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Abstract. It is known that there exists a time periodic solution of the Navier-Stokes equations with Dirichlet
boundary conditions satisfying so-called stringent outflow condition (SOC). In this paper we will show the existence
of periodic solutions of the Navier-Stokes equations with Dirichlet boundary conditions satisfying so-called general
outflow condition (GOC).

1. Introduction

The purpose of this paper is to show that for a bounded domain in R2 the nonstationary
Navier-Stokes equations with the Dirichlet boundary conditions has a time periodic solu-
tion. H. Morimoto [13] obtained the periodic solution with the time-independent Dirichlet
boundary conditions. In this paper we treat such a problem with the time-dependent Dirichlet
boundary conditions.

Let Ω be a bounded domain in R2. The domain Ω has a smooth boundary ∂Ω .
Γ0, Γ1, . . . , ΓJ are connected components of ∂Ω . The domain Ω is filled with an incom-
pressible viscous fluid. We consider the Navier-Stokes equations

∂u

∂t
−∆u+ (u · ∇)u+ ∇p = f in (0, T )×Ω , (1.1)

divu = 0 in (0, T )×Ω (1.2)

with the Dirichlet boundary conditions

u = β on (0, T )× ∂Ω , (1.3)

where u = (u1(t, x), u2(t, x)) and p = p(t, x) are the velocity and pressure of the fluid
motion in Ω respectively, f = (f1(t, x), f2(t, x)) is the prescribed external force and β =
(β1(t, x), β2(t, x)) is the prescribed function defined on ∂Ω . The boundary condition β must
satisfy ∫

∂Ω

β(t) · ndσ = 0 (∀t ∈ (0, T )) , (1.4)
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where n is the unit outer normal to ∂Ω . We call the condition (1.4) “General Outflow Condi-
tion” (GOC). If β satisfies∫

Γj

β(t) · ndσ = 0 (∀t ∈ (0, T ), 0 ≤ j ≤ J ) , (1.5)

the condition (1.5) is called “Stringent Outflow Condition” (SOC). We set the periodic con-
dition

u(0) = u(T ) in Ω . (1.6)

In this paper we suppose that the domain Ω satisfies the following assumption.

ASSUMPTION 1.1. A domain Ω is bounded, smooth and symmetric with respect to
the x2-axis and the boundary ∂Ω has connected components Γ0, Γ1, . . . , ΓJ and each Γj (0 ≤
j ≤ J ) intersects with the x2-axis.

In this paper we use following rules for function spaces. Let Y be a function space. Y S is
the set of Y functions symmetric with respect to the x2-axis, that is to say, for a vector function
u = (u1, u2) u1 is an odd function and u2 is an even function with respect to x2-axis. Yσ is
the set of Y functions ϕ such that divϕ = 0. Y ′ is the dual space of Y .

C∞
0 (Ω) is the set of all real smooth vector functions with a compact support inΩ . V(Ω)

and H(Ω) are the completion of C∞
0,σ (Ω) with respect to the usual H1(Ω) and L2(Ω) norm

respectively. H1
0(Ω) is the completion of C∞

0 (Ω) with respect to the H1(Ω) norm. ‖ · ‖2 and

(·, ·) denotes the L2(Ω) norm and inner product on Ω respectively. H1
0(Ω), H1,S

0 (Ω), V(Ω)
and VS(Ω) are Hilbert spaces with respect to the inner product ((u, v)) = (∇u,∇u).

Let γ ∈ L(H1(Ω),L2(∂Ω)) be the trace operator. The space H
1
2 (∂Ω) denotes

γ (H1(Ω)). H
1
2 (∂Ω) is equipped with the norm ‖g‖

H
1
2 (∂Ω)

= inf
γu=g ,u∈H1(Ω)

‖u‖H1(Ω).

Let X be a Banach space. The space C([0, T ];X), C1([0, T ];X), L2((0, T );X) and
L∞((0, T );X) are the usual Banach spaces. If u belongs to Cπ([0, T ];X), u ∈ C([0, T ];X)
satisfies a periodic condition u(0) = u(T ) in X. C1

π([0, T ];X) is similar to Cπ([0, T ];X).
Our definition of a time periodic weak solution of the Navier-Stokes equations is as

follows.

DEFINITION 1.1. Suppose that Ω satisfies Assumption 1.1, β ∈ C1
π ([0, T ];

H
1
2 ,S(∂Ω)) satisfies (GOC) and f belongs to L2((0, T ); (VS(Ω))′).

