$S C_{n}$-moves and the $(n+1)$-st Coefficients of the Conway Polynomials of Links

Haruko Aida MIYAZAWA

Tsuda College

Abstract. A local move called a C_{n}-move is related to Vassiliev invariants. It is known that two knots are related by C_{n}-moves if and only if they have the same values of Vassiliev invariants of order less than n. In the link case, it is shown that a C_{n}-move does not change the values of any Vassiliev invariants of order less than n. It is also known that, if two links can be transformed into each other by a C_{n}-move, then the n-th coefficients of the Conway polynomials of them, which are Vassiliev invariants of order n, are congruent to each other modulo 2. An $S C_{n}$-move is defined as a special C_{n}-move. It is shown that an $S C_{n}$-move does not change the values of any Vassiliev invariants of links of order less than $n+1$. In this paper, we consider the difference of the $(n+1)$-st coefficients of the Conway polynomials of two links which can be transformed into each other by an $S C_{n}$-move.

1. Introduction

In 1990, V. A. Vassiliev introduced a knot invariant called a Vassiliev invariant. It is proved that many invariants derived from polynomial invariants are Vassiliev invariants. For example, the n-th coefficient of the Conway polynomial and the n-th derivative of the Jones polynomial at $t=1$ are Vassiliev invariants of order n ([1]). We can define a Vassiliev invariant of links as the same way as that of knots. If two links cannot be distinguished by any Vassiliev invariants of order less than or equal to n, then they are said to be V_{n}-equivalent ([11]).
K. Habiro defined a new local move called a C_{n}-move as indicated in Figure 1.1.

[^0]A C_{1}-move is defined as a crossing change. He also obtained the result that shows the relationship between Vassiliev invariants and C_{n}-moves. The following theorem was proved by M. N. Goussarov and Habiro independently:

THEOREM $1.1([4,7])$. Two oriented knots in S^{3} can be transformed into each other by a finite sequence of C_{n+1}-moves if and only if they are V_{n}-equivalent.

In the case of links, the following result is known:
THEOREM 1.2 ([3, 12, 16]). If two oriented links in S^{3} can be transformed into each other by a finite sequence of C_{n+1}-moves, then they are V_{n}-equivalent.

In [8], the author discussed the relationship between C_{n}-moves and polynomial invariants which are Vassiliev invariants of order n. We take the n-th coefficient of the Conway polynomial of a link L and the n-th derivative of the Jones polynomial of L at $t=1$, denoted by $a_{n}(L)$ and $V^{(n)}(L)$ respectively, as Vassiliev invariants of order n. Then we can obtain the following theorem:

THEOREM 1.3 ([8]). If two oriented links L and L^{\prime} in S^{3} can be transformed into each other by a finite sequence of C_{n}-moves, then

$$
a_{n}(L)-a_{n}\left(L^{\prime}\right) \equiv 0 \quad(\bmod 2)
$$

and

$$
V^{(n)}(L)-V^{(n)}\left(L^{\prime}\right) \equiv 0 \quad(\bmod 6 \cdot n!)
$$

for any integer $n>2$.
Recently Y. Ohyama and H. Yamada obtained the precise result for the change of the n-th coefficient of the Conway polynomial under a C_{n}-move for a knot.

THEOREM 1.4 ([15]). If two oriented knots K and K^{\prime} in S^{3} can be transformed into each other by a C_{n}-move, then

$$
a_{n}(K)-a_{n}\left(K^{\prime}\right)=0 \text { or } \pm 2
$$

for any integer $n>2$.
We define a special C_{n}-move which is called an $S C_{n}$-move as follows: Let $\alpha_{1}, \ldots, \alpha_{n+1}$ be the arcs shown in the tangle applied a C_{n}-move and $c\left(\alpha_{i}\right)$ denote the component of the link which contains α_{i} for each i with $i=1,2, \ldots, n+1$. If there is an $\operatorname{arc} \alpha_{k}$ such that $c\left(\alpha_{k}\right) \neq c\left(\alpha_{i}\right)$ for all i with $i \neq k$, we call the C_{n}-move an $S C_{n}$-move. We can describe the necessary and sufficient condition for that two links are V_{2}-equivalent or V_{3}-equivalent to each other in terms of C_{n}-moves and $S C_{n}$-moves ([9]). With respect to $S C_{n}$-moves, the following result is also shown:

THEOREM 1.5 ($[9,13])$. If two oriented links L and L^{\prime} in S^{3} can be transformed into each other by a finite sequence of $S C_{n}$-moves, then they are V_{n}-equivalent.

Comparing Theorems 1.2 and 1.5, an $S C_{n}$-move seems to be similar to a C_{n+1}-move. In this paper, we will consider a relationship between an $S C_{n}$-move and the $(n+1)$-st coefficient of the Conway polynomial of a link which is a Vassiliev invariant of order $n+1$ and prove the following result:

ThEOREM 1.6. If two oriented links L and L^{\prime} in S^{3} can be transformed into each other by a finite sequence of $S C_{n}$-moves, then

$$
a_{n+1}(L)-a_{n+1}\left(L^{\prime}\right) \equiv 0 \quad(\bmod 2)
$$

for any integer $n>2$.

