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Abstract. In this paper we will prove a maximum principle for the solutions of linear parabolic equation on
complete non-compact manifolds with a time varying metric. We will prove the convergence of the Neumann Green
function of the conjugate heat equation for the Ricci flow in By x (0, T') to the minimal fundamental solution of
the conjugate heat equation as k — oco. We will prove the uniqueness of the fundamental solution under some
exponential decay assumption on the fundamental solution. We will also give a detail proof of the convergence of the
fundamental solutions of the conjugate heat equation for a sequence of pointed Ricci flow (M x (—«a, 0], xk, gk) to
the fundamental solution of the limit manifold as k — co which was used without proof by Perelman in his proof of
the pseudolocality theorem for Ricci flow [P].

Maximum principle for the heat equation on complete non-compact manifold with a
fixed metric was proved by P. Li, L. Karp [LK] and J. Wang [W] (cf. [CLN]). Maximum prin-
ciple for parabolic equations on complete non-compact manifold with a metric with uniformly
bounded Riemannian curvature and evolving by the Ricci flow,

0
5,9 = —2R;; 0.1)
was proved by W. X. Shi [S1], [S2], [S3] under either a uniform boundedness condition on
the solution or some structural conditions on the parabolic equation or positivity assumption
on the Riemannian curvature operator.

Let M be a non-compact manifold with a time varying metric g(¢) = (g;;(¢)),0 <t < T,
such that forany 0 <t < T (M, g(t)) is a complete non-compact manifold. Let xo be a fixed
point of M. In this paper we will prove the maximum principle for the subsolution of the
linear parabolic equation,

ur=Au+a-Vu+bu inM x 0,T) 0.2)
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under the condition
T 2
/ / u? (x, )e M0y, dr < 0o (0.3)
0 JM

for some constant A > 0, vector field a(-, ¢), 0 < ¢t < T, and function b(x,¢) on M x [0, T)
where uy = max(u, 0) and r;(xg, x) is the distance between xo and x with respect to the
metric g;; (f).

In [CTY] A. Chau, L. F. Tam and C. Yu proved the existence of minimal fundamental
solution of the conjugate heat equation of Ricci flow on any n-dimensional non-compact com-
plete manifold, n > 3, by approximating it by a monotone increasing sequence of Dirichlet
Green functions of the conjugate heat equation of Ricci flow in bounded domains. In this
paper we will show that their argument can be modified to work for any n > 2. We will prove
that the Neumann Green functions of the conjugate heat equation of Ricci flow in bounded do-
mains will also converge to the minimal fundamental solution of the conjugate heat equation
of [CTY] for any n > 2.

We will prove the uniqueness of the fundamental solution of the conjugate heat equation
under some exponential decay assumption on the fundamental solution. We will also give a
detail proof of the convergence of the fundamental solutions of the conjugate heat equation
for a sequence of pointed Ricci flow (M x (—«, 0], xk, gr) to the fundamental solution of
the limit manifold as k — oo which was used without proof by Perelman in his proof of the
pseudolocality theorem for Ricci flow [P].

We will start some definitions. Let xo € M and let r(x, y) = ro(x, ¥), r+(x) = r¢(xo0, X),
r(x) = r(xg, x) = ro(xp, x). Let V! and A’ be the covariant derivative and Laplacian with
respect to the metric g(¢). When there is no ambiguity, we will drop the superscript and write
V., A, for V', A’, respectively. For any R > 0, y € M, let BL(y) = Bgq)(y, R) be the
geodesic ball with center y and radius R with respect to the metric ¢(¢) and let Bg = B% (x0).-
Let dV;, dV, be the volume element with respect to the metric g(¢) and g(0) respectively and
let Vi (r) = Volg ) (B, (x)).

