Reproducing Kernels Related to the Complex Sphere

Keiko FUJITA and Mitsuo MORIMOTO

Saga University and International Christian University

We shall introduce four Hilbert spaces with a reproducing kernel and study relations among them. These Hilbert spaces are related to Fourier transforms of analytic functionals on the complex sphere.

Introduction.

Put $\mathbf{E} = \mathbf{R}^{n+1}$ and $\tilde{\mathbf{E}} = \mathbf{C}^{n+1}$ $(n \ge 2)$. For $z, \zeta \in \tilde{\mathbf{E}}$ we put $z \cdot \zeta = z_1\zeta_1 + z_2\zeta_2 + \cdots + z_{n+1}\zeta_{n+1}$. Let $L(z) = \sqrt{\|z\|^2 + \sqrt{\|z\|^4 - |z^2|^2}}$ be the Lie norm on $\tilde{\mathbf{E}}$, where $\|z\|^2 = z \cdot \bar{z}$ and $z^2 = z \cdot z$. We denote the closed Lie ball of radius r > 0 by $\tilde{B}[r] = \{z \in \tilde{\mathbf{E}}; L(z) \le r\}$ and the complex sphere of radius $\lambda \in \mathbf{C}$ by $\tilde{\mathbf{S}}_{\lambda} = \{z \in \tilde{\mathbf{E}}; z^2 = \lambda^2\}$ (see Hua [6], Morimoto [8] and [12] for the Lie ball and the Lie sphere). Especially for $\lambda = 0$ sometime we call $\tilde{\mathbf{S}}_0$ the complex light cone. For $|\lambda| \le r$ put $\tilde{\mathbf{S}}_{\lambda}[r] = \tilde{\mathbf{S}}_{\lambda} \cap \tilde{B}[r]$. If $\lambda \ne 0$, then

$$\tilde{\mathbf{S}}_{\lambda}[r] = \{ z \in \tilde{\mathbf{E}}; z^2 = \lambda^2, \|\operatorname{Im}(z/\lambda)\| \le (r^2 - |\lambda|^2)/(2r|\lambda|) \}.$$

If $|\lambda| < r$, then $\tilde{\mathbf{S}}_{\lambda}[r]$ is a complex variety of complex dimension n with boundary. If $|\lambda| = r$, then $\tilde{\mathbf{S}}_{\lambda}[r]$ reduces to the real sphere of complex radius $\lambda: \mathbf{S}_{\lambda} = \lambda \mathbf{S}_{1}$, where $\mathbf{S}_{1} = \{x \in \mathbf{E}; \|x\| = 1\}$. For $|\lambda| \le r$ we put $\tilde{\mathbf{S}}_{\lambda,r} = \partial \tilde{\mathbf{S}}_{\lambda}[r] = \{z \in \tilde{\mathbf{S}}_{\lambda}; L(z) = r\}$. If $|\lambda| < r$, then $\tilde{\mathbf{S}}_{\lambda,r}$ is a compact real analytic manifold of real dimension 2n-1. If $|\lambda| = r$, then $\tilde{\mathbf{S}}_{\lambda,r} = \tilde{\mathbf{S}}_{\lambda}[r] = \mathbf{S}_{\lambda}$. The rotation group acts transitively on $\tilde{\mathbf{S}}_{\lambda,r}$ and there is a unique normalized invariant measure on $\tilde{\mathbf{S}}_{\lambda,r}$.

We denote by $\mathcal{O}_{\Delta}(\tilde{B}[r])$ the space of germs of complex harmonic functions on $\tilde{B}[r]$. In §1 we consider the sesquilinear form on $\mathcal{O}_{\Delta}(\tilde{B}[r])$ defined by

$$(f,g)_{\tilde{\mathbf{S}}_{\lambda,r}} = \int_{\tilde{\mathbf{S}}_{\lambda,r}} f(z) \overline{g(z)} dz,$$

where dz denotes the normalized invariant measure on $\tilde{\mathbf{S}}_{\lambda,r}$. We shall show that $(f, g)_{\tilde{\mathbf{S}}_{\lambda,r}}$ is an inner product on $\mathcal{O}_{\Delta}(\tilde{B}[r])$. We denote by $\mathfrak{h}^2_{\lambda}(\tilde{B}(r))$ the completion of $\mathcal{O}_{\Delta}(\tilde{B}[r])$ with

respect to the inner product $(,)_{\tilde{S}_{\lambda,r}}$. If $|\lambda| = r$, then we denote $\mathfrak{h}^2(\tilde{B}(r)) = \mathfrak{h}^2_{\lambda}(\tilde{B}(r))$. The Poisson kernel $K_{\lambda,r}(z,w)$ is a reproducing kernel for the Hilbert space $\mathfrak{h}^2_{\lambda}(\tilde{B}(r))$.

We have the following inclusion relations (Theorem 1.5):

$$\mathcal{O}_{\Delta}(\tilde{B}[r]) \subset \mathfrak{h}^2(\tilde{B}(r)) \subset \mathfrak{h}^2_{\lambda}(\tilde{B}(r)) \subset \mathfrak{h}^2_0(\tilde{B}(r)) \subset \mathcal{O}_{\Delta}(\tilde{B}(r))$$
.

Let $\tilde{\mathbf{S}}_{\lambda}(r) = \tilde{\mathbf{S}}_{\lambda} \cap \tilde{B}(r)$, $|\lambda| < r$, be the open truncated complex sphere. We denote by $\mathcal{O}(\tilde{\mathbf{S}}_{\lambda}(r))$ the space of holomorphic functions on $\tilde{\mathbf{S}}_{\lambda}(r)$. In §2 we introduce the Hardy space $H^2(\tilde{\mathbf{S}}_{\lambda}(r))$ as a subspace of $\mathcal{O}(\tilde{\mathbf{S}}_{\lambda}(r))$ in such a way that the restriction mapping α_{λ}^0 : $\mathfrak{h}_{\lambda}^2(\tilde{B}(r)) \to H^2(\tilde{\mathbf{S}}_{\lambda}(r))$ is a unitary isomorphism (Theorem 2.3). The restriction $\tilde{K}_{\lambda,r}(z,w)$ of $K_{\lambda,r}(z,w)$ to $\tilde{\mathbf{S}}_{\lambda}(r) \times \tilde{\mathbf{S}}_{\lambda}(r)$ is called the Cauchy kernel for $\tilde{\mathbf{S}}_{\lambda}(r)$. It is a reproducing kernel for $H^2(\tilde{\mathbf{S}}_{\lambda}(r))$.

In §§3 and 4 we shall review some results on harmonic functionals on the Lie ball and analytic functionals on the complex sphere.

In §5 we define the conical Fourier transform of $f \in \mathfrak{h}^2_{\lambda}(\tilde{B}(r))$ by

$$\mathcal{F}_{\lambda,r}^{\Delta} f(\zeta) = \int_{\tilde{\mathbf{S}}_{\lambda,r}} \exp(z \cdot \zeta) \overline{f(z)} dz, \quad \zeta \in \tilde{\mathbf{S}}_0,$$

and denote by $\mathcal{E}^2(\tilde{\mathbf{S}}_0; \lambda, r)$ the image of $\mathfrak{h}^2_{\lambda}(\tilde{B}(r))$ under $\mathcal{F}^{\Delta}_{\lambda,r}$. If $|\lambda| = r$, then we denote $\mathcal{E}^2(\tilde{\mathbf{S}}_0; r) = \mathcal{E}^2(\tilde{\mathbf{S}}_0; \lambda, r)$. We introduce an inner product on $\mathcal{E}^2(\tilde{\mathbf{S}}_0; \lambda, r)$ in such a way that the conical Fourier transformation $\mathcal{F}^{\Delta}_{\lambda,r}$ is an antilinear unitary transformation from $\mathfrak{h}^2_{\lambda}(\tilde{B}(r))$ onto $\mathcal{E}^2(\tilde{\mathbf{S}}_0; \lambda, r)$. We shall construct the F-Poisson kernel $E^{\lambda}_{r,0}(\zeta, \xi)$, which is a reproducing kernel for the Hilbert space $\mathcal{E}^2(\tilde{\mathbf{S}}_0; \lambda, r)$. We shall prove the following relation (Theorem 6.4):

$$\operatorname{Exp}(\tilde{\mathbf{S}}_0;[r]) \subset \mathcal{E}^2(\tilde{\mathbf{S}}_0;0,r) \subset \mathcal{E}^2(\tilde{\mathbf{S}}_0;\lambda,r) \subset \mathcal{E}^2(\tilde{\mathbf{S}}_0;r) \subset \operatorname{Exp}(\tilde{\mathbf{S}}_0;(r)).$$

In §7 we review results on spaces of eigenfunctions of the Laplacian of exponential type and define the Fourier transformation $\mathcal{F}_{\lambda,r}$ for the Hardy space $H^2(\tilde{\mathbf{S}}_{\lambda}(r))$. We denote the image of the Hardy space $H^2(\tilde{\mathbf{S}}_{\lambda}(r))$ under the Fourier transformation $\mathcal{F}_{\lambda,r}$ by $\mathcal{E}^2_{\Delta-\lambda^2}(\tilde{\mathbf{E}};r)$.

In the last section §8, we shall construct the F-Cauchy kernel $E_r^{\lambda}(\zeta, \xi)$, which is a reproducing kernel for the Hilbert space $\mathcal{E}_{\Delta-\lambda^2}^2(\tilde{\mathbf{E}}; r)$. The F-Poisson kernel $E_{r,0}^{\lambda}(\zeta, \xi)$ is the restriction of $E_r^{\lambda}(\zeta, \xi)$ to $\tilde{\mathbf{S}}_0 \times \tilde{\mathbf{S}}_0$.

The relations among our four Hilbert spaces can be summarized as the following commutative diagram (Theorem 8.1):

$$\mathfrak{h}_{\lambda}^{2}(\tilde{B}(r)) \xrightarrow{\mathcal{F}_{\lambda,r}^{\Delta}} \mathcal{E}^{2}(\tilde{\mathbf{S}}_{0}; \lambda, r) \\
\downarrow \alpha_{\lambda}^{0} \qquad \qquad \uparrow \beta_{0}^{\lambda} \\
H^{2}(\tilde{\mathbf{S}}_{\lambda}(r)) \xrightarrow{\mathcal{F}_{\lambda,r}} \mathcal{E}_{\Delta-\lambda^{2}}^{2}(\tilde{\mathbf{E}}; r),$$

where α_{λ}^{0} and β_{0}^{λ} are the restriction mappings. The Hilbert spaces $H^{2}(\tilde{\mathbf{S}}_{\lambda}(r))$ and $\mathcal{E}_{\Delta-\lambda^{2}}^{2}(\tilde{\mathbf{E}};r)$ are discussed in Fujita [4].

In our previous papers Morimoto-Fujita [14], [15] and [16] we considered the bilinear form

$$\langle f, g \rangle_{\tilde{\mathbf{S}}_{\lambda,r}} = \int_{\tilde{\mathbf{S}}_{\lambda,r}} f(z) g(\bar{z}) dz$$

on $\mathcal{O}(\tilde{\mathbf{S}}_{\lambda}[r])$, but this is well-defined only for $\lambda \in \mathbf{R}$. For a general complex parameter λ we should consider the sesquilinear form $(f, g)_{\tilde{\mathbf{S}}_{\lambda,r}}$. Accordingly, the Poisson transformation and the Cauchy transformation are redefined to be antilinear mappings in this paper.

1. Complex harmonic functions.

Let $\tilde{B}(r) = \{z \in \tilde{\mathbf{E}}; L(z) < r\}$ be the open Lie ball of radius r. We denote by $\mathcal{O}(\tilde{B}(r))$ the space of holomorphic funtions on $\tilde{B}(r)$ and by $\mathcal{O}_{\Delta}(\tilde{B}(r)) = \{f \in \mathcal{O}(\tilde{B}(r)); \Delta_z f = 0\}$ the space of complex harmonic functions on $\tilde{B}(r)$, where

$$\Delta_z = \frac{\partial^2}{\partial z_1^2} + \frac{\partial^2}{\partial z_2^2} + \dots + \frac{\partial^2}{\partial z_{n+1}^2}$$

is the complex Laplacian. Equipped with the topology of uniform convergence on compact sets, the spaces $\mathcal{O}(\tilde{B}(r))$ and $\mathcal{O}_{\Delta}(\tilde{B}(r))$ are Fréchet-Schwartz spaces (FS spaces, for short), and $\mathcal{O}_{\Delta}(\tilde{B}(r))$ is a closed subspace of $\mathcal{O}(\tilde{B}(r))$ (for FS spaces and DFS spaces (dual Fréchet-Schwartz spaces), see, for example, Morimoto [10]).