2. Proof of Theorem $\mathbf{1 . 6}$

Let n be an integer more than 2 and L and L^{\prime} links which are transformed into each other by an $S C_{n}$-move. We can suppose that the difference of the diagrams between L and L^{\prime} is illustrated in Figure 2.1.

Figure 2.1

Lemma 2.1. Let v be a Vassiliev invariant of order k. Then

$$
v(L)-v\left(L^{\prime}\right)=\prod_{i=1}^{n} s_{i} \sum_{\varepsilon_{2}, \varepsilon_{3}, \ldots, \varepsilon_{n}= \pm 1} \prod_{i=2}^{n} \varepsilon_{i} v\left(L\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
1 & \varepsilon_{2} & \cdots & \varepsilon_{n}
\end{array}\right)\right)
$$

where s_{1} is the sign of the crossing c_{1} and $s_{i}(i=2,3, \ldots, n)$ is the sign of the crossing $c_{i 1}$ of L, and $L\left(\begin{array}{cccc}1 & 2 & \cdots & n \\ 1 & \varepsilon_{2} & \cdots & \varepsilon_{n}\end{array}\right)$ is the singular link with n double points that is obtained from L by the following: Collapse the crossing to a double point at c_{1}. If $\varepsilon_{i}=1$, collapse the crossing at $c_{i 1}$ and if $\varepsilon_{i}=-1$, switch the crossing at $c_{i 1}$ and collapse the crossing to a double point at $c_{i 2}(i=2,3, \ldots, n)$.

Proof. Fix a natural number k. If $n>k$, then the equation holds because for any $\varepsilon_{2}, \varepsilon_{3}, \ldots, \varepsilon_{n}= \pm 1, v\left(L\left(\begin{array}{cccc}1 & 2 & \cdots & n \\ 1 & \varepsilon_{2} & \cdots & \varepsilon_{n}\end{array}\right)\right)=0$ and a C_{n}-move does not change the
value of any Vassiliev invariants of order less than n. If $n=k$, then the equation was proved in [14]. Suppose $n<k$. We show the equation by induction on n. If $n=1$, then we have

$$
v(L)-v\left(L^{\prime}\right)=v(\overparen{\bigcap})-v(\bigcap \cap)=s_{1} v(\bigcap)
$$

by the Vassiliev skein relation. We suppose that the equation holds for $n=l$. Suppose $n=l+1$ and let L and L^{\prime} be two links as shown in Figure 2.1. Let M and M^{\prime} be links which are obtained from L and L^{\prime} respectively by a C_{n-1}-move (see Figure 2.2).

Figure 2.2

From the assumption of the induction,

$$
v(L)-v(M)=\prod_{i=1}^{n-1} s_{i} \sum_{\varepsilon_{2}, \varepsilon_{3}, \ldots, \varepsilon_{n-1}= \pm 1} \prod_{i=2}^{n-1} \varepsilon_{i} v\left(L\left(\begin{array}{cccc}
1 & 2 & \cdots & n-1 \\
1 & \varepsilon_{2} & \cdots & \varepsilon_{n-1}
\end{array}\right)\right)
$$

and

$$
v\left(L^{\prime}\right)-v\left(M^{\prime}\right)=\prod_{i=1}^{n-1} s_{i} \sum_{\varepsilon_{2}, \varepsilon_{3}, \ldots, \varepsilon_{n-1}= \pm 1} \prod_{i=2}^{n-1} \varepsilon_{i} v\left(L^{\prime}\left(\begin{array}{cccc}
1 & 2 & \cdots & n-1 \\
1 & \varepsilon_{2} & \cdots & \varepsilon_{n-1}
\end{array}\right)\right),
$$

where $L^{\prime}\left(\begin{array}{cccc}1 & 2 & \cdots & n-1 \\ 1 & \varepsilon_{2} & \cdots & \varepsilon_{n-1}\end{array}\right)$ is the singular link with $n-1$ double points obtained from L^{\prime} as the same way as $L\left(\begin{array}{cccc}1 & 2 & \cdots & n-1 \\ 1 & \varepsilon_{2} & \cdots & \varepsilon_{n-1}\end{array}\right)$ obtained from L. On the other hand, we can easily see that M and M^{\prime} are ambient isotopic to each other. Hence we obtain

$$
\begin{aligned}
& v(L)-v\left(L^{\prime}\right) \\
& \quad=\prod_{i=1}^{n-1} s_{i} \sum_{\varepsilon_{2}, \varepsilon_{3}, \ldots, \varepsilon_{n-1}= \pm 1} \prod_{i=2}^{n-1} \varepsilon_{i}\left\{v\left(L\left(\begin{array}{cccc}
1 & 2 & \cdots & n-1 \\
1 & \varepsilon_{2} & \cdots & \varepsilon_{n-1}
\end{array}\right)\right)-v\left(L^{\prime}\left(\begin{array}{cccc}
1 & 2 & \cdots & n-1 \\
1 & \varepsilon_{2} & \cdots & \varepsilon_{n-1}
\end{array}\right)\right)\right\}
\end{aligned}
$$

