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$0$ . Introduction.

Our aim in this paper is to introduce an element

$c_{l,r}\in F_{l}$ ( $l$ : a prime number, $r$ : an integer $>1$ )

in a finite field $F_{l}$ , and also an element $c_{l,r,.p^{n}}^{\chi}\in F_{l}(p$ : some prime number, $n$ : a positive
integer) for a Dirichlet character $\chi$ . We also lntroduce a function $r\mapsto n(r)(r>1, n(r)\in Z_{>0})$

where $n(r)$ is the number defined as an “index” of $c_{l,r}’ s$ for all $l$, and also introduce a
function $r\mapsto n^{\chi}(r)_{p}$ where $n^{\chi}(r)_{p}$ is an “index” of $c_{l,r,p^{n}}^{\chi}$ . These functions $n(r),$ $n^{\chi}(r)_{p}$ , and
elements $c_{l.r},$ $c_{l,r,p^{n}}^{\chi}$ are defined only in terms of elementary number theory (\S 1, \S 2).

Theoretically $n(r)$ is the order of the Tate Shafarevich group of the motive $Z(r)$ in
the sense of [1] (and $n^{\chi}(r)$ corresponds to the $\chi$-part of the Tate Shafarevich group of
$Z(r))$ . In \S 3 we describe the relation between the elements in \S 1, \S 2 and the cyclotomic
elements of Deligne and Soul\’e [2] [15] [16]. These cyclotomic elements (and their
indexes) are useful for the arithmetic of cyclotomic fields. In this paper, we show that
they can be used for a numerical verification of Greenberg’s conjecture. For a totally
real number field $K$ and a prime number $p$ , Greenberg’s conjecture asserts that the
Galois group of the maximal unramified abelian pro-p extension of the cyclotomic
$Z_{p}$-extension $K_{\infty}^{cycl}$ is finite [6]. When we check this conjecture numerically, one of the
problems lay in studying the group of units. For example, it is difficult to find funda-

$=$

mental units in general. Kraft and Schoof [11] and Ichimura and Sumida [7] [8] found
“good criterions to verify this conjecture for real abelian number fields, in which they
do not use fundamental units, but use only cyclotomic units. This paper is in the same
stream and we do not use fundamental units either.

In \S 5, we give some simple criterions (Theorems 5.4, 5.8, cf. also Theorems 1.6,
2.5) on Greenberg’s conjecture in some simple cases, and give some examples (Example
5.5 treats some quadratic fields with $p=3$ and Example 5.10 treats $K=Q(\sqrt{m}, \cos(2\pi/7))$
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with $m<1,000$ and $p=7$).
The first version of this paper was written in 1995, but it took a long time for the

publishing procedure, and I am responsible for this delay. I would like to thank H.
Taya very much for his persuading me to complete this paper, and for alot ofdiscussions
on Greenberg’s conjecture with him. This paper was written just after Ichimura and
Sumida [7] and was influenced by [7]. I would like to thank H. Ichimura for guiding
me to the theory of cyclotomic fields more than ten years ago, and for some useful

. discussion. I would like to thank K. Komatsu for discussion about several related topics,
and to thank H. Sumida for discussion.

Notation. We denote by $\mu_{n}$ the group of n-th roots of unity in an algebraic closure
of Q. For a number field $F,$ $O_{F}$ denotes its integer ring. For a prime number $p$ , an
integer $r$ , and a $Z_{p}$-module $M$ with Galois action, $M(r)$ means the Tate twist, namely
$M\otimes Z_{p}(1)^{\otimes r}$ where $Z_{p}(1)=\varliminf\mu_{p^{n}}$ . For a group $G$ and a G-module $M$, we denote by
$M^{G}$ (resp. $M_{G}$) the invariant part (resp. the coinvariant) of $M$, namely
$M^{G}=$ {$x\in M:\sigma(x)=x$ for $al1\sigma\in G$ } and $ M_{G}=M/\langle(\sigma-1)x : \sigma\in G, x\in M\rangle$ . For an abelian
group $A$ and an integer $n>0$ , the cokemel of the multiplication by $n$ is denoted by $A/n$ .
Even in the case $A$ is multiplicative, we use $A/n$ instead of $A/A^{n}$ .

1. The elements $c_{l.r}$ in a finite field and a positive integer $n(r)$.
In this section, we treat “the trivial character” case at first. Let $l$ be an odd prime

number and $g$ be a primitive root mod $l$. Namely, $g$ is an element of $F_{l}$ which generates
the multiplicative group $F_{l}^{x}$ . For a positive integer $r$ greater than 1, we define

$c_{l,r}=\prod_{i=1}^{l-2}(1-g^{i})^{i^{r-1}}$ (1)

which is an element of $F_{l}^{x}$ . For any element $x$ in $F_{l}^{x}$ , we define $order_{F_{l}^{x}}(x)$ to be the
order of $x$ in the group $F_{l}^{x}$ . We also define $index_{l}(x)$ to be the index of the subgroup
generated by $x$ in $F_{l}^{x}$ . So we have $index_{l}(x)=(l-1)/order_{F_{l}^{x}}(x)$ . We are interested in the
value $index_{l}(c_{l.r})$ . We can easily show that index $l(c_{l,r})$ does not depend on the choice of
a primitive root $g$ . Here is a table of this value.
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Apparently these values have a different nature according as $r$ is even or odd. In
fact, if $r$ is even, $order_{F_{l}^{x}}(c_{l.r})$ is small, so $index_{l}(c_{l.r})$ becomes big.

LEMMA 1.1. If $r\geq 2$ is even, $order_{F_{l}^{x}}(c_{l_{1}},)$ is bounded by the denominator of $\zeta(1-r)$

where $\zeta(s)$ is the Riemann zeta function.
On the other hand, if $r$ is odd, $index_{l}(c_{l,r})$ is usually small, but we have

LEMMA 1.2. If $r\geq 3$ is odd, for a prime number $p$ and $n>0$ , there exists $l$ such that
$p^{n}$ divides index $\iota(c_{l_{1}},)$ .

The lemmas in this section will be proved in \S 3. By Lemma 1.2, the least common
multiple of all index $\iota(c_{l,r})s$ (where $l$ ranges over all odd prime numbers) is infinity. We
would also like to consider the greatest common divisor of them. But index $l(c_{l,r})$ always
divides 1-1, so we have to modify the definition of $index_{l}(x)$ .

For a prime number $p$ , we denote by $v_{p}$ the normalized additive valuation (namely,
$v_{p}(p)=1)$ . For $x$ in $F_{l}^{x}$ and a prime number $p$ , we define $index_{l}(x)_{p}^{*}$ to be $p^{v_{p}\langle index_{l}\langle x))}$ if
$v_{p}(index_{l}(x))<v_{p}(l-1)$ , and to be $p^{\infty}$ otherwise. Hence if $p$ is prime to $l-1$ , by definition,
$index_{l}(x)_{p}^{*}=p^{\infty}$ . We define

$index_{l}(x)^{*}:$
$=\prod_{p}index_{l}(x)_{p}^{*}$ (2)

where $p$ ranges over all prime numbers.

DEFINITION 1.3. We define $n(r)$ to be the greatest common divisor of all $index_{l}(c_{l,r})^{*}$

where $l$ ranges over all odd prime numbers. (The greatest common divisor is calculated
formally for $p^{\infty}.$ ) We denote by $n(r)_{p}$ the $p$-part of $n(r)$ (so $n(r)=\prod_{p}n(r)_{p}$).

LEMMA 1.4. $n(r)_{p}\neq p^{\infty}$ .

The proofwill be given in \S 3. Further, the coincidence ofDeligne-Soul\’e’s cyclotomic
element with Beilinson’s cyclotomic element implies $ n(r)\neq\infty$ , namely $n(r)$ is a positive
integer.

This number $n(r)$ is closely related to the arithmetic of the cyclotomic fields. For
example, we can reformulate [17] Proposition 8.18 as follows.

PROPOSITION 1.5 ([17] Proposition 8.18). For an odd prime number $p$ , let $\mu_{p}$ be
the group ofp-th roots of unity, and $A_{\langle p)}$ be the p-Sylow subgroup of the ideal class group
of $Q(\mu_{p})$ . Let $\omega$ be the Teichmuller character for $\Delta_{(p)}=Ga1(Q(\mu_{p})/Q)$ . We denote by $A_{\langle p)}^{\omega^{i}}$

the subgroup of $A_{\langle p)}$ on which $\Delta_{\langle p)}$ acts via $\omega^{i}$. Then, for an odd positive integer $r\geq 3$ ,
$n(r)=1$ if and only if $A_{(p)}^{\omega^{1- r}}=0$ for every odd prime number $p$ .

By this proposition we know that Vandiver’s conjecture predicts $n(r)=1$ for any
odd positive integer $r\geq 3$ . By [12] Corollary 3.8, we have $n(3)=1$ . On the other hand,
as we will see below, Greenberg’s conjecture predicts a weaker form that $n(r)_{p}s$ are
bounded when $r$ ranges over all odd positive integers $\geq 3$ .
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We fix an odd prime number $p$ . Let $Q_{\infty}=Q(F_{p^{\infty}})$ be the field generated by all $p^{n}$-th
roots of unity, and $L_{\infty}$ be the maximal unramified abelian pro-p extension of $Q_{\infty}$ , and
$X_{0\infty}=Ga1(L_{\infty}/Q_{\infty})$ . We also denote by $X^{\omega^{i}}$ the subgroup of $X_{\Phi\infty}$ on which $Ga1(Q(\mu_{p})/Q)$

$(=\Delta_{\langle p)})$ acts via $\omega^{i}$ . Put $\Lambda=Z_{p}[[Ga1(Q_{\infty}/Q)]]^{\omega^{i}}\simeq Z_{p}[[Ga1(Q_{\infty}/Q(\mu_{p}))]]$ , which is
isomorphic to a power series ring over $Z_{p}$ . We regard $X^{\omega^{i}}$ as a $\Lambda$-module, and consider
its characteristic power $series\in\Lambda$ .

THEOREM 1.6. Let $r_{0}$ be an odd positive integer $\geq 3$ , and $p$ be a prime number. If
$X^{\omega^{1- r_{O}}}$ is finite, the p-part $n(r)_{p}$ is bounded when $r\geq 3$ ranges over all $r\equiv r_{0}(modp-1)$ .
More precisely, the following conditions are equivalent.

(i) There exists a positive integer $n$ such that for any $r$ satisfying $r\equiv r_{0}(modp-1)$

and $r\geq 3,$ $p^{n}$ does not divide $n(r)$. (Namely, $n(r)_{p}$ is boundedfor $r$ satisfying the condition
above.)

(ii) The characteristic power series of $X^{\omega^{1- r_{O}}}$ does not have a root in $Z_{p}$ .