A measurable function u = u(t, x) is called a weak solution of the Navier-Stokes equa-

tions (1.1), (1.2), (1.3), if u belongs to L2((0, T ); H1,S
σ (Ω))∩L∞((0, T ); L2,S(Ω)), satisfies

−
∫ T

0
(u,ϕ)ψ ′dt +

∫ T

0
{(∇u,∇ϕ)+ ((u · ∇)u,ϕ)}ψdt

=
∫ T

0
(VS(Ω))′ 〈f ,ϕ〉VS(Ω)ψdt (ϕ ∈ VS(Ω), ψ ∈ C∞

0 (0, T )) . (1.7)
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and

u|∂Ω = β on (0, T )× ∂Ω (1.8)

in the trace sense. The weak solution u is called a time periodic solution of the Navier-Stokes

equations (1.1), (1.2), (1.3), (1.6), if u belongs to Cπ([0, T ]; L2,S(Ω)). We call u “a time
periodic weak solution of the Navier-Stokes equations (1.1), (1.2), (1.3), (1.6).”

Hereafter we represent (VS(Ω))′〈·, ·〉VS (Ω) as 〈·, ·〉. Our main result is a following.

THEOREM 1.1. Suppose thatΩ satisfies Assumption 1.1, β ∈ C1
π([0, T ]; H

1
2 ,S(∂Ω))

satisfies (GOC) and f belongs to L2((0, T ); (VS(Ω))′).
Then there exist time periodic weak solutions u of the Navier-Stokes equations (1.1),

(1.2), (1.3), (1.6).

REMARK 1.1. When the boundary condition β does not depend on time (β ∈
H

1
2 ,S(∂Ω)) and satisfies (GOC), H. Morimoto [13] obtained time periodic weak solutions

of the Navier-Stokes equations in the same domains. We use a following Theorem 2.2 for
extensions of boundary conditions. She used Theorem 1 in H. Fujita [6] or Theorem 1 in
H. Morimoto [14].

C. J. Amick [2] proved that there exist symmetric solutions of the stationary Navier-
Stokes equations with the symmetric Dirichlet boundary conditions using a contradiction
argument for a two dimensional bounded domain Ω satisfying Assumption 1.1. Under the
same conditions as C. J. Amick [2], H. Fujita [6] proved the existence of symmetric solutions
of the stationary Navier-Stokes equations with the symmetric Dirichlet boundary conditions
using “the Leray Inequality”. We know that “the Leray Inequality” does not hold true in
general context. See A. Takeshita [15]. But we know that there exist the solutions of the
nonstationary Navier-Stokes equations with the Dirichlet boundary conditions. See for exam-
ple O. A. Ladyzhenskaya [10]. V. I. Yudovi č [19] proved that there exist periodic solutions
of the Navier-Stokes equations under (SOC). S. Kaniel and M. Shinbrot [9] studied the
uniqueness of the periodic solution of the Navier-Stokes equations with the 0 external force in
three dimensional bounded domains. In infinite channels H. Beirão da Veiga [3] proved that
there exist periodic solutions of the Navier-Stokes equations with a given time periodic flux.
J. L. Lions [11] considered the time periodic problem for the Navier-Stokes equations with the
homogeneous boundary conditions. A. Takeshita [16] studied the existence and uniqueness
of periodic solutions of the Navier-Stokes equations in two dimensional bounded domains.
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2. Preliminary

2.1. Some Lemmas. We use following Lemmas.

LEMMA 2.1 (the Poincaré inequality). Let Ω be a bounded domain. Then there exists
a constant C(Ω) depending only on Ω such that the inequality

‖u‖2 ≤ C(Ω)‖∇u‖2 (u ∈ H1
0(Ω))

holds.

LEMMA 2.2 (R. Temam[17]). For all u ∈ H1
0(Ω), the inequality

‖u‖2
L4(Ω)

≤ 2
1
2 ‖u‖2‖∇u‖2

holds.

For vector functions u, v and w, we define

((u · ∇)v,w) =
∫
Ω

2∑
i,j=1

ui
∂vj

∂xi
wjdx .

Then the following Lemma holds.

LEMMA 2.3 (R. Temam [17]). The inequality and the equalities hold.

|((u · ∇)v,w)| ≤ C‖∇u‖2‖∇v‖2‖∇w‖2 (u, v, w ∈ H1
0(Ω)) ,

((u · ∇)v,w) = −((u · ∇)w, v) (u ∈ V(Ω), v, w ∈ H1(Ω)) ,

((u · ∇)v, v) = 0 (u ∈ V(Ω), v ∈ H1(Ω)) .

LEMMA 2.4 (G. P. Galdi [7]). For all ε > 0 there exist an N ∈ N and ξ j ∈
L2,S(Ω)(j = 1, . . . , N) such that the following inequality holds true.