Here we have

$$
v\left(L\left(\begin{array}{cccc}
1 & 2 & \cdots & n-1 \\
1 & \varepsilon_{2} & \cdots & \varepsilon_{n-1}
\end{array}\right)\right)-v\left(L^{\prime}\left(\begin{array}{cccc}
1 & 2 & \cdots & n-1 \\
1 & \varepsilon_{2} & \cdots & \varepsilon_{n-1}
\end{array}\right)\right)
$$

$$
\begin{aligned}
& =v\left(\prod_{n+1}^{|-|} \left\lvert\, \begin{array}{l}
\mid l \\
11
\end{array}\right.\right)-v\left(\bigcap_{n+1} \mid \|_{n}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =s_{n}\left\{v \left(L\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-1 & n \\
1 & \varepsilon_{2} & \cdots & \varepsilon_{n-1} & 1
\end{array}\right)-v\left(L\left(\begin{array}{ccccc}
1 & 2 & \cdots & n-1 & n \\
1 & \varepsilon_{2} & \cdots & \varepsilon_{n-1} & -1
\end{array}\right)\right\}\right.\right.
\end{aligned}
$$

by the Vassiliev skein relation. Therefore we obtain

$$
v(L)-v\left(L^{\prime}\right)=\prod_{i=1}^{n} s_{i} \sum_{\varepsilon_{2}, \varepsilon_{3}, \ldots, \varepsilon_{n}= \pm 1} \prod_{i=2}^{n} \varepsilon_{i} v\left(L\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
1 & \varepsilon_{2} & \cdots & \varepsilon_{n}
\end{array}\right)\right)
$$

We remark that Lemma 2.1 holds for L and L^{\prime} which are related by a C_{n}-move (it does not need to be an $S C_{n}$-move).

Using Lemma 2.1, we have

$$
a_{n+1}(L)-a_{n+1}\left(L^{\prime}\right) \equiv \sum_{\varepsilon_{2}, \varepsilon_{3}, \ldots, \varepsilon_{n}= \pm 1} a_{n+1}\left(L\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
1 & \varepsilon_{2} & \cdots & \varepsilon_{n}
\end{array}\right)\right) \quad(\bmod 2)
$$

By the Vassiliev skein relation and the definition of the Conway polynomial,

$$
a_{k}(\nearrow)=a_{k}(K)-a_{k}(K)=a_{k-1}()()
$$

Applying the above relation to all singular points of $L\left(\begin{array}{cccc}1 & 2 & \cdots & n \\ 1 & \varepsilon_{2} & \cdots & \varepsilon_{n}\end{array}\right)$, we obtain

$$
a_{n+1}(L)-a_{n+1}\left(L^{\prime}\right) \equiv \sum_{\varepsilon_{2}, \varepsilon_{3}, \ldots, \varepsilon_{n}= \pm 1} a_{1}\left(L\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
1 & \overline{\varepsilon_{2}} & \cdots & \overline{\varepsilon_{n}}
\end{array}\right)\right) \quad(\bmod 2),
$$

where $L\left(\begin{array}{cccc}1 & 2 & \cdots & n \\ \overline{1} & \overline{\varepsilon_{2}} & \cdots & \overline{\varepsilon_{n}}\end{array}\right)$ is a link obtained from $L\left(\begin{array}{cccc}1 & 2 & \cdots & n \\ 1 & \varepsilon_{2} & \cdots & \varepsilon_{n}\end{array}\right)$ by smoothing at all double points.

We recall that L is obtained from L^{\prime} by an $S C_{n}$-move. Therefore there is an arc α_{k} such that $c\left(\alpha_{k}\right) \neq c\left(\alpha_{i}\right)$ for all i with $i \neq k$. Here we consider the cases (i) $k=1$, (ii) $k=2$, (iii) $k=3$ and (iv) $k \geq 4$.

Case (i). We already have

$$
\begin{aligned}
& a_{n+1}(L)-a_{n+1}\left(L^{\prime}\right) \\
& \equiv \sum_{\varepsilon_{2}, \ldots, \varepsilon_{n}= \pm 1} a_{1}\left(L\left(\begin{array}{ccccc}
1 & 2 & \cdots & n \\
1 & \overline{\varepsilon_{2}} & \cdots & \overline{\varepsilon_{n}}
\end{array}\right)\right)(\bmod 2) \\
& =\sum_{\varepsilon_{4}, \ldots, \varepsilon_{n}= \pm 1}\left\{a _ { 1 } \left(L\left(\begin{array}{cccccc}
1 & \frac{2}{1} & \frac{3}{1} & 4 & \cdots & n \\
1 & \overline{1} & \frac{n}{\varepsilon_{4}} & \cdots & \overline{\varepsilon_{n}}
\end{array}\right)+a_{1}\left(L\left(\begin{array}{cccccc}
\frac{1}{1} & \frac{2}{1} & \frac{3}{-1} & \frac{4}{\varepsilon_{4}} & \cdots & \frac{n}{\varepsilon_{n}}
\end{array}\right)\right)\right.\right.
\end{aligned}
$$

$$
\left.+a_{1}\left(L\left(\begin{array}{cccccc}
1 & 2 & \frac{3}{1} & 4 & \cdots & n \\
\overline{1} & \frac{-1}{1} & \overline{1} & \overline{\varepsilon_{4}} & \cdots & \overline{\varepsilon_{n}}
\end{array}\right)\right)+a_{1}\left(L\left(\begin{array}{cccccc}
\frac{1}{\overline{1}} & \frac{2}{-1} & \frac{3}{-1} & 4 & \cdots & n \\
\varepsilon_{4} & \cdots & \overline{\varepsilon_{n}}
\end{array}\right)\right)\right\}
$$