The proof will be given in \S 4.

2. The case of nontrivial Dirichlet character.

In this section, for simplicity, we fix an odd prime number $p$ and study onlyp-part.
Let $N>0$ be an integer and $\chi:(Z/N)^{x}\rightarrow C^{x}$ be a nontrivial, primitive Dirichlet

character. We assume that $\chi$ is even and that the order of $\chi$ divides $p-1$ , and regard
$\chi$ as a character

$\chi:(Z/N)^{x}\rightarrow Z_{p}^{x}$ .
(We can treat more general $\chi$ by the same method, but it is not suitable very much for
numerical calculation. So here, we restrict ourselves to the above case.)

Let $n$ be a positive integer. We consider a prime number $l$ such that $l\equiv 1(modp^{n}N)$ .
We put $M=(l-1)/p^{n}N$. Let $g$ be a primitive root mod $l$. For an odd positive integer $r$

and an integer $i$, we define

$c_{l,N.r,p^{n}}(i)=\prod_{j=0}^{p^{n}-1}(1-g^{Mi+NMj})^{NM\langle i+Nj)^{r-1}}\in F_{l}^{x}$ (3)

Note that by definition $c_{l.N,r.p^{n}}(l)^{p^{n}}=1$ . Since the subgroup of $p^{n}$-th roots of unity in $F_{l}^{x}$

is a $Z_{p}$-module and the image $of\chi$ is in $Z_{p},$ $c_{l.N.r.p^{n}}(i)^{\chi\langle j)}$ can be naturally defined. We define

$c_{l,r,p^{n}}^{\chi}=$
$\prod_{i=1,\langle i.N)=1}^{N}c_{l.N,r.p^{n}}(i)^{\chi\langle i)^{-1}}\in F_{l}^{x}$ (4)

LEMMA 2.1. Suppose $l$ is a prime number such that $l\equiv 1(modp^{n}N)$ , and $m\geq 0$ is
an integer with $m<n$ . Then we have

$(c_{l,r,p^{n}}^{\chi})^{p^{m}}=c_{l_{1}.p^{n-m}}^{\chi}$ .
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PROOF. It is enough to show $c_{l,N,r,p^{n}}(i)^{p}=c_{l,N,r,p^{n- 1}}(i)$ for $n\geq 2$ . We put
$M=(l-1)/p^{n}N$. Then we have

$c_{l,N,r,p^{n}}(i)^{p}=\prod_{j=0}^{p^{n}-1}(1-g^{Mi+NMj})^{NMp\langle i+Nj)^{r-1}}$

$=\prod_{j=0}^{p^{n-1}-1}(1-g^{\langle Mi+NMj)p})^{NMp\langle i+Nj)^{r-1}}=c_{l.N,r,p^{n-1}}(i)$ .

Here, in order to get the second equality, we used $\prod_{k=0}^{p-1}(1-xg^{NMp^{n- 1}k})=1-x^{p}$ . $\square $

Let $order_{F_{l}^{x}}(x)$ be as in \S 1. For $x\in F_{l}^{x}$ such that $x^{p^{n}}=1$ , we define $index_{l.p^{n}}(x)^{*}$ to
be $p^{n}/order_{F_{l}^{x}}(x)$ if $p^{n}/order_{F_{l}^{x}}(x)<p^{n}$ , and to be $p^{\infty}$ otherwise. Then, we can show that
index $\iota_{p^{n}}(c_{l,r,p^{n}}^{\chi})^{*}$ does not depend on the choice of the primitive root $g$ . As in \S 1, we define

DEFINITION 2.2. We define $n^{\chi}(r)_{p}$ to be the greatest common divisor of all
$index_{l,p^{n}}(c_{l,r,p^{n}}^{\chi})^{*}$ where $l$ (resp. n) ranges over all prime numbers (resp. all positive integers)
such that $1\equiv 1(modp^{n}N)$ .

Again we have

LEMMA 2.3. $n^{\chi}(r)_{p}\neq p^{\infty}$

which will be seen in \S 3. So $n^{\chi}(r)_{p}$ is an integer (some power of $p$).

LEMMA 2.4. Assume $r\equiv r^{\prime}(mod(p-1)p^{n-1})$ . Then, $p^{n}$ divides $n^{\chi}(r)_{p}$ if and only if
$p^{n}$ divides $n^{\chi}(r^{\prime})_{p}$ .

The proof is straightforward from the definition of $c_{l.r.N,p^{n}}(i)$ , so we omit it. This
lemma can be regarded as an analogy of a weak version of Kummer congruence.

Let $Q(\mu_{N})$ be the field of the N-th roots of unity, and $K$ be the subfield of $Q(\mu_{N})$

which corresponds by Galois theory to the kemel of $\chi$ . Put $K_{\infty}=K(\mu_{p^{\infty}})$ the field generated
by all $p^{n}$-th roots of unity over $K$. Let $L_{\infty}$ be the maximal unramified abelian pro-p
extension of $K_{\infty}$ , and $X_{K_{\infty}}=Ga1(L_{\infty}/K_{\infty})$ .

We regard $\chi:Ga1(K/Q)\rightarrow Z_{p}^{x}$ as a character of $Ga1(K(\mu_{p})/Q)$ by composing it with
a natural map $Ga1(K(\mu_{p})/Q)\rightarrow Ga1(K/Q)$ . In general, for a character $\psi$ of $Ga1(K(\mu_{p})/Q)$

and $Z_{p}[Ga1(K(\mu_{p})/Q)]$ -module $M$, we define the $\psi$-component by $M^{\psi}=M\otimes_{Z_{p}[Ga1\{K(\mu_{p})/O)]}$

$Z_{p}[\psi]whereZ_{p}[\psi]$ isaring generated by the image of $\psi overZ_{p}$ , and we regard it as
a $Z_{p}[Ga1(K(\mu_{p})/Q)]$ -module by $\sigma\cdot x=\psi(\sigma)x$ for $\sigma\in Ga1(K(\mu_{p})/Q)$ and $x\in Z_{p}[\psi]$ . We
consider $X_{K_{\infty}}^{\chi}$ which is a $Z_{p}[\chi][[Ga1(K_{\infty}/K(\mu_{p}))]]$ -module. Put $\Lambda=Z_{p}[\chi][[Ga1(K_{\infty}/$

$K(\mu_{p}))]]$ . By our assumption Image $(\chi)\subset Z_{p},$
$\Lambda$ is isomorphic to the formal power series

ring $Z_{p}[[T]]$ . We denote $X_{K_{\infty}}^{\chi}$ simply by $X^{\chi}$ .
Our basic criterion is described as follows.

THEOREM 2.5. Wefix an odd positive integer $r_{0}\geq 3$ .
(1) Let $\omega$ be the Teichm\"uller character. Assume that $\chi\omega^{1-r_{O}}(p)\neq 1$ . We put

$\psi=\chi\omega^{1-r_{0}}$ . Then, the following conditions are equivalent.
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(i) There exists somepositive integer $n$ such thatfor any $r$ satisfying $r\equiv r_{0}(modp-1)$

and $r\geq 3,$ $p^{n}$ does not divide $n^{\chi}(r)_{p}$ . (Namely, $n^{\chi}(r)_{p}$ is boundedfor $r$ satisfying the condition
above.)

(ii) $ThecharacteristicpowerseriesofX^{\psi}(=X^{\chi\omega^{1- r_{O}}})doesnothavearootinZ_{p}$ .
(2) Assume that $\chi\neq 1$ and $\chi(p)=1$ . For $r\equiv 1(modp-1)$ , put $a_{r}=v_{p}(r-1)+1(v_{p}$ is

the normalized additive valuation of$p$ such that $v_{p}(p)=1)$ . Then, the following conditions
are equivalent.

(i) There exists some positive integer $n$ such that for any $r$ satisfying $r\geq 3$ and
$r\equiv 1(modp-l),p^{n+a_{r}}$ does not divide $n^{\chi}(r)_{p}$ . (Namely, $n^{\chi}(r)_{p}/p^{a_{r}}$ is boundedfor $r$ satisfying
the condition above.)

(ii) The characteristic power series of $X^{\chi}$ does not have a root in $Z_{p}$ .
Note that by Lemma 2.4, in order to show that $p^{n}$ does not divide $n^{\chi}(r)_{p}$ for all $r$,

it suffices to check finitely many $r’ s$ .
In many cases the characteristic power series of $X^{\psi}$ has its every root in $Z_{p}$ . For

example, if every root of the characteristic power series of $X^{\psi-\iota_{\omega}}$ is in $Z_{p}$ (this condition
is automatically satisfied if its $\lambda$-invariant is 1), then every root of the characteristic
power series of $X^{\psi}$ is in $Z_{p}$ . So in this case if we check the condition (i), then we know
the $\lambda$-invariant of $X^{\psi}$ vanishes. Note that in [7] they assume the $\lambda$-invariant of $X^{\psi^{-1}\omega}$

is 1, although they do not need this assumption in their succeeding work [8].
We will give some criterions in \S 5 which are more suitable for numerical calculation.

3. Cyclotomic elements.

Let $\zeta$ be a primitive N-th root of unity, and $r\geq 2$ be an integer. We consider a
Galois cohomology group $H^{1}(Q(\zeta),\hat{Z}(r))=\prod_{p}H^{1}(Q(\zeta), Z_{p}(r))$ (where $Z_{p}(r)$ is the Tate
twist and $p$ ranges over all prime numbers), in which there is a cyclotomic element $c_{r}^{D}(\zeta)$

by Deligne and Soul\’e ([16], [2]).

LEMMA 3.1 (cf. [1] page 384). There exists an element
$c_{r}^{D}(\zeta)\in H^{1}(Q(\zeta),\hat{Z}(r))$

which satisfies the following property. For any integer $m\geq 1$ , the image of $N^{r-1}c_{r}^{D}(\zeta)$ in

$H^{1}(Q(\mu_{mN}), Z/m(r))\simeq(Q(\mu_{mN})^{x}/m)\otimes\mu_{m}^{\otimes\langle r-1)}$

(note that $Q(\mu_{mN})^{x}/m$ means $Q(\mu_{mN})^{x}/(Q(\mu_{mN})^{x})^{m}$ (cf. notation)) coincides with

$\sum_{w^{m}=\zeta}(1-w)\otimes(w^{N})^{\otimes\langle r-1)}$

where $w$ ranges over all m-th roots of $\zeta$ (resp. all m-th roots of unity except 1) if $\zeta\neq 1$

(resp. $\zeta=1$ ).
Further, this property characterizes the element $c_{r}^{D}(\zeta)$ modulo torsion elements.
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We will sketch the proof. Let $p$ be a prime number. We denote by $(\zeta_{p^{n}})$ a generator
$ofZ_{p}(1)$ (namely, $\zeta_{p^{n}}$ isaprimitive p-th root of unity such that $\zeta_{p^{n+1}}^{p}=\zeta_{p^{n}}$).