1. Section1

THEOREM 1.1. Let M be a non-compact manifold with a time varying metric g(t) =
(gij (1)), 0 <t < T, such that forany 0 <t < T (M, g(t)) is a complete non-compact
manifold. Let a(-,t),0 <t < T, be a vector field on M which satisfies

sup |d| < oy (1.D
Mx[0,T)
andlet b € L>®°(M x [0, T)) such that
sup |b] < a2 (12)

Mx[0,T)
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for some constants oy > 0, oy > 0. Suppose g(t) satisfies

—a3gij < <azgj in Mx(0,T) (1.3)

for some constant a3 > 0 andu € C(M x [0, T)) N CZX(M x (0, T)) is a subsolution of
(0.2) satisfying (0.3) for some constant ). > 0 and

ux,0) <0 vVxeM. (1.4)
Then

u(x,1) <0 on M x[0,T). (1.5)

PROOF. We will use a modification of the proof in [EH], [LK], [NT] and [W] to prove
the theorem. Let xg € M, ri(x) = r:(xg, x), r(x) = ro(x), and

r(x)?
h(x,)=————— VxeM, 0<t=<npg
4020 —1)

for some constant 0 < n < (log(9/8))/a3 to be determined later. Then £ satisfies
he + |v°h|§(o) =0 in M x [0, n]. (1.6)

Choose a smooth function¢ : R - R,0 < ¢ < 1,suchthat¢(x) = 1forallx <0,¢(x) =0
forallx > 1 and —2 < ¢'(x) < Oforany x € R. Forany R > 1, let ¢pp(x) = ¢ (r(x) — R).
Then [VO¢r|4(0) < 2 on M. Now by (1.3),

e~ g(0) < g(1) < e*'g(0) in M x[0,T) 0
e~ g=1(0) < g7\ (1) < e®g~1(0) in M x [0, T) ‘
= T 2r@x) <r(x) < e r(x) VxeM, 0<t<T (1.8)
and
a nos .
a(dvt) STth inM YO<t<T
= e_%TVs <dV; < e%TdVS in M YO<s5,t<T. (1.9)

Hence |Vigg| < 2¢%7/2 on M x [0, T). By (1.6) and (1.7),

By +e SMVRE<0 in M x [0, 7], (1.10)
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Then by (0.2), (1.9) and (1.10),
0 2 h 2
E(\/;W(PRE u_,_dV,
3
Z/ ¢§ehh,uidv,+2/ ¢§ehu+u,dv,+/ preut —(dV;)
M M M ot
5/ ¢§,ehh,u2+dv,+2/ ¢§ehu+Audv,+2/ preu i - VudV,
M M M
+2/ ¢§ehbu2+dvt+@/ $reutdv,
M 2 Ju
< —e—‘m/ o |VhIPu?dV, —2/ p2e | Vuy PdV, —2/ pre"u Vi - VuidV,
M M M

—4/ ¢Rehu+V¢R-Vu+th+2a1/ preluy |Vu|dVv,
M M

+ (20(2 + %)/ qb%eehuith VO<t<n.
M
(1.11)

Now V0 <t <n,

< [ GNP+ [ ghehivusPay,
M M

2‘/ dre"u Vh - Vu, dv,
M

9
Se—d}ﬂ/j;l¢%€eh|Vh|2uith + g\/;w(is%eghlvu_,rpdvt ,

(1.12)
4‘/ dre"usVor - VuidV,
M
1
< —/ ¢§eh|w+|2dv,+8/ "\VorlFultdV,
2 u M
1
< —/ ¢§eh|w+|zdv,+32e“ﬂ/ e"ulav, (1.13)
2 Jm Br+1\Br
and
1
20 / preuy |Vu|dv, 51/ ¢§eh|w+|zdv,+4a%/ pre"ulidv,.  (1.14)
M M M
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By (1.11), (1.12), (1.13) and (1.14),

d 2 h 2
5</M Pke “Wf)

1
< ——/ ¢§eh|vu+|2dv,+c1/ ¢§ehuidv,+3zea37/ "t av,
8 Jm M Br+1\Br
A _cu 2 b2 e 1 2 h 2
= e preuidVy | + ore’ |Vur|“dV;
Jat M 8 M
< 32e°‘3T/ ehui_th YO<t<n
Br+1\Br
2 h2 e=Cm ot 2 2
:>e*C1’/ pre"utdv, + / / x| Vuy |2dV,dt
M 0 JM
n
< 32e“3T/ / e"ulavidr VO<t<n
0 JBry1\Br
(1.15)
where C1 = 2a0 + 40512 + (na3/2). By (0.3) and (1.8),
n
/ / ui_(x,t)e_)‘]r(x)de,dt <00 (1.16)
0 M
where A1 = 1¢*3T. We now choose n =min(1/(8Xx1), (log(9/8))/a3). Then
h(x,1) < —Ar(x)> VxeM, 0<t<n. (1.17)
By (1.16) and (1.17),
n
/ / "l (x, )dV,dt < 0. (1.18)
0 M

Letting R — oo in (1.15), by (1.18) we get

eiC”/ ehui_dV,—i—
M 8

= uy(x,t)=0 VxeM, 0<t<min(T,n).

e~ Cin prn 5 ) i
// e"\Vuy|“dVidt =0 Vxe M, 0<t<min(T,n)
0JM

If T <n, weare done. If T > 7, we repeat the above argument a finite number of times and
the theorem follows.