Fix $\varepsilon_{4}, \ldots, \varepsilon_{n}= \pm 1$ and set

$$
\begin{aligned}
L_{1} & =L\left(\begin{array}{cccccc}
1 & 2 & 3 & 4 & \cdots & n \\
\overline{1} & \overline{1} & \overline{1} & \overline{\varepsilon_{4}} & \cdots & \overline{\varepsilon_{n}}
\end{array}\right), \quad L_{2}=L\left(\begin{array}{ccccccc}
\frac{1}{1} & \frac{2}{1} & \frac{3}{-1} & 4 & \cdots & n \\
\varepsilon_{4} & \cdots & \overline{\varepsilon_{n}}
\end{array}\right), \\
L_{3} & =L\left(\begin{array}{cccccc}
\frac{1}{1} & \frac{2}{-1} & \frac{3}{1} & \frac{4}{\varepsilon_{4}} & \cdots & n \\
\overline{\varepsilon_{n}}
\end{array}\right), \quad L_{4}=L\left(\begin{array}{cccccc}
\frac{1}{1} & \frac{2}{-1} & \frac{3}{-1} & \frac{4}{\varepsilon_{4}} & \cdots & \frac{n}{\varepsilon_{n}}
\end{array}\right) .
\end{aligned}
$$

Then L_{1}, L_{2}, L_{3} and L_{4} are identical except for the part corresponding to the $\operatorname{arcs} \alpha_{2}, \alpha_{3}$ and α_{4} in L. The difference of them depends on the orientation of the $\operatorname{arcs} \alpha_{1}, \alpha_{2}, \alpha_{3}$ and α_{4}. For example if L is oriented as in the left of Figure 2.3, then L_{1}, \ldots, L_{4} are like in the figure. We show the theorem in the case that L is oriented as in Figure 2.3. In the case that L is oriented differently, we can prove similarly. Let T_{i} be a tangle of L_{i} as shown in Figure 2.3 and we set a tangle $S=L_{i}-T_{i}\left(\right.$ remark that $L_{i}-T_{i}=L_{j}-T_{j}(i, j=1, \ldots, 4)$).

L

L_{1}

L_{2}

L_{3}

L_{4}

Figure 2.3

The first coefficient of the Conway polynomial of a μ-component link is equal to the linking number of the link if $\mu=2$ and zero otherwise. We consider possible connections of arcs in the tangle S and calculate the linking number of $L_{i}(i=1, \ldots, 4)$ if $\sharp L_{i}=2$, where $\sharp L$ denotes the number of the components of a link L. The points a_{1} and a_{2} in T_{i} are connected by an arc in S because this C_{n}-move is an $S C_{n}$-move and $k=1$ (we describe this situation as $a_{1} \rightarrow a_{2}$). On the connection of $b_{1}, b_{2}, c_{1}, c_{2}, d_{1}$ and d_{2} in S, we can consider the several cases and define a type of S in the following:

$$
\begin{aligned}
& \text { type } A:\left\{b_{1} \rightarrow b_{2}, c_{1} \rightarrow c_{2}, d_{1} \rightarrow d_{2}\right\} \\
& \text { type } B:\left\{b_{1} \rightarrow b_{2}, c_{1} \rightarrow d_{2}, d_{1} \rightarrow c_{2}\right\} \\
& \text { type } C:\left\{b_{1} \rightarrow c_{2}, c_{1} \rightarrow b_{2}, d_{1} \rightarrow d_{2}\right\} \\
& \text { type } D:\left\{b_{1} \rightarrow c_{2}, c_{1} \rightarrow d_{2}, d_{1} \rightarrow b_{2}\right\} \\
& \text { type } E:\left\{b_{1} \rightarrow d_{2}, c_{1} \rightarrow b_{2}, d_{1} \rightarrow c_{2}\right\} \\
& \text { type } F:\left\{b_{1} \rightarrow d_{2}, c_{1} \rightarrow c_{2}, d_{1} \rightarrow b_{2}\right\} .
\end{aligned}
$$