‖ϕ‖2
2 ≤

N∑
j=1

|(ϕ, ξ j )|2 + ε‖∇ϕ‖2
2 (ϕ ∈ H1,S

0 (Ω)) . (2.1)

This kind of inequality is called “the Friedrichs inequality” in general. The inequality (2.1)
is a symmetric version of “the Friedrichs inequality”.

LEMMA 2.5 (K. Masuda [12]). For any ε > 0 and w3 ∈ C([0, T ]; L2,S(Ω)), there

exist a constant M , an integer N and functions ψj ∈ L2,S(Ω) (j = 1, . . . , N) such that the
inequality holds true.∫ T

0
|((w1 · ∇)w2,w3)|dt ≤ε

∫ T

0
(‖∇w1‖2

2 + ‖∇w2‖2
2 + ‖w1‖2‖∇w2‖2)dt

+M

N∑
j=1

∫ T

0
|(w1,ψj )|2dt (w1,w2 ∈ L2((0, T );VS(Ω))) .
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This kind of inequality appears in K. Masuda [12], p. 632, Lemma 2.5. The inequality is its
two dimensional and symmetric version.

2.2. Extensions of boundary conditions. We use “the Leray Inequality” used for the
proof of the existence of the periodic solutions of the Navier-Stokes equations.

THEOREM 2.1. Suppose that Ω is a bounded domain with a smooth boundary ∂Ω

and β ∈ H
1
2 (∂Ω) satisfies (SOC).

Then for any ε > 0, there exist extensions bε ∈ H1
σ (Ω) of β satisfying

|((v · ∇)v, bε)| < ε‖∇v‖2
2 (v ∈ V(Ω)) . (2.2)

See H. Fujita [5] or O. A. Ladyzhenskaya [10] for the proof of Theorem 2.1. The estimate

(2.2) is called “the Leray Inequality”. But if a given function β ∈ H
1
2 (∂Ω) satisfies (GOC)

(not (SOC)), we cannot make an extension b ∈ H1
σ (Ω) of β satisfying “the Leray Inequal-

ity”. See A. Takeshita [15]. By using “the Leray Inequality” we can show the existence of a
weak solution of the stationary Navier-Stokes equations with the Dirichlet boundary condi-
tions satisfying (SOC). The following Corollary is the nonstationary, periodic and symmetric
version of Theorem 2.1.

COROLLARY 2.1. Suppose that Ω satisfies Assumption 1.1 and β ∈ C1
π ([0, T ];

H
1
2 (∂Ω)) satisfies (SOC).

Then there exists an extension g ∈ C1
π ([0, T ]; H1

σ (∂Ω)) of β satisfying

|((v · ∇)v, g(t))| ≤ ε‖∇v‖2
2(∀t ∈ [0, T ], v ∈ V(Ω)) , (2.3)

H. Fujita [6] proved that if a domain Ω satisfies Assumption 1.1, symmetric functions
defined on the boundary with (GOC) have the extensions which satisfy symmetric version of
“the Leray Inequality”. The following Theorem 2.2 is the nonstationary and periodic version
of Theorem 1 in H. Fujita [6] or Theorem 1 in H. Morimoto[14].

THEOREM 2.2. Suppose that Ω satisfies Assumption 1.1 and β ∈ C1
π ([0, T ];

H
1
2 ,S(∂Ω)) satisfies (GOC). Then for any ε > 0, there exist extensions bε ∈ C1

π ([0, T ];
H1,S
σ (∂Ω)) of β satisfying

|((v · ∇)v, bε(t))| < ε‖∇v‖2
2 (∀v ∈ VS(Ω), t ∈ [0, T ]) . (2.4)

The proof of Theorem 2.2 is similar to H. Fujita [6]. Theorem 2.2 is a special case where
a given function on ∂Ω satisfying (GOC) is extended toΩ satisfying “the Leray Inequality”.

Before stating the proof of Theorem 2.2, we prove the proof of Corollary 2.1.

PROOF OF COROLLARY 2.1. We know that for a fixed t ∈ [0, T ] and β(t) ∈ H
1
2 (∂Ω)

there exist a b(t) ∈ H1(Ω) such that

b(t) =β(t) on ∂Ω ,

‖b(t)‖H1 ≤C0‖β(t)‖
H

1
2
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holds true, where the constant C0 is independent of t ∈ [0, T ]. For example, we solve the
Laplace equation

−∆u = 0 in Ω ,

u =β(t) on ∂Ω .

For the proof, See D. Gilbarg and N. S. Trudinger [8], Theorem 8.6 and Corollary 8.7.
Then we have ∫

Ω

div b(t)dx =
∫
Ω

β(t) · nds = 0 .