Denote by $\mathcal{P}_{\Delta}^{k}(\tilde{\mathbf{E}})$ the space of k-homogeneous harmonic polynomials and by $N(k, n) = \dim \mathcal{P}_{\Delta}^{k}(\tilde{\mathbf{E}})$ the dimension of $\mathcal{P}_{\Delta}^{k}(\tilde{\mathbf{E}})$. We know

$$N(k,n) = \frac{(2k+n-1)(k+n-2)!}{k!(n-1)!} = O(k^{n-1}).$$

Let $P_{k,n}(t)$ be the Legendre polynomial of degree k and of dimension n+1 and $\gamma_{k,n}$ the principal coefficient of $P_{k,n}(t)$:

$$\gamma_{k,n} = \frac{2^k \Gamma(k + (n+1)/2)}{k! \Gamma((n+1)/2) N(k,n)}.$$

In our previous papers Fujita [2], [3], [4], Fujita-Morimoto [5], Morimoto [8], [9], [11], [12], Morimoto-Fujita [13], [14], [15] and [16], we defined the extended Legendre polynomial by

$$\tilde{P}_{k,n}(z,w) = (\sqrt{z^2})^k (\sqrt{w^2})^k P_{k,n} \left(\frac{z}{\sqrt{z^2}} \cdot \frac{w}{\sqrt{w^2}} \right).$$

We have $\Delta_z \tilde{P}_{k,n}(z,w) = \Delta_w \tilde{P}_{k,n}(z,w) = 0$ and $\tilde{P}_{k,n}(z,w) = \tilde{P}_{k,n}(w,z)$. $\tilde{P}_{k,n}(z,w)$ is a k-homogeneous polynomial in z and in w. Note that

$$\tilde{P}_{k,n}(z, w) = \gamma_{k,n}(z \cdot w)^k$$
 for $z^2 = 0$ or $w^2 = 0$.

In this paper, we shall use the following notation:

$$P_{k,n}(z,w) = \tilde{P}_{k,n}(z,\bar{w}).$$

The two-variable function $P_{k,n}(z, w)$ is a reproducing kernel for the finite dimensional space $\mathcal{P}_{\Delta}^{k}(\tilde{\mathbf{E}})$. The following theorem is due to Wada [17] and [18].

THEOREM 1.1. (i) If $f_k \in \mathcal{P}_{\Delta}^k(\tilde{\mathbf{E}})$, $f_l \in \mathcal{P}_{\Delta}^l(\tilde{\mathbf{E}})$, and $k \neq l$, then we have the orthogonality:

$$\int_{\tilde{\mathbf{S}}_{\lambda,r}} f_k(z) \overline{f_l(z)} dz = 0,$$

where dz denotes the normalized invariant measure on $\tilde{\mathbf{S}}_{\lambda,r}$.

(ii) If $f_k, g_k \in \mathcal{P}_{\Lambda}^k(\tilde{\mathbf{E}})$, then we have

$$\int_{\widetilde{\mathbf{S}}_{\lambda,r}} f_k(z) \overline{g_k(z)} dz = L_{k,\lambda,r} \int_{\mathbf{S}_1} f_k(x) \overline{g_k(x)} dx,$$

where

(1)
$$L_{k,\lambda,r} = \begin{cases} r^{2k}, & |\lambda| = r, \\ |\lambda|^{2k} P_{k,n} ((r^2/|\lambda|^2 + |\lambda|^2/r^2)/2) & 0 < |\lambda| < r, \\ 2^{-k} \gamma_{k,n} r^{2k}, & \lambda = 0. \end{cases}$$

Note that $L_{k,\lambda,r}$ is continuous with respect to λ and r.

(iii) If $f_k \in \mathcal{P}_{\Delta}^k(\tilde{\mathbf{E}})$, then we have the reproducing formula:

$$f_k(z) = \frac{N(k,n)}{L_{k,\lambda,r}} \int_{\tilde{\mathbf{S}}_{\lambda,r}} f_k(w) P_{k,n}(z,w) \dot{d}w$$
$$= N(k,n) \int_{\mathbf{S}_1} f_k(x) P_{k,n}(z,x) \dot{d}x.$$

COROLLARY 1.2.

$$P_{k,n}(z,w) = \frac{N(k,n)}{L_{k,\lambda,r}} \int_{\tilde{\mathbf{S}}_{\lambda,r}} P_{k,n}(z,w') P_{k,n}(w',w) dw'$$
$$= 2^k \gamma_{k,n} N(k,n) \int_{\tilde{\mathbf{S}}_{0,1}} (z \cdot \overline{w'})^k (w' \cdot \overline{w})^k dw'.$$

Suppose $f \in \mathcal{O}_{\Delta}(\tilde{B}(r))$ is given. Then

(2)
$$f_k(z) = \frac{N(k,n)}{L_{k,\lambda,r'}} \int_{\tilde{S}'_{\lambda,r}} f(w) P_{k,n}(z,w) dw$$

belongs to $\mathcal{P}_{\Delta}^{k}(\tilde{\mathbf{E}})$ and does not depend on λ , r' with $|\lambda| \leq r' < r$. We call (2) the k-homogeneous harmonic component of $f \in \mathcal{O}_{\Delta}(\tilde{B}(r))$. We have the following theorem (Morimoto [9], Theorem 5.2):

THEOREM 1.3. Let $f \in \mathcal{O}_{\Delta}(\tilde{B}(r))$ and $f_k \in \mathcal{P}_{\Delta}^k(\tilde{\mathbf{E}})$ be the k-homogeneous harmonic component of f. Then

(3)
$$f(z) = \sum_{k=0}^{\infty} f_k(z), \quad z \in \tilde{B}(r)$$

converges uniformly on compact sets of $\tilde{B}(r)$ and we have

(4)
$$\limsup_{k \to \infty} \sqrt[k]{\|f_k\|_{\mathbf{S}_1}} \le \frac{1}{r},$$

where $||f_k||_{S_1}$ is the L^2 norm on S_1 .

Conversely, if a sequence $\{f_k\}$ of homogeneous harmonic polynomials $f_k \in \mathcal{P}_{\Delta}^k(\tilde{\mathbf{E}})$ satisfies (4), then the right-hand side of (3) converges uniformly on compact sets of $\tilde{\mathbf{B}}(r)$ and f(z) is a complex harmonic function on $\tilde{\mathbf{B}}(r)$.

Put

$$\mathcal{O}(\tilde{B}[r]) = \liminf_{r' > r} \mathcal{O}(\tilde{B}(r'))$$
 and $\mathcal{O}_{\Delta}(\tilde{B}[r]) = \liminf_{r' > r} \mathcal{O}_{\Delta}(\tilde{B}(r'))$

and equip them with the locally convex inductive limit topology. The spaces $\mathcal{O}(\tilde{B}[r])$ and $\mathcal{O}_{\Delta}(\tilde{B}[r])$ are DFS spaces, and $\mathcal{O}_{\Delta}(\tilde{B}[r])$ is a closed subspace of $\mathcal{O}(\tilde{B}[r])$. For $f, g \in \mathcal{O}_{\Delta}(\tilde{B}[r])$ we define

$$(g, f)_{\tilde{\mathbf{S}}_{\lambda,r}} = \int_{\tilde{\mathbf{S}}_{\lambda,r}} g(w) \overline{f(w)} dw.$$

 $(g, f)_{\tilde{\mathbf{S}}_{\lambda,r}}$ is a sesquilinear form on $\mathcal{O}_{\Delta}(\tilde{B}[r])$. Let f (resp. g) $\in \mathcal{O}_{\Delta}(\tilde{B}[r])$ and f_k (resp. g_k) be the k-homogeneous harmonic component of f (resp. g). Then $f(z) = \sum_{k=0}^{\infty} f_k(z)$ and $g(z) = \sum_{k=0}^{\infty} g_k(z)$ converge uniformly on $\tilde{\mathbf{S}}_{\lambda,r}$. By Theorem 1.1 we have

$$(g, f)_{\tilde{\mathbf{S}}_{\lambda,r}} = \int_{\tilde{\mathbf{S}}_{\lambda,r}} g(z) \overline{f(z)} dz = \int_{\tilde{\mathbf{S}}_{\lambda,r}} \sum_{k=0}^{\infty} g_k(z) \sum_{l=0}^{\infty} \overline{f_l(z)} dz$$
$$= \sum_{k=0}^{\infty} \int_{\tilde{\mathbf{S}}_{\lambda,r}} g_k(z) \overline{f_k(z)} dz = \sum_{k=0}^{\infty} L_{k,\lambda,r}(g_k, f_k)_{\mathbf{S}_1}.$$

This implies $(g, f)_{\tilde{\mathbf{S}}_{\lambda,r}}$ is an inner product on $\mathcal{O}_{\Delta}(\tilde{B}[r])$.

Let $g \in \mathcal{O}_{\Delta}(\tilde{B}[r])$ and $f \in \mathcal{O}_{\Delta}(\tilde{B}(r))$. Then there is t > 1 such that $f(t^{-1}z)$ and g(tz) belong to $\mathcal{O}_{\Delta}(\tilde{B}[r])$ as functions in z. Put

$$I_t = \int_{\tilde{\mathbf{S}}_{\lambda,r}} g(tz) \overline{f(t^{-1}z)} dz.$$

Then $I_t = \sum_{k=0}^{\infty} L_{k,\lambda,r}(g_k, f_k)_{\mathbf{S}_1}$ and it is independent of t > 1 sufficiently close to 1. We call I_t the symbolic integral form on $\tilde{\mathbf{S}}_{\lambda,r}$ and denote it by

s.
$$\int_{\tilde{\mathbf{S}}_{\lambda,r}} g(z) \overline{f(z)} dz$$
.

By the definition, it is a separately continuous sesquilinear form on $\mathcal{O}_{\Delta}(\tilde{B}[r]) \times \mathcal{O}_{\Delta}(\tilde{B}(r))$. Define the Poisson kernel $K_{\lambda,r}(z,w)$ by

$$K_{\lambda,r}(z,w) = \sum_{k=0}^{\infty} \frac{N(k,n)}{L_{k,\lambda,r}} P_{k,n}(z,w).$$

 $K_{\lambda,r}(z, w)$ is holomorphic in z and antiholomorphic in w on

$$\Omega_r = \{(z, w) \in \tilde{\mathbf{E}} \times \tilde{\mathbf{E}}; L(z)L(w) < r^2\}$$

and satisfies $\Delta_z K_{\lambda,r}(z,w) = 0$ and $K_{\lambda,r}(z,w) = \overline{K_{\lambda,r}(w,z)} = K_{\lambda,r}(\bar{w},\bar{z})$. We have the Poisson integral representation formula for $f \in \mathcal{O}_{\Delta}(\tilde{B}(r))$:

$$f(z) = \mathrm{s.} \int_{\tilde{\mathbf{S}}_{\lambda,r}} f(w) K_{\lambda,r}(z,w) dw, \quad z \in \tilde{\mathbf{B}}(r).$$

Note that $K_{\lambda,r}(z, w)$ reduces to the classical Poisson kernel when $|\lambda| = r$.

LEMMA 1.4. If $0 < |\lambda| < |\mu| < r$ and $k \in \mathbb{N}$, then we have

(5)
$$2^{-k} \gamma_{k,n} r^{2k} < L_{k,\lambda,r} < L_{k,\mu,r} < r^{2k}.$$

PROOF. Put $a(s) = s^k P_{k,n}((s+1/s)/2)$ for s > 0. Then by the Laplace representation formula

$$P_{k,n}(t) = \frac{\Gamma(n/2)}{\sqrt{\pi} \Gamma((n-1)/2)} \int_{-1}^{1} (t + x\sqrt{t^2 - 1})^k (1 - x^2)^{(n-3)/2} dx \quad \text{for} \quad t > 1,$$

for $0 < s \le 1$ we have

$$a(s) = \frac{\Gamma(n/2)}{\sqrt{\pi} \Gamma((n-1)/2)} \int_{-1}^{1} 2^{-k} ((1+s^2) + x(1-s^2))^k (1-x^2)^{(n-3)/2} dx$$
$$= \frac{\Gamma(n/2)}{\sqrt{\pi} \Gamma((n-1)/2) 2^k} \int_{-1}^{1} (s^2 (1-x) + (1+x))^k (1-x^2)^{(n-3)/2} dx.$$

Then it is clear that a(s) is a monotone increasing function in s with $0 < s \le 1$. By the definition (1), we get (5).