For each type of S, we have

$$
\sharp L_{1}=\sharp L_{3}= \begin{cases}1+m & \text { if } S \text { is type } A \text { or } E \\ 2+m & \text { if } S \text { is type } B, C \text { or } F \\ 3+m & \text { if } S \text { is type } D\end{cases}
$$

and

$$
\sharp L_{2}=\sharp L_{4}= \begin{cases}1+m & \text { if } S \text { is type } A \text { or } D \\ 2+m & \text { if } S \text { is type } B, C \text { or } F, \\ 3+m & \text { if } S \text { is type } E\end{cases}
$$

where m denotes the number of the components which are completely contained in S.
If S is type B, C or F and $m=0$, then

$$
\begin{aligned}
a_{1}\left(L_{1}\right)+a_{1}\left(L_{2}\right)+a_{1}\left(L_{3}\right)+a_{1}\left(L_{4}\right) & \equiv a_{1}\left(L_{1}\right)-a_{1}\left(L_{2}\right)-a_{1}\left(L_{3}\right)+a_{1}\left(L_{4}\right) \\
& \equiv 0 \quad(\bmod 2)
\end{aligned}
$$

by (A5), (A1) and (A3) in $\S 4$. If S is type A, D or E and $m=1$, then the linking number of L_{i} does not depend on $T_{i}(i=1,2,3,4)$. Hence we can obtain

$$
a_{1}\left(L_{1}\right)=a_{1}\left(L_{3}\right), a_{1}\left(L_{2}\right)=a_{1}\left(L_{4}\right)
$$

and

$$
a_{1}\left(L_{1}\right)+a_{1}\left(L_{2}\right)+a_{1}\left(L_{3}\right)+a_{1}\left(L_{4}\right) \equiv 0 \quad(\bmod 2)
$$

Therefore the proof is completed.
Case (ii). Fix $\varepsilon_{4}, \ldots, \varepsilon_{n}= \pm 1$ and set L_{1}, L_{2}, L_{3} and L_{4} as same as in Case (i). We also use the notation $T_{i}(i=1, \ldots, 4)$ and S as in Case (i). We prove in the case that L is oriented as in Figure 2.3. The points b_{1} and b_{2} in T_{i} are connected in S because this C_{n}-move is an $S C_{n}$-move and $k=2$. We define types of S as follows:

$$
\begin{aligned}
& \text { type } A:\left\{a_{1} \rightarrow a_{2}, c_{1} \rightarrow c_{2}, d_{1} \rightarrow d_{2}\right\} \\
& \text { type } B:\left\{a_{1} \rightarrow a_{2}, c_{1} \rightarrow d_{2}, d_{1} \rightarrow c_{2}\right\} \\
& \text { type } C:\left\{a_{1} \rightarrow c_{2}, c_{1} \rightarrow a_{2}, d_{1} \rightarrow d_{2}\right\} \\
& \text { type } D:\left\{a_{1} \rightarrow c_{2}, c_{1} \rightarrow d_{2}, d_{1} \rightarrow a_{2}\right\} \\
& \text { type } E:\left\{a_{1} \rightarrow d_{2}, c_{1} \rightarrow a_{2}, d_{1} \rightarrow c_{2}\right\} \\
& \text { type } F:\left\{a_{1} \rightarrow d_{2}, c_{1} \rightarrow c_{2}, d_{1} \rightarrow a_{2}\right\}
\end{aligned}
$$

For each type of S, we have

$$
\sharp L_{1}=\sharp L_{3}= \begin{cases}1+m & \text { if } S \text { is type } A \text { or } E \\ 2+m & \text { if } S \text { is type } B, C \text { or } F \\ 3+m & \text { if } S \text { is type } D\end{cases}
$$

and

$$
\sharp L_{2}=\sharp L_{4}= \begin{cases}1+m & \text { if } S \text { is type } A \text { or } D \\ 2+m & \text { if } S \text { is type } B, C \text { or } F, \\ 3+m & \text { if } S \text { is type } E\end{cases}
$$

where m denotes the number of the components which are completely contained in S.
If S is type B, C or F and $m=0$, then $a_{1}\left(L_{1}\right)+a_{1}\left(L_{2}\right)+a_{1}\left(L_{3}\right)+a_{1}\left(L_{4}\right)$ is even by (A5), (A2) and (A4) in $\S 4$. If S is type A, D or E and $m=1$, then

$$
a_{1}\left(L_{1}\right)=a_{1}\left(L_{3}\right), a_{1}\left(L_{2}\right)=a_{1}\left(L_{4}\right)
$$

as the cases of type A, D or E in Case (i).
Case (iii). We use the notations $L_{1}, \ldots, L_{4}, T_{1}, \ldots, T_{4}$ and S as in Case (i). We prove in the case that L is oriented as in Figure 2.3. The points c_{1} and c_{2} in T_{i} are connected in S because this C_{n}-move is an $S C_{n}$-move and $k=3$. We define types of S as follows:

$$
\begin{aligned}
& \text { type } A:\left\{a_{1} \rightarrow a_{2}, b_{1} \rightarrow b_{2}, d_{1} \rightarrow d_{2}\right\} \\
& \text { type } B:\left\{a_{1} \rightarrow a_{2}, b_{1} \rightarrow d_{2}, d_{1} \rightarrow b_{2}\right\} \\
& \text { type } C:\left\{a_{1} \rightarrow b_{2}, b_{1} \rightarrow a_{2}, d_{1} \rightarrow d_{2}\right\} \\
& \text { type } D:\left\{a_{1} \rightarrow b_{2}, b_{1} \rightarrow d_{2}, d_{1} \rightarrow a_{2}\right\} \\
& \text { type } E:\left\{a_{1} \rightarrow d_{2}, b_{1} \rightarrow a_{2}, d_{1} \rightarrow b_{2}\right\} \\
& \text { type } F:\left\{a_{1} \rightarrow d_{2}, b_{1} \rightarrow b_{2}, d_{1} \rightarrow a_{2}\right\}
\end{aligned}
$$