We first assume $N$ is prime to $p$ . We put $F=Q(\mu_{N})$ and $F_{n}=Q(\mu_{Np^{n}})$ . We define
$\alpha_{n}^{\langle p)}\in(F_{n}^{x}/p^{n})\otimes\mu_{p^{n}}^{\otimes\langle r-1)}\simeq H^{1}(F_{n}, Z/p^{n}(r))$ by

$\alpha_{n}^{\langle p)}=(1-\zeta^{1/p^{n}}\zeta_{p^{n}})\otimes\zeta_{p^{n}}^{\otimes\langle r-1)}+(1-\zeta^{1/p^{n+1}}\zeta_{p^{n}})\otimes\zeta_{p^{n}}^{\otimes-1)}(\underline{r}_{1}+\cdot$ . . $+(1-\zeta^{1/p^{2n- 1}}\zeta_{p^{n}})\otimes\zeta_{p}^{\otimes\langle r-1)}$

where $\zeta^{1/p^{m}}$ is the unique element of $\mu_{N}$ such that $(\zeta^{1/p^{m}})^{p^{m}}=\zeta$ . We denote by

$N_{F_{n}/F}$ : $H^{1}(F_{n}, Z/p^{n}(r))\simeq(F_{n}^{x}/p^{n})\otimes\mu_{p^{n}}^{\otimes\langle r-1)}\rightarrow H^{1}(F, Z/p^{n}(r))$

the corestriction map. Then the elements $N_{F_{n}/F}(\alpha_{n}^{(p)})\in H^{1}(F, Z/p^{n}(r))$ form a projective
system ([15] Lemma 1). We define $c_{r}^{D}(\zeta)^{(p)}=(N_{F_{n}/F}(\alpha_{n}^{(p)}))\in H^{1}(F, Z_{p}(r))$ .

Next we assume $p$ divides $N$, so $N=p^{m}N^{\prime}$ for some $m>0$ and $N^{\prime}$ which is prime
to $p$ . We put $F=Q(\mu_{N})$ and $F_{n}=Q(\mu_{N’ p^{n}})$ with $n\geq m$ . We write $\zeta=(\zeta^{\prime})^{1/p^{m}}\zeta_{p^{m}}^{i}$ with $\zeta^{\prime}\in\mu_{N^{\prime}}$ .
This time, we define $\alpha_{n}^{\langle p)}$ by

$\alpha_{n}^{\langle p)}=(1-(\zeta^{\prime})^{1/p^{n}}\zeta_{p^{n}}^{i})\otimes(\zeta_{p^{n}}^{i})^{\otimes\langle r-1)}$ ,

and consider $N_{F_{n}/F}(\alpha_{n}^{\langle p)})\in H^{1}(F, Z/p^{n}(r))$ . We put $c_{r}^{D}(\zeta)^{\langle p)}=(N_{F_{n}/F}(\alpha_{n}^{\langle p)}))\in H^{1}(F, Z_{p}(r))$ .
We define $c_{r}^{D}(\zeta)=(c_{r}^{D}(\zeta)^{\langle p)})\in H^{1}(F,\hat{Z}(r))$ . Then we can check $c_{r}^{D}(\zeta)$ satisfies the

property in Lemma 3.1. Uniqueness comes from the fact that the intersection of
the kemels of $H^{1}(Q(\mu_{N}),\hat{Z}(r))\rightarrow H^{1}(Q(\mu_{mN}), Z/m(r))$ for all $m$ consists of torsion ele-
ments. $\square $

For any number field $F$ and a prime number $p$ , we consider etale cohomology
groups $H_{et}^{*}(SpecO_{F}[1/p], Z_{p}(r))$ , which we simply denote by $H^{*}(O_{F}[1/p], Z_{p}(r))$ .

By the construction of $c_{r}^{D}(\zeta)^{\langle p)}$ in the proof above, it is in the subgroup
$H^{1}(Z[\zeta, 1/p], Z_{p}(r))$ of $H^{1}(Q(\zeta), Z_{p}(r))$ . For a number field $F$ and a prime number $l$ which
is different from $p$ , we consider a natural map

$\phi_{l.F.n}$ : $H^{1}(O_{F}[1/p], Z/p^{n}(r))\rightarrow\bigoplus_{\lambda|l}H^{1}(\kappa(\lambda), Z/p^{n}(r))$

where $\lambda$ ranges over all primes of $F$ over $l$, and $\kappa(\lambda)=O_{F}/\lambda$ is the residue field of $\lambda$ .

LEMMA 3.2. (i) For any element $x\in H^{1}(Z[\zeta, 1/p], Z/p^{n}(r))$ there is a prime number
1 such that $l\equiv 1(mod Np^{n})$ and that $\phi_{l,Q\langle\zeta),n}(x)=0$ .

(ii) Assume $K$ is real abelian, and $r$ and $p$ are odd. If $x\in H^{1}(O_{K}[1/p], Z/p^{n}(r))$

satisfies $x\not\in p^{i}H^{1}(O_{K}[1/p], Z/p^{n}(r))$ , there is a prime number $l$ such that $l\equiv 1(mod Np^{n})$

and that $\phi_{l,K,n}(x)\not\in p^{i}\oplus_{\lambda|}{}_{l}H^{1}(\kappa(\lambda), Z/p^{n}(r))$ .

PROOF. (i) Let $\zeta_{p^{n}}$ be a primitive $p^{n}$-th root of unity. Put $L=Q(\zeta, \zeta_{p^{n}})$ . We denote
the image of $x$ in $H^{1}(L, Z/p^{n}(r))\simeq(L^{x}/p^{n})\otimes\mu_{p^{n}}^{\otimes\langle r-1)}$ by $x^{\prime}\otimes\zeta_{p^{n}}^{\otimes\langle r-1)}$ . By Chebotarev
density, we can take a prime number 1 which splits completely at $L(p\sqrt[n]{x^{\prime}})/Q$ . Then,
$\phi_{l,L,n}(x^{\prime}\otimes\zeta_{p^{n}}^{\otimes\langle r-1)})=0$ , so $\phi_{l.O\langle\zeta),n}(x)=0$ .

(ii) As in (i) we put $L=K(\zeta_{p^{n}})$ and take $x^{\prime}$ . By our assumption, we have
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$H^{0}(L/K, Z/p^{n}(r))=0$ , so $H^{1}(O_{K}[1/p], Z/p^{n}(r))\rightarrow H^{1}(O_{L}[1/p], Z/p^{n}(r))$ is injective. By
Chebotarev density, we can take a prime number $l$ which splits completely at $L/Q$ such
that the Frobenius of a prime $\lambda$ of $L$ over $l$ generates the Galois group of $L(p\sqrt[n]{x^{\prime}})/L$ .
Then, $\phi_{l,L,n}(x^{\prime}\otimes\zeta_{p^{n}}^{\otimes\langle r-1)})$ is not divisible by $p^{i}$ , so we get the assertion. $\square $

We proceed to the proof of Lemmas in \S 1 and \S 2.
First of all, we consider $c_{r}^{D}(1)\in H^{1}(Q,\hat{Z}(r))$ . For a prime number $l\geq 3$ , put

$L=Q(\mu_{l-1})$ . We take a primitive $(l-1)$-th root $\xi$ of unity. The image of $c_{r}^{D}(1)$ in
$H^{1}(L, (Z/(l-1))(r))\simeq L^{x}/(l-1)\otimes\mu_{l-}^{\otimes\langle r_{1}-1)}$ is by Lemma 3.1,

$\sum_{i=1}^{l-2}(1-\xi^{i})\otimes(\xi^{i})^{\otimes(r-1)}=(\prod_{i=1}^{l-2}(1-\xi^{i})^{i^{r- 1}})\otimes\xi^{\otimes\langle r-1)}$ .

We suppose that $p$ is a prime number such that $p^{n}$ divides 1-1. Then, the image of
$c_{r}^{D}(1)$ in $H^{1}(L, Z/p^{n}(r))\simeq L^{x}/p^{n}\otimes\mu_{p^{n}}^{\otimes\langle r-1)}$ is

$\prod_{i=1}^{l-2}(1-\xi^{i})^{i^{r-1}}\otimes(\xi^{\prime})^{\otimes\langle r-1)}$

where $\xi^{\prime}=\xi^{\langle l-1)/p^{n}}\in\mu_{p^{n}}\subset L^{x}$ . Note that $c_{r}^{D}(1)=(c_{r}^{D}(1)^{\langle p)})\in\prod_{p}H^{1}(Z[1/p], Z_{p}(r))$ , and that
the image of $c_{r}^{\langle D)}(1)$ in $H^{1}(L, Z/p^{n}(r))$ is that of $c_{r}^{D}(1)^{(p)}$ .

Hence, the index of the subgroup generated by the image of $c_{r}^{D}(1)^{\langle p)}$ in
$H^{1}(F_{l}, Z/p^{n}(r))=F_{l}^{x}/p^{n}\otimes\mu_{p^{n}}^{\otimes(r-1)}$ is equal to the index of the subgroup generated by
$c_{l.r}=\prod_{i=1}^{l-2}(1-g^{i})^{i^{r-1}}mod (F_{l}^{x})^{p^{n}}$ in $F_{l}^{x}/p^{n}$ .

PROOF OF LEMMA 1.4. Suppose $r\geq 3$ is odd and $p$ is an odd prime number. Let
$n(r)_{p}$ be the p-part of $n(r)$ defined in \S 1. Since $H^{0}(Q, Z/p(r))=0,$ $H^{1}(Z[1/p], Z_{p}(r))$ is a
free $Z_{p}$-module of rank 1 (cf. [15] Theorem 1). By Lemma 3.2 (ii), considering the
$indexoftheimageofc_{r}^{D}(1)^{(p)}inH^{1}(F_{l}, Z/p^{n}(r))$ above, we have

$n(r)_{p}=\#(H^{1}(Z[1/p], Z_{p}(r))/\langle c_{r}^{D}(1)^{\langle p)}\rangle)$ (5)

where $\langle c_{r}^{D}(1)^{\langle p)}\rangle$ is the $Z_{p}$-submodule generated by $c_{r}^{D}(1)^{\langle p)}$ . By [16] \S 6 (cf. [16] Th. 3
and the proof of [15] Th. 1), the right hand side is finite, so we get Lemma 1.4 in \S 1
for odd $p$ .

