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Abstract. We study the geometry of the tangent bundle equipped with a two-parameter family of metrics,
deforming the Sasaki and Cheeger-Gromoll metrics. After deriving the expression for the Levi-Civita connection, we
compute the Riemann curvature tensor and the sectional, Ricci and scalar curvatures. We identify all metrics whose
restrictions to the fibres have positive sectional curvature. When the base manifold is a space form, we characterise
metrics with non-negative sectional curvature and show that one can always find parameters ensuring positive scalar
curvature. This extends to compact manifolds and, under some curvature conditions, to general manifolds.

1. Introduction

Let (M, g) be a smooth Riemannian manifold of dimension n, with tangent bundle
π : TM → M , and let K : T TM → TM denote the connection map for the Levi-Civita
connection [6]. Then the horizontal distribution H = ker(K) is complementary to the vertical
distribution V = ker(dπ):

T TM = H ⊕ V ,
and the metric g of M may be lifted to a metric h on TM:

h(A,B) = 〈dπ(A), dπ(B)〉 + 〈KA,KB〉 ,
for all A,B ∈ TeTM and all e ∈ TM , where we have abbreviated g(X, Y ) = 〈X,Y 〉. This
is the well-known Sasaki metric [19]. It has been extensively studied and shown to be rather
rigid, especially when it comes to the existence of harmonic sections of TM , all of which are
parallel when M is compact [13, 16, 17], and hence trivial if the Euler characteristic of M is
non-zero. The rigidity of h may be overcome to a certain extent by restricting it to the sphere
subbundle SM(r) of radius r > 0, and considering the harmonic section variational problem
constrained to sections of length r . This has been very fruitful (cf. the survey article [9]), but is
limited to manifoldsM whose Euler characteristic vanishes. A more recent approach has been
to introduce new metrics on TM , which satisfy the natural conditions that π is a Riemannian
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submersion (so that the geometry ofM is reflected in that of TM) and H and V are orthogonal,
with V totally geodesic, but whose restriction to the tangent spaces is non-Euclidean, and
which in some cases may be regarded as vertical “geometric compactifications” of TM . This
has led to the 2-parameter family of generalised Cheeger-Gromoll metrics [3]:

hp,q(A,B) = 〈dπ(A), dπ(B)〉 + ωp[〈KA,KB〉 + q〈KA, e〉〈KB, e〉] ,
for all p, q ∈ R, where ω(e) = (1 + |e|2)−1, with |e|2 = 〈e, e〉. The original Cheeger-
Gromoll metric corresponds to p = q = 1 ([5, 16]), and the Sasaki metric to p = q = 0.
If q � 0 then hp,q is a bona fide Riemannian metric on TM , for all p. However if q < 0
then hp,q is positive definite on the (open) ball subbundle BM(r) of radius r = 1/

√−q,
which we refer to as the Riemannian ball bundle of hp,q . The restriction of hp,q to the sphere
bundle SM(r) bounding the Riemannian ball bundle is also positive definite, for all p, and
this is true for all the sphere subbundles of TM; however the canonical vertical vector in
T TM (see below) along SM(r) is hp,q -null, and hp,q is Lorentzian on the interior of the
complement of the Riemannian ball bundle. This family of metrics is proving to be very
interesting in the theory of harmonic maps/sections, exhibiting a delicate balance between
flexibility and rigidity (cf. [3, 4]). For example, when suitably scaled, the vector field tangent
to standard Morse flow on the round sphere Sn (n � 3) is a harmonic section of T Sn with
respect to a unique metric hp,q . On the other hand, when M is compact of non-zero Euler
characteristic there is a substantial “Liouville region” of the (p, q)-plane, where the only
harmonic section with respect to hp,q is the zero section, and whenM is non-compact there is
an analogous “Bernstein region”. The Cheeger-Gromoll and Sasaki metrics “belong” to both
of these regions. However, in this paper we concentrate on the geometry of hp,q , which is of
interest in its own right. In particular, we note that metrics of variable signature have appeared
from time to time in the mathematical physics literature [12, 7, 8].

In §2 we determine via standard methods the Levi-Civita connection of hp,q , and com-
pute the Riemann curvature tensor and sectional, Ricci and scalar curvatures. We note that
when q < 0 all these curvatures are unbounded on the Riemannian ball bundle, but if
p + q = 1 the sectional curvatures of 2-planes tangent to the boundary remain bounded
(Corollary 2.6), making these the “most regular” metrics with q < 0. We also deduce that, in
order for hp,q to be an Einstein metric, (M, g) must be Einstein with harmonic curvature; in
this respect, the hp,q behave similarly to the Sasaki metric. However, our main result is The-
orem 2.8, which gives some precision to the sense in which hp,q geometrically compactifies
the tangent spaces, by identifying the region of the (p, q)-plane such that the metric induced
by hp,q on the fibres of TM (or, when q < 0, of the Riemannian ball bundle) has positive
sectional curvature. This region lies entirely in the half plane 2p + q > 0; when n � 3 it is
a region Γ independent of the dimension of M , but when n = 2 it is a considerably larger
region Γ ′. In all dimensions, it is not an open subset, but it is connected, and for each q ∈ R
contains at least one point (p, q), and conversely for each p > −8. Since it contains the
parameters (p, q) = (1, 1) of the Cheeger-Gromoll metric, it is not complementary to the
Liouville or Bernstein regions of the (p, q)-plane. Another notable element of both Γ and
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Γ ′ is (p, q) = (2, 0), which are the coordinates of the stereographic compactification of the
fibres of TM . Interestingly, when n � 3 the only (p, q) ∈ Γ with q < 0 are those with
p + q = 1.

In §3 we study the curvature of hp,q when the base manifold has constant sectional
curvature c. In view of the Soul Theorem [5], it is natural to ask which hp,q have non-
negative sectional curvature. After simplifying the curvature expressions (Proposition 3.1), we
determine the region of the (p, q)-plane for which hp,q has non-negative sectional curvature
(Theorem 3.3), and note that this region is non-empty if and only if c � 0. If n � 3 then it
is a region ∆c independent of the dimension of M; if n = 2 then it is a considerably larger
region∆′

c. If c � 4/3 then both∆c and∆′
c are independent of c, whereas if c > 16/3 then∆c

(respectively,∆′
c) lies entirely in the open (respectively, closed) lower half of the (p, q)-plane.

The sectional curvature of hp,q can never be (strictly) positive, and in the remainder of the
paper we examine the weaker condition of positive scalar curvature. A necessary condition
for the scalar curvature s̃ = s̃p,q of hp,q to be positive is 2p + q > −c, which no longer
precludes the possibility of c < 0. If (M, g) is flat then s̃ > 0 precisely when the fibres of
TM have positive sectional curvature, as determined in Theorem 2.8. In Theorem 3.5 we
determine subregions of Γ and Γ ′ for which hp,q has positive scalar curvature. This paves
the way for Theorem 3.7, which states that for any space form there exist parameters (p, q)
such that s̃p,q > 0. When c �= 0 and n � 3, all the metrics hp,q of Theorem 3.7 have q < 0,
and consequently are only defined on the Riemannian ball subbundle, with no possibility of
extension to TM . This problem is rectified by Theorem 3.8, which shows that for every
space form M it is possible to find generalised Cheeger-Gromoll metrics on TM of positive
scalar curvature. When n � 3 and c �= 0, the sectional curvatures of the tangent spaces
with respect to these metrics are in general no longer entirely positive (or non-negative). Both
Theorems 3.7 and 3.8 extend to compact manifolds (Theorem 3.11), and general Riemannian
manifolds under some curvature conditions (Theorem 3.10). These results generalise work of
Gudmundson and Kappos [10], and Sekizawa [20], and are particularly interesting in view of
[4, Proposition 5.4], yielding new examples of harmonic maps from compact manifolds into
non-flat manifolds of non-negative sectional curvature.