For each type of S, we have

$$
\sharp L_{1}=\sharp L_{2}= \begin{cases}1+m & \text { if } S \text { is type } A \text { or } E \\ 2+m & \text { if } S \text { is type } B, C \text { or } F \\ 3+m & \text { if } S \text { is type } D\end{cases}
$$

and

$$
\sharp L_{3}=\sharp L_{4}=\left\{\begin{array}{ll}
1+m & \text { if } S \text { is type } A \text { or } D \\
2+m & \text { if } S \text { is type } B, C \text { or } F \\
3+m & \text { if } S \text { is type } E
\end{array},\right.
$$

where m denotes the number of the components which are completely contained in S.
If S is type B, C or F and $m=0$, then $a_{1}\left(L_{1}\right)+a_{1}\left(L_{2}\right)+a_{1}\left(L_{3}\right)+a_{1}\left(L_{4}\right)$ is even by (A3), (A6) and (A4) in $\S 4$. If S is type A, D or E and $m=1$, then

$$
a_{1}\left(L_{1}\right)=a_{1}\left(L_{2}\right), a_{1}\left(L_{3}\right)=a_{1}\left(L_{4}\right)
$$

as the cases of type A, D or E in Case (i).
Case (iv). We have

$$
\begin{aligned}
& a_{n+1}(L)-a_{n+1}\left(L^{\prime}\right) \\
& \equiv \sum_{\varepsilon_{2}, \ldots, \varepsilon_{n}= \pm 1} a_{1}\left(L\left(\begin{array}{cccc}
1 & 2 & \cdots & n \\
1 & \overline{\varepsilon_{2}} & \ldots & \overline{\varepsilon_{n}}
\end{array}\right)\right)(\bmod 2) \\
& =\sum_{\varepsilon_{2}, \ldots, \varepsilon_{k-2}, \varepsilon_{k+1}, \ldots, \varepsilon_{n}= \pm 1}\left\{a_{1}\left(L\left(\begin{array}{ccccccc}
1 & \cdots & k-1 & k & \cdots & n \\
\overline{1} & \cdots & \overline{1} & \overline{1} & \cdots & \overline{\varepsilon_{n}}
\end{array}\right)\right)\right. \\
& \quad+a_{1}\left(L\left(\begin{array}{cccccc}
1 & \cdots & k-1 & k & \cdots & n \\
\overline{1} & \cdots & \overline{1} & \frac{n}{-1} & \cdots & \overline{\varepsilon_{n}}
\end{array}\right)\right) \\
& \left.\quad+a_{1}\left(L\left(\begin{array}{cccccc}
1 & \cdots & k-1 & k & \cdots & n \\
\overline{1} & \cdots & \overline{-1} & \overline{1} & \cdots & \frac{n}{\varepsilon_{n}}
\end{array}\right)\right)+a_{1}\left(L\left(\begin{array}{ccccc}
\frac{1}{1} & \cdots & k-1 & \frac{k}{1} & \cdots \\
\frac{1}{1} & \cdots & \frac{n}{-1} & \frac{1}{-1} & \cdots \\
\overline{\varepsilon_{n}}
\end{array}\right)\right)\right\}
\end{aligned}
$$

Fix $\varepsilon_{2}, \ldots, \varepsilon_{k-2}, \varepsilon_{k+1}, \ldots, \varepsilon_{n}= \pm 1$ and set

$$
\begin{aligned}
& L_{1}=L\left(\begin{array}{cccccc}
1 & \cdots & k-1 & k & \cdots & n \\
\overline{1} & \cdots & \overline{1} & \overline{1} & \cdots & \overline{\varepsilon_{n}}
\end{array}\right), \quad L_{2}=L\left(\begin{array}{ccccccc}
1 & \cdots & k-1 & k & \cdots & n \\
\overline{1} & \cdots & \overline{1} & \frac{k}{-1} & \cdots & \overline{\varepsilon_{n}}
\end{array}\right), \\
& L_{3}=L\left(\begin{array}{cccccc}
1 & \cdots & k-1 & k & \cdots & n \\
\overline{1} & \cdots & \overline{-1} & \overline{1} & \ldots & \overline{\varepsilon_{n}}
\end{array}\right), \quad L_{4}=L\left(\begin{array}{cccccc}
1 & \cdots & k-1 & k & \cdots & n \\
\overline{1} & \cdots & \overline{-1} & \frac{k}{-1} & \cdots & \overline{\varepsilon_{n}}
\end{array}\right) .
\end{aligned}
$$

Then they are identical except for the part corresponding to the arcs $\alpha_{k-2}, \alpha_{k-1}$ and α_{k} in L. The difference of them is illustrated in Figure 2.4 for example.