For $p=2$ , we have $c_{3,r}=1-2=-1$ for all $r$ , so $index_{3}(c_{3,r})=1$ and $n(r)_{2}=1$ . $\square $

If Beilinson’s cyclotomic element coincides with Deligne-Soul\’e’s element, we
have $ n(r)<\infty$ . In fact, if $c_{r}^{D}(1)$ coincides with Beilinson’s cyclotomic element (this was
announced by Beilinson), $c_{r}^{D}(1)$ comes from the K-group $K_{2_{1}-1}(Z)$ , namely there is an
element $c_{r}(1)\in K_{2r-1}(Z)$ whose image in $H^{1}(Q,\hat{Z}(r))$ is $c_{r}^{D}(1)$ (because Beilinson’s element
lives in $K_{2r-1}(Z)\otimes Q)$ . So the coincidence of Beilinson’s element and Deligne-Soul\’e’s
element implies $ n(r)\leq\#(K_{2r-1}(Z)/\langle c_{r}(1)\rangle)<\infty$ .

PROOF OF LEMMA 1.1. Ifr $\geq 2iseven,$ $H^{1}(Q,\hat{Z}(r))isisomorphictoH^{0}(Q, Q/Z(r))$

whose order is equal to the denominator of $\zeta(1-r)$ . Letl be an odd prime number. As
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we have seen, for a prime number $p$ such that $p^{n}$ divides $l-1$ , the p-part of $order_{F_{l}^{x}}(c_{l,r})$

is the order of the image of $c_{r}^{D}(1)^{\langle p)}$ in $H^{1}(F_{l}, Z/p^{n}(r))$ . This implies that $order_{F_{l}^{x}}(c_{l.r})$ is
bounded by the denominator of $\zeta(1-r)$ .

PROOF OF LEMMA 1.2. Let $r\geq 3$ be odd. For a prime number $p$ and $n>0$ , by Lemma
3.2 (i), there is a prime number 1 such that $l\equiv 1(modp^{n})$ and that the image of $c_{r}^{D}(1)^{(p)}$

in $H^{1}(F_{l}, Z/p^{n}(r))$ is zero. So $c_{l,r}\in(F_{l}^{x})^{p^{n}}$ , hence $p^{n}$ divides $index_{l}(c_{l,r})$ .

In the rest of this section, as in \S 2we assumep is an odd prime number, and $\chi$ is
an even nontrivial Dirichlet character of conductor $N$ with order dividing $p-1$ . We
denote by $K$ the real abelian field corresponding to the kernel of $\chi$ . Let $\zeta_{N}$ be a primitive
N-th root of unity. For an odd integer $r\geq 3$ , we define

$(c_{r}^{\langle p)})^{\chi}=$

$\sum_{i=1,\langle i,N)=1}^{N}\chi(i)^{-1}c_{r}^{D}(\zeta_{N}^{i})^{\langle p)}\in H^{1}(Z[\zeta_{N}, 1/p], Z_{p}(r))$ .

Since $(c_{r}^{\langle p)})^{\chi}$ is in the $Ga1(Q(\zeta_{N})/K)$-invariant part, we regard $(c_{r}^{\langle p)})^{\chi}$ as an element of
$H^{1}(O_{K}[1/p], Z_{p}(r))\simeq H^{1}(Z[\zeta_{N}, 1/p], Z_{p}(r))^{Ga1\langle Q\langle\zeta_{N})/K)}$ .

For a $Z_{p}[Ga1(K/Q)]$-module $M$, we define $M^{\chi}$ to be the $\chi$-component of $M$ (as in
\S 2), namely $M^{\chi}=M\otimes_{Z_{p}[Ga1\langle K\langle\mu_{p})/Q)]}Z_{p}[\chi]$ where $Z_{p}[\chi]$ is a ring $Z_{p}$ on which $Ga1(K/Q)$

acts via $\chi$ (note that we are assuming Image$(\chi)\subset Z_{p}$). We may regard

$(c_{r}^{\langle p)})^{\chi}\in H^{1}(O_{K}[1/p], Z_{p}(r))^{\chi}$ .

LEMMA 3.3. Let $\zeta_{N}$ be a primitive N-th root of unity with $N>1$ as above, and $(\zeta_{p^{n}})$

be a generator of $Z_{p}(1)$ (so $\zeta_{p^{n+1}}^{p}=\zeta_{p^{n}}$).
(i) We assume $N$ is prime to $p$ . We put $\xi=\zeta_{N}^{1/p^{n}}\zeta_{p^{n}}^{1/N}$ which is a primitive $Np^{n}$-th

root of unity. (Here, $\zeta_{N}^{1/p^{n}}$ (resp. $\zeta_{p^{n}}^{1/N}$) is a unique element of $\mu_{N}$ (resp. $\mu_{p^{n}}$) such that
$(\zeta_{N}^{1/p^{n}})^{p^{n}}=\zeta_{N}$ (resp. $(\zeta_{p^{n}}^{1/N})^{N}=\zeta_{p^{n}}$) $.$ ) For any $i$ , the image of $c_{r}^{D}(\zeta_{N}^{i})^{(p)}$ in

$H^{1}(Q(\mu_{Np^{n}}), Z/p^{n}(r))\simeq(Q(\mu_{Np^{n}})^{x}/p^{n})\otimes\mu_{p^{n}}^{\otimes\langle r-1)}$

$is$

$N^{1-r}\prod_{j=0}^{p^{n}-1}(1-\xi^{i+Nj})^{\langle i+Nj)^{\gamma- 1}}\otimes\zeta_{p^{n}}^{\otimes\langle r-1)}$ .

(ii) We assume $N=pN^{\prime}$ and $N^{\prime}$ is prime to $p$ . Write $\zeta_{N}=\zeta_{N^{\prime}}\zeta_{p}^{1/N^{\prime}}$ where $\zeta_{N}$ , is a
primitive N’-th root of unity. We put $\xi=\zeta_{N}^{1}!^{p^{n}}\zeta_{p^{n+1}}^{1/N}’$ . For $i$ which is prime to $p$ , the image
of $c_{r}^{D}(\zeta_{N}^{i})^{\langle p)}$ in

$H^{1}(Q(\mu_{Np^{n}}), Z/p^{n}(r))\simeq(Q(\mu_{Np^{n}})^{x}/p^{n})\otimes\mu_{p^{n}}^{\otimes(r-1)}$

$is$

$(N^{\prime})^{1-r}\prod_{j=0}^{p^{\mathfrak{n}}-1}(1-\xi^{i+Nj})^{\langle i+Nj)^{r-1}}\otimes\zeta_{p^{n}}^{\otimes\langle r-1)}$ .
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PROOF. (i) $ByLemma3.1,$ $theimageofc_{r}^{D}(\zeta_{N}^{i})$ is

$N^{1-r}\sum_{j=0}^{p^{n}-1}(1-\zeta_{N}^{i/p^{n}}\zeta_{p^{n}}^{j})\otimes(\zeta_{p^{n}}^{N_{J}})^{\otimes\langle r-1)}=\sum_{j=0}^{p^{n}-1}(1-\zeta_{N}^{i/p^{n}}\zeta_{p^{n}}^{i/N}\zeta_{p^{n}}^{j})\otimes(\zeta_{p^{n}}^{i/N}\zeta_{p^{n}}^{j})^{\otimes\langle r-1)}$

$=N^{1-r}\prod_{j=0}^{p^{n}-1}(1-\xi^{i+Nj})^{\langle i+Nj)^{r-1}}\otimes\zeta_{p^{n}}^{\otimes\langle r-1)}$ .

(ii) By the construction in Lemma 3.1, the image of $c_{r}^{D}(\zeta_{N}^{i})$ in $H^{1}(Q(\mu_{Np^{n}}), Z/p^{n+1}(r))$

is

$\sum_{\sigma\in Ga11\Phi\{\mu_{Np}n)/Q(\mu_{N}))}\sigma((1-\zeta_{N}^{i/p^{n}}\zeta_{p^{n+1}}^{i/N}’)\otimes(\zeta_{p^{n+1}}^{i/N}’)^{\otimes\langle r-1)})$

$=\sum_{q=0}^{p^{n}-1}(1-\zeta_{N}^{i/p^{n}}\zeta_{p^{n+}}^{\langle 1+}P^{q)i/N}’)\otimes(\zeta_{p^{n+}}^{\langle 1+}P^{q)i/N^{\prime}})^{\otimes(r-1)}$

$=\sum_{q=0}^{p^{n}-1}(1-\xi^{i}\xi^{N’ pq\langle i/N^{\prime})})\otimes(\zeta_{p^{n+}}^{\langle 1+}F^{q)i/N}’)^{\otimes\langle r-1)}$

$=\sum_{j=0}^{p^{n}-1}(1-\xi^{i}\xi^{Nj})\otimes(\zeta_{p^{n+}}^{\langle i/N}?^{+(Nj/N’)})^{\otimes\langle r-1)}$ (where $j=qi/N^{\prime}\in Z/p^{n}$)

$=(N^{\prime})^{1-r}\prod_{j=0}^{p^{n}-1}(1-\xi^{i+Nj})^{\langle i+Nj)^{r-1}}\otimes\zeta_{p^{n}}^{\otimes t_{+1}-1)}1$ $\square $

PROOF OF LEMMA 2.3. Let $n$ be a positive integer, and $l$ be a prime number such
that $l\equiv 1(modp^{n}N)$ . Let $g$ be a primitive root of $F_{l}^{x}$ . We put $M=(l-1)/p^{n}N$, and define

$c_{l,N,r,p^{n}}^{\prime}(i)=\prod_{j=0}^{p^{n}-1}(1-g^{Mi+NMj})^{\langle i+Nj)^{r-1}}$ mod $(F_{l}^{x})^{p^{n}}\in F_{l}^{x}/p^{n}$

and $(c_{l,r,p^{n}}^{\prime})^{\chi}=\prod_{i=1}^{N}(c_{l,N,r,p^{n}}^{\prime}(i))^{\chi\langle i)^{-1}}$ . So the order of $(c_{l,r.p^{n}}^{\prime})^{\chi}$ in $F_{l}^{x}/p^{n}$ is the same as that
of $c_{l.r,p^{n}}^{\chi}$ in $F_{l}^{x}$ where $c_{l,r,p^{n}}^{\chi}$ is the element defined in \S 2 (4). We consider
$(\oplus_{\lambda|l}H^{1}(\kappa(\lambda), Z/p^{n}(r)))^{\chi}$ where $\lambda$ ranges over all primes ofKover l. $ByLemma3.3$ , the
order of the image of $(c_{r}^{\langle p)})^{\chi}$ in $(\oplus_{\lambda|i}H^{1}(\kappa(\lambda), Z/p^{n}(r)))^{\chi}$ is equal to the order of $(c_{l.r,p^{n}}^{\prime})^{\chi}$

in $F_{l}^{x}/p^{n}$ , so equal to $order_{F_{l}^{x}}(c_{l,r,p^{n}}^{\chi})$ .
For a totally real number field $F$ and an odd integer $r\geq 3,$ $H^{1}(O_{F}[1/p], Z_{p}(r))$ is a

$Z_{p}$-module of rank $[F:Q]$ ([15] Theorem 1). From $H^{0}(O_{K}[1/p], Z/p(r))=0$ ,
$H^{1}(O_{K}[1/p], Z_{p}(r))^{\chi}$ is a free $Z_{p}$-module of rank 1 (note that we are assuming
Image$(\chi)\subset Z_{p})$ . So by Lemma 3.2 (ii), we have

$n^{\chi}(r)_{p}=\#(H^{1}(O_{K}[1/p], Z_{p}(r))^{\chi}/\langle(c_{r}^{\langle p)})^{\chi}\rangle)$ (6)

where $\langle(c_{r}^{\langle p)})^{\chi}\rangle$ is the subgroup generated by $(c_{r}^{\langle p)})^{\chi}$ . Hence by [16] \S 6 (cf. [16] Th. 3
and the proof of [15] Th. 1), we have $ n^{\chi}(r)_{p}<\infty$ .
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4. Proof of the theorems in sections 1 and 2.