2. Generalised Cheeger-Gromoll geometry

Let M be a Riemannian n-manifold, not necessarily compact, or even complete. The
generalised Cheeger-Gromoll metric hp,q on TM can alternatively be described in terms of
horizontal and vertical lifts of tangent vectors to M (cf. [6]):

hp,q(X
h, Y h) = 〈X,Y 〉 ,

hp,q(X
h, Y v) = 0 ,

hp,q(X
v, Y v) = ωp(〈X,Y 〉 + q〈X, e〉〈Y, e〉) ,

where X,Y ∈ Tπ(e)M . Most of our results will be expressed in this way.
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REMARK 2.1. Various classes of metrics have been introduced on the tangent bundle.
For example, generalised Cheeger-Gromoll metrics lie within the set of Kaluza-Klein metrics
studied in [21, 22], for which the bundle projection π is a Riemannian submersion with totally
geodesic fibres, and for such metrics an Eells-Sampson type existence theorem for harmonic
sections of fibre bundles is proved (although this requires the bundle to have compact, neg-
atively curved fibres). These Kaluza-Klein metrics are, in turn, special cases of g-natural
metrics introduced in [15] (cf. also [1, 2]) which are characterised, at a point e ∈ TM , by the
relations:

G(Xh, Y h)e = A(|e|2)gπ(e)(X, Y )+ B(|e|2)gπ(e)(X, e)gπ(e)(Y, e) ,
G(Xh, Y v)e = C(|e|2)gπ(e)(X, Y )+D(|e|2)gπ(e)(X, e)gπ(e)(Y, e) ,
G(Xv, Y v)e = E(|e|2)gπ(e)(X, Y )+ F(|e|2)gπ(e)(X, e)gπ(e)(Y, e) ,

where A,B,C,D,E and F are positive functions. Note that, in general, for g-natural met-
rics, the bundle projection is no longer a Riemannian submersion, and the fibres not totally
geodesic.

By standard properties of metrics on TM such that H and V are orthogonal and π is
Riemannian submersion [18], and using the Koszul formula, we compute the Levi-Civita
connection of hp,q . It is convenient to define:

BMq = {e ∈ TM : q|e|2 > −1} , SMq = {e ∈ TM : q|e|2 = −1} .
Notice that if q � 0 then BMq = TM and SMq = ∅, and if q < 0 then BMq is the
Riemannian ball bundle of hp,q and SMq is its sphere bundle boundary. We now introduce
the following smooth 1-parameter deformation ωq of ω:

ωq(e) = 1

1 + q|e|2 ,

defined for all q ∈ R and all e ∈ BMq . Finally let U denote the canonical vertical vector
field on TM: U(e) = ev for all e ∈ TM . Note that U is not a unit vector field with respect to
any metric hp,q ; indeed, if q < 0 then the restriction of U to SMq is hp,q -null for all p. The
results of our computations are now summarised as follows.

PROPOSITION 2.2. Let (M, g) be a Riemannian manifold, and let hp,q be a gener-
alised Cheeger-Gromoll metric on BMq . Let ∇ (respectively, R) denote the Levi-Civita con-

nection (respectively, Riemann tensor) of M . Then the Levi-Civita connection ∇̃ of hp,q
satisfies, at e ∈ BMq:

∇̃XhY h = (∇XY )h − 1

2
[R(X, Y )e]v ,(1)

∇̃XhY v = (∇XY )v + 1

2
ωp[R(e, Y )X]h ,(2)
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∇̃XvY h = 1

2
ωp[R(e,X)Y ]h ,(3)

∇̃XvY v = ωq [(pω + q)〈X,Y 〉 + pqω〈X, e〉〈Y, e〉]U − pω[〈X, e〉Y + 〈Y, e〉X]v ,(4)

for all X ∈ Tπ(e)M and Y ∈ C∞(TM) (the set of smooth vector fields on M).

NOTE. Our convention for the Riemann curvature tensor is:

R(X, Y ) = [∇X,∇Y ] − ∇[X,Y ] .

Comparison with [14] shows that equations (1)–(3) are remarkably similar to the Sasaki
case, to which they reduce when p = 0, for all q . The major difference is equation (4), from
which it follows that ∇̃ is in general singular on SMq when q < 0. (Note that the restriction

of ∇̃ to SMq is not the Levi-Civita connection of the restriction of hp,q ; the latter is in fact
a smooth Riemannian metric with respect to which the fibres of SMq are spheres of radius

ω−p.)
Lengthy but straightforward computations involving Proposition 2.2, the Dombrowski

Lie bracket formula [6], and Gudmundsson-Kappos’ expressions for covariant differentiation
of the vertical and horizontal lifts of a bundle endomorphism [11], determine the Riemann
curvature tensor of hp,q . It is convenient to introduce the following curvature-type tensor r
on M:

r(X, Y )Z = 〈Y,Z〉X − 〈X,Z〉Y .(5)

Again we summarise the results.

PROPOSITION 2.3. The curvature tensor R̃ of hp,q is given, at e ∈ BMq , by:

(i) R̃(Xh, Y h)Zh = [R(X, Y )Z]h + 1

2
[(∇ZR)(X, Y )e]v

− 1

4
ωp[R(e,R(Y,Z)e)X − R(e,R(X,Z)e)Y − 2R(e,R(X, Y )e)Z]h ,

(ii) R̃(Xh, Y h)Zv = [R(X, Y )Z]v + 1

2
ωp[(∇XR)(e, Z)Y − (∇YR)(e, Z)X]h

+ 1

4
ωp[R(Y,R(e,Z)X)e − R(X,R(e,Z)Y )e]v − pω〈Z, e〉[R(X, Y )e]v

+ (pω + q)ωq〈R(X, Y )e, Z〉U ,

(iii) R̃(Xh, Y v)Zh = 1

2
ωp[(∇XR)(e, Y )Z]h − 1

4
ωp[R(X,R(e, Y )Z)e]v

− p

2
ω〈Y, e〉[R(X,Z)e]v + 1

2
[R(X,Z)Y ]v + 1

2
(pω + q)ωq〈R(X,Z)e, Y 〉U ,

(iv) R̃(Xh, Y v)Zv = p

2
ωp+1[〈Y, e〉R(e,Z)X − 〈Z, e〉R(e, Y )X]h

− 1

2
ωp[R(Y,Z)X]h − 1

4
ω2p[R(e, Y )R(e,Z)X]h ,
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(v) R̃(Xv, Y v)Zh = ωp[R(X, Y )Z]h + pωp+1[〈Y, e〉R(e,X)Z − 〈X, e〉R(e, Y )Z]h

+ 1

4
ω2p[R(e,X)R(e, Y )Z − R(e, Y )R(e,X)Z]h ,

(vi) R̃(Xv, Y v)Zv = A 〈Z, e〉[r(X, Y )e]v + B[r(X, Y )Z]v + C〈r(X, Y )Z, e〉U ,
where:

A = pωωq((p + 2q − 2)ω − q) ,

B = ωq(p
2ω2 − p(p − 2)ω + q) ,

C = ω2
q(p(p − 2)(1 − q)ω2 + pq(p − 3)ω − q2) .

NOTE. A, B and C are related by:

ωq(A− qB) = C .(6)

The expressions for the Levi-Civita connection and Riemann curvature tensor of hp,q
given in Propositions 2.2 and 2.3 could also be recovered as special cases of the formulas
found in [1] and [2].

The most significant manifestations of the Riemann tensor are of course the sectional,
Ricci and scalar curvatures.

PROPOSITION 2.4. LetK denote the sectional curvature of (M, g). Then the sectional

curvature K̃ of hp,q satisfies the following, at e ∈ BMq:
K̃(Xh ∧ Yh) = K(X ∧ Y )− 3

4
ωp|R(X, Y )e|2 ,(7)

K̃(Xh ∧ Y v) = ωp

4(1 + q〈Y, e〉2)
|R(e, Y )X|2 ,(8)

K̃(Xv ∧ Y v) = ω−p

1 + q(〈X, e〉2 + 〈Y, e〉2)
[A(〈X, e〉2 + 〈Y, e〉2)+ B] ,(9)

for all orthonormal vectors X and Y of Tπ(e)M . The functions A and B on BMq are as
defined in Proposition 2.3.