Figure 2.4

Let T_{i} be a tangle of L_{i} as shown in Figure 2.4 and we set a tangle $S=L_{i}-T_{i}$. We prove in the case that L is oriented as in Figure 2.4. The points d_{1} and d_{2} in T_{i} are connected in S because this C_{n}-move is an $S C_{n}$-move and $k \geq 4$. We define types of S as follows:

$$
\begin{aligned}
& \text { type } A:\left\{a_{1} \rightarrow a_{2}, b_{1} \rightarrow b_{2}, c_{1} \rightarrow c_{2}\right\} \\
& \text { type } B:\left\{a_{1} \rightarrow a_{2}, b_{1} \rightarrow c_{2}, c_{1} \rightarrow b_{2}\right\} \\
& \text { type } C:\left\{a_{1} \rightarrow b_{2}, b_{1} \rightarrow a_{2}, c_{1} \rightarrow c_{2}\right\} \\
& \text { type } D:\left\{a_{1} \rightarrow b_{2}, b_{1} \rightarrow c_{2}, c_{1} \rightarrow a_{2}\right\} \\
& \text { type } E:\left\{a_{1} \rightarrow c_{2}, b_{1} \rightarrow a_{2}, c_{1} \rightarrow b_{2}\right\} \\
& \text { type } F:\left\{a_{1} \rightarrow c_{2}, b_{1} \rightarrow b_{2}, c_{1} \rightarrow a_{2}\right\} .
\end{aligned}
$$

For each type of S, we have

$$
\sharp L_{1}=\sharp L_{2}= \begin{cases}1+m & \text { if } S \text { is type } A \text { or } E \\ 2+m & \text { if } S \text { is type } B, C \text { or } F \\ 3+m & \text { if } S \text { is type } D\end{cases}
$$

and

$$
\sharp L_{3}=\sharp L_{4}=\left\{\begin{array}{ll}
1+m & \text { if } S \text { is type } A \text { or } D \\
2+m & \text { if } S \text { is type } B, C \text { or } F \\
3+m & \text { if } S \text { is type } E
\end{array},\right.
$$

where m denotes the number of the components which are completely contained in S.
If S is type B, C or F and $m=0$, then $a_{1}\left(L_{1}\right)+a_{1}\left(L_{2}\right)+a_{1}\left(L_{3}\right)+a_{1}\left(L_{4}\right)$ is even by (A1), (A6) and (A2) in $\S 4$. If S is type A, D or E and $m=1$, then

$$
a_{1}\left(L_{1}\right)=a_{1}\left(L_{2}\right), a_{1}\left(L_{3}\right)=a_{1}\left(L_{4}\right)
$$

as the cases of type A, D or E in Case (i) and the proof is completed.

3. Remark and Examples

In this section we make a few remarks on Theorem 1.6.
An $S C_{1}$-move is a crossing change between mutually distinct components. For an integer k, let $L_{1,1}(k)$ and $L_{1,2}(k)$ be two links as shown in Figure 3.1. The sign of the integer k is equal to the sign of a crossing in the tangle.

Figure 3.1

Then we can see that $L_{1,1}(k)$ and $L_{1,2}(k)$ are transformed into each other by an $S C_{1}$-move and

$$
a_{2}\left(L_{1,1}(k)\right)-a_{2}\left(L_{1,2}(k)\right)=k
$$

For an integer k, let $L_{2,1}(k)$ and $L_{2,2}(k)$ be two links as shown in Figure 3.2. Then we can see that $L_{2,1}(k)$ and $L_{2,2}(k)$ are transformed into each other by an $S C_{2}$-move and

$$
a_{3}\left(L_{2,1}(k)\right)-a_{3}\left(L_{2,2}(k)\right)=k
$$

Figure 3.2

The above examples show that $S C_{n}$-moves and the $(n+1)$-st coefficients of the Conway polynomials have no relation for $n=1$ and 2 .

For an integer k, let $L_{n, 1}(k)$ and $L_{n, 2}(k)(n=3,4,5)$ be links as shown in Figure 3.3.

Figure 3.3

Then we can see that $L_{n, 1}(k)$ and $L_{n, 2}(k)$ are transformed into each other by an $S C_{n}$-move and

$$
\left|a_{n+1}\left(L_{n, 1}(k)\right)-a_{n+1}\left(L_{n, 2}(k)\right)\right|=2|k| .
$$

The above examples show that Theorem 1.5 is best possible for $n=3,4$ and 5 .

4. Table

In this section, we give a table which we need for the proof of Theorem 1.6.
L_{1}, L_{2}, L_{3} and L_{4} in each row of the table indicate four links which are identical except for a neighborhood of one point. Non-identical part is illustrated by solid arcs and the connection outside the tangles by dotted arcs. Let x, y, z and w be oriented arcs indicated by dotted arcs in the table. We give the sum of the signs of the crossing which is made from oriented $\operatorname{arcs} x$ and y by $L k(x, y)$. Then for example, in the case of (A1), we have

$$
a_{1}\left(L_{1}\right)=\left\{\begin{array}{ll}
\frac{1}{2}\{L k(x, w)+L k(y, w)+L k(z, w)-2\} & \text { if } \sharp L_{1}=2 \\
0 & \text { otherwise }
\end{array} .\right.
$$