Then there exists a b1(t) ∈ H1
0(Ω) such that

div b1(t) = div b(t) in Ω ,

‖b1(t)‖H1 ≤ c0‖β(t)‖
H

1
2

holds true, where the constant c0 does not depend on t ∈ [0, T ]. For the proof, See G. P. Galdi
[7], section III.3 Theorem 3.1. We set

ψ(t) = b(t)− b1(t) in Ω

Then we obtain that ψ(t) ∈ H1
σ (Ω),

ψ(t) = β(t) on ∂Ω ,

‖ψ(t)‖H1 ≤ c‖β(t)‖
H

1
2
.

Furthermore we obtain that ψ̃(t) ∈ H1
σ (Ω),

ψ̃(t) = β t (t) on ∂Ω ,

‖ψ̃(t)‖H1 ≤ c‖β t (t)‖
H

1
2

by using the same method as above. It is easy to obtain that

‖ψ(t)− ψ(s)‖H1 ≤ c ‖β(t)− β(s)‖
H

1
2

‖ψ̃(t)− ψ̃(s)‖H1 ≤ c ‖β t (t)− β t (s)‖
H

1
2

holds true. Therefore ψ(t) and ψ̃(t) is continuous with respect to t on [0, T ] in H1(Ω). For
all h ∈ R ∥∥∥∥ψ(t + h)− ψ(t)

h
− ψ̃(t)

∥∥∥∥
H1

≤ c

∥∥∥∥β(t + h)− β(t)

h
− β t (t)

∥∥∥∥
H

1
2

(2.5)

holds true. If h goes to 0, we obtain that the right hand side of (2.5) goes to 0. Consequently

ψ = ψ(t) has the derivative ψ̃ on [0, T ] in H1(Ω). Since it supposed that β(0) = β(T )

in H
1
2 (∂Ω), it is easy to obtain that ψ(0) = ψ(T ) in H1(Ω). Therefore we have ψ ∈

C1([0, T ]; H1
σ (Ω)).
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For a fixed (t, x0) ∈ [0, T ] ×Ω , we define functions φ and φ̃ as

φ(t, y) =
∫ y

x0

ψ1(t, x)dx2 − ψ2(t, x)dx1, y ∈ Ω ,

φ̃(t, y) =
∫ y

x0

ψt,1(t, x)dx2 − ψt,2(t, x)dx1, y ∈ Ω .

Since divψ(t) = divψ t (t) = 0 in Ω , φ and φ̃ are independent of path of integration. We set

ϕ(t, x) = φ(t, x)− 1

|Ω |
∫
Ω

φ(t, y)dy, x ∈ Ω ,

ϕ̃(t, x) = φ̃(t, x)− 1

|Ω |
∫
Ω

φ̃(t, y)dy, x ∈ Ω .

Then an easy calculation yields

rotϕ(t) = (
∂

∂x2
ϕ(t),− ∂

∂x1
ϕ(t)) = ψ(t) in Ω ,

rotϕ̃(t) = ψ t (t) in Ω .

Since ∫
Ω

ϕ(t, x)dx = 0,
∫
Ω

ϕ̃(t, x)dx = 0

holds true, the Poincaré inequality holds true for ϕ(t) and ϕ̃(t). Of course ‖∇ϕ(t)‖2 =
‖ψ(t)‖2 and ‖∇2ϕ(t)‖2 = ‖∇ψ(t)‖2 holds true and ϕ is periodic in H 2(Ω). Consequently
the inequalities

‖ϕ(t)− ϕ(s)‖H 2 ≤C‖ψ(t)− ψ(s)‖H1 ,

‖ϕ̃(t)− ϕ̃(s)‖H 2 ≤C‖ψ t (t)− ψ t (s)‖H1 ,∥∥∥∥ϕ(t + h)− ϕ(t)

h
− ϕ̃(t)

∥∥∥∥
H 2

≤C
∥∥∥∥ψ(t + h)− ψ(t)

h
− ψ t (t)

∥∥∥∥
H1

holds true, where the constant C is independent of t ∈ [0, T ]. Therefore we obtain ϕ ∈
C1
π([0, T ];H 2(Ω)) and the equality and inequalities

rotϕ =β on [0, T ] × ∂Ω

‖ϕ(t)‖H 2 ≤C‖β(t)‖
H

1
2
,

‖ϕt (t)‖H 2 ≤C‖β t (t)‖
H

1
2
.

Let γ > 0 and 0 < κ < 1
4 . We suppose that j ∈ C∞

0 (0,∞) satisfies

j (s) =



1

s
(2κγ < s < (1 − 2κ)γ )

0 (0 ≤ s ≤ κγ, (1 − κ)γ ≤ s)
,
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0 ≤ j (s) ≤ 1

s
(s ∈ (0,∞)) .