Let $\chi$ be an even Dirichlet character of conductor $N$ with order dividing $p-1$ , and
$K$ be the real abelian field corresponding to the kernel of $\chi$ .

We denote by $\mu_{p^{n}}$ the group $ofp^{n}- th$ roots ofunity, and define $K_{n}=K(\mu_{p^{n}}),$ $K_{\infty}=\cup K_{n}$ ,
and $G_{\infty}=Ga1(K_{\infty}/K)$ . Remind our notation that $M(r)$ is the Tate twist and $M^{G}$ (resp.
$M_{G})$ is the G-invariants (resp. G-coinvariant) (cf. Notation).

Let $E_{K_{n}}^{\prime}$ be the group ofp-units (units outside $p$) of $K_{n}$ . Then by Kummer sequence
and the Tate twists, we have an injection

$E_{K}^{\prime}.\otimes Z/p^{n}(r-1)\simeq\rightarrow H^{1}(O_{K_{n}}[1/p], Z/p^{n}(r))$ .
Taking the projective limits with respect to the norm maps, we have

$\varliminf E_{K_{n}}^{\prime}(r-1)=\varliminf E_{K}^{\prime}.\otimes Z_{p}(r-1)\approx\varliminf H^{1}(O_{K_{n}}[1/p], Z_{p}(r))$ .
Let $\mathscr{C}_{K_{n}}$ be the subgroup of cyclotomic p-units in $E_{K_{n}}^{\prime}$ , namely $\mathscr{C}_{K_{n}}=N_{L_{n}/K_{n}}(\mathscr{C}_{L_{n}})$ where
$L_{n}=Q(\mu_{N}, \mu_{p^{n}})$ and $N_{L_{n}/K_{n}}$ is the norm, and $\mathscr{C}_{L_{n}}$ is the intersection of $O_{L_{n}}[1/p]^{x}$ and
the group generated by { $1-\zeta,$ $\pm\zeta|\zeta$ is a root of unity in $L_{n}$ }. We have a canonical
homomorphism

$(\varliminf \mathscr{C}_{K_{n}}(r-1))_{G_{\infty}}\rightarrow(\varliminf E_{K_{n}}^{\prime}(r-1))_{G_{\infty}}$

$\rightarrow(\varliminf H^{1}(O_{K_{n}}[1/p], Z_{p}(r)))_{G_{\infty}}\rightarrow H^{1}(O_{K}[1/p], Z_{p}(r))$

whose image we denote by $C_{r}$ . Then, $C_{r}$ is the group of cyclotomic elements.
Concerning $C_{r}$ , Kolster, Nguyen Quang Do, and Fleckinger [10], after the case

$K=Q$ by Bloch and Kato [1], showed an analogy of the class number formula.

LEMMA 4.1 ([10] Theorem 5.4). $\#(H^{1}(O_{K}[1/p], Z_{p}(r))/C_{r})=\# H^{2}(O_{K}[1/p], Z_{p}(r))$ .
We consider their $\chi$-components. We know $C_{r}^{\chi}$ is generated by $(c_{r}^{\langle p)})^{\chi}$ for $\chi\neq 1$ , and

by $c_{r}^{D}(1)^{(p)}$ for $\chi=1$ (cf. [16] \S 4). Hence by (5) and (6) (note that $n^{\chi}(r)_{p}=n(r)_{p}$ if $\chi=1$ ),
we obtain

COROLLARY 4.2. $n^{\chi}(r)_{p}=\#(H^{1}(O_{K}[1/p], Z_{p}(r))/C_{1})^{\chi}=\# H^{2}(O_{K}[1/p], Z_{p}(r))^{\chi}$ .
On the other hand, $H^{2}(O_{K}[1/p], Z_{p}(r))$ can be described as follows. Let

$A_{K_{n}}^{\prime}=Pic(O_{K_{n}}[1/p])$ be the p-Sylow subgroup of the p-ideal class group of $O_{K_{n}}[1/p]$

( $=the$ Galois group of the maximal unramified abelian p-extension of $K_{n}$ , in which
every prime of $K_{n}$ over $p$ is completely decomposed). We put $X_{K_{\infty}}^{\prime}=\lim A_{K_{n}}^{\prime}$ . We also
define $X_{K_{\infty}}=\varliminf A_{K_{n}}$ where $A_{K_{n}}=Pic(O_{K_{n}})$ is the p-Sylow subgroup $\overline{of}$the ideal class
group of $O_{K_{n}}$ .

LEMMA 4.3. We have an exact sequence

$0\rightarrow X_{K_{\infty}}^{\prime}(r-1)_{G_{\infty}}\rightarrow H^{2}(O_{K}[1/p], Z_{p}(r))\rightarrow(\bigoplus_{v|p}z_{p})^{0}(r-1)_{G_{\infty}}\rightarrow 0$ .
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Here, $v$ ranges over all primes of $K_{\infty}$ over $p$ and $(\oplus Z_{p})^{0}$ means the kernel of the map
$\oplus Z_{p}\rightarrow Z_{p}$, which sends $(a_{i})$ to $\Sigma a_{i}$ .

Indeed, by Kummer sequence and $Br(O_{K_{n}}[1/p])$ (the Brauer group) $=(\oplus_{v|p}Z_{p})^{0}$ ,
we have an exact sequence

$0\rightarrow A_{K_{n}}^{\prime}/p^{n}\rightarrow H^{2}(O_{K_{n}}[1/p], Z/p^{n}(1))\rightarrow(\bigoplus_{v|p}Z/p^{n})^{0}\rightarrow 0$ .

Taking $\otimes Z_{p}(r-1)$ and taking the limit, we get an exact sequence

$0\rightarrow X_{K_{\infty}}^{\prime}(r-1)\rightarrow\varliminf H^{2}(O_{K_{n}}[1/p], Z_{p}(r))\rightarrow(\bigoplus_{v|p}z_{p})^{0}(r-1)\rightarrow 0$ .

Taking Galois coinvariants, we get the conclusion.
We consider $\chi$-component $H^{2}(O_{K}[1/p], Z_{p}(r))^{\chi}$ , and get

COROLLARY 4.4. (i) We put $\psi=\chi\omega^{1-r}$ . If $\psi(p)\neq 1$ or $\chi=1$ , we have an
isomorphism

$X_{K_{\infty}}^{\psi}(r-1)_{G_{\infty}}\rightarrow^{\simeq}H^{2}(O_{K}[1/p], Z_{p}(r))^{\chi}$ .

(ii) If $\chi\neq 1,$ $\chi(p)=1$ and $r\equiv 1(modp-1)$ , we have an exact sequence

$0\rightarrow(X_{K_{\infty}}^{\prime})^{\chi}(r-1)_{G_{\infty}}\rightarrow H^{2}(O_{K}[1/p], Z_{p}(r))^{\chi}\rightarrow Z/p^{a_{r}}-0$

where $a_{r}=v_{p}(r-1)+1$ as in Theorem 2.5.

PROOF. (i) If $\psi(p)\neq 1$ , we have $(\oplus_{v|p}Z_{p})^{\psi}=0$ . If $\chi=1$ , then $K_{n}=Q(\mu_{p^{n}})$ and
$(\oplus_{v|p}Z_{p})^{0}=(Z_{p})^{0}=0$ . In both cases, we have $((\oplus_{v|p}Z_{p}(r-1))^{0})^{\chi}=((\oplus_{v|p}Z_{p})^{0})^{\psi}(r-1)$

$=0$ . So by Lemma 4.3, $(X^{\prime})_{K_{\infty}}^{\psi}(r-1)_{G_{\infty}}\simeq H^{2}(O_{K}[1/p], Z_{p}(r))^{\chi}$ . On the other hand, we
have an exact sequence

$\bigoplus_{v|p}Z_{p}\rightarrow X_{K_{\infty}}\rightarrow X_{K_{\infty}}^{\prime}\rightarrow 0$ .

If $\psi(p)\neq 1$ , taking $\psi$-components, we have $X_{K_{\infty}}^{\psi}\simeq(X^{\prime})_{K_{\infty}}^{\psi}$ . If $\chi=1$ , then $K_{n}=Q(\mu_{p^{n}})$ and
the prime of $K_{n}$ over $p$ is principal. So $X_{K_{\infty}}^{\prime}=X_{K_{\infty}}$ , and we get the conclusion.

(ii) Since $\chi(p)=1$ and Image$(\chi)\subset Z_{p}$ , we have $(\oplus_{v|p}Z_{p})^{\chi}=Z_{p}$ . If we denote by $\kappa$

the cyclotomic character $G_{\infty}\rightarrow Z_{p}^{x}$ , by our assumption on $\chi$ , the image of $\kappa:G_{\infty}\rightarrow Z_{p}^{x}$

is $1+pZ_{p}$ . So we can calculate $Z_{p}(r-1)_{G_{\infty}}\simeq Z/p^{a_{r}}$ . We get the conclusion by taking the
$\chi$-component of the exact sequence in Lemma 4.3. $\square $

From Corollaries 4.2 and 4.4, we have

COROLLARY 4.5. (i) We put $\psi=\chi\omega^{1-r}$ . If $\psi(p)\neq 1$ or $\chi=1$ , we have
$\# X_{K_{\infty}}^{\psi}(r-1)_{G_{\infty}}=n^{\chi}(r)_{p}$ .

(ii) If $\chi\neq 1,$ $\chi(p)=1$ , and $r\equiv 1(modp-1)$ , we have



IWASAWA $\lambda$-INVARIANTS 271

$\#(X_{K_{\infty}}^{\prime})^{\chi}(r-1)_{G_{\infty}}=n^{\chi}(r)_{p}/p^{a_{r}}$

where $a_{r}=v_{p}(r-1)+1$ as in Theorem 2.5.