PROOF. Proposition 2.3 (i) yields:

hp,q(R̃(X
h, Y h)Y h,Xh) = 〈R(X, Y )Y,X〉 + 3

4
ωp〈R(e,R(X, Y )e)Y,X〉

= K(X ∧ Y )− 3

4
ωp|R(X, Y )e|2 ,

and formula (7) then follows because:

|Xh ∧ Yh|2p,q = |X|2|Y |2 − 〈X,Y 〉2 = 1 .

To obtain (8), first observe that

|Xh ∧ Y v|2p,q = ωp(1 + q〈Y, e〉2) .



THE GEOMETRY OF GENERALISED CHEEGER-GROMOLL METRICS 293

Then by Proposition 2.3 (iv) we have:

hp,q(R̃(X
h, Y v)Y v,Xh) = −1

4
ω2p〈R(e, Y )R(e, Y )X,X〉 = 1

4
ω2p|R(e, Y )X|2 ,

and we deduce (8). Finally, since

|Xv ∧ Y v |2p,q = ω2p[1 + q〈X, e〉2 + q〈Y, e〉2]
and

R̃(Xv, Y v)Y v = (A 〈Y, e〉2 + B)Xv − A 〈X, e〉〈Y, e〉Y v + C〈X, e〉U ,
we obtain:

hp,q(R̃(X
v, Y v)Y v,Xv) = (A 〈Y, e〉2 + B)hp,q(X

v,Xv)

− A 〈X, e〉〈Y, e〉hp,q (Xv, Y v)+ C〈X, e〉hp,q (Xv,U)
= ωp[A(〈Y, e〉2 + 〈X, e〉2)+ B]

from (6), which yields the expression for K̃(Xv ∧ Y v). �

We will say that a generalised Cheeger-Gromoll metric has flat fibres if its restriction
to each fibre of the Riemannian ball bundle of M is flat. The Sasaki metric has flat fibres,
and is flat if and only if the base manifold is flat. In fact, these are the only flat generalised
Cheeger-Gromoll metrics.

COROLLARY 2.5. The only generalised Cheeger-Gromoll metric with flat fibres is the
Sasaki metric.

PROOF. Let e ∈ BMq , and let Π be a vertical 2-plane in TeTM which contains U(e).
(If n = 2 then Π is unique, and is the only vertical 2-plane.) Since the tangent spaces of M

are totally geodesic, it suffices to consider K̃(Π), and it follows from (9) that:

K̃(Π) = ω−pωq(A|e|2 + B)

= ω−pω2
q(2p(1 − q)ω2 + 3pqω + q(1 − p))

= ω2−pω2
qP (|e|2) ,

where:

P(t) = Pp,q(t) = 2p + q + (p + 2)q t + (1 − p)q t2 .(10)

The only parameters for which P(t) vanishes identically are p = q = 0. �

If q < 0 then in general A and B are singular on SMq , and therefore by equation (9) the
sectional curvature is undefined for 2-planes in TeTM for all e ∈ SMq . There is however an
exceptional case. It is convenient to introduce the following function:

µ(p) = pp

(p − 1)p−1
,(11)
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which is defined for p � 1, strictly increasing with µ(1) = 1, and unbounded above.

COROLLARY 2.6. If q < 0 then K̃(Π) is non-singular for all 2-planes Π tangent to
SMq if and only if p+ q = 1. In particular, ifM has dimension n � 3 andΠ is vertical then

K̃(Π) = µ(p).

PROOF. For all e ∈ SMq we have:

Te(SMq) = {A ∈ TeTM : 〈KA, e〉 = 0}
= He ⊕ {Y v : Y ∈ Tπ(e)M and 〈Y, e〉 = 0} .

It follows from equation (8) that if Π = Xh ∧ Y v then:

K̃(Xh ∧ Y v) = 1

4
ωp |R(e, Y )X|2 .

Now if p+ q = 1 then A (respectively, B) extends to the smooth function (q − 1)ω2 (respec-
tively, (1 − q)ω2 + w) on TM . In particular, the value of B on SMq is −q , and it therefore
follows from equation (9) that if Π is vertical then:

K̃(Π) = −qω−p = −q(1 − 1/q)p = (p − 1)

(
p

p − 1

)p
= µ(p) .

If p + q �= 1 then A and B are unbounded on BMq . �

If q < 0 and p + q = 1, then K̃ is in fact unbounded on BMq . For, if Π is a vertical
2-plane in T (BMq) containing the canonical vertical vector U , then, noting that Pp,q(t) has
a root at t = −1/q when p + q = 1, it follows from the proof of Corollary 2.5 that:

(1 + t)1+qK̃(Π) = 2 − q + qt

1 + qt
,

where t = |e|2. It follows that the sectional curvature of hp,q is singular on the boundary of

the Riemannian ball bundle, for all (p, q) with q < 0. Note also, in passing, that K̃(Π) > 0,
the significance of which will be seen in Theorem 2.8.

Setting e = 0 in Proposition 2.4 yields:

K̃(Xh ∧ Yh) = K(X ∧ Y ) , K̃(Xh ∧ Y v) = 0 , K̃(Xv ∧ Y v) = B = 2p + q .

It follows that the sectional curvature of hp,q is never strictly positive (or negative), and neces-
sary conditions for hp,q to have non-negative sectional curvature are K � 0 and 2p + q � 0.
In our next result we refine the condition 2p + q > 0 which is necessary for the fibres of
BMq to have strictly positive sectional curvature. It is convenient to introduce the following
function:

λ(p) = 8(1 − p)

8 + p
, p �= −8 ,(12)
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which parametrises the hyperbola in the (p, q)-plane with equation pq + 8p + 8q = 8. We
now define subsets Γ and Γ ′ of the half plane 2p + q > 0 as follows.

DEFINITION 2.7. Let Γ i+ (i = 1, 2, 3) be the following region of the (p, q)-plane:

Γ 1+ = {(p, q) : −8 < p � −2 and q > λ(p)} ,
Γ 2+ = {(p, q) : −2 � p � 0 and 2p + q > 0} ,
Γ 3+ = {(p, q) : 0 � p � 1 and q > 0} ,

and set:

Γ+ = Γ 1+ ∪ Γ 2+ ∪ Γ 3+ .

Define further regions:

Γ− = {(p, q) : p + q = 1 and q < 0} ,
Γ ′− = {(p, q) : p + q � 1 and q < 0} ,
ΓZ = {(p, 0) : 0 < p � 2} ,
Γ ′
Z = {(p, 0) : p > 0} ,

and set:

Γ = Γ− ∪ ΓZ ∪ Γ+ , Γ ′ = Γ ′− ∪ Γ ′
Z ∪ Γ+ .

Note that Γ ⊂ Γ ′, and Γ ′ is a subset of the half plane 2p + q > 0. The point (2, 0) ∈ Γ

parametrises the metric whose vertical component is (up to homothety) the stereographic
metric on Rn.

It is convenient to define, for each q ∈ R, the following interval:

Iq = {t > 0 : qt > −1} .(13)

If q � 0 then Iq = R+, whereas if q < 0 then Iq = [0,−1/q).

THEOREM 2.8. Let (M, g) be any Riemannian n-manifold. If n � 3 (respectively,

n = 2) then K̃(Π) > 0 for all vertical 2-planes Π in T (BMq) precisely when (p, q) ∈ Γ

(respectively, (p, q) ∈ Γ ′). In particular, the regions Γ and Γ ′ characterise the values
of (p, q) for which the metric induced by hp,q on the fibres of BMq has positive sectional
curvature.

PROOF. We assume throughout that 2p + q > 0.