Let $\mathfrak{h}^2_{\lambda}(\tilde{B}(r))$ be the completion of $\mathcal{O}_{\Delta}(\tilde{B}[r])$ with respect to the norm $\|f\|_{\tilde{\mathbf{S}}_{\lambda,r}} = \sqrt{(f,f)_{\tilde{\mathbf{S}}_{\lambda,r}}}$. Then $\mathfrak{h}^2_{\lambda}(\tilde{B}(r))$ is a Hilbert space and is isomorphic to the space

(6)
$$\mathfrak{h}_{\lambda}^{2}(\tilde{B}(r)) = \left\{ \{f_{k}\}; f_{k} \in \mathcal{P}_{\Delta}^{k}(\tilde{\mathbf{E}}), \sum_{k=0}^{\infty} L_{k,\lambda,r} \|f_{k}\|_{\mathbf{S}_{1}}^{2} < \infty \right\}.$$

If $|\lambda| = r$, we write $\mathfrak{h}^2(\tilde{B}(r)) = \mathfrak{h}^2_{\lambda}(\tilde{B}(r))$. By Lemma 1.4, for $0 < |\lambda| < |\mu| < r$, we have $\mathfrak{h}^2(\tilde{B}(r)) \subset \mathfrak{h}^2_{\mu}(\tilde{B}(r)) \subset \mathfrak{h}^2_{\lambda}(\tilde{B}(r)) \subset \mathfrak{h}^2_0(\tilde{B}(r))$. If $\{f_k\} \in \mathfrak{h}^2_0(\tilde{B}(r))$, then we have

$$\sum_{k=0}^{\infty} 2^{-k} \gamma_{k,n} r^{2k} \|f_k\|_{\mathbf{S}_1}^2 < \infty.$$

Therefore, there exists $M \ge 0$ such that $||f_k||_{\mathbf{S}_1} \le Mr^{-k}(2^{-k}\gamma_{k,n})^{-1/2}$. Because of

(7)
$$2^{-k}\gamma_{k,n} = \frac{1}{N(k,n)} \frac{\Gamma(k+(n+1)/2)}{\Gamma((n+1)/2)\Gamma(k+1)} = O(k^{-(n-1)/2}),$$

we have (4). Therefore, by Theorem 1.3, $f(z) = \sum_{k=0}^{\infty} f_k(z)$ converges and complex harmonic on $\tilde{B}(r)$. With this identification we have the following theorem:

THEOREM 1.5. (i) The Hilbert space $\mathfrak{h}^2_{\lambda}(\tilde{B}(r))$ is the Hilbert space direct sum of the finite dimensional subspaces $\mathcal{P}^k_{\lambda}(\tilde{\mathbf{E}})$:

$$\mathfrak{h}^2_{\lambda}(\tilde{B}(r)) = \bigoplus_{k=0}^{\infty} \mathcal{P}^k_{\Delta}(\tilde{\mathbf{E}}).$$

(ii) The Poisson kernel $K_{\lambda,r}(z,w)$ is a reproducing kernel for the Hilbert space $\mathfrak{h}^2_{\lambda}(\tilde{B}(r))$; that is, for $f \in \mathfrak{h}^2_{\lambda}(\tilde{B}(r))$ we have

$$f(z) = (f(w), K_{\lambda,r}(w, z))_{\tilde{\mathbf{S}}_{\lambda,r}}.$$

(iii) If $0 < |\lambda| < |\mu| < r$, then we have $\mathcal{O}_{\Delta}(\tilde{B}[r]) \subset \mathfrak{h}^{2}(\tilde{B}(r)) \subset \mathfrak{h}^{2}_{\mu}(\tilde{B}(r)) \subset \mathfrak{h}^{2}_{\lambda}(\tilde{B}(r)) \subset \mathfrak{h}^{2}_{0}(\tilde{B}(r)) \subset \mathcal{O}_{\Delta}(\tilde{B}(r)).$

2. Holomorphic functions on \tilde{S}_{λ} .

Put $\tilde{\mathbf{S}}_{\lambda}(r) = \tilde{\mathbf{S}}_{\lambda} \cap \tilde{B}(r)$ and $\tilde{\mathbf{S}}_{\lambda}[r] = \tilde{\mathbf{S}}_{\lambda} \cap \tilde{B}[r]$. Let us denote by $\mathcal{O}(\tilde{\mathbf{S}}_{\lambda}(r))$ the space of holomorphic functions on the open subset $\tilde{\mathbf{S}}_{\lambda}(r)$ of the complex sphere $\tilde{\mathbf{S}}_{\lambda}$. Equipped with the topology of uniform convergence on compact sets, $\mathcal{O}(\tilde{\mathbf{S}}_{\lambda}(r))$ is an FS space. Put $\mathcal{H}^k(\tilde{\mathbf{S}}_{\lambda}) = \{\tilde{f}_k = f_k\big|_{\tilde{\mathbf{S}}_{\lambda}}; f_k \in \mathcal{P}_{\Delta}^k(\tilde{\mathbf{E}})\}$ and call it the space of k-spherical harmonics on $\tilde{\mathbf{S}}_{\lambda}$. Especially for $\lambda = 0$, sometimes we call $\mathcal{H}^k(\tilde{\mathbf{S}}_0)$ the space of k-conical harmonics on the complex light cone $\tilde{\mathbf{S}}_0$. Note that dim $\mathcal{H}^k(\tilde{\mathbf{S}}_{\lambda}) = N(k, n)$.

Put $\mathcal{O}(\tilde{\mathbf{S}}_{\lambda}[r]) = \liminf_{r'>r} \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}(r'))$ and equip it with the locally convex inductive limit topology. It is a DFS space.

In general, we shall denote functions on a subset of the complex sphere $\tilde{\mathbf{S}}_{\lambda}$ by \tilde{f} , \tilde{g} etc. Let $\tilde{f} \in \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}(r))$. Then the right-hand side of

$$f_k(z) = \frac{N(k,n)}{L_{k,\lambda,r'}} \int_{\tilde{\mathbf{S}}_{\lambda,r'}} \tilde{f}(w) P_{k,n}(z,w) dw, \quad z \in \tilde{\mathbf{E}},$$

is independent of r' with $|\lambda| \le r' < r$ and defines $f_k \in \mathcal{P}_{\Delta}^k(\tilde{\mathbf{E}})$. The series

$$f(z) = \sum_{k=0}^{\infty} f_k(z), \quad z \in \tilde{B}(r)$$

converges uniformly on compact sets of $\tilde{B}(r)$ and defines $f \in \mathcal{O}_{\Delta}(\tilde{B}(r))$, which satisfies $f|_{\tilde{\mathbf{S}}_{\lambda}(r)} = \tilde{f}$. We call f the harmonic extension of \tilde{f} (see Morimoto [9]). If we put $\tilde{f}_k = f_k|_{\tilde{\mathbf{S}}_{\lambda}(r)}$, then $\tilde{f}_k \in \mathcal{H}^k(\tilde{\mathbf{S}}_{\lambda})$, which will be called the k-spherical harmonic component of \tilde{f} . The series

(8)
$$\tilde{f}(z) = \sum_{k=0}^{\infty} \tilde{f}_k(z), \quad z \in \tilde{\mathbf{S}}_{\lambda}(r)$$

converges uniformly on compact sets of $\tilde{\mathbf{S}}_{\lambda}(r)$ and we have $f|_{\tilde{\mathbf{S}}_{\lambda}(r)} = \tilde{f}$. We call (8) the spherical harmonic expansion of \tilde{f} .

For the later reference, we summarize this fact as a theorem:

THEOREM 2.1. The restriction mappings

$$\alpha_{\lambda}^{0}: \mathcal{O}_{\Delta}(\tilde{B}(r)) \to \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}(r)) \quad and \quad \alpha_{\lambda}^{0}: \mathcal{O}_{\Delta}(\tilde{B}[r]) \to \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}[r])$$

are topological linear isomorphisms.

PROPOSITION 2.2. Let $|\lambda| < r$ and (8) be the expansion of \tilde{f} in spherical harmonics.

- (i) $\tilde{f} \in \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}(r))$ if and only if $\limsup_{k \to \infty} \sqrt[k]{\|\tilde{f}_k\|_{\tilde{\mathbf{S}}_{\lambda,r}}} \le 1$.
- (ii) $\tilde{f} \in \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}[r])$ if and only if $\limsup_{k \to \infty} \sqrt[k]{\|\tilde{f}_k\|_{\tilde{\mathbf{S}}_{\lambda,r}}} < 1$.

For \tilde{g} , $\tilde{f} \in \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}[r])$ put

$$(\tilde{g},\,\tilde{f})_{\tilde{\mathbf{S}}_{\lambda,r}} = \int_{\tilde{\mathbf{S}}_{\lambda,r}} \tilde{g}(z) \overline{\tilde{f}(z)} dz.$$

Then Theorem 1.1 implies

(9)
$$(\tilde{g}, \tilde{f})_{\tilde{\mathbf{S}}_{\lambda,r}} = \sum_{k=0}^{\infty} (\tilde{g}_k, \tilde{f}_k)_{\tilde{\mathbf{S}}_{\lambda,r}} = \sum_{k=0}^{\infty} (\tilde{g}, \tilde{f}_k)_{\tilde{\mathbf{S}}_{\lambda,r}}.$$

By Proposition 2.2, the right-hand side of (9) converges for $\tilde{g} \in \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}[r])$ and $\tilde{f} \in \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}(r))$. So we define the sesquilinear form $(\tilde{g}, \tilde{f})_{\tilde{\mathbf{S}}_{\lambda,r}}$ by (9) and call it the symbolic integral form. We sometimes denote it by

$$(\tilde{g}, \tilde{f})_{\tilde{\mathbf{S}}_{\lambda,r}} = \mathbf{s}. \int_{\tilde{\mathbf{S}}_{\lambda,r}} \tilde{g}(z) \overline{\tilde{f}(z)} dz.$$

Let $\tilde{K}_{\lambda,r}(z,w)$ be the restriction of the Poisson kernel $K_{\lambda,r}(z,w)$ on $\tilde{S}_{\lambda} \times \tilde{S}_{\lambda}$. We call it the Cauchy kernel on \tilde{S}_{λ} . $\tilde{K}_{\lambda,r}(z,w)$ is holomorphic in z and antiholomorphic in w on

$$\Omega_r = \{(z, w) \in \tilde{\mathbf{S}}_{\lambda} \times \tilde{\mathbf{S}}_{\lambda}; L(z)L(w) < r^2\}$$

and satisfies $\tilde{K}_{\lambda,r}(z,w) = \overline{\tilde{K}_{\lambda,r}(w,z)}$. We have the Cauchy integral representation formula for $\tilde{f} \in \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}(r))$:

(10)
$$\tilde{f}(z) = s. \int_{\tilde{\mathbf{S}}_{\lambda,r}} \tilde{f}(w) \tilde{K}_{\lambda,r}(z,w) dw, \quad z \in \tilde{\mathbf{S}}_{\lambda}(r).$$

Let $\tilde{f} \in \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}(r))$, $|\lambda| < r$. For r' with $|\lambda| < r' < r$ we put

$$\|\tilde{f}\|_{\tilde{\mathbf{S}}_{\lambda,r'}} = \left\{ \int_{\tilde{\mathbf{S}}_{\lambda,r}} |\tilde{f}(z)|^2 dz \right\}^{1/2} ,$$

$$\|\tilde{f}\|_{(\lambda,r)} = \sup\{\|\tilde{f}\|_{\tilde{\mathbf{S}}_{\lambda,r'}}; |\lambda| \le r' < r\}.$$

The Hardy space $H^2(\tilde{\mathbf{S}}_{\lambda}(r))$ is defined to be the class of all $\tilde{f} \in \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}(r))$ for which $\|\tilde{f}\|_{(\lambda,r)} < \infty$. If $\tilde{f} \in \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}[r])$, then $\|\tilde{f}\|_{(\lambda,r)} = \|\tilde{f}\|_{\tilde{\mathbf{S}}_{\lambda,r}}$. Hence, $H^2(\tilde{\mathbf{S}}_{\lambda}(r))$ is the completion of

 $\mathcal{O}(\tilde{\mathbf{S}}_{\lambda}[r])$ with respect to the norm $\|\tilde{f}\|_{\tilde{\mathbf{S}}_{\lambda,r}}$. In the sequel, we denote the norm $\|\tilde{f}\|_{(\lambda,r)}$ by $\|\tilde{f}\|_{\tilde{\mathbf{S}}_{\lambda,r}}$ even for $\tilde{f} \in H^2(\tilde{\mathbf{S}}_{\lambda}(r))$. For $\tilde{f}, \tilde{g} \in H^2(\tilde{\mathbf{S}}_{\lambda}(r))$ we can define the sesquilinear form

$$(\tilde{g}, \tilde{f})_{\tilde{\mathbf{S}}_{\lambda,r}} = \int_{\tilde{\mathbf{S}}_{\lambda,r}} \tilde{g}(z) \overline{\tilde{f}(z)} dz.$$

By Theorem 1.1 we have the following theorem:

THEOREM 2.3. (i) The Hilbert space $H^2(\tilde{\mathbf{S}}_{\lambda}(r))$ is the Hilbert space direct sum of the finite dimensional subspaces $\mathcal{H}^k(\tilde{\mathbf{S}}_{\lambda})$:

$$H^2(\tilde{\mathbf{S}}_{\lambda}(r)) = \bigoplus_{k=0}^{\infty} \mathcal{H}^k(\tilde{\mathbf{S}}_{\lambda}).$$

For $\tilde{f} \in H^2(\tilde{\mathbf{S}}_{\lambda}(r))$ we define the k-spherical harmonic component \tilde{f}_k of \tilde{f} by

$$\tilde{f}_k(z) = \frac{N(k,n)}{L_{k,\lambda,r}} \int_{\tilde{\mathbf{S}}_{\lambda,r}} \tilde{f}(w) P_{k,n}(z,w) dw, \quad z \in \tilde{\mathbf{S}}_{\lambda}(r).$$

The orthogonal projection of $H^2(\tilde{\mathbf{S}}_{\lambda}(r))$ onto $\mathcal{H}^k(\tilde{\mathbf{S}}_{\lambda})$ is given by $\tilde{f} \mapsto \tilde{f}_k$.