We proceed to the proof of the theorems in sections 1 and 2.
We will prove Theorem 1.6. We take $\chi=1$ . We put $X=X_{Q_{\infty}}$ . For an odd integer

$r_{0}\geq 3$ , we consider its $\omega^{1-r_{0}}$-part $X^{\omega^{1- r_{O}}}=X_{Q_{\infty}}^{\omega^{1- r_{O}}}$ . Sinoe the set $\{r\in Z;r\equiv r_{0}(modp-1)$ ,
$r\geq 3\}$ is dense in $Z_{p}$ , the characteristic power series of $X^{\omega^{1- r_{O}}}$ has a root in $Z_{p}$ if and
only if for any $n>0$ there exists $r\geq 3$ such that $r\equiv r_{0}(modp-1)$ , and that the order of
$X^{\omega^{1- r_{O}}}(r-1)_{G_{\infty}}$ is greater than $p^{n}$ . By Corollary 4.5 (i), $\# X^{\omega^{1- r_{O}}}(r-1)_{G_{\infty}}\geq p^{n}$ is equivalent
to $p^{n}|n(r)_{p}$ , which completes the proof of Theorem 1.6.

Theorem 2.5 can be proved by the same method as Theorem 1.6. For Theorem
2.5 (2), we note that the characteristic power series of $X^{\chi}$ is the same as that of $X^{\prime\chi}$

(modulo units).

5. Calculation and Examples.

In this section, we give some criterions which are more suitable for numerical
calculation. We use the same notation as in the previous section. Let $l$ be a prime
number such that $l-1=p^{n}NM$, and consider the element $c_{l,r,p^{n}}^{\chi}\in F_{l}$ (see (4)). In the
following, whenever we consider the element $c_{l,r,p^{n}}^{\chi}$ , we assume $p^{n}N$ divides $l-1$ without
mentioning it.

We assume that $\chi\neq 1$ and the order of the character $\chi$ divides $p-1$ .
We denote by $K$ the field corresponding to $\chi$ , and by $K_{\infty}$ the cyclotomic $Z_{p}$-extension

of $K(\mu_{p})$ . As in the previous section, let $X_{K_{\infty}}$ be the Galois group of the maximal
unramified abelian pro-p extension of $K_{\infty}$ , and $X_{K_{\infty}}^{\prime}$ be the Galois group of the maximal
unramified abelian pro-p-extension of $K_{\infty}$ , in which every prime over $p$ is completely
decomposed. We simply write $X$ for $X_{K_{\infty}}$ and $X^{\prime}$ for $X_{K_{\infty}}^{\prime}$ . We define $G_{\infty}=Ga1(K_{\infty}/K)$ .

The following lemma will be used many times.
LEMMA 5.1. Assume $p^{n}$ divides $l-1$ , and $\zeta_{p^{n},l}$ be a primitive $p^{n}$-th root of unity in

$F_{l}$ . We write $c_{l,r,p^{n}}^{\chi}=\zeta_{p^{n}.l}^{a}$ with $a\in Z$ . If $v_{p}(a)=i(v_{p}$ is a normalized additive valuation such
that $v_{p}(p)=1)$ and $i<n$ , we have

(i) If $\chi\omega^{1-r}(p)\neq 1$ , we have $\#(X^{\psi}(r-1))_{G_{\infty}}\leq p^{i}$ .
(ii) If $\chi(p)=1$ and $r\equiv 1(modp-1)$ , we have $f((X^{\prime})^{\chi}(r-1))_{G_{\infty}}\leq p^{i-a_{r}}$ where

$a_{r}=v_{p}(r-1)+1$ .
PROOF. Since $order_{F_{l}^{x}}(c_{l,r,p^{n}}^{\chi})=p^{n-i}>1,p^{i}=index_{l.p^{n}}(c_{l_{1}.p^{n}}^{\chi})^{*}$ where $index_{l,p^{n}}(x)^{*}$ was

defined in \S 2 before Definition 2.2. So by the definition of $n^{\chi}(r)_{p}$ , we have $n^{\chi}(r)_{p}\leq p^{i}$ . By
Corollary 4.5, we get the conclusion. $\square $

Let $r_{0}$ be an odd positive integer $\geq 3$ .
We begin with the case

(I) $\psi(p)\neq 1$ where $\psi=\chi\omega^{1-r_{O}}$ .
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LEMMA 5.2. If there exists $l$ such that $c_{l,r_{O},p}^{\chi}\neq 1$ , then $X^{\psi}=0$ .

In fact, by Lemma 5.1 (i), $X^{\psi}(r-1)_{c_{\infty}}=0$ , so we get $X^{\psi}=0$ by Nakayama’s lemma.
We call this case the trivial case. In the following, we consider the non-trivial case.

hence $c_{l.r_{O},p}^{\chi}=1$ for all $l$ (which satisfy the conditions).

LEMMA 5.3. Suppose $c_{l.r_{O},p^{n}}^{\chi}$ is defined with $n\geq 2$ (so $p^{n}N$ divides $l-1$ ).
(i) Let $\zeta_{p^{n},l}$ be a primitive $p^{n}$-th root of unity in $F_{l}$ . For afixed odd positive intege’

$r_{0}\geq 3$ , there exists a polynomial $f(T)\in Z/p^{n}[T]$ such that

$\log_{\zeta_{p^{n},l}}(c_{l.r.p^{n}}^{\chi})\equiv f((1+p)^{r-r_{O}}-1)$ $(modp^{n})$ . (7)

(ii) Assume that there are some integers $r_{1},$ $r_{2}$ , and an integer $n\geq 2$ such that
$r_{1}\equiv r_{2}\equiv r_{0}(modp-1),$ $r_{1}\equiv r_{2}(mod(p-1)p^{n-2})$ and that $c_{l,r_{1},p^{n}}^{\chi}=1,$ $c_{l,r_{2},p^{n}}^{\chi}\neq 1$ . Then, the
coefficient of degree 1 of the polynomial $f(T)$ in (i) is a unit in $Z/p^{n}$ .

(iii) Under the assumption of (ii), $X^{\psi}$ is cyclic as a $\Lambda=Z_{p}[[Ga1(K_{\infty}/K(\mu_{p}))]](\simeq$

$Z_{p}[[T]])$-module.
(iv) Under the assumption of (ii), $X^{\psi}$ is finite or isomorphic to $Z_{p}$ .

PROOF. (i) First of all, $i^{r}$ is an Iwasawa function for any $i\in Z$ , namely there is a
power series $\varphi(T)\in Z_{p}[[T]]$ such that $i^{r}=\varphi((1+p)^{r}-1)$ . So for any $r^{\prime}\in Z$ , there is a
power series $\varphi_{r_{O},r^{\prime}}(T)\in Z_{p}[[T]]$ such that $i^{r-r}’=\varphi_{r_{O}.r^{\prime}}((1+p)^{r-r_{O}}-1)$ for any $r\in Z$ . By
the definition of $c_{l.r,p^{n}}^{\chi}$ , we obtain a power series $f(T)$ as (7). Since this is a property
modulo $p^{n}$ , we may take $f(T)$ as a polynomial.

(ii) We write $ f(T)=\alpha_{0}+\alpha_{1}T+\alpha_{2}T^{2}+\cdots$ . If $f((1+p)^{r-r_{O}}-1)\not\equiv f((1+p)^{r’-r_{O}}-1)$

$(modp^{n})$ with $r\equiv r^{\prime}(modp^{n-2})$ , we can check that $\alpha_{1}$ is a unit by direct computation.
(iii) From (ii), there is $r$ such that $r\equiv r_{0}(modp-1)$ and $\log_{\zeta_{p^{n},l}}(c_{l,r,p^{n}}^{\chi})\not\equiv 0(modp^{2})$ .

This implies by Lemma 5.1 (i)

$\# X^{\psi}(r-1)_{G_{\infty}}\leq p$ . (8)

Hence $X^{\psi}$ is a cyclic $\Lambda$-module by Nakayama’s lemma.
(iv) We denote by $E_{K_{m}}$ (resp. $\mathscr{C}_{K_{m}}$) the group of units (resp. cyclotomic units) of

$K_{m}$ , and put $\mathscr{E}_{K_{\infty}}=\varliminf E_{K_{m}}\otimes Z_{p}$ (resp. $\mathscr{C}_{K_{\infty}}=\varliminf C_{K_{m}}\otimes Z_{p}$). Consider the homomor $\cdot$

phisms

$\mathscr{E}_{K_{\infty}}^{\psi}(r_{0}-1)\rightarrow(E_{K_{n}}\otimes Z_{p}(r_{0}-1))^{\chi}\rightarrow H^{1}(O_{K_{n}}[1/p], Z/p^{n}(r_{0}))^{\chi}$

$\rightarrow(\bigoplus_{\lambda|l}H^{1}(O_{K}/\lambda, Z/p^{n}(r_{0})))^{\chi}\simeq(Z/p^{n}[Ga1(K_{n}/Q)])^{\psi}$

$\simeq Z/p^{n}[Ga1(K_{n}/K_{1})]$

$\simeq Z/p^{n}[T]/((1+T)^{p^{n- 1}}-1)$ .

Now, an element in $\varphi_{\infty}(r_{0}-1)$ has the image in $Z/p^{n}[T]/((1+T)^{p^{n- 1}}-1)$ , whose
coefficient of degree 1 is a unit. Using this and $(\mathscr{E}_{K_{\infty}})^{\psi}\simeq\Lambda\simeq Z_{p}[[T]]$ , we know that the
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$\lambda$-invariant of $(\mathscr{E}_{K_{\infty}}/\mathscr{C}_{K_{\infty}})^{\psi}$ is 1 or $0$ . By Iwasawa Main Conjecture proved by Mazur and
Wiles, we have char$((\mathscr{E}_{K_{\infty}}/\mathscr{C}_{K_{\infty}})^{\psi})=char(X^{\psi})$ (char is the characteristic ideal in $\Lambda$). Hence,
if $X^{\psi}$ is infinite, it is isomorphic to $Z_{p}$ because it is cyclic and of $\lambda$-invariant 1. This
completes the proof of the lemma.

THEOREM 5.4. We put $\psi=\chi\omega^{1-r_{O}}$ , and assume $\psi(p)=\chi\omega^{1-1_{O}}(p)\neq 1$ .
(i) If there is aprime number $l$ such that $c_{l,r_{O},p}^{\chi}\neq 1$ , then we have $X^{\psi}=0$ . (Here, the

definition of $c_{l,r,p^{n}}^{\chi}$ is in (4). We call this case the trivial case. In the following, we consider
the nontrivial case.)