COROLLARY 1.2 (Lemma 6.2 of [CTY]). Let (M, g(t)) be a complete solution of the
Ricci flow (0.1) in (0, T') with

|Rm| <ky on M x[0,T) (1.19)
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for some constant ko > 0. Let u € C(M x [0, T)) N C>Y(M x (0, T)) satisfy

Au>u;, in Mx(0,T)

and (0.3), (1.4), for some constant . > 0. Then u satisfies (1.5).

COROLLARY 1.3. Let (M, g(t)) with0 <t < T, ad, b and a3 be as given in Theorem
1.1. Suppose (1.19) holds for some constant kg > 0. Letu € LM x [0,T)) N C(M x
[0, T)NCEY(M x (0, T)) be a subsolution of (0.2) in M x (0, T) which satisfies (1.4). Then
u satisfies (1.5).

PROOF. By the proof of Theorem 1.1 u satisfies (1.8). By the volume comparison
theorem [C], there exist constants c¢; > 0, ¢ > 0 such that forany A > 0, R > 0,

T 2 —Arg(x )c)2 2 T ree cor—he~ 37T 2
u’fy (x, e "M AVide < cyllully, e? drdt < 0.
0 JBr 0 JOo

Letting R — oo, we get (0.3). Thus the corollary follows from Theorem 1.1.

THEOREM 1.4. Let M be an n-dimensional non-compact manifold, n > 2, such that
(M, g(t)) is a complete solution of the backward Ricci flow

d
3,90 = 2R;j (1.20)

in [0, T] which satisfies (1.19) for some constant kg > 0. Let Z(x,t;y,s), x,y € M,
0 <s <t <T, bethe minimal fundamental solution of the forward conjugate heat equation
inM x (s, T]. Thatis Z(-,-; v, s) satisfies (cf. [CTY])

oou=Au—Ru in M x (s, T] (1.21)
with
lim Z(x,t;y,5) = 8y(x). (1.22)
1N\

Foranyk € 7, let Z; = Zy(x,t;y,5),x,y € M,0 <s <t < T, be the Neumann Green
function of the forward conjugate heat equation which satisfies

02y = AZy — RZ; in By x (s, T]

0Z

7;5==o on 9B x (5, T] (1.23)
v

limpy Z2(x, 5 9, 8) = 8y(x)

where 9/0v is the derivative with respect to the unit outward normal on 9By x (s, T] and
By = By (xp) for some fix point xg € M. Then Zy(x,t; y,s) converges uniformly on every
compact subset of M x (s, T]to Z(x,t;y,s)as k — oc.
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PROOF. By (1.20) and (1.23),

9
- Zk(x,t;y,S)dVr(X)=/ AZ(x,t;y,5)dVi(x) =0
ot By By
VOo<s<t<T, keZ"
= |z y.oavie) = 1im/ 2oty yos)dVi(x) = |
By '\ By

VOo<s<t<T, keZ" (1.24)

Let R > 1 and fix (y,s) € M x [0, T). By (1.19) and (1.20), (1.7) and (1.9) holds with
a3 = 2(n — Dko. Let G (x, t; y, s) be the Dirichlet Green function of (1.21) in M x (0, T).
We now divide the proof into two cases.

CASE1l: n>3

By (1.7), (1.9), (1.24), and Lemma 3.1 of [CTY], there exists a constant C; > 0 such
that foranys <t < T, k > 3R,

C t
czwriy s [ sGrysdiedr
riVe(r)) Ji—4r? JBy, ()

=

C| ! /
- Zi(z,t;y,8)dV(2) dt
r12 mingep, V. (r1) 1—4r} IM

4C| —
<—— VxeBgr, Hh=<t<T

mingep, V(1)
where r| = min(1/2, \/t; — 5/4). Hence the sequence {Z; (-, -; y, s)} are uniformly bounded
on By x [#1, T] for any s < t; < T, k > 3R. By (1.23) and the parabolic Schauder estimates
[LSU] the sequence {Z;} is uniformly bounded in C># (B x [t1, T]) for some 8 € (0, 1) for
anys <t; < T,k >3R.