(ii) The Cauchy kernel $\tilde{K}_{\lambda,r}(z,w)$ is a reproducing kernel for the Hilbert space $H^2(\tilde{\mathbf{S}}_{\lambda}(r))$; that is, for $\tilde{f} \in H^2(\tilde{\mathbf{S}}_{\lambda}(r))$ we have

(11)
$$\tilde{f}(z) = (\tilde{f}(w), \tilde{K}_{\lambda,r}(w,z))_{\tilde{\mathbf{S}}_{\lambda,r}}, \quad z \in \tilde{\mathbf{S}}_{\lambda}(r).$$

(iii) The restriction mapping $\alpha_{\lambda}^{0}: \mathfrak{h}_{\lambda}^{2}(\tilde{B}(r)) \to H^{2}(\tilde{\mathbf{S}}_{\lambda}(r))$ is a unitary isomorphism. The inverse mapping $\tilde{f} \mapsto f$ is given by the Poisson integral formula

$$f(z) = (\tilde{f}(w), K_{\lambda,r}(w,z))_{\tilde{\mathbf{S}}_{\lambda,r}} = \int_{\tilde{\mathbf{S}}_{\lambda,r}} \tilde{f}(w) K_{\lambda,r}(z,w) dw, \quad z \in \tilde{B}(r).$$

Combining (iii) with Theorem 2.1, we have the following commutative diagram:

$$\mathcal{O}_{\Delta}(\tilde{B}[r]) \hookrightarrow \mathfrak{h}_{\lambda}^{2}(\tilde{B}(r)) \hookrightarrow \mathcal{O}_{\Delta}(\tilde{B}(r))$$

$$\downarrow^{\alpha_{\lambda}^{0}} \qquad \qquad \downarrow^{\alpha_{\lambda}^{0}} \qquad \qquad \downarrow^{\alpha_{\lambda}^{0}}$$

$$\mathcal{O}(\tilde{\mathbf{S}}_{\lambda}[r]) \hookrightarrow H^{2}(\tilde{\mathbf{S}}_{\lambda}(r)) \hookrightarrow \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}(r)).$$

3. Harmonic functionals.

Let $\mathcal{O}'_{\Delta}(\tilde{B}[r])$ be the dual space of $\mathcal{O}_{\Delta}(\tilde{B}[r])$. An element T of $\mathcal{O}'_{\Delta}(\tilde{B}[r])$ is called a harmonic functional on $\tilde{B}[r]$. For $T \in \mathcal{O}'_{\Delta}(\tilde{B}[r])$ we put

$$T_k(z) = N(k, n) \overline{\langle T_w, P_{k,n}(w, z) \rangle_w}, \quad z \in \tilde{\mathbf{E}},$$

where \langle , \rangle_w denotes the canonical bilinear form with a dummy parameter w. $T_k(z)$ is a k-homogeneous harmonic polynomial in z and will be called the k-homogeneous harmonic

component of T. Note that T_k is antilinear with respect to T. We know

(12)
$$\limsup_{k\to\infty} \sqrt[k]{\|T_k\|_{\tilde{\mathbf{S}}_{\lambda,r}}} \leq r^2.$$

For $g = \sum_{k=0}^{\infty} g_k \in \mathcal{O}_{\Delta}(\tilde{B}[r]), g_k \in \mathcal{P}_{\Delta}^k(\tilde{\mathbf{E}})$, we have

$$\langle T, g \rangle = \sum_{k=0}^{\infty} \langle T_w, g_k(w) \rangle_w$$

by the continuity of T. Then we have

$$\begin{split} \langle T_w, g_k(w) \rangle_w &= \left\langle T_w, \frac{N(k, n)}{L_{k, \lambda, r}} \int_{\tilde{\mathbf{S}}_{\lambda, r}} g_k(z) P_{k, n}(w, z) \dot{dz} \right\rangle_w \\ &= \int_{\tilde{\mathbf{S}}_{\lambda, r}} g_k(z) \frac{N(k, n)}{L_{k, \lambda, r}} \langle T_w, P_{k, n}(w, z) \rangle_w \dot{dz} \\ &= \frac{1}{L_{k, \lambda, r}} \int_{\tilde{\mathbf{S}}_{\lambda, r}} g_k(z) \overline{T_k(z)} \dot{dz} = \frac{1}{L_{k, \lambda, r}} (g_k, T_k)_{\tilde{\mathbf{S}}_{\lambda, r}} \,. \end{split}$$

Therefore, we have

$$\langle T, g \rangle = \sum_{k=0}^{\infty} \frac{1}{L_{k,\lambda,r}} (g_k, T_k)_{\tilde{\mathbf{S}}_{\lambda,r}} = \sum_{k=0}^{\infty} \frac{1}{L_{k,\lambda,r}} (g, T_k)_{\tilde{\mathbf{S}}_{\lambda,r}}.$$

Conversely, if a sequence $\{T_k\}$ of homogeneous harmonic polynomials $T_k \in \mathcal{P}_{\Delta}^k(\tilde{\mathbb{E}})$ satisfies (12), then

$$\langle T, g \rangle = \sum_{k=0}^{\infty} \frac{1}{L_{k,\lambda,r}} (g, T_k)_{\tilde{\mathbf{S}}_{\lambda,r}} \quad \text{for} \quad g \in \mathcal{O}_{\Delta}(\tilde{B}[r])$$

defines a harmonic functional T on $\tilde{B}[r]$. In the sequel, we represent $T \in \mathcal{O}'_{\Delta}(\tilde{B}[r])$ by the sequence of its k-homogeneous harmonic components T_k and denote $T = \{T_k\}$.

For $T \in \mathcal{O}'_{\Lambda}(\tilde{B}[r])$ we define the Poisson transform $\mathcal{P}_{\lambda,r}T$ of T by

$$\mathcal{P}_{\lambda,r}T(w) = \overline{\langle T_z, K_{\lambda,r}(z,w) \rangle}, \quad w \in \tilde{B}(r).$$

Then $\mathcal{P}_{\lambda,r}T \in \mathcal{O}_{\Delta}(\tilde{B}(r))$. The mapping $\mathcal{P}_{\lambda,r}: T \mapsto \mathcal{P}_{\lambda,r}T$ is called the Poisson transformation.

THEOREM 3.1. Let $|\lambda| < r$. The Poisson transformation $\mathcal{P}_{\lambda,r}$ establishes the topological antilinear isomorphism

$$\mathcal{P}_{\lambda,r}: \mathcal{O}'_{\Lambda}(\tilde{B}[r]) \to \mathcal{O}_{\Delta}(\tilde{B}(r))$$
.

For $T \in \mathcal{O}'_{\Lambda}(\tilde{B}[r])$ and $g \in \mathcal{O}_{\Delta}(\tilde{B}[r])$ we have

(13)
$$\langle T, g \rangle = \text{s.} \int_{\tilde{\mathbf{S}}_{\lambda,r}} g(w) \overline{\mathcal{P}_{\lambda,r} T(w)} \dot{d}w.$$

PROOF. Let $T \in \mathcal{O}'_{\Delta}(\tilde{B}[r])$. For $g \in \mathcal{O}_{\Delta}(\tilde{B}[r])$ we can find t > 1 sufficiently close to 1 such that

$$\langle T, g \rangle = \langle T_z, g(z) \rangle_z = \left\langle T_z, \int_{\tilde{\mathbf{S}}_{\lambda,r}} g(tw) K_{\lambda,r}(z, t^{-1}w) dw \right\rangle_z$$
$$= \int_{\tilde{\mathbf{S}}_{\lambda,r}} g(tw) \overline{\mathcal{P}_{\lambda,r} T(t^{-1}w)} dw = \text{s.} \int_{\tilde{\mathbf{S}}_{\lambda,r}} g(w) \overline{\mathcal{P}_{\lambda,r} T(w)} dw.$$

Thus we have (13).

Now, for $f \in \mathcal{O}_{\Delta}(\tilde{B}(r))$ we denote by $T_f^{\lambda,r}$ the continuous linear functional on $\mathcal{O}_{\Delta}(\tilde{B}[r])$ defined by

$$\langle T_f^{\lambda,r}, g \rangle = \text{s.} \int_{\tilde{\mathbf{S}}_{\lambda,r}} g(z) \overline{f(z)} dz, \quad g \in \mathcal{O}_{\Delta}(\tilde{B}[r]).$$

Let $f = \sum_{k=0}^{\infty} f_k \in \mathcal{O}_{\Delta}(\tilde{B}(r)), f_k \in \mathcal{P}_{\Delta}^k(\tilde{\mathbf{E}})$. Then the k-homogeneous harmonic component $(T_f^{\lambda,r})_k$ of the functional $T_f^{\lambda,r}$ is $L_{k,\lambda,r}f_k(z)$:

$$(T_f^{\lambda,r})_k(z) = N(k,n) \overline{\langle (T_f^{\lambda,r})_w, P_{k,n}(w,z) \rangle_w}$$

$$= N(k,n) s. \int_{\tilde{S}_{\lambda,r}} P_{k,n}(w,z) \overline{f(w)} dw = L_{k,\lambda,r} f_k(z).$$

Conversely, for $T \in \mathcal{O}'_{\Delta}(\tilde{B}[r])$ we denote by T_k the k-homogeneous harmonic component of T. Then we have

$$\mathcal{P}_{\lambda,r}T(w) = \overline{\left\langle T_z, \sum_{k=0}^{\infty} \frac{N(k,n)}{L_{k,\lambda,r}} P_{k,n}(z,w) \right\rangle_z} = \sum_{k=0}^{\infty} \frac{1}{L_{k,\lambda,r}} T_k(w).$$

Thus the k-homogeneous harmonic component of $\mathcal{P}_{\lambda,r}T$ is $(L_{k,\lambda,r})^{-1}T_k(w)$.

We have proved that two antilinear mappings $T \mapsto \mathcal{P}_{\lambda,r}T$ and $f \mapsto T_f^{\lambda,r}$ are inverse to each other.