Suppose first that n = 2. From the proof of Corollary 2.5, the sign of K̃(Π) is controlled
by the sign over Iq of the polynomial P(t) defined in (10). If q = 0 then P(t) = 2p, so
P(Iq) > 0 for all p > 0. If p = 1 then P(t) = 3qt + q + 2, so P(Iq ) > 0 for all q � 0, but
P(−1/q) = q − 1 < 0 for all q < 0. In general, when p �= 1 and q �= 0, P(t) is quadratic,
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with discriminant:

D = pq(pq + 8p + 8q − 8) ,

and critical point t0 = (p + 2)/2(p − 1), which satisfies t0 < 0 if and only if −2 < p < 1.
When D > 0, let t+ (respectively, t−) denote the maximum (respectively, minimum) root of
P(t). Suppose first that q > 0. If p > 1 then P(t) is eventually negative. If 0 � p < 1 then
P(R+) > 0. If p < 0 then P(t0) is a global minimum. When −2 < p < 0 we have t0 < 0,
so P(R+) > 0 precisely when 2p + q > 0; when p � −2 we have t0 � 0, so P(R+) > 0
precisely when D < 0, which is the case if and only if q > λ(p) and p > −8. In summary,
P(Iq) > 0 for q > 0 if and only if (p, q) ∈ Γ+. Suppose now that q < 0. It suffices to
consider p � 0. If 0 � p < 1 then P(t0) is a global maximum, with t0 < 0 and D > 0.
Hence P(Iq) > 0 precisely when t+ � −1/q:

√
D � 2 − 2p − 2q − pq ,

which rearranges to:

(p − 1)(q − 1)(p + q − 1) � 0 ,

and is therefore impossible. If p > 1 then P(t0) is a global minimum, with t0 > 0. If
q > λ(p) then D < 0, so P(Iq) > 0 for all q < 0. If q = λ(p) then D = 0, so P(Iq ) > 0
precisely when t0 � −1/q , which after some rearrangement is equivalent to p + q � 1. If
q < λ(p) then D > 0, so P(Iq) > 0 precisely when t− � −1/q:

√
D � 2p − 2 − 2q − pq ,

which rearranges to:

(p − 1)(q − 1)(p + q − 1) � 0 ,

and is therefore again equivalent to p + q � 1. In summary, P(Iq ) > 0 for q < 0 if and only
if (p, q) ∈ Γ−.

Now suppose that n � 3. For any e ∈ BMq , choosing X,Y in (9) such that e lies in

the plane spanned by X and Y , it follows that the conditions for K̃(Π) � 0 when n = 2 are
all necessary when n � 3. Additional necessary conditions may be obtained by inspecting

the sign of K̃(Π) when Π projects to a 2-plane in Tπ(e)M orthogonal to e, and by (9) this is
determined by B:

B = ωq(pω
2(2 + (2 − p)|e|2)+ q) = ω2ωqQ(|e|2) ,

where:

Q(s) = Qp,q(s) = 2p + q + (2p + 2q − p2)s + qs2 .(14)

Thus the sign of B is determined by the sign over Iq of Q(s). If q = 0 then Q(s) = 2p +
p(2 − p)s, and Q(Iq) > 0 precisely when 0 < p � 2. If q �= 0 thenQ(s) has discriminant:

E = p2(p2 − 4p − 4q + 4) ,
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and E < 0 if and only if p �= 0 and q > κ1(p), where κ1(p) = 1
4 (p − 2)2. Furthermore the

critical point s0 of Q(s) satisfies s0 < 0 if and only if q > 0 and q > κ2(p), or q < 0 and

q < κ2(p), where κ2(p) = 1
2p(p − 2). It is helpful to note that:

0 < κ1(p) < κ2(p) and κ1(p) < λ(p) , if −8 < p < −2 ,

0 < κ2(p) < κ1(p), if −2 < p < 0 ,

κ2(p) < 0 < κ1(p), if 0 < p < 2 ,

0 < κ1(p) < κ2(p), if p > 2 .

Suppose first that q > 0. Then Q(s0) is a global minimum. If q > κ2(p) (ie. s0 < 0) then
Q(R+) > 0 precisely when 2p + q > 0, whereas if q � κ2(p) (ie. s0 � 0) then |p| > 2 and
hence Q(R+) > 0 precisely when q > κ1(p) (ie. E < 0). Now let Ωi (i = 1, 2, 3) be the
following region of the half plane 2p + q > 0:

Ω1 = {(p, q) : |p| > 2 and q > κ1(p)} ,
Ω2 = {(p, q) : −2 � p � 0 and 2p + q > 0} ,
Ω3 = {(p, q) : 0 � p � 2 and q > 0} ,

and define:

Ω = Ω1 ∪Ω2 ∪Ω3 .

Thus Q(Iq) > 0 if and only if (p, q) ∈ Ω . However Γ+ ⊂ Ω , so no additional conditions
are generated. Suppose now that q < 0. It suffices to consider p > 0. Now Q(s0) is a global
maximum; and E > 0, since q < κ1(p) and p �= 0. Therefore, since Q(0) = 2p + q > 0,
Q(Iq) > 0 precisely when the maximum root s+ � −1/q:

√
E � p2 − 2p − 2q + 2 ,

which rearranges to:

(p + q − 1)2 � 0 ,

and is therefore equivalent to p + q = 1. In summary, additional conditions necessary for

K̃(Π) > 0 are 0 < p � 2 when q = 0, and p + q = 1 when q < 0.
Finally we note that the necessary conditions listed above are in fact sufficient. For,

by (9) the sign of K̃(Xv ∧ Y v) is the same as that of A(〈X, e〉2 + 〈Y, e〉2) + B. Now 0 �
〈X, e〉2 + 〈Y, e〉2 � |e|2, since X and Y are orthonormal. But if a, b ∈ R with a + b � 0 and
b � 0 then au+ b � 0 for all u ∈ [0, 1]. �

It is interesting to compare Theorem 2.8 with Corollary 2.6. In §3 we will extend Theo-

rem 2.8 to a characterisation of K̃ � 0 whenM has constant (non-negative) curvature (Theo-
rem 3.3).
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We now turn to the Ricci curvature. In the following result, it is understood that summa-
tion applies to all repeated indices.

PROPOSITION 2.9. Let ρ denote the Ricci tensor of (M, g). Then the Ricci curvature
ρ̃ of hp,q satisfies, at e ∈ BMq:

ρ̃(Xh, Y h) = ρ(X, Y )− 3

4
ωp〈R(X, ei)e, R(Y, ei)e〉 + 1

4
ωp〈R(e, ei)X,R(e, ei)Y 〉 ,(15)

ρ̃(Xh, Y v) = 1

2
ωp〈δR(X)e, Y 〉,(16)

ρ̃(Xv, Y v) = 1

4
ω2p〈R(X, e), R(Y, e)〉 + α〈X,Y 〉 + β〈X, e〉〈Y, e〉 ,(17)

for all vectors X,Y ∈ Tπ(e)M , where {ei}1�i�n is an orthonormal basis of Tπ(e)M , and δ is
the covariant coderivative of (M, g). The functions α and β on BMq depend on A and B of
Proposition 2.3 :

α = |e|2ωqA+ (n− 2 + ωq)B , β = (n− 1 − ωq)A+ qωqB .

In particular, α and β are independent of the curvature of (M, g).

PROOF. Assume first that e �= 0, and let {e1, . . . , en} be an orthonormal basis of Tπ(e)M

with e1 = e/|e|. Then {eh1 , . . . , ehn, f v1 , . . . , f vn } is an orthonormal basis of TeTM , where:

f1 = √
ωq ω

−p/2e1 , fj = ω−p/2ej , for j � 2 .

To prove formula (15), we combine the definition of Ricci curvature, parts (i) and (iv) of
Proposition 2.3 and the definition of hp,q to obtain:

ρ̃(Xh, Y h) = hp,q(R̃(X
h, ehi )e

h
i , Y

h)+ hp,q(R̃(X
h, f vi )f

v
i , Y

h)

= ρ(X, Y )+ 3

4
ωp〈R(e,R(X, ei )e)ei, Y 〉 − 1

4
ωp〈R(e, ei)R(e, ei)X, Y 〉 .

