\frac{2F(x)}{(x-1)^{48}(x+1)^{16}(x^{2}+1)^{3}x^{3}}$ ,

$\frac{j-S^{*}j}{y}=\frac{2G(x)}{(x-1)^{48}(x+1)^{16}(x^{2}+1)^{3}x^{3}}$ ,

$F(T)=\sum_{i=0}^{76}a_{i}T^{i}$ $G(T)=\sum_{i=0}^{72}b_{i}T^{i}$ ,

deg$F=76$ , deg $G=72$ .
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Therefore,

$j=\frac{F(x)+G(x)y}{(x-1)^{48}(x+1)^{16}(x^{2}+1)^{3}x^{3}}$ .

Observing the action of $w_{3}^{*}$ ,

$j_{3}=\frac{F_{3}(x)+G_{3}(x)y}{(x+1)^{48}(x-1)^{16}(x^{2}+1)^{3}x^{3}}$ , $F_{3}(T)=-\sum_{i=0}^{76}a_{76-i}(-T)^{i}$ ,

$G_{3}(T)=\sum_{i=0}^{72}b_{72-i}(-T)^{i}$ .

In the same way as in \S 3.1, by using the Fourier expansions of $x,$ $y,$ $j$ and $j_{3}$ , we can
determine the coefficients of $F$ and $G$ .

4. Relations for Fricke’s cases.

Displaying our results in \S 3 requires so much space. Instead, we give relations
between our data and Fricke’s work.

4.1. The case N$=40$ . We define as follows:

$p_{5}(t)=\frac{(t^{2}+10t+5)^{3}}{t}$ ,

$p_{10}(t)=\frac{t(2t+5)^{2}}{t+2}$ ,

$p_{20}(t, s)=\frac{t^{2}-13-s}{4}$ .

LEMMA 4.1 (Fricke). We have the following sequence of covering maps between
modular curves:

$X_{0}(20)$ $\rightarrow X_{0}(10)\rightarrow X_{0}(5)\rightarrow X_{0}(1)$

$(\tau_{20}, \sigma_{20})\mapsto$ $\tau_{10}$
$\mapsto$

$\tau_{5}$
$\mapsto$ $j$ ,

where $Q(X_{0}(1))=Q(j),$ $Q(X_{0}(5))=Q(\tau_{5}),$ $Q(X_{0}(10))=Q(\tau_{10})$ , and $Q(X_{0}(20))=Q(\tau_{20}, \sigma_{20})$

which $(\tau_{20}, \sigma_{20})$ satisfy the equation $\sigma_{20}^{2}=\tau_{20^{4}}-12\tau_{20^{3}}+28\tau_{20^{2}}-32\tau_{20}+16$ . Moreover,
the following relations hold:

$j=p_{5}(\tau_{5})$ ,

$\tau_{5}=p_{10}(\tau_{10})$ ,

$\tau_{10}=p_{20}(\tau_{20}, \sigma_{20})$ .
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PROPOSITION 4.1. Writing defining equations of $X_{0}(20),$ $X_{0}(40)$ as $\sigma^{2}=\tau^{4}-$

$12\tau^{3}+28\tau^{2}-32\tau+16,$ $y^{2}=x^{8}+8x^{6}-2x^{4}+8x^{2}+1$ , respectively, we have a covering
map $\varphi_{40}$ from $X_{0}(40)$ to $X_{0}(20)$ as $\varphi_{40}(x, y)=(\tau, \sigma)$ , where

$\tau=\frac{x^{4}-4x^{3}+10x^{2}-4x+1-y}{2(x-1)^{2}x}$ ,

$\sigma=(x^{8}-4x^{7}+4x^{6}-20x^{5}+22x^{4}-20x^{3}+4x^{2}-4x+1$

$-(x^{2}+1)(x^{2}-4x+1)y)/(2(x-1)^{4}x^{2})$ .

PROOF. In the same way as in \S 3.1, observing the Fourier expansions of $\tau,$ $\sigma,$ $x$

and $y$, we obtain the relations. $\square $

THEOREM 4.1. Writing a defining equation of $X_{0}(40)$ as $y^{2}=x^{8}+8x^{6}-2x^{4}+$

$8x^{2}+1$ , we have a covering map from $X_{0}(40)$ to $X_{O}(1)$ as follows:
$j=-64(3x^{24}+580x^{23}+3132x^{22}+3580x^{21}+30278x^{20}-36180x^{19}$

$+129100x^{18}-261740x^{17}+674765x^{16}-1008280x^{15}+1343352x^{14}$

$-1319400x^{13}+1405908x^{12}-13$ 19400x $11+1343352x^{10}-1008280x^{9}$

$+674765x^{8}-261740x^{7}+1291tX)x^{6}-36180x^{5}+30278x^{4}+3580x^{3}$

$+3132x^{2}+580x+3+2(x^{20}+300x^{19}+1470x^{18}+1100x^{17}+7405x^{16}$

$-15120x^{15}+38760x^{14}-46160x^{13}+82450x^{12}-103960x^{11}+133044x^{10}$

$-103960x^{9}+82450x^{8}-46160x^{7}+38760x^{6}-15120x^{5}+7405x^{4}$

+1100$x^{3}+1470x^{2}+300x+1$ )$y)^{3}/((x-1)^{40}(3x^{4}+2x^{2}+3-2y)^{2}(x^{4}+2x^{3}$

$-2x^{2}+2x+1-y)^{5}(x^{4}-10x^{3}+14x^{2}-10x+1+y))$ .