We set

h(τ) = 1 −
∫ τ

0 j (s)ds∫ ∞
0 j (s)ds

(τ ≥ 0) .

Then for any ε > 0 there exists κ > 0 such that

τ |h′(τ )| < ε (∀τ ∈ (0,∞))

holds true. We set

ρ(x) = dist(x, ∂Ω) x ∈ Ω ,

g(t, x) = rot(h(ρ(x))ϕ(t, x)) (t, x) ∈ [0, T ] ×Ω . (2.6)

Then (2.3) holds true. q.e.d.

Using Corollary 2.1, we prove Theorem 2.2.

PROOF OF THEOREM 2.2. The proof of First step and Second step are same as
H. Fujita[6]. But for the convenience of the readers, we follow his argument.

First step

We suppose that 0 < κ < 1
2 , ξκ belongs to C∞

0 (R) such that

ξκ (s) = ξκ(−s) (s ∈ R) ,

0 ≤ ξκ (s) ≤ 1

|s| (∀s ∈ R\{0}) ,

ξκ (s) = 1

s
(κ ≤ |s| ≤ 1

2
) ,

ξκ (s) = 0 (1 ≤ |s|) .
We set

γκ =
∫

R
ξκ (s)ds .

The constant γκ is finite because the support of ξκ is contained in (−1, 1). If κ goes to 0, then
γκ goes to infinity. We define

η(s) = 1

γκ

1

δ
ξκ

(
s

δ

)
(s ∈ R)

for any δ > 0. Then η belongs to C∞
0 (R), the support of η is included in [−δ, δ], η is positive

on R, η is symmetric with respect to the origin and∫ δ

−δ
η(s)ds = 1 .
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Furthermore, for any s ∈ R

|s|η(s) ≤ |s| 1

γκ

δ

|s| = 1

γκ
→ 0 (κ → 0)

holds true, that is to say, |s|η(s) goes to 0 uniformly on R if κ goes to 0.
Second step
Let (0, yj ) and (0, y∗

j ) be the cross points of x2-axis and Γj (1 ≤ j ≤ J ). Without loss

of generality, we suppose y∗
j > yj (1 ≤ j ≤ J ) and yj−1 > yj , y∗

j−1 > y∗
j (2 ≤ j ≤ J ).

Let (0, y0) and (0, y∗
0 ) be the cross points of x2-axis and Γ0. Without loss of generality, we

suppose y∗
0 < y∗

j and yj < y0 for 1 ≤ j ≤ J . We choose a small δ1 > 0 such that the points

(0, yj + δ1)(1 ≤ j ≤ J ) is the inside of Γj . Then we define

Q = [−δ, δ] × R ,

Qj = [−δ, δ] × [y0 − δ1, yj + δ1] (j = 1, . . . , J ) ,

Kj = Qj ∩Ω .

Third Step
We set

µj(t) =
∫
Γj

β(t) · ndσ (j = 1, . . . , J, t ∈ [0, T ]) .

Then µj is a C1 class function on [0, T ] and periodic and satisfies

∫
Γ0

β(t) · ndσ = −
J∑
j=1

µj (t) (t ∈ [0, T ]) .

We set

b̃j (t, x) =
{
(0,−µj(t)η(x1)) in [0, T ] ×Kj

(0, 0) in [0, T ] × (Ω\Kj) .

We obtain that

div b̃j = 0 in [0, T ] ×Ω

and ∫
Γk

b̃j (t) · ndσ = µj(t)δjk (j, k = 1, . . . , J, t ∈ [0, T ])

holds true. By the same calculations as H. Fujita[6] we have

|((v · ∇)v, b̃j (t))| ≤ max
t∈[0,T ] |µj(t)| sup

x1

(|x1|η(x1))2
√

2‖∇v‖2
2

(v ∈ VS(Ω), j = 1, . . . , J, t ∈ [0, T ]) .
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We choose a parameter κ > 0 such that

max
1≤j≤J

max
t∈[0,T ]

|µj(t)|2
√

2 sup
x1

(|x1|η(x1)) <
2ε

J

holds true. Therefore

|((v · ∇)v, b̃j (t))| < ε

2J
‖∇v‖2

2 (v ∈ VS(Ω), j = 1, . . . , J, t ∈ [0, T ])

holds true. We set

b̃ =
J∑
j=1

b̃j in [0, T ] ×Ω

and

β̂ = β − b̃|∂Ω on [0, T ] × ∂Ω .