Now put

$$(\mathfrak{h}^2_{\lambda}(\tilde{B}(r)))' = \{T_f^{\lambda,r} \in \mathcal{O}'_{\Delta}(\tilde{B}[r]); f \in \mathfrak{h}^2_{\lambda}(\tilde{B}(r))\}.$$

Then $(\mathfrak{h}^2_{\lambda}(\tilde{B}(r)))'$ is antilinearly isomorphic to $\mathfrak{h}^2_{\lambda}(\tilde{B}(r))$ by the Riesz theorem. By the definition (6), we can characterize the space $(\mathfrak{h}^2_{\lambda}(\tilde{B}(r)))'$ of harmonic functionals as follows:

$$(\mathfrak{h}_{\lambda}^{2}(\tilde{B}(r)))' = \left\{ T = \{T_{k}\}; T_{k} \in \mathcal{P}_{\Delta}^{k}(\tilde{\mathbf{E}}), \sum_{k=0}^{\infty} \frac{1}{L_{k,\lambda,r}} \|T_{k}\|_{\mathbf{S}_{1}}^{2} < \infty \right\}.$$

If $|\lambda| = r$, then we shall write $(\mathfrak{h}^2(\tilde{B}(r)))' = (\mathfrak{h}^2_{\lambda}(\tilde{B}(r)))'$. Finally, from Lemma 1.4 we get the following theorem:

THEOREM 3.2. If
$$0 < |\lambda| < |\mu| < r$$
, then we have
$$\mathcal{O}'_{\Delta}(\tilde{B}(r)) \subset (\mathfrak{h}_{0}^{2}(\tilde{B}(r)))' \subset (\mathfrak{h}_{\lambda}^{2}(\tilde{B}(r)))'$$

$$\subset (\mathfrak{h}_{\mu}^{2}(\tilde{B}(r)))' \subset (\mathfrak{h}^{2}(\tilde{B}(r)))' \subset \mathcal{O}'_{\Delta}(\tilde{B}[r]).$$

4. Analytic functionals on \tilde{S}_{λ} .

Let $\mathcal{O}'(\tilde{\mathbf{S}}_{\lambda}[r])$ be the dual space of $\mathcal{O}(\tilde{\mathbf{S}}_{\lambda}[r])$. An element \tilde{T} of $\mathcal{O}'(\tilde{\mathbf{S}}_{\lambda}[r])$ is called an analytic functional on $\tilde{\mathbf{S}}_{\lambda}[r]$. For $\tilde{T} \in \mathcal{O}'(\tilde{\mathbf{S}}_{\lambda}[r])$ we put

(15)
$$\tilde{T}_k(z) = N(k,n) \overline{\langle \tilde{T}_w, P_{k,n}(w,z) \rangle_w}, \quad z \in \tilde{\mathbf{S}}_{\lambda},$$

where \langle , \rangle_w denotes the canonical bilinear form with a dummy parameter w. We call $\tilde{T}_k \in \mathcal{H}^k(\tilde{\mathbf{S}}_{\lambda})$ the k-spherical harmonic component of \tilde{T} . Note that \tilde{T}_k is antilinear with respect to \tilde{T} . We know

(16)
$$\limsup_{k\to\infty} \sqrt[k]{\|\tilde{T}_k\|_{\tilde{\mathbf{S}}_{\lambda,r}}} \le r^2.$$

For $\tilde{g} = \sum_{k=0}^{\infty} \tilde{g}_k \in \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}[r]), \, \tilde{g}_k \in \mathcal{H}^k(\tilde{\mathbf{S}}_{\lambda})$, we have

$$\langle \tilde{T}, \tilde{g} \rangle = \sum_{k=0}^{\infty} \langle \tilde{T}_w, \tilde{g}_k(w) \rangle_w$$

by the continuity of \tilde{T} . Then we have

$$\begin{split} \langle \tilde{T}_{w}, \, \tilde{g}_{k}(w) \rangle_{w} &= \left\langle \tilde{T}_{w}, \, \frac{N(k,n)}{L_{k,\lambda,r}} \int_{\tilde{\mathbf{S}}_{\lambda,r}} \tilde{g}_{k}(z) P_{k,n}(w,z) \dot{dz} \right\rangle_{w} \\ &= \int_{\tilde{\mathbf{S}}_{\lambda,r}} \tilde{g}_{k}(z) \frac{N(k,n)}{L_{k,\lambda,r}} \langle \tilde{T}_{w}, \, P_{k,n}(w,z) \rangle \dot{dz} \\ &= \frac{1}{L_{k,\lambda,r}} \int_{\tilde{\mathbf{S}}_{\lambda,r}} \tilde{g}_{k}(z) \overline{\tilde{T}_{k}(z)} \dot{dz} \,. \end{split}$$

Therefore, we get

$$\langle \tilde{T}, \tilde{g} \rangle = \sum_{k=0}^{\infty} \frac{1}{L_{k,\lambda,r}} (\tilde{g}_k, \tilde{T}_k)_{\tilde{\mathbf{S}}_{\lambda,r}} = \sum_{k=0}^{\infty} \frac{1}{L_{k,\lambda,r}} (\tilde{g}, \tilde{T}_k)_{\tilde{\mathbf{S}}_{\lambda,r}}.$$

Conversely, if a sequence $\{\tilde{T}_k\}$ of spherical harmonics $\tilde{T}_k \in \mathcal{H}^k(\tilde{\mathbf{S}}_{\lambda})$ satisfies (16), then

$$\langle \tilde{T}, \tilde{g} \rangle = \sum_{k=0}^{\infty} \frac{1}{L_{k,\lambda,r}} (\tilde{g}_k, \tilde{T}_k)_{\tilde{\mathbf{S}}_{\lambda,r}} \quad \text{for} \quad \tilde{g} \in \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}[r])$$

defines an analytic functional \tilde{T} on $\tilde{\mathbf{S}}_{\lambda}[r]$ by (5) and (7). In the sequel, we represent $\tilde{T} \in \mathcal{O}'(\tilde{\mathbf{S}}_{\lambda}(r))$ by the sequence of its k-spherical harmonic components \tilde{T}_k and denote $\tilde{T} = {\tilde{T}_k}$.

For $z \in \tilde{\mathbf{S}}_{\lambda}(r)$ the function $w \mapsto \tilde{K}_{\lambda,r}(w,z)$ is a holomorphic function in a neighborhood of $\tilde{\mathbf{S}}_{\lambda}[r]$. Hence, we can define the Cauchy transform $C_{\lambda,r}\tilde{T}$ of $\tilde{T} \in \mathcal{O}'(\tilde{\mathbf{S}}_{\lambda}[r])$ by

$$C_{\lambda,r}\tilde{T}(z) = \overline{\langle \tilde{T}_w, \tilde{K}_{\lambda,r}(w,z) \rangle_w}, \quad z \in \tilde{S}_{\lambda}(r).$$

The mapping $\tilde{T} \mapsto \mathcal{C}_{\lambda,r}\tilde{T}$ is called the Cauchy transformation.

THEOREM 4.1. Let $|\lambda| < r$. The Cauchy transformation $C_{\lambda,r}$ establishes the topological antilinear isomorphism

$$C_{\lambda,r}: \mathcal{O}'(\tilde{\mathbf{S}}_{\lambda}[r]) \to \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}(r)).$$

For $\tilde{T} \in \mathcal{O}'(\tilde{\mathbf{S}}[r])$ and $\tilde{g} \in \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}[r])$ we have

(17)
$$\langle \tilde{T}, \tilde{g} \rangle = \text{s.} \int_{\tilde{\mathbf{S}}_{\lambda,r}} \tilde{g}(w) \overline{C_{\lambda,r} \tilde{T}(w)} dw.$$

PROOF. Let $\tilde{T} \in \mathcal{O}'(\tilde{\mathbf{S}}_{\lambda}[r])$. We have

$$C_{\lambda,r}\tilde{T}(z) = \overline{\left\langle \tilde{T}_w, \sum_{k=0}^{\infty} \frac{N(k,n)}{L_{k,\lambda,r}} P_{k,n}(w,z) \right\rangle_w}$$

$$= \sum_{k=0}^{\infty} \frac{N(k,n)}{L_{k,\lambda,r}} \overline{\langle \tilde{T}_w, P_{k,n}(w,z) \rangle_w} = \sum_{k=0}^{\infty} \frac{1}{L_{k,\lambda,r}} \tilde{T}_k(z), \quad z \in \tilde{S}_{\lambda}(r).$$

Therefore, the Cauchy transformation $C_{\lambda,r}$ maps $\mathcal{O}'(\tilde{\mathbf{S}}_{\lambda}[r])$ into $\mathcal{O}(\tilde{\mathbf{S}}_{\lambda}(r))$ antilinearly.

Let $\tilde{g} \in \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}[r])$. Then \tilde{g} can be expanded in spherical harmonics $\tilde{g}(z) = \sum_{k=0}^{\infty} \tilde{g}_{k}(z)$, which converges in the topology of $\mathcal{O}(\tilde{\mathbf{S}}_{\lambda}[r])$. Therefore, we have

$$\begin{split} \langle \tilde{T}, \, \tilde{g} \rangle &= \sum_{k=0}^{\infty} \langle \tilde{T}_z, \, \tilde{g}_k(z) \rangle_z = \sum_{k=0}^{\infty} \left\langle \tilde{T}_z, \, \frac{N(k,n)}{L_{k,\lambda,r}} \int_{\tilde{\mathbf{S}}_{\lambda,r}} \, \tilde{g}_k(w) P_{k,n}(z,w) dw \right\rangle_z \\ &= \sum_{k=0}^{\infty} \int_{\tilde{\mathbf{S}}_{\lambda,r}} \, \tilde{g}_k(w) \frac{1}{L_{k,\lambda,r}} \tilde{T}_k(w) dw = \sum_{k=0}^{\infty} \int_{\tilde{\mathbf{S}}_{\lambda,r}} \, \tilde{g}(w) \frac{1}{L_{k,\lambda,r}} \tilde{T}_k(w) dw \\ &= \mathbf{S}. \int_{\tilde{\mathbf{S}}_{\lambda,r}} \, \tilde{g}(w) \overline{C_{\lambda,r} \tilde{T}(w)} dw \,. \end{split}$$

Thus, we have (17).

Now, for $\tilde{f} \in \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}(r))$ we denote by $\tilde{T}_{\tilde{f}}^{\lambda,r}$ the continuous linear functional on $\mathcal{O}(\tilde{\mathbf{S}}_{\lambda}[r])$ defined as follows:

$$\langle \tilde{T}_{\tilde{f}}^{\lambda,r}, \tilde{g} \rangle = \sum_{k=0}^{\infty} \int_{\tilde{\mathbf{S}}_{\lambda,r}} \tilde{g}(w) \overline{\tilde{f}_{k}(w)} dw, \quad \tilde{g} \in \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}[r]).$$

Then the Cauchy transform of $ilde{T}^{\lambda,r}_{ ilde{f}}$ can be calculated as follows:

$$\mathcal{C}_{\lambda,r}\tilde{T}_{\tilde{f}}^{\lambda,r}(z) = \sum_{k=0}^{\infty} \overline{\int_{\tilde{\mathbf{S}}_{\lambda,r}} K_{\lambda,r}(w,z) \overline{\tilde{f}_{k}(w)} dw} = \sum_{k=0}^{\infty} \tilde{f}_{k}(z) = \tilde{f}(z).$$

For $\tilde{T} \in \mathcal{O}'(\tilde{\mathbf{S}}_{\lambda}(r))$ we put $\tilde{f}(z) = \mathcal{C}_{\lambda,r}\tilde{T}(z)$. Then by (17) we have $\tilde{T}_{\tilde{f}}^{\lambda,r} = \tilde{T}$.

We have proved that the two antilinear mappings $\tilde{T} \mapsto \mathcal{C}_{\lambda,r}\tilde{T}$ and $\tilde{f} \mapsto T^{\lambda,r}_{\tilde{f}}$ are inverse to each other.

COROLLARY 4.2. We have he following commutative diagram:

$$\mathcal{O}_{\Delta}(\tilde{B}[r]) \hookrightarrow \mathfrak{h}_{\lambda}^{2}(\tilde{B}(r)) \hookrightarrow \mathcal{O}_{\Delta}(\tilde{B}(r)) \xleftarrow{\mathcal{P}_{\lambda,r}} \mathcal{O}_{\Delta}'(\tilde{B}[r])$$

$$\downarrow \alpha_{\lambda}^{0} \qquad \qquad \downarrow \alpha_{\lambda}^{0} \qquad \qquad \uparrow (\alpha_{\lambda}^{0})^{*}$$

$$\mathcal{O}(\tilde{\mathbf{S}}_{\lambda}[r]) \hookrightarrow H^{2}(\tilde{\mathbf{S}}_{\lambda}(r)) \hookrightarrow \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}(r)) \xleftarrow{\mathcal{C}_{\lambda,r}} \mathcal{O}'(\tilde{\mathbf{S}}_{\lambda}[r]).$$

Especially, for $\tilde{f}(z) \in \mathcal{O}(\tilde{\mathbf{S}}_{\lambda}(r))$ the harmonic extension $f = (\alpha_{\lambda}^{0})^{-1} \tilde{f} = \mathcal{P}_{\lambda,r} \circ (\alpha_{\lambda}^{0})^{*} \circ \mathcal{C}_{\lambda}^{-1} \tilde{f}$ is given by the Poisson integral

$$f(z) = \mathrm{s.} \int_{\tilde{\mathbf{S}}_{\lambda,r}} \tilde{f}(w) K_{\lambda,r}(z,w) dw$$
.