By similar calculation for $a_{1}\left(L_{2}\right), a_{1}\left(L_{3}\right)$ and $a_{1}\left(L_{4}\right)$, we obtain

$$
a_{1}\left(L_{1}\right)-a_{1}\left(L_{2}\right)-a_{1}\left(L_{3}\right)+a_{1}\left(L_{4}\right)= \begin{cases}-L k(x, y) & \text { if } \sharp L_{1}=2 \\ 0 & \text { otherwise }\end{cases}
$$

This table is a list of $a_{1}\left(L_{1}\right)-a_{1}\left(L_{2}\right)-a_{1}\left(L_{3}\right)+a_{1}\left(L_{4}\right)$.
(A1)

L_{1}

$$
a_{1}\left(L_{1}\right)-a_{1}\left(L_{2}\right)-a_{1}\left(L_{3}\right)+a_{1}\left(L_{4}\right)=\left\{\begin{array}{l}
-L k(x, y) \\
0
\end{array}\right.
$$

$$
\begin{aligned}
& \text { if } \sharp L_{1}=2 \\
& \text { otherwise }
\end{aligned}
$$

(A2)

L_{1}

L_{2}

L_{3}

$$
a_{1}\left(L_{1}\right)-a_{1}\left(L_{2}\right)-a_{1}\left(L_{3}\right)+a_{1}\left(L_{4}\right)=\left\{\begin{array}{l}
L k(x, y) \\
0
\end{array}\right.
$$

if $\sharp L_{1}=2$
otherwise
(A3)

$a_{1}\left(L_{1}\right)-a_{1}\left(L_{2}\right)-a_{1}\left(L_{3}\right)+a_{1}\left(L_{4}\right)=\left\{\begin{array}{ll}L k(x, y) & \text { if } \sharp L_{1}=2 \\ 0 & \text { otherwise }\end{array}\right.$.
(A4)

$$
a_{1}\left(L_{1}\right)-a_{1}\left(L_{2}\right)-a_{1}\left(L_{3}\right)+a_{1}\left(L_{4}\right)=\left\{\begin{array}{ll}
-L k(x, y) & \text { if } \sharp L_{1}=2 \\
0 & \text { otherwise }
\end{array} .\right.
$$

(A5)

$$
a_{1}\left(L_{1}\right)-a_{1}\left(L_{2}\right)-a_{1}\left(L_{3}\right)+a_{1}\left(L_{4}\right)=0
$$

(A6)

References

[1] BAR-Natan, D., On the Vassiliev knot invariants, Topology 34 (1995), 423-472.
[2] Birman, J. S., Lin, X,-S., Knot polynomials and Vassiliev's invariants, Invent. Math. 111 (1993), 225-270.
[3] Goussarov, M. N., On n-equivalence of knots and invariants of finite degree, in Topology of Manifold and Varieties (Viro, O. ed.), Amer. Math. Soc., Province (1994), 173-192.
[4] Goussarov, M. N., Knotted graphs and a geometrical tequnique of n-equivalence, POMI Sankt Petersburg preprint, circa (1995), in Russian.
[5] Habiro, K., Master Thesis, University of Tokyo (1994).
[6] Habiro, K., Clasp-pass moves on knots, preprint.
[7] Habiro, K., Claspers and finite type invariants of links, Geom. Topol. 4 (2000), 1-83.
[8] Miyazawa, H. A., C_{n}-moves and polynomial invariants for links, Kobe J. Math. 17 (2000), 99-117.
[9] Miyazawa, H. A., C_{n}-moves and V_{n}-equivalence for links, Tokyo J. Math. (to appear).
[10] Murakami, H., Nakanishi, Y., On a certain move generating link-homology, Math. Ann. 284 (1989), 75-89.
[11] NG, K. Y., Stanford, T., On Gusarov's groups of knots, Math. Proc. Camb. Phil. Soc. 126 (1999), 63-76.
[12] OhYama, Y., Vassiliev invariants and similarity of knots, Proc. Amer. Math. Soc. 123 (1995), 287-291.
[13] Ohyama, Y., Remarks on C_{n}-moves for links and Vassiliev invariants of order n, J. Knot Theory Ramifications 11 (2002), 507-514.
[14] Ohyama, Y., Tsukamoto, T., On Habiro's C_{n}-moves and Vassiliev invariants, J. Knot Theory Ramifications 8 (1999), 15-26.
[15] Ohyama, Y., Yamada, H., A C_{n}-move for a knot and the coefficients of the Conway polynomial, J. Knot Theory Ramifications 17 (2008), 771-785.
[16] Stanford, T., Braid commutators and Vassiliev invariants, Pacific J. Math. 174 (1996), 269-276.
[17] Vassiliev, V. A., Cohomology of knot space, in Theory of Singularities and its Applications (ed. Arnold, V. I.), Adv. Soviet Math., Vol.1, Amer. Math. Soc. (1990).

Present Address:
Research Institute for Mathematics and Computer Science,
Tsuda College,
Kodaira, TOKyo, 187-8577 Japan,
e-mail: aida@ tsuda.ac.jp

[^0]: Received May 12, 2008; revised November 14, 2008; revised January 23, 2009
 This work was partially supported by Japan Society for the Promotion of Science Grant-in-Aid for Scientific Research (C) 19540101 and the 21st COE program "Constitution of wide-angle mathematical basis focused on knots".