To show (16), we again use parts (i) and (iv) of Proposition 2.3 and the definition of hp,q to
obtain:

ρ̃(Xh, Y v) = hp,q(R̃(X
h, ehi )e

h
i , Y

v)+ hp,q(R̃(X
h, f vi )f

v
i , Y

v)

= 1

2
ωp[〈(∇eiR)(X, ei)e, Y 〉 + q〈Y, e〉〈(∇ei R)(X, ei)e, e〉] ,

and observe that 〈(∇eiR)(X, ei)e, e〉 = 0 to conclude. For equation (17), we have:

ρ̃(Xv, Y v) = hp,q(R̃(X
v, ehi )e

h
i , Y

v)+ hp,q(R̃(X
v, f vi )f

v
i , Y

v) .(18)

First, using Proposition 2.3 (iv) and the definition of hp,q , we obtain:

hp,q(R̃(X
v, ehi )e

h
i , Y

v) = hp,q(R̃(e
h
i ,X

v)Y v, ehi )
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= 1

4
ω2p〈R(e,X)ei , R(e, Y )ei〉 .

We now use Proposition 2.3 (vi) to expand the second term of (18):

R̃(Xv, f vi )f
v
i = A 〈fi, e〉[r(X, fi)e]v + B[r(X, fi)fi ]v + C〈r(X, fi)fi , e〉U ,

and then use r(X, ei)ei = (n−1)X, the relation q|e|2ωq = 1−ωq , and equation (6) to rewrite
this as:

ωpR̃(Xv, f vi )f
v
i = (|e|2ωqA+ (n− 2 + ωq)B)X

v + (n− 2)C〈X, e〉U
= αXv + (n− 2)C〈X, e〉U .

Therefore by the definition of hp,q :

hp,q(R̃(X
v, f vi )f

v
i , Y

v) = ((1 − ωq)A+ q(n− 2 + ωq)B + (n− 2)ω−1
q C)〈X, e〉〈Y, e〉

+ α〈X,Y 〉
= α〈X,Y 〉 + β〈X, e〉〈Y, e〉 ,

after applying equation (6). This concludes the case e �= 0. The formulas extend to e = 0 by
continuity. �

Recall that a Riemannian manifold is said to have harmonic curvature if δR = 0.

COROLLARY 2.10. Necessary conditions for hp,q to be an Einstein metric on BMq

are that (M, g) is Einstein and has harmonic curvature.

We also note from Proposition 2.9, setting e = 0, that:

ρ̃(Xh, Y h) = ρ(X, Y ) , ρ̃(Xv, Y v) = α〈X,Y 〉 = (n− 2)(2p + q)〈X,Y 〉 .
Therefore necessary conditions for ρ̃ � 0 are ρ � 0 and, when n � 3, 2p+ q � 0. However,

unlike the sectional curvature K̃ , there are no values of (p, q) for which ρ̃ extends to the
tangent bundle of SMq (the problem being that α is always singular on SMq ).

We conclude the section with a computation of the scalar curvature of hp,q .

PROPOSITION 2.11. Let s denote the scalar curvature of (M, g). Then for each e ∈
BMq the scalar curvature s̃ of hp,q is:

s̃ = s − 1

4
ωp

n∑
i,j=1

|R(ei, ej )e|2 + (n− 1)ω−p(2α − (n− 2)B) ,

where α and B are as in Propositions 2.9 and 2.3 respectively.

PROOF. For e �= 0, let {eh1 , . . . , ehn, f v1 , . . . , f vn } be an orthonormal basis of TeTM as
in the proof of Proposition 2.9. By definition (summing over repeated indices):

s̃ = ρ̃(ehi , e
h
i )+ ρ̃(f vi , f

v
i ) ,
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and by Proposition 2.9:

ρ̃(ehi , e
h
i ) = s − 3

4
ωp

∑
i,j

|R(ei, ej )e|2 + 1

4
ωp

∑
i,j

|R(e, ei)ej |2

= s − 1

4
ωp

∑
i,j

|R(ei, ej )e|2 ,

by the symmetries of the Riemann tensor, and:

ρ̃(f vi , f
v
i ) = 1

4
ωp

∑
i,j

|R(e, ei)ej |2 + ω−p((n− 1 + ωq)α + |e|2ωqβ) .

The result follows on noting that:

(n− 1 + ωq)α + |e|2ωqβ = (n− 1)(2|e|2ωqA+ (n− 2 + 2ωq)B)

= (n− 1)(2α − (n− 2)B).

For e = 0, we use a continuity argument to finish the proof. �

REMARK 2.12. Setting e = 0 in Proposition 2.11 yields:

s̃ = s + (n− 1)(2α − (n− 2)B) = s + n(n− 1)(2p + q) .

Therefore a necessary condition for s̃ > 0 is:

s > n(1 − n)(2p + q) ,

which does not preclude the possibility of s < 0. Note also that, as expected, s̃ does not
extend smoothly across SMq , for any values of (p, q).

3. Generalised Cheeger-Gromoll metrics over space forms

Unless otherwise stated, in this section (M, g) is now a Riemannian manifold of dimen-
sion n � 2 and constant sectional curvature c. The expressions for the Ricci, sectional and
scalar curvatures of hp,q then simplify and their signs can be studied.

PROPOSITION 3.1. The Ricci, sectional and scalar curvatures of hp,q at e ∈ BMq are
given by:

ρ̃(Xh, Y h) = c(n− 1)〈X,Y 〉 + 1

2
c2ωp[(2 − n)〈X, e〉〈Y, e〉 − |e|2〈X,Y 〉] ,(19)

ρ̃(Xh, Y v) = 0 ,(20)

ρ̃(Xv, Y v) =
(
α + 1

2
c2|e|2ω2p

)
〈X,Y 〉 +

(
β − 1

2
c2ω2p

)
〈X, e〉〈Y, e〉 ,(21)
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where α, β are as defined in Proposition 2.9,

K̃(Xh ∧ Yh) = c − 3

4
c2ωp(〈X, e〉2 + 〈Y, e〉2) ,(22)

K̃(Xh ∧ Y v) = 1

4
c2ωp

〈X, e〉2

1 + q〈Y, e〉2 ,(23)

K̃(Xv ∧ Y v) = ω−p

1 + q〈X, e〉2 + q〈Y, e〉2 (A(〈X, e〉2 + 〈Y, e〉2)+ B) ,(24)

for all orthonormal vectors X and Y of Tπ(e)M ,

s̃ = (n− 1)(nc − 1

2
c2ωp|e|2 + ω−p(2α − (n− 2)B)) .(25)

PROOF. In this situation R = cr , where r is as defined in (5). We first compute the
sectional curvatures. We have, for X and Y orthonormal:

|R(X, Y )e|2 = c2(〈X, e〉2 + 〈Y, e〉2) ,

so formula (7) of Proposition 2.4 yields (22). Similarly, R(e, Y )X = −c〈X, e〉Y and for-

mula (8) of Proposition 2.4 implies (23). Formula (8) for K̃(Xv ∧ Y v) is unchanged, being
independent of the curvature of (M, g).

For the scalar and Ricci curvatures, let {e1, . . . , en} be an orthonormal basis of Tπ(e)M
with e1 = e/|e| (assuming e �= 0). Then:

n∑
i,j=1

|R(ei, ej )e|2 = c2|e|2
n∑
i �=j
(〈ei , e1〉2 + 〈ej , e1〉2) = 2(n− 1)c2|e|2 .

Furthermore s = n(n−1)c, so Proposition 2.11 for s̃ reduces to formula (25). The case e = 0
follows by continuity. For the Ricci curvature, we note first that (summing over repeated
indices):

〈R(X, ei )e, R(Y, ei)e〉 = c2(|e|2〈X,Y 〉 + (n− 2)〈X, e〉〈Y, e〉)
= 〈R(e, ei)X,R(e, ei)Y 〉 .