Let {k;}7°, be a sequence of positive integers such that k; — oo as i — oo. Then by
the Ascoli Theorem and a diagonalization argument the sequence {Z}, }7°, has a subsequence
which we may assume without loss of generality to be the sequence itself which converges
uniformly on every compact subset of M x (s, T] to some solution 2(-, - y,s) of (1.21) in
M x (s, T]as k — oo.

By the construction of Z(x, ¢; y, s) in [CTY] Gy increases monotonically to Z as k —
o0o. Let0 < s <t < T. By the maximum principle,

Gy (x,t;y,8) < Zy(x,t;y,8) Vx,ye By, 0<s<t<T, ieZt (1.25)

= Z(x,t;y,5) < Z(x,t;y,5) Vx,yeM, 0<s<t<T asi—>oo. (126
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By (1.24) and (1.25),VO0 <s <t < T,

/ Gy (x,t;y,8)dVi(x) < / Zi(x,t;y,8)dVi(x) <1 Vk; > R>1
Br Br

= Z(x,t;y,s)dV,(x)f/ Zx,t;y,5)dVi(x) <1 YR>1 asi— oo
Br Br

=>/ Z(x,t;y,s)dV,(x)f/ Zx,t:y,8)dVi(x) <1 as R — 0o
M M
(1.27)

By Lemma 5.1 of [CTY],
/MZ(x,t;y,s)dV,(x)zl VyeM, 0<s<t<T. (1.28)
By (1.26), (1.27), and (1.28),
/MZN(x, t;y,s)dVi(x) = /MZ(x, t;y,8)dViix) =1 VyeM, 0<s<t<T

=>Z~(x,t;y,s)EZ(x,t;y,s) Vx,yeM, 0<s<t<T.

Since the sequence {k;} is arbitrary, Z(x,t, y, s) converges to Z(x,t, y,s) uniformly on
every compact subset of M x (s, T'] as k — oo.

CASE2: n=2

Let i be the standard metric on the 2-sphere S? with constant scalar curvature 1. Then
(S2, h(1)), h = (hep), 0 <t < T, with h(t) = (1 + t)hg is the solution of the backward
Ricci flow on §2 (P. 65 of [MT]). Consider the manifold M = M x S? with metric ‘g given
by Gij = Gij> Jup = haps Gia = Gui = 0. Then (M, '7) satisfies the backward Ricci flow on
[0, T'] with uniformly bounded Riemannian curvatures on [0, T].

Hence as before there exist constants C» > 0, C3 > 0, such that

1. - - o~
C—g(O) <g@®) <Cg(0) in M x[0,T]
12 (1.29)
C—d\7 <dV, < C3dV in M x [0, T]

3

where d \7, is the volume element of M with respect to the metric §(¢) and d V=d Vg . For
anyx,y € M,x',y € 82, let

ZNk(x, X9, 9,8 = Z(x, t;y,5) YO<s<t<T.
Since Z; satisfies (1.21),
% Zx = A 2k — RZr  in By x 82 x (5, T). (1.30)
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Then by Lemma 3.1 of [CTY], (1.24), (1.29) and (1.30), there exists a constant C4 > 0 such
that forany0 <s <1 < T,k > 3R,

5 C ! ~ ~
Ze(x, x5 9,55) 2~—4/ /N Zi(z,t;y, ¥, 9)dV (2) dt
ri Vi) (1) Ji—ard By, (ex)

c, f
<= Zi(w, t; y, s)dV:(w) dt
Vi o (r1) 1—4r2) By
4C4/¥ o /A 2
<=~—— Vx,yeBr,x,y eSS, n<t<T
V(x,x/)(rl)
4C)
= Zr(x,t;y,5) < — = VxeBr, (1 <t=<T (1.31)
mlnwegk V(w,x’)(rl)
x'eS?

where r| = min(1/2, /] — s/4), §2r1 (x, x") is the geodesic ball of radius 2r; and center
(x, x') in M with respect to the metric §(0) and V(x,x/) (r1) is the volume of 1§r1 (x, x") with
respect to the metric §(0). Hence the sequence {Zx (-, -; y, s)}72 are uniformly bounded on
Bgr x[t,T] foranys <t < T,k > 3R.