(ii) If there exist prime numbers $l_{1},$ $l_{2}$ , and some integers $r_{1},$ $r_{2}\geq 3$ , and an integer
$n\geq 2$ such that $r_{1}\equiv r_{2}\equiv r_{0}(modp-1),$ $r_{1}\equiv r_{2}(mod(p-1)p^{n-2})$ and that

$c_{l_{1},r_{1},p^{n}}^{\chi}=1$ , $c_{l_{1},r_{2},p^{n}}^{\chi}\neq 1$ , and $c_{l_{2},r_{1},p^{n}}^{\chi}\neq 1$ ,

then $X^{\psi}$ is finite.
(iii) Further, in the situation of(ii), $ifn\geq 3$ and there is $r^{\prime}$ such that $r^{\prime}\equiv r_{0}(modp-1)$

and $c_{t^{\chi}r’.p^{n- 1}}=1$ for any $l$, then $X^{\psi}$ is isomorphic to $Z/p^{n-1}$ .
PROOF OF THEOREM 5.4. (i) was proved in Lemma 5.2.
(ii) Let $f(T)$ be a polynomial satisfying the property of Lemma 5.3 (i) for $l_{1}$ , and

put $F(r)=f((1+p)^{r-r_{O}}-1)$ . Since $c_{l_{1},r_{1}}^{x_{1^{p^{n}}}}=1$ , the constant term of $f(T)$ is not a unit.
Further, by Lemma 5.3 (ii), the coefficlent of degree 1 is a unit. Hence, $F(r)\equiv 0(modp^{n})$

if and only if $r\equiv r_{1}(modp^{n-1})$ . So $p^{n}$ does not divide $n^{\chi}(r)_{p}$ for $r\equiv r_{0}(modp-1)$ such
that $r\not\equiv r_{1}(mod(p-1)p^{n-1})$ . On the other hand, $c_{l_{2},r_{1},p^{n}}\neq 1$ implies that $p^{n}$ does not
divide $n^{\chi}(r)_{p}$ for $r\equiv r_{1}(mod(p-1)p^{n-1})$ (cf. Lemma 2.4). By Theorem 2.5 (1) and Lemma
5.3 (iv), we get the conclusion.

(iii) If $c_{t^{\chi}r}=1$ for all 1, by Lemma 2.1 $index_{l,p^{m}}(c_{l,r^{\prime},p^{m}}^{\chi})^{*}\geq p^{n-1}$ for all $m$ and
all $l$, so we have $n^{\chi}(r^{\prime})_{p}\geq p^{n-1}$ . On the other hand, the proof of (ii) above implies
$n^{\chi}(r)_{p}<p^{n}$ for all $r$ , so $n^{\chi}(r^{\prime})_{p}=p^{n}$

‘ 1. By Corollary 4.5 (i), we have

$fX^{\psi}(r^{\prime}-1)_{G_{\infty}}=p^{n-1}$

By Lemma 5.3 (iii), $X^{\psi}$ is cyclic. We write $X^{\psi}(r-1)\simeq\Lambda/L$ . Then by (8), for some
$r^{\prime\prime}$ such that $r^{\prime\prime}\equiv r_{0}(modp-1)$ , we have $\# X^{\psi}(r^{\prime\prime}-1)_{G_{\infty}}\leq p$ , so we can find
$ f(T)=\alpha_{0}+\alpha_{1}T+\cdots$ in $I_{1^{\prime}}$ , with $\alpha_{0}\not\equiv 0(modp^{2})$ . If $p$ divides $\alpha_{1}$ , then for all $r$ such that
$r\equiv r^{\prime\prime}\equiv r_{0}(modp-1)$ we have

$\# X^{\psi}(r-1)_{G_{\infty}}\leq p$ ,

which contradicts the above equality because $n\geq 3$ . Hence $\alpha_{1}$ is a unit and $X^{\psi}$ is a
quotient of $Z_{p}$ . So $X^{\psi}$ is isomorphic to $Z/p^{n-1}$ .

EXAMPLE 5.5. We consider the quadratic field $K=Q(\sqrt{254})$ (resp. $K=Q(\sqrt{473})$)
for $p=3$ . Greenberg’s conjecture for these two examples had not been known before
[7]. (The situation is explained in [9] \S 5.) Let $\chi$ be the character associated to the
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quadratic field $K=Q(\sqrt{254})$ (resp. $K=Q(\sqrt{473})$), and take $p=3$ and $r_{0}=3$ . Then,
$\chi\omega^{-2}(p)=\chi(p)=-1$ , so we can apply the above argument. Since 3 divides the class
number of $K$, we know this is a nontrivial case. For $l_{1}=5925313=254\cdot 4\cdot 3^{6}\cdot 8+1$ and
$l_{2}=20738593=254\cdot 4\cdot 3^{6}\cdot 28+1$ , we have $c_{5925313,77,3^{6}}^{\chi}=3662189\neq 1,$ $c_{5925313,401,3^{6}}^{\chi}=$

$1$ , and $c_{20738593,401,3^{6}}^{\chi}=4919350\neq 1$ . (Here, we took $g$ to be the least primitive root for
prime numbers $l_{1}$ and $l_{2}.$ ) So by Theorem 5.4 (ii), $X^{\chi}$ is finite (note that $\psi=\chi\omega^{-2}=\chi$).
We can check $c_{l,77,35}=1$ for the first 15 primes satisfying $l\equiv 1(modp^{5}N)$ , which suggests
$X^{\chi}\simeq Z/3^{5}$ by Theorem 5.4 (iii). For $Q(\sqrt{473})$ by the same way, $c_{2758537,5,3^{6}}^{\chi}=713490\neq 1$ ,
$c_{2758537,329.3^{6}}^{\chi}=1$ , and $c_{13103047,329,3^{6}}^{\chi}=9409260\neq 1$ . So $X^{\chi}$ is finite. We can also check
$c_{l,5.3^{5}}=1$ for the first 15 primes satisfying $l\equiv 1(modp^{5}N)$ , which again suggests
$X^{\chi}\simeq Z/3^{5}$ . (T. Fukuda calculated $\# X^{\chi}\geq 3^{5}$ in both cases, so they are really isomorphic
to $Z/3^{5}.$ )

We next consider the “split” case. We suppose
(II) $\chi(p)=1$ and $r_{0}=p$ .
We can take $r_{0}$ generally, but for the simplicity of the argument we take $r_{0}=p$ .

LEMMA 5.6. If there exists $l$ such that $c_{l,p,p^{2}}^{\chi}\neq 1$ , then $(X^{\prime})^{\chi}=0$ .

In fact, by Lemma 5.1 (ii), we have $(X^{\prime})^{\chi}(r-1)_{G_{\infty}}=0$ , so we get $(X^{\prime})^{\chi}=0$ by
Nakayama’s lemma.

We call this case the trivial case. In the following, we consider the non-trivial case.
namely we assume $c_{l,p,p^{2}}^{\chi}=1$ for all $l$.

LEMMA 5.7. Suppose $c_{l.r.p^{n+1}}^{\chi}$ is defined with $n\geq 2$ .
(i) Let $\zeta_{p^{n+1}.l}$ be a primitive $p^{n+1}$ -th root of unity in $F_{l}$ . There is a $polynomia/$

$f(T)=\alpha_{1}T+\alpha_{2}T^{2}+\cdots\in Z/p^{n+1}[T]$ such that

$\log_{\zeta_{pl}^{n+1}},c_{l,r.p^{n+1}}^{\chi}\equiv f((1+p)^{r-1}-1)$ $(modp^{n+1})$ .

(ii) We assume $c_{l,p,p^{2}}^{\chi}=1,$ $(c_{l,p.p^{3}}^{\chi})^{2}\neq ct_{2p-1,p^{3}}$ , and $(c_{l,p,p^{3}}^{\chi})^{4}\neq c_{l,2p-1.p^{3}}^{\chi}$ . Then, for $ th\epsilon$

coefficients of $f(T)$ in (i), we have $p|\alpha_{1}$ , and $\alpha_{1}\not\equiv 0(modp^{2})$ , and $\alpha_{2}$ is a unit in $Z/p^{n+1}$ ,

(iii) Under the assumption of (ii), $(X^{\prime})^{\chi}$ is cyclic as a $\Lambda=Z_{p}[[Ga1(K_{\infty}/K(\mu_{p}))]](\simeq$

$Z_{p}[[T]])$ module.
(iv) Under the assumption of(ii), $(X^{\prime})^{\chi}$ is $finiteorisomorphictoZ_{p}$ .

PROOF. (i) The existence of a polynomial $f(T)$ such that $\log_{\zeta_{pl}^{n+1}},(c_{l.r,p^{n+1}}^{\chi})\equiv$

$f((1+p)^{r-1}-1)(modp^{n+1})$ follows from the definition of $c_{l.r,p^{n+1}}^{\chi}$ as in Lemma 5.3 (i)
Let $E_{K_{m}}$ (resp. $E_{K_{m}}^{\prime}$) be the group of(resp. p-units) units in $K_{m}$ . Put $\mathscr{E}_{K_{\infty}}^{\prime}=\lim E_{K_{m}}^{\prime}\otimes Z_{p}$ and
$\mathscr{E}_{K_{\infty}}=\lim E_{K_{m}}\bigotimes_{1}Z_{p}$ . Since $\chi(p)=1$ , we have an exact sequence $ 0\rightarrow \mathscr{E}_{K_{\infty}}^{\chi}-\rightarrow(\mathscr{E}_{K_{\infty}}^{\prime})^{\chi}\rightarrow$

$Z_{p}\rightarrow 0^{-}$This implies $f(O)=0$ .
(ii) $NotethatbyLemma2.1$ , we have $(c_{l,r,p^{n+1}}^{\chi})^{p^{n- 1}}=c_{l,r,p^{2}}^{\chi}$ and $(c_{l.r.p^{n+1}}^{\chi})^{p^{n- 2}}=c_{l,r.p^{3}}^{\chi}$

By direct computation of $f((1+p)^{r-1}-1)$ , we see that the assumption $c_{l.p.p^{2}}^{\chi}=1$ implies
$\alpha_{1}\equiv 0(modp)$ , and the assumption $(c_{l,p,p^{3}}^{\chi})^{2}\neq c_{l.2p-1.p^{3}}^{\chi}$ implies that $\alpha_{2}$ is a unit in $Z/p^{3}$
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The assumption $(c_{l.p,p^{3}}^{\chi})^{4}\neq ct_{2p-1,p^{3}}$ implies $\alpha_{1}\not\equiv 0(modp^{2})$ .
(iii) and (iv) can be proved by the same method as Lemma 5.3. We consider a

map $(\mathscr{E}_{K_{\infty}}^{\prime})^{\chi}(r_{0}-1)\rightarrow(\oplus_{\lambda|l}H^{1}(O_{K_{n}}/\lambda, Z/p^{n}(r_{0})))^{\chi}$ , then we know that the $\lambda$-invariant of
char$((\mathscr{E}_{K_{\infty}}^{\prime}/\mathscr{C}_{K_{\infty}})^{\chi})$ is smaller than or equal to 2. Considering char $((d_{K_{\infty}}^{\prime}/\mathscr{C}_{K_{\infty}})^{\chi})=$

$char((\mathscr{E}_{K_{\infty}}/\mathscr{C}_{K_{\infty}})^{\chi})T=char(X^{\chi})T=char((X^{\prime})^{\chi})T$ (where we identify $\Lambda=Z_{p}[[Ga1(K_{\infty}/$

$K(\mu_{p}))]]\simeq Z_{p}[[T]]$ in a usual way), we get the conclusion.