Then β̂ ∈ C1
π([0, T ]; H

1
2 ,S(∂Ω)) and satisfies (SOC). Using Corollary 2.1, there exists an

extension b̂ ∈ C1
π([0, T ]; H1,S

σ (Ω)) of β̂ satisfying

|((v · ∇)v, b̂(t))| < ε

2
‖∇v‖2

2 (v ∈ VS(Ω), t ∈ [0, T ]) .

We set

bε = b̂ + b̃ in [0, T ] ×Ω .

Then we obtain

bε ∈C1
π([0, T ]; H1,S

σ (Ω)) ,

bε =β on [0, T ] × ∂Ω ,

|((v · ∇)v, bε(t))| <ε‖∇v‖2
2 (v ∈ VS(Ω), t ∈ [0, T ]) .

q.e.d.

3. Proof of Theorem 1.1

In this section bε ∈ C1
π([0, T ]; H1,S

σ (Ω)) is the extension of β ∈ C1
π ([0, T ];

H
1
2 ,S(∂Ω)) established by Theorem 2.2 for ε satisfying 1 − 2ε > 0.

We suppose that {ϕk}k∈N is the basis in VS(Ω), satisfying (ϕj ,ϕk) = δjk . Let v0 be

HS(Ω), then there exists {ak} ⊂ R such that

v0 =
∞∑
k=1

akϕk .
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Set

v0m =
m∑
k=1

akϕk .

We look for a solution

vm(t, x) =
m∑
k=1

ck(t)ϕk(x)

to the ordinary differential equations

d

dt
(vm,ϕj )+ ((vm,ϕj ))+ ((vm · ∇)vm,ϕj )+ ((vm · ∇)bε,ϕj )+ ((bε · ∇)vm,ϕj )
= 〈f ,ϕj 〉 − (bε,t ,ϕj )− (∇bε,∇ϕj )− ((bε · ∇)bε,ϕj ) (j = 1, . . . ,m) (3.1)

with the initial condition

vm(0) = v0m . (3.2)

We know that the initial value problem (3.1)with (3.2) has one and only one solution cm(t) =
(cm1 (t), . . . , c

m
m(t)) on [0, T ].

Multiplying cj (t) to (3.1) and adding these equations with respect to j = 1, . . . ,m, we
obtain

1

2

d

dt
‖vm‖2

2 + ‖∇vm‖2
2 + ((vm · ∇)bε, vm) = 〈F , vm〉 , (3.3)

where 〈F ,ϕ〉 = 〈f ,ϕ〉 − (bε,t ,ϕ) − (∇bε,∇ϕ)− ((bε · ∇)bε,ϕ) (ϕ ∈ VS(Ω)). Using the
Leray Inequality (2.4), then we obtain

1

2

d

dt
‖vm‖2

2 + (1 − ε)‖∇vm‖2
2 ≤ 〈F , vm〉 , (3.4)

Integrating (3.4) on [0, t], the solution vm satisfies the estimates

‖vm(t)‖2
2 ≤ ‖v0‖2

2 + 4

ε

∫ T

0
L2(t)dt , (3.5)

where

L(t) = ‖f (t)‖
(VS)′ + ‖β t (t)‖

H
1
2

+ ‖β(t)‖
H

1
2

+ ‖β(t)‖2

H
1
2
.

Integrating (3.4) on [0, T ], the solution vm satisfies the estimates

(1 − 2ε)
∫ T

0
‖∇vm‖2

2dt ≤ ‖v0‖2
2 + 4

ε

∫ T

0
L2(t)dt . (3.6)

Let us show that (vm(t),ϕj ) is uniformly bounded and equicontinuous on [0, T ] with respect
to m. A simple calculation yields

|(vm(t),ϕj )− (vm(s),ϕj )|
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=
∣∣∣∣
∫ t

s

d

dτ
(vm(τ),ϕj )dτ

∣∣∣∣
≤

∫ t

s

|((vm,ϕj ))| + |((vm · ∇)vm,ϕj )| + |((vm · ∇)bε,ϕj )| + |((bε · ∇)vm,ϕj )|
+ |〈f ,ϕj 〉| + |(bε,t ,ϕj )| + |(∇bε,∇ϕj )| + |((bε · ∇)bε,ϕj )|dτ

≤
∫ t

s

(‖∇vm‖2 + 2
1
2 ‖vm‖2‖∇vm‖2 + C1‖∇vm‖2‖bε‖H1 + L(t))‖∇ϕj‖2dτ

≤ |t − s| 1
2 ‖∇ϕj‖

(
1

1 − 2ε
M2

1M2 +
∫ t

s

L2(τ )dτ

) 1
2

, (3.7)

where

M2
1 : = (‖v0‖2

2 + 4

ε

∫ T

0
L2(t)dt) ,

M2 : = 1 + 2
1
2M2

1 + C1Cε sup
t∈[0,T ]

‖β(t)‖
H

1
2
.