By a similar argument the sequence {G (-, -; y, s)}72; are uniformly bounded on BR x
[t1, T]forany s < t; < T, k > 3R. Then by the same argument as in [CTY], G increases
monotonically to Z as k — oo and Z(x,t; y, s) satisfies (1.28). By (1.28), (1.31), and
an argument similar to case 1, Zi(x,t; y, s) converges to Z(x,t; y,s) uniformly on every
compact subset of M x (s, T'] as k — oo and the theorem follows.

COROLLARY 1.5. Let (M, g(t)),0 <t <T,and Z(x,t;y,s),x,y € M,0 <s <
t < T, beasin Theorem 1.4. Suppose Z?(x, t;y,s) is a fundamental solution of the forward
conjugate heat equation which satisfies (1.21), (1.22) and

Yy € M, max / g(x,t; y,8)dVi(x) <o(R) YO<s<T as R— o0, (1.32)
Bgr

s<t<T
then

g(x,t;y,s)EZ(x,t;y,s) Vx,yeM, 0<s<t<T. (1.33)
PROOF. By (1.32) and an argument similar to the proof of Lemma 5.1 of [CTY],
/ Z(x,t;y,5)dVi(x) =1 VyeM, 0<s<t<T. (1.34)
M
Let G be as in the proof of Theorem 1.4. By the maximum principle,
Gr(x,t;y,s) §§(x,t;y,s) Vx,ye By, 0<s<t<T, keZt. (1.35)

Since Z satisfies (1.28), by (1.34), (1.35) and an argument similar to the proof of Theorem
1.4 the corollary follows.
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THEOREM 1.6. Let (M, g(t)),0 <t <T,and Z(x,t;y,5),x,ye M,0<s <t <
T, be as in Theorem 1.4. Let ZN(x, t;y,s) be a fundamental solution of the forward conjugate
heat equation which satisfies (1.21) and (1.22). Then (1.33) holds if and only if there exist
constants C > 0 and D > 0 such that

~ C 2y
Z(x,t;y,8) < —————¢ D9 VO<s<t<T. (1.36)

Vy(Vt —s)

PROOF. The case (1.33) implies (1.36) was proved in [CTY]. Hence we only need to
show that (1.36) implies (1.33). Suppose there exist constants C > 0 and D > 0 such that
(1.36) holds. By the proof of Theorem 1.4 (1.9) holds for some constant 3 > 0. Then by
(1.9) and (1.36),

/Mg(x,t; v, 8$)dVi(x) < V)(m)/ e D(; v)de(x)

A .
0o Vy( t—s) D(t—3s))" ’
Let Vi, (r) be the volume of the geodesic ball of radius r in the space form with constant

sectional curvature —ko. Let § = </t —s anda = (r//t — 5) + 1. By (1.19) and the volume
comparison theorem [C],

Vy(r) - Vy(r + 4/t =) - Vi (r + 4/t =) _ Vi, (ad) _ Va2, ()
ViWt—s) 7 Vyt—=s) T Vit—ys) Vo (8) Vi, (8)

o Vorio WT) Vi (avT)

= . (1.38)
VieWT) Vi (VT)
Now
(lﬁ 1 —
Vig(@'T) = f (—sinh(%p)) dp < Cen=HVRTa

0 Vko

— ComIVRT (Z=+1D)

= CeC/ ’rﬂ . (139)

By (1.37), (1.38), and (1.39),
2

0o )
/ Z(x,t;y,s)th(x)SC/ e ~Di- 5>+C md(—)=C7<oo VO<s<t<T
M 0 D(t —s)

for some constant C7 > 0 depending on kg and 7. Hence by Corollary 1.5 (1.33) holds.
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2. Section 2

In this section we will give a detail proof of the convergence of fundamental solutions
of conjugate heat equation for Ricci flow which was used without proof by Perelman in his
proof of the pseudolocality theorem for Ricci flow [P].