Now put $(H^2(\tilde{\mathbf{S}}_{\lambda}(r)))' = \{T_{\tilde{f}}^{\lambda,r} \in \mathcal{O}'(\tilde{\mathbf{S}}_{\lambda}[r]); \tilde{f} \in H^2(\tilde{\mathbf{S}}_{\lambda}(r))\}$. Then we have

$$\mathcal{O}'_{\Delta}(\tilde{B}(r)) \hookrightarrow (\mathfrak{h}^{2}_{\lambda}(\tilde{B}(r)))' \hookrightarrow \mathcal{O}'_{\Delta}(\tilde{B}[r])$$

$$\uparrow^{(\alpha^{0}_{\lambda})^{*}} \qquad \uparrow^{(\alpha^{0}_{\lambda})^{*}} \qquad \uparrow^{(\alpha^{0}_{\lambda})^{*}}$$

$$\mathcal{O}'(\tilde{\mathbf{S}}_{\lambda}(r)) \hookrightarrow (H^{2}(\tilde{\mathbf{S}}_{\lambda}(r)))' \hookrightarrow \mathcal{O}'(\tilde{\mathbf{S}}_{\lambda}[r])$$

and $(H^2(\tilde{\mathbf{S}}_{\lambda}(r)))'$ is antilinearly isomorphic to $H^2(\tilde{\mathbf{S}}_{\lambda}(r))$ by the Riesz theorem.

5. Conical Fourier-Borel transformation.

Let $T \in \mathcal{O}'_{\Lambda}(\tilde{B}[r])$. We can define the conical Fourier-Borel transform of T by

(18)
$$\mathcal{F}^{\Delta}T(\zeta) = \langle T_z, \exp(z \cdot \zeta) \rangle$$

for $\zeta \in \tilde{\mathbf{S}}_0$ because the function $z \mapsto \exp(z \cdot \zeta)$ is complex harmonic if $\zeta \in \tilde{\mathbf{S}}_0$. We know that the conical Fourier-Borel transformation $\mathcal{F}^{\Delta} : T \mapsto \mathcal{F}^{\Delta}T$ establishes a topological linear isomorphism from $\mathcal{O}'_{\Delta}(\tilde{B}[r])$ onto $\exp(\tilde{\mathbf{S}}_0; (r))$, where

$$\operatorname{Exp}(\tilde{\mathbf{S}}_0; (r)) = \{ F \in \mathcal{O}(\tilde{\mathbf{S}}_0); \forall r' > r, \exists C \ge 0 \text{ s.t. } |F(\zeta)| \le C \exp(r'L^*(\zeta)), \ \zeta \in \tilde{\mathbf{S}}_0 \}$$

and $L^*(\zeta) = \sup\{|z \cdot \zeta|; L(z) \le 1\} = \sqrt{(\|z\|^2 + |z^2|)/2}$ is the dual Lie norm. The conical Fourier-Borel transformation $\mathcal{F}^{\Delta}: T \mapsto \mathcal{F}^{\Delta}T$ also establishes a topological linear isomorphism from $\mathcal{O}'_{\Delta}(\tilde{B}(r))$ onto $\operatorname{Exp}(\tilde{\mathbf{S}}_0; [r])$, where

$$\operatorname{Exp}(\tilde{\mathbf{S}}_0; [r]) = \{ F \in \mathcal{O}(\tilde{\mathbf{S}}_0); \ 0 < \exists r' < r, \exists C \ge 0 \text{ s.t. } |F(\zeta)| \le C \exp(r'L^*(\zeta)), \ \zeta \in \tilde{\mathbf{S}}_0 \}.$$

Let $T_k \in \mathcal{P}_{\Delta}^k(\tilde{\mathbf{E}})$ be the *k*-homogeneous harmonic component of $T \in \mathcal{O}_{\Delta}'(\tilde{B}[r])$. Then the conical Fourier-Borel transform of T can be expanded as follows:

$$\begin{split} \mathcal{F}^{\Delta}T(\zeta) &= \langle T_z, \exp(z \cdot \zeta) \rangle = \sum_{k=0}^{\infty} \int_{\mathbf{S}_1} \frac{1}{k!} (x \cdot \zeta)^k \overline{T_k(x)} dx \\ &= \sum_{k=0}^{\infty} \int_{\mathbf{S}_1} \frac{1}{k! \gamma_{k,n}} P_{k,n}(x, \bar{\zeta}) \overline{T_k(x)} dx = \sum_{k=0}^{\infty} \frac{1}{k! \gamma_{k,n} N(k,n)} \bar{T}_k(\zeta) \end{split}$$

for $\zeta \in \tilde{\mathbf{S}}_0$, where we put $\bar{T}_k(\zeta) = \overline{T_k(\bar{\zeta})}$. Now we define the conical Fourier transformation $\mathcal{F}_{\lambda,r}^{\Delta}$ on $\mathfrak{h}_{\lambda}^2(\tilde{B}(r))$. For $f \in \mathfrak{h}_{\lambda}^2(\tilde{B}(r))$ we put

$$\mathcal{F}_{\lambda,r}^{\Delta} f(\zeta) = (\exp(z \cdot \zeta), \ f(z))_{\tilde{\mathbf{S}}_{1,r}}, \quad \zeta \in \tilde{\mathbf{S}}_{0}.$$

Then we have $\mathcal{F}_{\lambda,r}^{\Delta}f(\zeta)=\mathcal{F}^{\Delta}(T_f^{\lambda,r})(\zeta)$ for $\zeta\in\tilde{\mathbf{S}}_0$. Therefore, we have

(19)
$$\mathcal{F}_{\lambda,r}^{\Delta} f(\zeta) = \sum_{k=0}^{\infty} \frac{L_{k,\lambda,r}}{k! \gamma_{k,n} N(k,n)} \bar{f}_k(\zeta), \quad \zeta \in \tilde{\mathbf{S}}_0,$$

where $\tilde{f}_k \in \mathcal{P}_{\Delta}^k(\tilde{\mathbf{E}})$ is defined by $\bar{f}_k(\zeta) = \overline{f_k(\bar{\zeta})}$.

Let $F, G \in \mathcal{O}(\tilde{S}_0)$. We expand them as follows:

$$F(\zeta) = \sum_{k=0}^{\infty} F_k(\zeta), \quad G(\zeta) = \sum_{k=0}^{\infty} G_k(\zeta), \quad \zeta \in \tilde{\mathbf{S}}_0,$$

where F_k , $G_k \in \mathcal{H}^k(\tilde{\mathbf{S}}_0)$. We define

(20)
$$((F,G))_{\tilde{\mathbf{S}}_0}^{\lambda,r} = \sum_{k=0}^{\infty} \frac{2^k k!^2 \gamma_{k,n} N(k,n)^2}{L_{k,\lambda,r}} (F_k, G_k)_{\tilde{\mathbf{S}}_{0,1}}.$$

Put

$$\begin{split} E_{r,0}^{\lambda}(\zeta,\xi) &= (\exp(z\cdot\xi), \exp(z\cdot\xi))_{\tilde{\mathbf{S}}_{\lambda,r}} \\ &= \int_{\tilde{\mathbf{S}}_{\lambda,r}} \exp(z\cdot\xi) \overline{\exp(z\cdot\xi)} dz \,, \quad \zeta,\, \xi \in \tilde{\mathbf{S}}_0 \,. \end{split}$$

We call $E_{r,0}^{\lambda}(\zeta, \xi)$ the F-Poisson kernel on $\tilde{\mathbf{S}}_0$. Then we have

(21)
$$E_{r,0}^{\lambda}(\zeta,\xi) = \sum_{k=0}^{\infty} \frac{1}{(k!\gamma_{k,n})^{2}} \int_{\tilde{\mathbf{S}}_{\lambda,r}} P_{k,n}(z,\bar{\zeta}) P_{k,n}(\bar{\xi},z) dz$$
$$= \sum_{k=0}^{\infty} \frac{1}{(k!\gamma_{k,n})^{2}} \frac{L_{k,\lambda,r}}{N(k,n)} P_{k,n}(\zeta,\xi)$$
$$= \sum_{k=0}^{\infty} \frac{L_{k,\lambda,r}}{k!^{2}\gamma_{k,n}N(k,n)} (\zeta \cdot \bar{\xi})^{k}, \quad \zeta, \xi \in \tilde{\mathbf{S}}_{0}.$$

Note that $E_{r,0}^{\lambda}(\zeta,\xi) = E_{r,0}^{|\lambda|}(\zeta,\xi)$, $E_{r,0}^{\lambda}(\zeta,\xi) = \overline{E_{r,0}^{\lambda}(\xi,\zeta)}$, and the function $\zeta \mapsto E_{r,0}^{\lambda}(\zeta,\xi)$ belongs to $\operatorname{Exp}(\tilde{\mathbf{S}}_0;[r])$, hence to $\mathcal{E}^2(\tilde{\mathbf{S}}_0;\lambda,r)$.

6. Hilbert space of entire functions on \tilde{S}_0 .

Define $\mathcal{E}^2(\tilde{\mathbf{S}}_0; \lambda, r)$ to be the class of all $F \in \mathcal{O}(\tilde{\mathbf{S}}_0)$ for which $((F, F))_{\tilde{\mathbf{S}}_0}^{\lambda, r} < \infty$.

THEOREM 6.1. (i) The Hilbert space $\mathcal{E}^2(\tilde{S}_0; \lambda, r)$ is the Hilbert space direct sum of the finite dimensional subspaces $\mathcal{H}^k(\tilde{S}_0)$:

(22)
$$\mathcal{E}^{2}(\tilde{\mathbf{S}}_{0}; \lambda, r) = \bigoplus_{k=0}^{\infty} \mathcal{H}^{k}(\tilde{\mathbf{S}}_{0}).$$

(ii) The F-Poisson kernel $E_{r,0}^{\lambda}(\zeta,\xi)$ is a reproducing kernel for the Hilbert space $\mathcal{E}^2(\tilde{\mathbf{S}}_0;\lambda,r)$; that is, for $F\in\mathcal{E}^2(\tilde{\mathbf{S}}_0;\lambda,r)$ we have

$$F(\zeta) = ((F(\xi), E_{r,0}^{\lambda}(\xi, \zeta)))_{\tilde{\mathbf{S}}_0}^{\lambda, r}.$$

(iii) The conical Fourier transformation

(23)
$$\mathcal{F}_{\lambda r}^{\Delta}: \mathfrak{h}_{\lambda}^{2}(\tilde{B}(r)) \to \mathcal{E}^{2}(\tilde{S}_{0}; \lambda, r)$$

is an antilinear unitary isomorphism.

PROOF. (i) is clear by the definition.

(ii) Let $F \in \mathcal{E}^2(\tilde{\mathbf{S}}_0; \lambda, r)$. Expand F into conical harmonics:

$$F(\zeta) = \sum_{k=0}^{\infty} F_k(\zeta).$$

Then we have

$$((F,F))_{\tilde{\mathbf{S}}_0}^{\lambda,r} = \sum_{k=0}^{\infty} \frac{2^k k!^2 \gamma_{k,n} N(k,n)^2}{L_{k,\lambda,r}} \|F_k\|_{\tilde{\mathbf{S}}_{0,1}}^2.$$

By (21) and (20) we have

$$\begin{split} ((F(\xi), E_{r,0}^{\lambda}(\xi, \zeta)))_{\tilde{\mathbf{S}}_{0}}^{\lambda,r} &= \sum_{k=0}^{\infty} \frac{2^{k} k!^{2} \gamma_{k,n} N(k,n)^{2}}{L_{k,\lambda,r}} \frac{1}{(k! \gamma_{k,n})^{2}} \frac{L_{k,\lambda,r}}{N(k,n)} (F_{k}(\xi), P_{k,n}(\zeta, \xi))_{\tilde{\mathbf{S}}_{0,1}} \\ &= \sum_{k=0}^{\infty} \frac{2^{k} N(k,n)}{\gamma_{k,n}} (F_{k}(\xi), P_{k,n}(\zeta, \xi))_{\tilde{\mathbf{S}}_{0,1}} \\ &= \sum_{k=0}^{\infty} F_{k}(\xi) = F(\xi) \,. \end{split}$$

Thus we have (ii).