We obtain that {vm} is a bounded sequence in L∞((0, T );HS(Ω))∩L2((0, T );VS(Ω))
from (3.5) and (3.6). Therefore there exist a subsequence {vmk}k of {vm}m and some v ∈
L∞((0, T );HS(Ω)) ∩ L2((0, T );VS(Ω)) such that

vmk → v in

{
L∞((0, T );HS(Ω)) weak star
L2((0, T );VS(Ω)) weakly

(k → ∞) .

On the other hand, the Ascoli-Arzelà Theorem and the diagonal method assure that vmk con-

verges to v in the weak topology of L2(Ω). We can establish the convergence

vmk → v in L2((0, T ); L4(Ω)) strongly

by Lemma 2.4 (the Friedrichs inequality) and Lemma 2.2.
It is easy to prove that v satisfies

−
∫ T

0
(v,ϕ)φ′dt +

∫ T

0
{((v,ϕ))+ ((v · ∇)v,ϕ)+ ((v · ∇)bε,ϕ)+ ((bε · ∇)v,ϕ)}φdt

= (v0,ϕ)φ(0)+
∫ T

0
〈F ,ϕ〉φdt (ϕ ∈ VS(Ω), φ ∈ C∞

0 ([0, T )))

and

d

dt
(v,ϕ)+ ((v,ϕ))+ ((v · ∇)v,ϕ)+ ((v · ∇)bε,ϕ)+ ((bε · ∇)v,ϕ) = 〈F ,ϕ〉

(ϕ ∈ VS(Ω)) (3.8)

in the distribution sense on (0, T ), namely u = v + bε is the weak solution of
the Navier-Stokes equations. Since the terms except the first term of (3.8) belong to
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L2((0, T ); (VS(Ω))′), v has a weak derivative v′ ∈ L2((0, T ); (VS(Ω))′) and v belongs to
C([0, T ];HS(Ω)). Moreover we can show that v is unique.

Let us show that we can choose the initial value v0 ∈ HS(Ω) such that the weak solution
v of the initial value problem of the Navier-Stokes equations (3.8) is periodic. Let F be a
map from the initial value v0 ∈ HS(Ω) to the last value v(T ) ∈ HS(Ω), that is to say,

F; v0 ∈ HS(Ω) → v(T ) ∈ HS(Ω) (3.9)

We see that the fixed point of the map F is a periodic solution of the Navier-Stokes equations.
We use the Leray-Schauder Theorem in order to prove the existence of the fixed point. For
the theorem See D. Gilbarg and N. S. Trudinger[8], p.280, Theorem 11.3.

Firstly, we prove that the map F is compact. Suppose that {w0m} ⊂ HS(Ω) converges

weakly to w0 ∈ HS(Ω). We must show that there exists a subsequence {w0mk } such that

Fw0mk converge to Fw0 in HS(Ω). Let w and wm be weak solutions of the Navier-Stokes
equations (3.8) with the initial valuew0 andw0m respectively, that is to say,w andwm satisfy

d

dt
(w,ϕ)+ ((w,ϕ))+ ((w · ∇)w,ϕ)+ ((w · ∇)bε,ϕ)+ ((bε · ∇)w,ϕ) = 〈F ,ϕ〉

(ϕ ∈ VS(Ω)) , (3.10)

d

dt
(wm,ϕ)+((wm,ϕ))+((wm · ∇)wm,ϕ)+((wm · ∇)bε,ϕ)+((bε · ∇)wm,ϕ) = 〈F ,ϕ〉

(ϕ ∈ VS(Ω)) (3.11)

respectively. Subtracting the equation (3.11) from (3.10), we have

d

dt
(w − wm,ϕ)+ ((w − wm,ϕ))+ ((w · ∇)w,ϕ)− ((wm · ∇)wm,ϕ)

+ (((w − wm) · ∇)bε,ϕ)+ ((bε · ∇)(w − wm),ϕ) = 0 (ϕ ∈ VS(Ω)) . (3.12)

Substituting w − wm for ϕ and using the Leray inequality (2.4), then we obtain

1

2

d

dt
‖w − wm‖2

2 ≤ −(((w − wm) · ∇)w,w − wm) . (3.13)

Multiplying (3.13) by φ ∈ C∞
0 ((0, T ]) such that 0 ≤ φ ≤ 1 and φ(T ) = 1 and integrating on

(0, T ), then we obtain

‖w(T )− wm(T )‖2
2 ≤

∫ T

0
‖w − wm‖2

2|φ′| + 2|(((w− wm) · ∇)w,w − wm)|dt .