Furthermore ρ(X, Y ) = c(n− 1)〈X,Y 〉. Plugging these into formula (15) yields (21). Equa-
tion (14) follows from (10) and the fact that space forms have harmonic curvature. Finally:

〈R(X, e)ei , R(Y, e)ei〉 = 2c2(|e|2〈X,Y 〉 − 〈X, e〉〈Y, e〉) ,
from which formula (11) reduces to (15). (Note that α and β are independent of the curvature
of M .) The case e = 0 again follows by continuity. �

Proposition 3.1 allows us to investigate conditions under which the sectional or scalar
curvature of hp,q is non-negative. Note from equation (23) that the sectional curvature is
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never strictly positive. In fact we reach a characterisation of K̃ � 0, and sufficient conditions

for s̃ > 0. Recall that a necessary condition for K̃ � 0 is K � 0, and hence c � 0. Recalling
the functions µ(p) and λ(p), defined in equations (11) and (12) respectively, we now modify
the regions Γ and Γ ′ introduced in Definition 2.7 to the following families of regions ∆c and
∆′
c, for c � 0.

DEFINITION 3.2. Let ∆i+ (i = 1, 2, 3) be the following region of the (p, q)-plane:

∆1+ = {(p, q) : −8 < p � −2 and q � λ(p)} ⊃ Γ 1+ ,

∆2+ = {(p, q) : −2 � p � 0 and 2p + q � 0} ⊃ Γ 2+ ,

∆3+ = {(p, q) : 0 � p � 1 and q > 0} = Γ 3+ ,

and set:

∆+ = ∆1+ ∪∆2+ ∪∆3+ .

Define further regions:

∆− = {(p, q) : p + q = 1 and q < 0} = Γ− ,

∆′− = {(p, q) : p + q � 1 and q < 0} = Γ ′− ,

∆Z = {(p, 0) : 0 � p � 2} ⊃ ΓZ ,

∆′
Z = {(p, 0) : p � 0} ⊃ Γ ′

Z ,

and set:

∆0 = ∆− ∪∆Z ∪∆+ , ∆′
0 = ∆′− ∪∆′

Z ∪∆+ .

Notice that ∆0 (respectively, ∆′
0) lies in the closure of Γ (respectively, Γ ′). Now for c > 0

define:

∆c,− = {(p, q) : p + q = 1, q < 0 and µ(p) � 3c/4} ⊂ ∆− ,

∆′
c,− = {(p, q) : p + q � 1, q < 0 and µ(p) � 3c/4} ⊂ ∆′− ,

∆c,Z = {(p, 0) : 1 � p � 2 and µ(p) � 3c/4} ⊂ ∆Z ,

∆′
c,Z = {(p, 0) : p � 1 and µ(p) � 3c/4} ⊂ ∆′

Z ,

∆c,+ =
{ {(1, q) : q > 0} , if c � 4/3

∅, if c > 4/3

}
⊂ ∆+ ,

and set:

∆c = ∆c,− ∪∆c,Z ∪∆c,+ , ∆′
c = ∆′

c,− ∪∆′
c,Z ∪∆c,+ .

Notice that ∆c,Z = ∅ if c > 4µ(2)/3 = 16/3.
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For all c � 0 we have ∆c ⊂ ∆′
c, and ∆′

c lies in the closed half plane 2p + q � 0. In
fact, if c > 0 then ∆′

c lies in the region p + q � 1 with p � 1, and is independent of c if
c � 4/3, whereas if c > 16/3 then ∆′

c lies in the region p + q � 1 with q � 0 and p > 2.
Furthermore ∆c1 ⊂ ∆c2 ⊂ Γ ⊂ ∆0 for all c1 > c2 > 0, and similar relations hold for the
∆′
c. Note that ∆− (respectively, ∆′−) is the limit of ∆c,− (respectively, ∆′

c,−) as c → 0, but

the corresponding limits do not hold for the other components of ∆c and ∆′
c. In particular,

∆c and∆′
c do not converge to ∆0 and ∆′

0 respectively, as c → 0.

THEOREM 3.3. Let M be an n-dimensional Riemannian manifold of constant sec-
tional curvature c � 0. If n � 3 (respectively, n = 2) then hp,q has non-negative sectional
curvature precisely when (p, q) ∈ ∆c (respectively, (p, q) ∈ ∆′

c).

PROOF. Necessary and sufficient conditions for K̃(Π) � 0 for all vertical 2-planes Π
may be deduced from Theorem 2.8, yielding the regions ∆0 and ∆′

0. When c = 0 it follows

from Proposition 3.1 that these are necessary and sufficient for K̃ � 0. Suppose c > 0. It

follows from equation (23) that K̃(Π) � 0 for all vertizontalΠ . For all dimensions, it follows

from (22) that K̃(Π) � 0 for all horizontal 2-planes Π in TeTM if and only if:

ωp|e|2 � 4

3c
.(26)

Now ωp|e|2 = f (|e|2) where f (t) = t/(1 + t)p. The function f (t) is bounded on R+ if and
only if p � 1, in which case it has supremum 1/µ(p), attained at t = 1/(p − 1) if p > 1.

If q � 0 then it follows that K̃(Π) � 0 for all horizontal Π precisely when p � 1 and
µ(p) � 3c/4. Imposing these conditions on ∆+, ∆Z and ∆′

Z yields the regions ∆c,+, ∆c,Z
and ∆′

c,Z, respectively. If q < 0 then we only require (26) to hold for |e|2 < −1/q . Now if

p > 1 then ωp|e|2 has supremum 1/µ(p) over BMq precisely when p+ q � 1. Since p > 1
and p + q � 1 are both necessary conditions (from∆− and ∆′−), it follows that (26) holds if
and only if µ(p) � 3c/4. �

It follows from Theorem 3.3 that if 0 � c � 4/3 then the conditions for K̃ � 0 are
independent of c, whereas if n � 3 (repectively, n = 2) and c > 16/3 then all (p, q) for
which hp,q has non-negative sectional curvature lie in the open (respectively, closed) lower
half plane q < 0 (respectively, q � 0).

We now consider the scalar curvature s̃ = s̃p,q of hp,q . Since s = n(n − 1)c it follows
from Remark 2.12 that a necessary condition for s̃ > 0 is 2p + q > −c. Notice that this
no longer precludes c < 0. We will not attempt to find all metrics with s̃ > 0, but identify
subregions of Γ and Γ ′ where this is the case. It will be convenient to introduce the following
function:

ν(p) = 2(1 − p)

2 + p
, p �= −2 ,(27)
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which parametrises the hyperbola in the (p, q)-plane with equation pq+2p+2q = 2. Notice
that 1 − p < λ(p) < ν(p) < 0 for all p > 1. We now introduce the following “multipliers”
mi = mi(n, p, q) � 1 (i = 1, . . . , 5).

DEFINITION 3.4. If p > 0 define m1 � 1 by:

(m1)
2 = 1 + 2(n− 2)

n2p
.

Note that m1 = 1 if and only if n = 2. If p � 1 definem2 > 1 and m3 � 1 by:

(m2)
2 = 1 + 4p

nµ(p)
, (m3)

2 = 1 + 2(p2 − 1)

npµ(p)
.

Note that m3 > 1 if p > 1. If p > 1 and λ(p) < q < 0 definem4 > 1 by:

(m4)
2 = 1 + D

4(p − 1)(q − 1)µ(p)
,

where:

D = pq(pq + 8p + 8q − 8) .

Note that D < 0 for all (p, q) in the region λ(p) < q < 0. Finally, if p > 1 and p + q � 1
define m5 � 1 by:

(m5)
2 = 1 + p + q − 1

µ(p)
.

Note that m5 = 1 if and only if p + q = 1, andm5 = m4 when q = ν(p).

THEOREM 3.5. Let (M, g) be an n-dimensional Riemannian manifold of constant sec-
tional curvature c, and let s̃ be the scalar curvature of hp,q on BMq .