(iii) Let $f = \sum_{k=0}^{\infty} f_k \in \mathfrak{h}^2_{\lambda}(\tilde{B}(r)), f_k \in \mathcal{P}^k_{\Delta}(\tilde{\mathbf{E}})$. Then we know that

$$(f, f)_{\tilde{\mathbf{S}}_{\lambda,r}} = \sum_{k=0}^{\infty} L_{k,\lambda,r}(f_k, f_k)_{\mathbf{S}_1}.$$

Write $\mathcal{F}_{\lambda,r}^{\Delta} f(\zeta) = F(\zeta) = \sum_{k=0}^{\infty} F_k(\zeta), \zeta \in \tilde{\mathbf{S}}_0$, with $F_k \in \mathcal{P}_{\Delta}^k(\tilde{\mathbf{E}})$. Then by (19) we have

$$F_k(\zeta) = \frac{L_{k,\lambda,r}}{k! \gamma_{k,n} N(k,n)} \bar{f}_k(\zeta), \quad \zeta \in \tilde{\mathbf{E}}.$$

By Theorem 1.1 we have

$$((F, F))_{\tilde{\mathbf{S}}_{0}}^{\lambda, r} = \sum_{k=0}^{\infty} ((F_{k}, F_{k}))_{\tilde{\mathbf{S}}_{0}}^{\lambda, r} = \sum_{k=0}^{\infty} \frac{2^{k} k!^{2} \gamma_{k, n} N(k, n)^{2}}{L_{k, \lambda, r}} (F_{k}, F_{k})_{\tilde{\mathbf{S}}_{0, 1}}$$

$$= \sum_{k=0}^{\infty} \frac{(k! \gamma_{k, n} N(k, n))^{2}}{L_{k, \lambda, r}} (F_{k}, F_{k})_{\mathbf{S}_{1}} = \sum_{k=0}^{\infty} L_{k, \lambda, r} (f_{k}, f_{k})_{\mathbf{S}_{1}}$$

$$= \sum_{k=0}^{\infty} (f_{k}, f_{k})_{\tilde{\mathbf{S}}_{\lambda, r}} = (f, f)_{\tilde{\mathbf{S}}_{\lambda, r}}.$$

Therefore, $f \mapsto F = \mathcal{F}_{\lambda,r}^{\Delta} f$ is an isometry. Because \mathcal{F}^{Δ} is a bijection from $\mathcal{O}'_{\Delta}(\tilde{B}[r])$ onto $\operatorname{Exp}(\tilde{\mathbf{S}}_0; (r))$, the composed mapping

$$\mathcal{F}^{\Delta}_{\lambda,r}: f \mapsto T^{\lambda,r}_f \mapsto \mathcal{F}^{\Delta}(T^{\lambda,r}_f)$$

is a bijection from $\mathfrak{h}^2_{\lambda}(\tilde{B}(r))$ onto $\mathcal{E}^2(\tilde{\mathbf{S}}_0; \lambda, r)$. Thus we have proved that $\mathcal{F}^{\Delta}_{\lambda,r}: \mathfrak{h}^2_{\lambda}(\tilde{B}(r)) \to \mathcal{E}^2(\tilde{\mathbf{S}}_0; \lambda, r)$ is an antilinear unitary isomorphism.

EXAMPLE 6.2. If $w \in \tilde{B}(r)$ is fixed, then the function $f(z) = K_{\lambda,r}(z, w)$ belongs to $\mathcal{O}_{\Delta}(\tilde{B}[r])$ and we have

(24)
$$\mathcal{F}_{\lambda,r}^{\Delta} f(\zeta) = \int_{\tilde{\mathbf{S}}_{\lambda,r}} \exp(z \cdot \zeta) K_{\lambda,r}(w,z) dz = \exp(w \cdot \zeta), \quad \zeta \in \tilde{\mathbf{S}}_{0}.$$

Therefore, the exponential function $\zeta \mapsto \exp(w \cdot \zeta)$ belongs to $\exp(\tilde{\mathbf{S}}_0; [r])$, hence, to $\mathcal{E}^2(\tilde{\mathbf{S}}_0; \lambda, r)$ (see also Example 8.2).

EXAMPLE 6.3. If $\xi \in \tilde{S}_0$ is fixed, then the function $f(z) = \exp(z \cdot \xi)$ belongs to $\mathcal{O}_{\Delta}(\tilde{E})$. The $\mathcal{F}_{\lambda,r}^{\Delta}$ image of $f(z) = \exp(z \cdot \xi)$ is the F-Poisson kernel $E_{r,0}^{\lambda}(\zeta,\xi)$ (see also Example 8.3).

If $|\lambda| = r$, then we shall put $\mathcal{E}^2(\tilde{\mathbf{S}}_0; r) = \mathcal{E}^2(\tilde{\mathbf{S}}_0; \lambda, r)$. By combining Theorem 3.2 with Theorem 6.1 we have the following theorem:

THEOREM 6.4. If $0 < |\lambda| < |\mu| < r$, then we have

$$\operatorname{Exp}(\tilde{\mathbf{S}}_0; [r]) \subset \mathcal{E}^2(\tilde{\mathbf{S}}_0; 0, r) \subset \mathcal{E}^2(\tilde{\mathbf{S}}_0; \lambda, r)$$
$$\subset \mathcal{E}^2(\tilde{\mathbf{S}}_0; \mu, r) \subset \mathcal{E}^2(\tilde{\mathbf{S}}_0; r) \subset \operatorname{Exp}(\tilde{\mathbf{S}}_0; (r)).$$

In fact, take the \mathcal{F}^{Δ} image of (14).

Suppose $F \in \mathcal{E}^2(\tilde{\mathbf{S}}_0; \lambda, r)$. If $z \in \tilde{B}(r)$, then the function $\zeta \mapsto \exp(z \cdot \zeta)$ belongs to $\mathcal{E}^2(\tilde{\mathbf{S}}_0; \lambda, r)$. Put

$$\bar{\mathcal{F}}_{\lambda,r}F(z) = ((\exp(z\cdot\zeta), F(\zeta)))_{\tilde{\mathbf{S}}_0}^{\lambda,r}.$$

Then we have

(25)
$$\bar{\mathcal{F}}_{\lambda,r}F(z) = \sum_{k=0}^{\infty} \frac{2^{k}k!^{2}\gamma_{k,n}N(k,n)^{2}}{L_{k,\lambda,r}} \frac{1}{k!\gamma_{k,n}} (P_{k,n}(z,\bar{\zeta}), F_{k}(\zeta))_{\tilde{\mathbf{S}}_{0,1}} \\ = \sum_{k=0}^{\infty} \frac{2^{k}k!N(k,n)^{2}}{L_{k,\lambda,r}} \frac{2^{-k}\gamma_{k,n}}{N(k,n)} \bar{F}_{k}(z) = \sum_{k=0}^{\infty} \frac{k!\gamma_{k,n}N(k,n)}{L_{k,\lambda,r}} \bar{F}_{k}(z).$$

Therefore, $\bar{\mathcal{F}}_{\lambda,r}F$ belongs to $\mathfrak{h}^2_{\lambda}(\tilde{B}(r))$ and will be called the Fourier transform of F.

THEOREM 6.5. The Fourier transformation

$$\bar{\mathcal{F}}_{\lambda,r}: \mathcal{E}^2(\tilde{\mathbf{S}}_0;\lambda,r) \to \mathfrak{h}^2_{\lambda}(\tilde{B}(r))$$

is an antilinear unitary isomorphism. $\bar{\mathcal{F}}_{\lambda,r}$ is the inverse mapping of the conical Fourier transformation (23).

PROOF. The theorem is a consequence of (19) and (25).

Because of (24), $\exp(w \cdot \zeta)$ is the $\mathcal{F}_{\lambda,r}^{\Delta}$ image of $K_{\lambda,r}(z,w)$. Therefore, Theorem 6.5 implies the following corollary.

COROLLARY 6.6.

$$K_{\lambda,r}(z,w) = ((\exp(z\cdot\zeta), \exp(w\cdot\zeta)))_{\tilde{\mathbf{S}}_0}^{\lambda,r}.$$

REMARK 6.7. Let $\rho_{\lambda,r}(s)$ be a C^{∞} function on $[0,\infty)$ satisfying

(26)
$$\int_0^\infty s^{2k+n-1} \rho_{\lambda,r}(s) ds = \frac{2^k k!^2 \gamma_{k,n} N(k,n)^2}{L_{k,\lambda,r}}.$$

Such a function does exist by the following theorem of Duran [1]:

THEOREM 6.8. For any sequence (a_k) of complex numbers, there exists a rapidly decreasing C^{∞} function ψ such that supp $\psi \subset [0, \infty)$ and

$$\int_0^\infty s^k \psi(s) ds = a_k, \quad k = 0, 1, 2, \cdots.$$

In case of $|\lambda| = r$, one such $\rho_r(s) = \rho_{r,r}(s)$ was constructed by Ii [7] and Wada [17] by means of modified Bessel functions. We call $\rho_r(s)$ the Ii-Wada function. Their function $\rho_r(s)$ is not positive valued. It is not known that there is a non-negative function $\rho_{\lambda,r}(s)$ satisfying (26).

Using the function $\rho_{\lambda,r}$, we can write the inner product $((F,G))_{\tilde{S}_0}^{\lambda,r}$ as follows:

$$((F,G))_{\tilde{\mathbf{S}}_0}^{\lambda,r} = \int_0^\infty \left(\int_{\tilde{\mathbf{S}}_{0,1}} F(s\zeta) \overline{G(s\zeta)} d\zeta \right) \rho_{\lambda,r}(s) s^{n-1} ds.$$

Because $\tilde{\mathbf{S}}_0 = \bigcup \{s\tilde{\mathbf{S}}_{0,1}; s \geq 0\} = \bigcup \{\tilde{\mathbf{S}}_{0,s}; s \geq 0\}$, we can understand the inner product $((F, G))_{\tilde{\mathbf{S}}_0}^{\lambda,r}$ is defined by a kind of integral over $\tilde{\mathbf{S}}_0$.

7. Fourier-Borel transformation.

Consider the space $\mathcal{O}_{\Delta-\lambda^2}(\tilde{\mathbf{E}}) = \{\tilde{F} \in \mathcal{O}(\tilde{\mathbf{E}}); \Delta_{\zeta} \tilde{F}(\zeta) = \lambda^2 \tilde{F}(\zeta)\}$ of entire eigenfunctions of the complex Laplacian. For $\tilde{F} \in \mathcal{O}_{\Delta-\lambda^2}(\tilde{\mathbf{E}})$ we put

$$\begin{split} \tilde{F}_k(\zeta) &= 2^k \frac{N(k,n)}{\gamma_{k,n}} \int_{\tilde{\mathbf{S}}_{0,1}} \tilde{F}(\xi) P_{k,n}(\zeta,\xi) d\xi \\ &= 2^k N(k,n) \int_{\tilde{\mathbf{S}}_{0,1}} \tilde{F}(\xi) (\zeta \cdot \bar{\xi})^k d\xi \,, \quad \zeta \in \tilde{\mathbf{E}} \,. \end{split}$$

Then $\tilde{F}_k(\zeta) \in \mathcal{P}_{\Delta}^k(\tilde{\mathbf{E}})$ and is called the *k*-homogeneous harmonic component of \tilde{F} . We have the following expansion formula (see Wada-Morimoto [19]):

(27)
$$\tilde{F}(\zeta) = \sum_{k=0}^{\infty} \tilde{j}_k (i\lambda \sqrt{\zeta^2}) \tilde{F}_k(\zeta), \quad \zeta \in \tilde{\mathbf{E}},$$

where the convergence is uniform on compact sets of $\tilde{\mathbf{E}}$ and

$$\tilde{j}_k(t) = \tilde{J}_{k+(n-1)/2}(t)$$

is the entire Bessel function:

$$\tilde{J}_{\mu}(t) = \sum_{l=0}^{\infty} \frac{(-1)^{l} \Gamma(\mu+1)}{\Gamma(\mu+l+1) l!} \left(\frac{t}{2}\right)^{2l} = \Gamma(\mu+1) \left(\frac{t}{2}\right)^{-\mu} J_{\mu}(t).$$

Note that

$$\tilde{J}_{\mu}(0) = 1$$
, $\tilde{J}_{\mu}(t) = \tilde{J}_{\mu}(-t)$, $|\tilde{J}_{\mu}(t)| \le \exp(|t|)$.

By (27), it is clear that the following theorem holds:

THEOREM 7.1. The restriction mapping $\alpha_0^{\lambda}:\mathcal{O}_{\Delta-\lambda^2}(\tilde{\mathbf{E}})\to\mathcal{O}(\tilde{\mathbf{S}}_0)$ is a topological linear isomorphism.