By Lemma 2.4, for any δ > 0 there exist an integer N1 and functions ξ j ∈ L2,S(Ω) (j =
1, . . . , N1) such that the inequality

∫ T

0
‖w − wm‖2

2|φ′|dt ≤ sup
[0,T ]

|φ′|
∫ T

0

N1∑
j=1

|(w − wm, ξ j )|2 + δ‖∇w − ∇wm‖2
2dt
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holds. By using Lemma 2.5, there exist a constant M , an integer N2 and functions ψj ∈
L2,S(Ω) (j = 1, . . . , N2) such that the inequality∫ T

0
|(((w − wm) · ∇)w,w − wm)|dt

≤ δ

∫ T

0
(‖∇w − ∇wm‖2

2 + ‖∇w‖2
2 + ‖w − wm‖2‖∇w‖2)dt

+M

N2∑
j=1

∫ T

0
|(w − wm,ψj )|2dt (3.14)

holds. The solution wm is a bounded sequence of L2((0, T );VS(Ω)) ∩ L∞((0, T );HS(Ω))

with respect tom, because the estimates (3.5) and (3.6) hold true with respect to wm andw0m

and ‖w0m‖2 is less than a certain constant which does not depend onm. There exist constants
M3 andM4 which do not depend onm such that the inequality

‖Fw0 − Fw0m‖2
2 ≤ M3

∫ T

0

N1∑
j=1

|(w − wm, ξ j )|2 +
N2∑
j=1

|(w − wm,ψj )|2dt +M4δ

holds true because Fw0 = w(T ). Consequently if wm converges to w uniformly on [0, T ] in

the weak topology of L2,S(Ω), then we obtain the map F is compact. Now it is easy to prove
that (wm,ϕj ) satisfies the estimate similar to (3.7). Therefore (wm,ϕj ) is equicontinuous on
[0, T ] with respect to m. Hence for any η > 0 there exist a δ1 > 0 and K0 such that for all
|t| ≤ δ1 and m ≥ K0

|(wm(t),ϕj )− (w0m,ϕj )| < η

3
,

|(w0m,ϕj )− (w0,ϕj )| < η

3
,

|(w0,ϕj )− (w(t),ϕj )| < η

3

hold and we obtain

|(wm(t)− w(t),ϕj )| < η (|t| ≤ δ1, m ≥ K0) .

Similarly we obtain that there exists a K1 such that for any t ∈ [δ1, 2δ1] and m ≥ K1

|(wm(t),ϕj )− (wm(δ1),ϕj )| < η

3
,

|(wm(δ1),ϕj )− (w(δ1),ϕj )| < η

3
,

|(w(δ1),ϕj )− (w(t),ϕj )| < η

3

hold true. So we obtain

|(wm(t)− w(t),ϕj )| < η (t ∈ [δ1, 2δ1], m ≥ K1) .
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If we repeat this process, we see that (wm,ϕj ) converges to (w,ϕj ) uniformly on [0, T ].
Therefore it is obvious that wm converges w uniformly on [0, T ] in the weak topology of

L2,S(Ω).
Secondly, we prove that there exists a constant ρ such that ‖w0‖2 ≤ ρ for allw0 ∈ H(Ω)

and σ ∈ [0, 1] satisfying w0 = σFw0. It is easy to obtain that

‖w0‖2 ≤ ‖Fw0‖2 . (3.15)

Let ϕ = w in (3.10). Then we obtain

1

2

d

dt
‖w‖2

2 + ‖∇w‖2
2 + ((w · ∇)bε,w) = 〈F ,w〉 .

Therefore the inequality

d

dt
‖w(t)‖2

2 + 2
1 − 2ε

C(Ω)2
‖w(t)‖2

2 ≤ C

2ε
L2(t) (∀t ∈ [0, T ]) (3.16)

holds true by using the Leray Inequality and the Poincaré inequality. Setting

α = 2
1 − 2ε

C(Ω)2
,

H =
∫ T

0

C

2ε
L2(t)eαtdt .

Multiplying the inequality (3.16) by eαt and integrating on [0, T ], we obtain the inequality

‖w(T )‖2
2 ≤ ‖w0‖2

2e
−αT + e−αTH .

By using (3.15), the estimate

‖w0‖2
2 ≤ e−αT H

1 − e−αT

holds true. Therefore we put

ρ2 := e−αTH
1 − e−αT

.

Then ‖w0‖2 is less than ρ, wherew0 ∈ HS(Ω) satisfies w0 = σFw0. Consequently the map
F has at least one fixed point by the Leray-Schauder Theorem.
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