Let n = 2. For c = 0, s̃ > 0 precisely when (p, q) ∈ Γ ′. For c �= 0, s̃ > 0 if one of the
following holds:

(a) q > 0, p = 1, and |c − 2| < 2,
(b) q = 0, 1 � p < 2, and |c − 2µ(p)| < 2µ(p),
(c) q = 0, p � 2, and |c − 2µ(p)| < 2m2µ(p),
(d) q < 0, p > 1, q � ν(p), and |c − 2µ(p)| < 2m4µ(p),
(e) q < 0, p + q � 1, q � ν(p), and |c − 2µ(p)| < 2m5µ(p).
Let n � 3. For c = 0, s̃ > 0 if (p, q) ∈ Γ . For c �= 0, s̃ > 0 if one of the following

conditions holds:
(a) q > 0, p = 1, and |c − n| < m1n,
(b) q = 0, 1 � p < 2, and |c − nµ(p)| < m1nµ(p),
(c) q = 0, p = 2, and |c − 4n| < 4m2n,
(d) q < 0, p + q = 1, and |c − nµ(p)| < m3nµ(p).
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PROOF. From Proposition 3.1, after some calculation:

s̃

n− 1
= nc − 1

2
c2f (t)+ ϕ(t) ,(28)

where t = |e|2. Here f (t) = t/(1 + t)p, the function introduced in the proof of Theorem 3.3,
and:

ϕ(t) = (1 + t)p−2(1 + qt)−2C(t) ,(29)

with C(t) the following generically cubic polynomial:

C(t) = Cp,q(t) = 2P(t)+ (n− 2)(1 + qt)Q(t) ,(30)

involving the polynomials P(t) and Q(t) defined in (10) and (14), respectively. If c = 0 then
s̃ > 0 precisely when ϕ(Iq) > 0, where Iq is the interval defined in (13). When n = 2,
ϕ(Iq) > 0 if and only if P(Iq) > 0, and from the proof of Theorem 2.8 this is the case
precisely when (p, q) ∈ Γ ′. When n � 3, a sufficient condition for ϕ(Iq) > 0 is P(Iq) > 0
andQ(Iq) > 0, and from the proof of Theorem 2.8 this is the case precisely when (p, q) ∈ Γ .
If c �= 0 we restrict attention to those (p, q) ∈ Γ (if n � 3), or (p, q) ∈ Γ ′ (if n = 2), with
p � 1. This ensures that f (t) is bounded on R+, with supremum 1/µ(p), and ϕ(t) is bounded
below on Iq , with infimum ϕ̌ � 0 (Theorem 2.8). Then (28) yields the following sufficient
condition for s̃ > 0:

c2

2µ(p)
< nc + ϕ̌ ,

which is equivalent to the following quadratic inequality for c:

c2 − 2nµ(p)c − 2µ(p)ϕ̌ < 0 .(31)

Suppose first that n = 2. Referring to Theorem 2.8, the possibilities for (p, q) ∈ Γ ′ with
p � 1 are as follows.

(a) q > 0 and p = 1. Then ϕ̌ = 0, and (31) yields 0 < c < 4.
(b) q = 0 and 1 � p < 2. Then ϕ̌ = 0, and (31) yields 0 < c < 4µ(p).
(c) q = 0 and p � 2. Then ϕ̌ = 4p, and (31) yields:

|c − 2µ(p)| < 2µ(p)
√

1 + 2p/µ(p) = 2m2µ(p) .

When q < 0 we estimate ϕ̌ by first noting the following lower bounds over Iq :

(1 + qt)−2 � 1,

(1 + t)p−2 �




(
q − 1

q

)p−2

, if 1 < p < 2

1 , if p � 2


 � q

q − 1
.(32)
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Referring to the proof of Theorem 2.8, P(t) has a global minimum at t0 > 0, and we note that
t0 � −1/q if and only if pq + 2p + 2q − 2 � 0. It follows that if q � ν(p) then:

inf
t∈Iq

P (t) = P(t0) = D

4(p − 1)q
,

whereas if q � ν(p) then:

inf
t∈Iq

P (t) = P(−1/q) = (p + q − 1)(q − 1)

q
.

These estimates yield the following two further cases.
(d) q < 0, p > 1 and q � ν(p). Then ϕ̌ � D/2(p − 1)(q − 1), and (31) is therefore

satisfied if:

|c− 2µ(p)| < 2m4µ(p) .

(e) q < 0, p + q � 1 and q � ν(p). Then ϕ̌ � 2(p + q − 1), and (31) is satisfied if:

|c− 2µ(p)| < 2m5µ(p) .

This completes our analysis of surfaces.
Now suppose that n � 3. Referring to Theorem 2.8, the possibilities for (p, q) ∈ Γ with

p � 1 are as follows.
(a) q > 0 and p = 1. Then ϕ is a rational function, which is smooth and decreasing on

R+, hence:

ϕ̌ = lim
t→∞ϕ(t) = n− 2 .

Therefore (31) is equivalent to:

|c− n| < n

√
1 + 2(n− 2)/n2 = m1n .

(b) q = 0 and 1 � p < 2. Then:

ϕ(t) = p(1 + t)p−2(2n+ (n− 2)(2 − p)t) .

If p = 1 then ϕ̌ = n− 2, and if 1 < p < 2 then ϕ has a global minimum at:

τ = (n+ 2)/(n− 2)(p − 1) ,

hence:

ϕ̌ = ϕ(τ) = (n− 2)2−p(p − 1)1−p((n− 2)p + 4)p−1 > (n− 2)µ(p)/p .

It follows that ϕ̌ � (n− 2)µ(p)/p for all 1 � p < 2. Therefore (31) is satisfied if:

|c − nµ(p)| < nµ(p)

√
1 + 2(n− 2)/n2p = m1nµ(p) .
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(c) q = 0 and p = 2. Then ϕ̌ = 4n and µ(p) = 4, so (31) is equivalent to:

|c − 4n| < 4n
√

1 + 2/n = 4nm2 .

(d) q < 0 and p + q = 1. Then:

P(t) = (1 + qt)(2 − q + qt), Q(t) = (1 + qt)(2 − q + t) ,

and it follows that:

ϕ(t) = (1 + t)p−2
(
(n− 2)(2 − q + t)+ 2(2 − q + qt)

1 + qt

)
= (1 + t)p−2ψ(t) , say.

Now ψ(t) is increasing on Iq , and therefore bounded below by ψ(0) = n(2 − q). Also

(1 + t)p−2 is bounded below on Iq by (p− 1)/p, from (32). Therefore ϕ̌ � n(p2 − 1)/p, so
(31) is satisfied if:

|c − nµ(p)| < nµ(p)

√
1 + 2(p2 − 1)/npµ(p) = m3nµ(p) .

�

As a correction to Sekizawa’s computations of the sectional and scalar curvatures of the
Cheeger-Gromoll metric h1,1, Gudmundsson and Kappos proved the following result.

THEOREM 3.6 ([11]). Let (M, g) be an n-dimensional Riemannian manifold of con-
stant sectional curvature c, then there exist real numbers cn and Cn such that (TM, h1,1) has
positive scalar curvature if and only if c ∈ (cn, Cn). If n = 2 then c2 = 0 and C2 � 40, and
if n � 3 then cn < 0 and Cn > 60.

Our next result shows that the curvature restrictions of Theorem 3.6 can be lifted by
varying the parameters (p, q).

THEOREM 3.7. Let (M, g) be an n-dimensional Riemannian manifold (n � 2) of con-
stant sectional curvature c. Then there exist parameters p and q such that hp,q has positive
scalar curvature.

PROOF. If n = 2 then it follows from Theorem 3.5 that if c = 0 (respectively, c > 0)
then hp,0 has positive scalar curvature for all p > 0 (respectively, all p � 2 with µ(p) > c),
whereas if c < 0 then s̃p,0 > provided p � 2 and:

2(m2 − 1)µ(p) > −c .

Note that:

p

µ(p)
=

(
p − 1

p

)p−1
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is decreasing, with limit 1/e as p → ∞, so m2 is bounded below by
√

1 + 2/e. Therefore
s̃p,0 > 0 for all p � 2 satisfying:

µ(p) >
−c√

e + 2 − √
e
.