THEOREM 2.1. Leta > 0and let (M x (—«, 0], xk, gk (t)) be a sequence of pointed
Ricci flow (0.1) where each My is either a closed manifold or a non-compact manifold with
bounded curvature such that (Mg, gx(t)) is complete for each —a < t < 0. Suppose

|Rmg|(x, 1) < C1 Vx € Bi(xp, Ap), —a <t <0, keZt Q2.1

for some constant C1 > 0 and sequence {A}, Ay — 00 as k — 00, and
(Mg x (—a, O], xg, gr(1))

converges in the C*-sense to some pointed Ricci flow (M x (—a, 0], X0, goo) as k — 00
where By (xk, Ax) = Bg,0)(xk, Ax). That is there exists an exhausting sequence Uy C Uz C
- C M of open sets each containing x» and each with compact closure in M and dif-
feomeomorphisms @y of Uy, to open sets Vi of My such that @y (xs0) = xx Yk € ZT and the
pull-back metric @} (gi) converges uniformly to g, on every compact subset of M x (—a, 0]
as k — oo.
If uy satisfies the conjugate heat equation,

ur + At — Rginu =0 2.2)
in My x (—a, 0) with
lim u(x, 1) = 8y,
t /0
where A = Ag. ), then @] (ug) will converge uniformly on every compact subset of M x
(—a, 0) to the minimal fundamental solution u of the conjugate heat equation

u; + Agoo(,)u — Rgoo(,)u =0 2.3)

of (M, go) in M x (—a, 0) with
Limu(x, t) = 6xy 2.4)
t,/0

as k — oo.

PROOF. For simplicity we will write B, (x), Vi, V,d Vk’ ,dVy, for By (0)(x, 1), Volg, 0),

Volg 0)> Vg 1), and d Vg (1) respectively. We also let dVy = d Vko. Note that ux > 0 in
My x (—a, 0) and ([CTY])

/uk(y,t)de’(y)zl V—a<t<0, keZ'. (2.5)
My
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Since g satisfies (0.1) in My x (—a, 0], by (2.1) there exists a constant C; > 1 such that

1
C—gk(x,S) < g(x,1) < Cagr(x,s) Vx € Be(xk, Ap), —a <s, t=<0, keZt
2

1

CdV,f(x)Sdet(x)SCde,f(x) Vx € Bi(xp, Ap), —a <s, t<0, keZt.
2

(2.6)

Let r¢(x, y, t) be the geodesic distance between x, y € Mj with respect to the metric g ()
and let ry(x, y) = ri(x, y,0). Let r(x, y) be the geodesic distance between x, y € M with
respect to the metric goo(0). Let R > 1, —a < 1 < t» < 0, and let r1 = min(1/2, \/—12/4).
We choose ka € Z such that Bgi7(xo0) C Uy, and Ax > 64/C2R forall k > kﬁ. Then by
(2.6),

1
re(x,y,8) <re(x,y, 1) </ Corp(x, y,s)
VG 2.7

Vx,y € Br(xg,2R), —a <5, t<0, k>kj.

Since m X [t1, t2] is compact, there exist
21,22, ++-,2m € BR(Xxx0), S1, 52, ..., 8m € [, 12]
such that
Br(xoo) x [11.12] C UJ_ By () % [s;. 5, +rd). (2.8)

Let z]; = Py (z;). Since CDZ‘ (gr) converges uniformly to goo On Bag (x00) X [t1,0] as k — oo,

there exists kK, > kj such that forany k > k), j =1,...,m,

Pr(Br(xe0)) C Bi(xk, R+ (1/2))
(B, /2c;z)) C B(ds, r1/J/C2) (2.9)
‘Pk(B%](Zj)) - Bk(zlj, r).

By (2.9),

deB . R+(1/2) Yj=1....m, k=k (2.10)

By (2.7) and (2.10),

_1
B, Cy ) CBLGE, ) v <s, 120, k2K, @.11)

j=1....m, O<r<rr.