THEOREM 5.8. We assume $\chi(p)=1$ .
(i) If there is a prime number 1 such that $c_{l,p,p^{2}}^{\chi}\neq 1$ , then we have $(X^{\prime})^{\chi}=0$ . (We call

this case the trivial case. In the following, we consider the nontrivial case.)
(ii) Assume that there exists a prime number $l_{1}$ such that $(c_{l_{1},p,p^{3}}^{\chi})^{2}\neq c_{l_{1},2p-1,p^{3}}^{\chi}$ and

$(c_{l_{1},p,p^{3}}^{\chi})^{4}\neq c_{l_{1},2p-1,,.p^{3}}^{\chi}$ . Assume also that there exist a prime number $l_{2}$ , and some integers
$r_{1},$ $r_{2}\geq 3$ , and an integer $n\geq 2$ such that $r_{1}\equiv r_{2}\equiv 1(modp-1),$ $r_{1}\equiv r_{2}(mod(p-1)p^{n-2})$

and that

$c_{l_{1},r_{1},p^{n+1}}^{\chi}=1$ , $c_{l_{1},r_{2},p^{n+1}}^{\chi}\neq 1$ , and $c_{l_{2},r_{1},p^{n+1}}^{\chi}\neq 1$ .

Then $X^{\chi}$ is finite.
(iii) Further, in the situation of(ii), $lfn\geq 3$ and there is $r^{\prime}$ such that $r^{\prime}\equiv 1(modp-1)$ ,

$r^{\prime}\not\equiv 1(mod(p-1)p^{n-1})$ , and $c_{l,r^{\prime}.p^{n}}^{\chi}=1$ for any $l$, then $(X^{\prime})^{\chi}$ is isomorphic to $Z/p^{n-1}$ .

The proof is almost the same as Theorem 5.4.
(i) is Lemma 5.6.
(ii) By our assumption $c_{l_{1},p,p^{2}}^{\chi}=c_{l_{2},p,p^{2}}^{\chi}=1$ . Let $f(T)$ be a polynomial in Lemma

5.7 (i) for $l_{1}$ . By Lemma 5.7 (ii), we can write $f(T)=T(T-\theta)u(T)$ where $\theta\in Z/p^{n+1}$ and
$u(T)\in Z/p^{n+1}[[T]]^{x}$ , and $p$ divides $\theta$ but $p^{2}$ does not divide $\theta$ .

Suppose that $r_{1}\equiv 1(modp)$ . Since $f((1+p)^{r_{1}-1}-1)\equiv 0(modp^{n+1})$ and $p^{2}$ does not
divide $\theta,p^{n}$ divides $(1+p)^{r_{1}-1}-1$ . Let $ g(T)=\beta_{1}T+\beta_{2}T^{2}+\cdots$ be apolynomial in Lemma
5.7 (i) for $l_{2}$ . Then $c_{l_{2},r_{1}.p^{n+1}}^{\chi}\neq 1$ implies that $\beta_{1}$ is a unit, so $c_{l_{2},p.p^{2}}^{\chi}\neq 1$ . This is a
contradiction. So $r_{1}\not\equiv 1(modp)$ .

Hence, $(1+p)^{r_{1}-1}\equiv 1+\theta(modp^{n})$ . So if $r\not\equiv r_{1},1(modp^{n-1}),$ $f((1+p)^{r-1}-1)\not\equiv 0$

$(modp^{n+1})$ . This implies $n^{\chi}(r)_{p}<p^{n+1}$ for all $r\equiv 1(modp-1)$ such that $r\not\equiv r_{1},1(modp^{n-1})$ .
So $n^{\chi}(r)_{p}<p^{n+a_{r}}$ for all $r\equiv 1(modp-1)$ such that $r\not\equiv r_{1}(modp^{n}‘ 1)$ . On the other han&,
the conditions $c_{l_{2},r_{1},p^{n+1}}^{\chi}\neq 1$ and $c_{l_{2},p,p^{2}}^{\chi}=1$ imply $n^{\chi}(r)_{p}<p^{n+1}$ for all $r\equiv 1(modp-1)$

such that $r\equiv r_{1}(modp^{n-1})$ . So by Theorem 2.5 (2) and Lemma 5.7 (iv), $X^{\chi}$ is finite.
(iii) This can be proved by the same method as Theorem 5.4 by using Corollary

4.5 (ii), Lemma 5.7 (iii), and Theorem 5.8 (ii) above.

EXAMPLE 5.9. Let $K=Q(\sqrt{695})$ and $\chi$ be the character associated to $K/Q$ . Take
$p=7$ . Then $\chi(p)=1$ . We can take $l_{1}$ and $l_{2}$ which satisfy the conditions of Theorem 5.8
(ii). For example, for $l_{1}=160194721$ and $l_{2}=100121701$ , we have $c_{l_{1},p,p^{3}}^{\chi}=102983153$

and $c_{l_{1},2p-1,p^{3}}^{\chi}=120231960$ . (Here, we took $g$ to be the least primitive root for prime
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numbers $l_{1}$ and $l_{2}.$ ) So $c_{l_{1},p.p^{2}}^{\chi}=1,$ $(c_{l_{1},p.p^{3}}^{\chi})^{2}\neq c_{l_{1}.2p-1,p^{3}}^{\chi}$ , and $(c_{l_{1},p,p^{3}}^{\chi})^{4}\neq c_{l_{1},2p-1,p^{3}}^{\chi}$ .
Further, we have $c_{l_{1},25,p^{4}}^{\chi}=1$ and $c_{l_{1},67,p^{4}}^{\chi}=102983153\neq 1$ , and $c_{l_{2},25,p^{4}}^{\chi}=39969650\neq 1$ .
Hence by Theorem 5.8 (ii), $X^{\chi}$ is finite. We can check $c_{l,25,p^{3}}^{\chi}=1$ for the first 15 prime
numbers $l$ with $l\equiv 1(modp^{3}N)$ . So we probably have $(X^{\prime})^{\chi}\simeq Z/p^{2}$ .

EXAMPLE 5.10. Next we consider a number field $K=Q(\sqrt{m}, \cos(2\pi/7))$ of degree
6. We take $p=7$ . Let $K_{\infty}^{cycl}/K$ be the cyclotomic $Z_{p}$-extension, and $X_{K_{\infty}^{cycl}}$ be the Galois
group of the maximal unramified abelian pro-p extension of $K_{\infty}^{cycl}$ . We can show that
$X_{K_{\infty}^{cycl}}$ is finite for any $m<1OOO$ .

Let $N$ be the conductor of the quadratic field $Q(\sqrt{m})$ and $\chi$ be the corresponding
quadratic character, $\omega$ the Teichm\"uller character. In order to show the finiteness of
$X_{K_{\infty}^{cycl}}$ , it suffices to check the finiteness of $X^{\psi}=X_{K_{\infty}}^{\psi}$ for $\psi=\chi\omega^{4},$ $\chi\omega^{2}$ , and $\chi$ . We take
$r_{0}=3,5,7$ , respectively.

(Probably) nontrivial cases of $(m, \psi)$ (in the above sense) are listed in the following
table.

These $(m, \psi)s$ in the table satisfy the condition of Theorem 5.4 (ii) (resp. Theorem
5.8 (ii)) except $(123, \chi)$ marked with $\#$ . $(m, \psi)s$ marked with $(^{*})$ satisfy the property of
Theorem 5.4 (ii) (resp. Theorem 5.8 (ii)) for $n=3$ if $\psi(p)\neq 1$ (resp. if $\psi(p)=1$ ). $(m, \psi)s$

without any mark in the table satisfy Theorem 5.4 (ii) (or Theorem 5.8 (ii)) for $n=2$ .
If $(m, \psi)$ with $m<1,000$ is not listed in this table, it is in the trivial case. We have

$X^{\psi}=0$ (resp. $(X^{\prime})^{\psi}=0$) if $\psi(p)\neq 1$ (resp. if $\psi(p)=1$ ).
If $\psi(p)\neq 1$ (resp. if $\psi(p)=1$ ), $(m, \psi)s$ in the table satisfy $c_{l,r_{O},p}^{\chi}=1$ (resp. $c_{l,r_{O}.p^{2}}^{\chi}=1$ )

for the first 15 primes $l$ with $l\equiv 1(modpN)$ (resp. $l\equiv 1(modp^{2}N)$). So they are probably
in the nontrivial cases.

$m=951$ for $\psi=\chi\omega^{2}$ satisfies the property ofTheorem 5.4 (ii) for $n=3$ , and $ct_{17.p^{2}}=1$

for the first 15 primes $l$ with $1\equiv 1(modp^{2}N)$ . So we probably have $X^{\psi}\simeq Z/p^{2}$ by Theorem
5.4 (iii). For $(m, \psi)=(554, \chi)$ and $(695, \chi)$ , in the same way we probably have $(X^{\prime})^{\psi}\simeq$

$Z/p^{2}$ by Theorem 5.8 (iii).
For $(m, \psi)=(123, \chi)$ , we cannot apply Theorem 5.8 directly, but can verify the

finiteness of $\chi x$ in the following way. For a prime number $l$ with $l\equiv 1(modp^{n}N)$ , let
$f_{\iota}(T)\in Z/p^{n}[[T]]$ be the power series constructed by the method in the proof of Lemma
5.3 (i), which satisfies $\log_{\zeta_{p^{n}},\iota}c_{l,r.p^{n}}^{\chi}\equiv f_{l}((1+p)^{r-1}-1)(modp^{n})$ . We consider an ideal $I$ of
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$Z/p^{2}[[T]]/(((1+T)^{p}-1)/T)$ generated by $f_{l}(T)/T’ s$ modp2 where 1 ranges over the prime
numbers with $l\equiv 1(modp^{2}N)$ . Taking, for example, $l=506269$ and 843781, we know
that $I$ contains an irreducible element and is not principal. Using the argument in the
proof of Lemma 5.3 (iv), we have $(\mathscr{E}_{K_{\infty}}/\mathscr{C}_{K_{\infty}})^{\chi}<\infty$ , so $X^{\chi}$ is finite. We note that more
general and systematic method than this method for $m=123$ was developed by Kraft
and Schoof [11]. As a consequence, we obtain $\# X_{K_{\infty}^{cycl}}<\infty$ for any $m<1,OOO$ .
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