Suppose now that n � 3, and consider hp,q with p + q = 1 and q < 0. By Theorem
3.5, if c = 0 (respectively, c > 0) then hp,q has positive scalar curvature for all such (p, q)
(respectively, all such (p, q) with µ(p) > c), whereas if c < 0 then s̃p,q > 0 provided:

n(m3 − 1)µ(p) > −c .
Nowm3 is increasing (in p), and hence bounded below by

√
1 + 3/4nwhen p � 2. Therefore

s̃p,q > 0 if p � 2 and (for example):

µ(p) >
−c√

n+ 3/4 − √
n
.

�

One difficulty with Theorem 3.7 is that when n � 3 the metrics hp,q with s̃p,q > 0 all
have q < 0, and therefore only endow the Riemannian ball subbundle of TM with a metric
of positive scalar curvature. If c = 0 then by Theorem 3.5 any metric hp,q with 0 � p � 1
and q > 0 has positive scalar curvature, and our next result generalises this to all values of c.
Scrutiny of the proof will show, however, that when n � 3 and c �= 0 the parameters (p, q)
in general lie in the interior of the complement of Γ , which by Theorem 2.8 implies that the
sectional curvatures of the tangent spaces are no longer entirely positive (or non-negative).

THEOREM 3.8. Let (M, g) be an n-dimensional Riemannian manifold (n � 2) of
constant sectional curvature c. Then there exist parameters p and q � 0 such that hp,q has
positive scalar curvature.

PROOF. It suffices to consider n � 3 and c �= 0. We expand the polynomial C(t)
defined in equation (30):

C(t) = (n− 2)q2t3 + ap,n(q)t
2 + bp,n(q)t + n(2p + q) ,

where:

ap,n(q) = 2(n− 2)q2 + (n+ 2(n− 3)p − (n− 2)p2)q ,

bp,n(q) = 2(np − 1)q2 + 2(n+ (n− 1)p)q + (n− 2)p(2 − p) .

For fixed p � 2, the roots of ap,n(q) (respectively, bp,n(q)) are real, and the larger root Ap,n
(respectively, Bp,n) is non-negative. Therefore, if q � 0 then C(t) will be positive on R+ if
in addition q > max(Ap,n, Bp,n). Thus ϕ̌ � 0, and by (31) a sufficient condition for s̃ > 0 is:

c2 − 2nµ(p)c < 0 .

Therefore if c > 0 then s̃ > 0 by choosing µ(p) > c/2n.
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When c < 0, we assume that p is a positive integer. It then follows from (28) that the
sign of s̃ is controlled by the polynomial:

G(t) = nc(1 + t)p(1 + qt)2 − 1

2
c2t (1 + qt)2 + (1 + t)2p−2C(t) ,

for t � 0. We can make the coefficients of degree greater or equal to p + 3 positive by
requiring that, for a chosen p, q be greater than qp+3 = max(Ap,n, Bp,n). The constant in
G(t) is positive if, for p fixed, q is greater than q0 = −c− 2p, and the coefficient of t inG(t)
is a polynomial in q , of degree two and positive leading coefficient, so that it is positive if q is

greater than a certain real number q1. Similarly the coefficients of t2 and t3 are polynomials
of degree two in q , with positive leading coefficients if p � p2 and p � p3, respectively,
where p2, p3 > 1; so for q greater than some real numbers q2 and q3, the coefficients of

t2 and t3 in G(t) are positive. So if p is greater than max(p2, p3) and q is greater than

max(q0, q1, q2, q3, qp+3), the constant term and the coefficients of t , t2, t3 and tk (k � p+3)
in G(t), will be positive.

The coefficients of tk for 4 � k � p + 2 are given by polynomials of degree two in q ,
with leading coefficients positive if:

p � k − 2

2
− (k − 1)nc

(n− 2)2k−1
,(33)

for all k = 4, . . . , p + 2. Studying the function

ρ(x) = x − 2

2
− nc(x − 1)

(n− 2)2x−1

over the interval [4, p + 2], shows that:

max
x∈[4,p+2] ρ(x) = max(ρ(4), ρ(p + 2)) .

Using the upper bounds n/n − 2 � 3 and (p + 1)/p � 2 for all n � 3 and all p � 1, it
follows that (33) is satisfied if:

p � p4 = max(1 − 9c/8, 1 + ln(−3c)/ ln 2) ,

and the leading terms of the coefficients of tk , for 4 � k � p + 2, will be positive.
To conclude the proof, choose p � max(p2, p3, p4), ensuring that all the leading terms

of the coefficients of G(t) (seen as second order polynomials in q) are positive, and then, for
this fixed value of p, choose q greater than:

max(q0, q1, q2, q3, q4, . . . qp+2, qp+3) ,

where, for 4 � k � p + 2, qk is the (larger) positive root of the coefficient of tk in G(t). For
such p and q , G(t) has all its coefficients positive, hence s̃ is positive. �

REMARK 3.9. In the context of g-natural metrics, results close to Theorems 3.7 and
3.8 can be found in [1] and [2]. More precisely, [1, Theorem 1.8] states that on the tangent
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bundle of a Riemannian manifold of negative scalar curvature, one can construct a g-natural
metric of negative scalar curvature, while [2, Theorem A.2] shows that, on a manifold of con-
stant negative sectional curvature, one can find functions endowing the tangent space with a
g-natural metric of constant positive scalar curvature. However, it should be noted that even
under the hypothesis of [2, Theorem A.2], Theorem 3.8 identifies the positive scalar curva-
ture metric on TM as a simpler metric, belonging to a tighter class, which is a 2-parameter
variation of the original Cheeger-Gromoll metric and for which the map π : TM → M is a
Riemannian submersion with totally geodesic fibres.

Theorem 3.7 can be extended to more general manifolds under some curvature condi-
tions.

THEOREM 3.10. Let (M, g) be an n-dimensional Riemannian manifold (n � 2). If
there exist constants a and b such that:

s � a and
n∑

i,j=1

|R(ei, ej )e|2 � b|e|2 ,

for all e ∈ TM , then there exist parameters (p, q) such that (TM, hp,q) has positive scalar
curvature.

PROOF. By Proposition 2.11, for any (p, q):

s̃ � a − 1

4
bωp|e|2 + (n− 1)ω−p(2α − (n− 2)B) .

It follows from Proposition 3.1 that if c is chosen to be less than:

min(a/n(n− 1),−√
b/2(n− 1) ) ,

then s̃ � s̃(c), the scalar curvature of the generalised Cheeger-Gromoll metric on BMq if
(M, g) were a space form of curvature c. By Theorem 3.8, it is possible to choose (p, q) with
q � 0 such that s̃(c) > 0. �

The curvature conditions of Theorem 3.10 are always satisfied on compact manifolds.

THEOREM 3.11. Let (M, g) be a compact Riemannian manifold. Then there exist
parameters p and q such that (TM, hp,q) has positive scalar curvature.

PROOF. Since M is compact and the scalar curvature is a continuous function, the ex-
istence of the constant a of Theorem 3.10 is automatic.

To establish the existence of a constant b, we will start from a finite open coveringU ofM
such that on (the closure of) each U ∈ U there exists a local orthonormal frame {e1, . . . , en}.
To obtain b, for each U and each pair (ei , ej ), we need only establish the existence of a
constantMij such that:

|R(ei, ej )e|2 � Mij |e|2 ,
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for all e ∈ TxM and all x ∈ U . If e = ∑n
k=1 akek then:

|R(ei, ej )e|2 =
∣∣∣∣ ∑
k

akR(ei, ej )ek

∣∣∣∣
2

�
∑
k

|ak|2|R(ei, ej )ek|2 .

For each k, the function x �→ |Rx(ei, ej )ek|2x , defined on the relatively compact set U , is
continuous and therefore has a supremum Mijk . TakingMij = maxk Mijk yields:

|R(ei, ej )e|2 � Mij

∑
k

|ak|2 = Mij |e|2 .

�
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