Let {k;}72, C Z be a sequence such that k; — oo as i — 0o0. We now divide the proof into
two cases.
CASEl: n=>3
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By (2.1), (2.2), (2.5), (2.6), (2.7), (2.9), (2.10), (2.11) and an argument similar to the
proof of Lemma 3.1 of [CTY] and Theorem 3.1 of [KZ] and there exists a constant C3 > 0

such that for any x & Be(<f, ), s <1 < sj+rf k= kp j=1.....m,
C3 Sj+4r12
ke = - / / ey, dVi(ydr
r%Vk(Bk(Z];, C, *r1)) 7% Bi(zh,2r1)
2
CC3 sj+4r]
= 1 / / ) ur (x, )d Vi (y)dt
r%Vk(Bk(Z];, C, *r1)) 7% Bi(zh,2r1)
4C,C3

= : (2.12)
Vor g0 (B, 3c,(2)))

Since @ (gx) converges uniformly to goo 0n Bag(xe0) X [t1, 0] as k — oo, there exist kj > &,
and a constant C4 > 0 such that

Vorguo) (B, yac;(2j)) = Ca Yk = ky, j=1,....m. (2.13)
By (2.8), (2.9), (2.12) and (2.13),

4C>C [—
a>,f(uk>(y,r>s—g 3 Wy eBr(xo). h<t<t, k>k. (2.14)
4

Hence the sequence {®}/ (u)}72 | are uniformly bounded on Bg(xoo) X [t1, £2] for any —a <

1 < th < 0. Since cD,f(uk) satisfies the conjugate heat equation on Bgr(xx) X (—«, 0), by
(2.2) and the injectivity radius estimates of [CLY] and the uniform convergence of @ (gx) to
Joo ON every compact subset of M x (—«, 0] as k — 00, one can apply the parabolic Schauder
estimates of [LSU] to conclude that forany R > 1l and —a <] < <0 {q)]f (uk)},fi] are
uniformly bounded in C2B(Br(xs0) X [11, 12]) for some B € (,1).

CASE2: n=2

By considering M = M x §% and using an argument similar to the proof of Theorem 1.4
and case 1 one can also conclude that whenn = 2, forany R > land —a <t <t <0
{®] (ur)}72; are uniformly bounded in C2P(Br(xs0) X [t1, 12]) for some B € (0, 1).

Hence by case 1 and case 2, the Ascoli Theorem and a diagonalization argument

{@,fi (ug;)}:2, has a subsequence which we may assume without loss of generality to be the se-

o
i=1

to a solution u of the conjugate heat equation of (M, go) in M X (—a, 0) as i — oo.

quence {cD,fi (u; )22, itself that converges uniformly on every compact subset of M x (—«, 0)
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By (2.1), (2.6), (2.7), and an argument similar to the proof of Theorem 5.1 and (5.2) of
[CTY], there exist constants C > 0 and D > 0 such that

C _ e’
up(x,t) < ——— ¢ DIl Vx € By(xg, R), —a <t < 0, k > kA
Vi (Bi (e, +/TTD) ’
r(x.x00)%
sux,t) < —— e DIl VxeM,—a<t<0 as k=ki »> 0.
V(B /1(*o0))
(2.15)

Let ¢ € C§°(M). Then supp ¥ C Bg, (xo0) for some constant Ry > 0. Choose kj > k% such
that Bg, (xoo) C Uy forall k > k). Let

Y@ () if x e Vi
0

o = i = | gV

Then ¥y € C(‘)X’(Mk) for all k > k‘/‘ and Y (xx) = w(ék_l(xk)) = Y (xs0). Lett) € (—«, 0).
Then by (0.1), (2.2) and (2.5), V1 <t < 0,k >k,

VM ;i) dVay gy — 1ﬁ(xoo)‘ = /M uryed Vi — Yk (xe)

k
! duy
= // ¢k<——ng(;)uk)detdt
0JMmy Jat
t

= / kakudektdt
0 ‘

My
t
= // ukAkl//dektdt
0 J My
< maXIAkl/fkl(/ udek'>|t|
My
<t max [Agr (g ¥l (2.16)
B, (xe0) X[#1,0]
Letting k — oo in (2.16),
‘/ updV(t) — ¥(xo0)| < It max [Agen¥] Vi1 <t <0
M Br, (roo) x[11,0]

:>tli/n(1)/Mm//dV(t) = Y(xs) ast— 0.

Hence u satisfies (2.3) in M x (—«, 0) and (2.4) holds. By (2.15) and Theorem 1.6 u is the
unique minimal fundamental solution of the conjugate heat equation (2.3) in M X (—«, 0)
which satisfies (2.4). Since the sequence {k;}7°, is arbitrary, @ (ux) converges uniformly on
every compact subset of M x (—a, 0) to the minimal fundamental solution of the conjugate
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heat equation of (M, goo) in M x (—«, 0) which satisfies (2.4) as k — oo and the theorem
follows.
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