PROOF. By Lemma 4.1 and Proposition 4.1, we have the relation $ j=p_{5}\circ p_{10}\circ$

$p_{20}\circ\varphi_{40}(x, y)$ . Eliminating $y^{2}$ , we obtain the formula. $\square $

4.2. The case $N=48$ . We define as follows:

$p_{3}(t)=\frac{27(t+1)(9t+1)^{3}}{t}$ ,

$p_{6}(t)=\frac{t(2t+9)^{2}}{27(t+4)}$ ,

$p_{12}(t)=\frac{t(t+6)}{2}$ ,

$p_{24}(t, s)=\frac{t^{2}-11-s}{2}$ .
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LEMMA 4.2 (Fricke). We have the following sequence of covering maps between
modular curves:

$X_{0}(24)$ $\rightarrow$ $X_{0}(12)$ $\rightarrow$ $X_{0}(6)\rightarrow X_{0}(3)\rightarrow X_{0}(1)$

$(\tau_{24}, \sigma_{24})$ $\mapsto$
$\tau_{12}$

$\mapsto$
$\tau_{6}$

$\mapsto$
$\tau_{3}$

$\mapsto$ $j$ ,

where $Q(X_{0}(1))=Q(j)$ , $Q(X_{O}(3))=Q(\tau_{3})$ , $Q(X_{O}(6))=Q(\tau_{6})$ , $Q(X_{0}(12))=Q(\tau_{12})$ , and
$Q(X_{0}(24))=Q(\tau_{24}, \sigma_{24})$ which $(\tau_{24}, \sigma_{24})$ satisfy the equation $\sigma_{24}^{2}=\tau_{24}^{4}-22\tau_{24^{2}}-$

$48\tau_{24}-23$ . Moreover, the following relations hold:

$j=p_{3}(\tau_{3})$ ,

$\tau_{3}=p_{6}(\tau_{6})$ ,

$\tau_{6}=p_{12}(\tau_{12})$ ,

$\tau_{12}=p_{24}(\tau_{24}, \sigma_{24})$ .
PROPOSITION 4.2. Writing defining equations of $X_{0}(24),$ $X_{0}(48)$ as $\sigma^{2}=\tau^{4}-22\tau^{2}-$

$48\tau-23,$ $y^{2}=x^{8}+14x^{4}+1$ , respectively, we have a covering map $\varphi_{48}$ from $X_{0}(48)$ to
$X_{0}(24)$ as $\varphi_{48}(x, y)=(\tau, \sigma)$ , where

$t=\frac{x^{4}-4x^{3}+10x^{2}-4x+1-y}{2(x-1)^{2}x}$ ,

$s=(x^{8}-4x^{7}+4x^{6}-4x^{5}-10x^{4}-4x^{3}+4x^{2}-4x+1$

$-(x^{2}+1)(x^{2}-4x+1)y)/(2(x-1)^{4}x^{2})$ .
PROOF. Similarly with \S 3.1, observing the Fourier expansions of $\tau,$ $\sigma,$ $x$ and $y$ , we

obtain the relations. $\square $

THEOREM 4.2. Writing a defining equation of $X_{0}(48)$ as $y^{2}=x^{8}+14x^{4}+1$ , we have
a covering map from $X_{0}(48)$ to $X_{0}(1)$ as follows:

$j=-16(x^{8}+12x^{7}-36x^{6}+84x^{5}-58x^{4}+84x^{3}-36x^{2}+12x$

$+1-2(x^{4}+6x^{2}+1)y)^{3}(x^{24}+348x^{23}-972x^{22}+5028x^{21}$

$-11070x^{20}+44148x^{19}-94620x^{18}+256908x^{17}-415761x^{16}$

$+874968x^{15}-1216152x^{14}+1964328x^{13}-1765732x^{12}$

$+1964328x^{11}-1216152x^{10}+874968x^{9}-415761x^{8}+256908x^{7}$

$-94620x^{6}+44148x^{5}-11070x^{4}+5028x^{3}-972x^{2}+348x+1$

$-2(x^{4}+6x^{2}+1)(x^{16}+168x^{15}-456x^{14}+1272x^{13}-1124x^{12}$

$+4392x^{11}-7800x^{l0}+18744x^{9}-14010x^{8}+18744x^{7}-7800x^{6}$

$+4392x^{5}-1124x^{4}+1272x^{3}-456x^{2}+168x+1)y)^{3}/((x-1)^{48}(x^{4}+6x^{2}$

$+1-2y)^{4}(x^{4}-2x^{3}+6x^{2}-2x+1-y)^{3}(2x(x^{2}+1)-y)^{3}(2(x^{4}$

$-3x^{3}+6x^{2}-3x+1)-y)(x^{4}-6x^{3}+6x^{2}-6x+1+y))$ .
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PROOF. By Lemma 4.2 and Proposition 4.2, we have the relation $j=p_{3}\circ p_{6}\circ p_{12^{c}}$

$p_{24}\circ\varphi_{48}(x, y)$ . Eliminating $y^{2}$ , we obtain the formula. $\square $
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