EXAMPLE 7.2. The exponential function can be expanded as follows:

(28)
$$\exp(z \cdot \zeta) = \sum_{k=0}^{\infty} \frac{1}{k! \gamma_{k,n}} \tilde{j}_k (i \sqrt{z^2} \sqrt{\zeta^2}) P_{k,n}(z, \bar{\zeta}).$$

If $z^2 = 0$ or $\zeta^2 = 0$, then (28) reduces to the Taylor expansion:

$$\exp(z \cdot \zeta) = \sum_{k=0}^{\infty} \frac{1}{k!} (z \cdot \zeta)^k$$

(see Morimoto [9]).

For an analytic functional $\tilde{T} \in \mathcal{O}'(\tilde{S}_{\lambda}[r])$ we put

(29)
$$\mathcal{F}\tilde{T}(\zeta) = \langle \tilde{T}_z, \exp(z \cdot \zeta) \rangle_z, \quad \zeta \in \tilde{\mathbf{E}}$$

and call it the Fourier-Borel transform of \tilde{T} .

We know that the Fourier-Borel transformation $\mathcal{F}: \tilde{T} \mapsto \mathcal{F}\tilde{T}$ establishes a topological linear isomorphism from $\mathcal{O}'(\tilde{\mathbf{S}}_{\lambda}[r])$ onto $\operatorname{Exp}_{\Delta-\lambda^2}(\tilde{\mathbf{E}}; (r))$, where

$$\begin{aligned} \operatorname{Exp}_{\Delta-\lambda^2}(\tilde{\mathbf{E}};(r)) = & \{\tilde{F} \in \mathcal{O}_{\Delta-\lambda^2}(\tilde{\mathbf{E}}); \\ \forall r' > r, \exists C \ge 0, \text{ s.t. } |\tilde{F}(\zeta)| \le C \exp(r'L^*(\zeta)), \zeta \in \tilde{\mathbf{E}} \}. \end{aligned}$$

The Fourier-Borel transformation $\mathcal{F}: \tilde{T} \mapsto \mathcal{F}\tilde{T}$ also establishes a topological linear isomorphism from $\mathcal{O}'(\tilde{\mathbf{S}}_{\lambda}(r))$ onto $\operatorname{Exp}_{\lambda-\lambda^2}(\tilde{\mathbf{E}}; [r])$, where

$$\operatorname{Exp}_{\Delta-\lambda^{2}}(\tilde{\mathbf{E}}; [r]) = \{\tilde{F} \in \mathcal{O}_{\Delta-\lambda^{2}}(\tilde{\mathbf{E}}); \\ 0 < \exists r' < r, \exists C > 0, \text{ s.t. } |\tilde{F}(\zeta)| < C \exp(r'L^{*}(\zeta)), \zeta \in \tilde{\mathbf{E}} \}$$

(see Wada [17] and Morimoto-Fujita [13]). By the definitions of the Fourier-Borel transformation (29) and the conical Fourier-Borel transformation (18), we have the following commutative diagram:

$$\mathcal{O}'_{\Delta}(\tilde{B}[r]) \xrightarrow{\mathcal{F}^{\Delta}} \operatorname{Exp}(\tilde{\mathbf{S}}_{0}; (r))$$

$$\uparrow^{(\alpha_{\lambda}^{0})^{*}} \qquad \uparrow^{\beta_{\lambda}^{\lambda}}$$

$$\mathcal{O}'(\tilde{\mathbf{S}}_{\lambda}[r]) \xrightarrow{\mathcal{F}} \operatorname{Exp}_{\Delta-\lambda^{2}}(\tilde{\mathbf{E}}; (r)),$$

where β_0^{λ} is the restriction mapping. Hence β_0^{λ} is also a topological linear isomorphism (see Morimoto-Fujita [13], [14] and [16]).

Let $\tilde{T} \in \mathcal{O}'(\tilde{\mathbf{S}}_{\lambda}[r])$. Then we have

$$\begin{split} \mathcal{F}\tilde{T}(\zeta) &= \langle \tilde{T}_z, \exp(z \cdot \zeta) \rangle_z \\ &= \left\langle \tilde{T}_z, \sum_{k=0}^{\infty} \frac{1}{k! \gamma_{k,n}} \tilde{j}_k (i\lambda \sqrt{\zeta^2}) P_{k,n}(z, \bar{\zeta}) \right\rangle_z \\ &= \sum_{k=0}^{\infty} \frac{1}{k! \gamma_{k,n} N(k,n)} \tilde{j}_k (i\lambda \sqrt{\zeta^2}) \overline{\tilde{T}}_k(\zeta) \,, \end{split}$$

where $\tilde{T}_k(\zeta)$ is the k-homogeneous harmonic component of \tilde{T} defined by (15). For $\tilde{f} \in H^2(\tilde{S}_{\lambda}(r))$ we define the Fourier transform $\mathcal{F}_{\lambda,r}\tilde{f}(\zeta)$ by

$$\mathcal{F}_{\lambda,r}\tilde{f}(\zeta) = (\exp(z \cdot \zeta), \, \tilde{f}(z))_{\tilde{\mathbf{S}}_{\lambda,r}} = \int_{\tilde{\mathbf{S}}_{\lambda,r}} \exp(z \cdot \zeta) \, \overline{\tilde{f}(z)} dz \,.$$

Then $\mathcal{F}_{\lambda,r}\tilde{f}\in \operatorname{Exp}_{\Delta-\lambda^2}(\tilde{\mathbf{E}};(r))$ and we have

(30)
$$\mathcal{F}_{\lambda,r}\tilde{f}(\zeta) = \sum_{k=0}^{\infty} \frac{L_{k,\lambda,r}}{k! \gamma_{k,n} N(k,n)} \tilde{j}_k(i\lambda \sqrt{\zeta^2}) \bar{\tilde{f}}_k(\zeta),$$

where $\bar{\tilde{f}}_k$ is the *k*-homogeneous harmonic component of $\bar{\tilde{f}}$.

We are going to characterize the image of $H^2(\tilde{\mathbf{S}}_{\lambda}(r))$ under the Fourier transformation $\mathcal{F}_{\lambda,r}$. Let \tilde{F} , $\tilde{G} \in \operatorname{Exp}_{\Delta-\lambda^2}(\tilde{\mathbf{E}})$. We define

$$((\tilde{F},\tilde{G}))^{\lambda,r} = ((\beta_0^\lambda \tilde{F},\beta_0^\lambda \tilde{G}))_{\tilde{\mathbf{S}}_0}^{\lambda,r}\,,$$

where $\beta_0^{\lambda}: \operatorname{Exp}_{\Delta-\lambda^2}(\tilde{\mathbf{E}}) \to \operatorname{Exp}(\tilde{\mathbf{S}}_0)$ is the restriction mapping. Put

$$E_r^{\lambda}(\zeta,\xi) = (\exp(z\cdot\zeta), \exp(z\cdot\xi))_{\tilde{\mathbf{S}}_{\lambda,r}} = \int_{\tilde{\mathbf{S}}_{\lambda,r}} \exp(z\cdot\zeta) \overline{\exp(z\cdot\xi)} dz.$$

By the orthogonality and (28), we have

$$\begin{split} E_r^{\lambda}(\zeta,\xi) &= \sum_{k=0}^{\infty} \frac{\tilde{j}_k(i\lambda\sqrt{\zeta^2})\overline{\tilde{j}_k(i\lambda\sqrt{\xi^2})}}{(k!\gamma_{k,n})^2} \int_{\tilde{\mathbf{S}}_{\lambda,r}} P_{k,n}(z,\bar{\zeta}) P_{k,n}(\bar{z},\xi) dz \\ &= \sum_{k=0}^{\infty} \frac{\tilde{j}_k(i\lambda\sqrt{\zeta^2})\overline{\tilde{j}_k(i\lambda\sqrt{\xi^2})}}{(k!\gamma_{k,n})^2} \frac{L_{k,\lambda,r}}{N(k,n)} P_{k,n}(\zeta,\xi) , \quad \zeta,\xi \in \tilde{\mathbf{E}} \,. \end{split}$$

We call $E_r^{\lambda}(\zeta,\xi)$ the F-Cauchy kernel, whose restriction to $\tilde{\mathbf{S}}_0 \times \tilde{\mathbf{S}}_0$ coincides with the F-Poisson kernel $E_{r,0}^{\lambda}(\zeta,\xi)$ (see (21)). Note that $E_r^{\lambda}(\zeta,\xi) = \overline{E_r^{\lambda}(\xi,\zeta)}$ and the function $\zeta \mapsto E_r^{\lambda}(\zeta,\xi)$ belongs to $\mathcal{E}_{\Delta-\lambda^2}^2(\tilde{\mathbf{E}};r)$, where we define $\mathcal{E}_{\Delta-\lambda^2}^2(\tilde{\mathbf{E}};r)$ to be the class of all eigenfunctions $\tilde{F} \in \mathcal{O}_{\Delta-\lambda^2}(\tilde{\mathbf{E}})$ for which $((\tilde{F},\tilde{F}))^{\lambda,r} < \infty$.

8. Hilbert space of eigenfunctions.

 $\mathcal{E}^2_{\Delta-\lambda^2}(\tilde{\mathbf{E}};r)$ is a Hilbert space. Let $\mathcal{P}^k_{\Delta-\lambda^2}(\tilde{\mathbf{E}})$ be the subspace of $\mathcal{E}^2_{\Delta-\lambda^2}(\tilde{\mathbf{E}};r)$ defined by

$$\mathcal{P}^k_{\Lambda-\lambda^2}(\tilde{\mathbf{E}}) = \{\tilde{j}_k(i\lambda\sqrt{\zeta^2})\tilde{F}_k(\zeta); \, \tilde{F}_k \in \mathcal{P}^k_{\Delta}(\tilde{\mathbf{E}})\};$$

that is, $\mathcal{P}^k_{\Delta-\lambda^2}(\tilde{\mathbf{E}})=(\alpha_0^\lambda)^{-1}\mathcal{H}^k(\tilde{\mathbf{S}}_0)$. We have the following theorem which is parallel to Theorem 6.1.

THEOREM 8.1. (i) The Hilbert space $\mathcal{E}^2_{\Delta-\lambda^2}(\tilde{\mathbf{E}};r)$ is the Hilbert space direct sum of the finite dimensional subspaces $\mathcal{P}^k_{\Delta-\lambda^2}(\tilde{\mathbf{E}})$:

(31)
$$\mathcal{E}_{\Delta-\lambda^2}^2(\tilde{\mathbf{E}};r) = \bigoplus_{k=0}^{\infty} \mathcal{P}_{\Delta-\lambda^2}^k(\tilde{\mathbf{E}}).$$

The restriction mapping $\beta_0^{\lambda}: \mathcal{E}_{\Delta-\lambda^2}^2(\tilde{\mathbf{E}}; r) \to \mathcal{E}^2(\tilde{\mathbf{S}}_0; \lambda, r)$ is a unitary isomorphism, which is compatible with the decompositions (22) and (31).

(ii) The F-Cauchy kernel $E_r^{\lambda}(\zeta,\xi)$ is a reproducing kernel for the Hilbert space $\mathcal{E}_{\Delta-\lambda^2}^2(\tilde{\mathbf{E}};r)$; that is, for $\tilde{F}\in\mathcal{E}_{\Delta-\lambda^2}^2(\tilde{\mathbf{E}};r)$ we have

$$\tilde{F}(\zeta) = ((\tilde{F}(\xi), E_r^{\lambda}(\xi, \zeta)))^{\lambda, r}.$$

(iii) The Fourier transformation $\mathcal{F}_{\lambda,r}:H^2(\tilde{\mathbf{S}}_{\lambda}(r))\to\mathcal{E}^2_{\Delta-\lambda^2}(\tilde{\mathbf{E}};r)$ is an antilinear unitary isomorphism. We have the following commutative diagram:

$$\mathfrak{h}^{2}_{\lambda}(\tilde{\mathbf{B}}(r)) \xrightarrow{\mathcal{F}^{\Delta}_{\lambda,r}} \mathcal{E}^{2}(\tilde{\mathbf{S}}_{0}; \lambda, r) \\
\downarrow^{\alpha^{0}_{\lambda}} \qquad \uparrow^{\beta^{\lambda}_{0}} \\
H^{2}(\tilde{\mathbf{S}}_{\lambda}(r)) \xrightarrow{\mathcal{F}_{\lambda,r}} \mathcal{E}^{2}_{\Delta-\lambda^{2}}(\tilde{\mathbf{E}}; r).$$

PROOF. The statements are clear by the definition. For example, to prove (iii), we have to show

$$((\mathcal{F}_{\lambda,r}\tilde{f},\mathcal{F}_{\lambda,r}\tilde{g}))^{\lambda,r} = (\tilde{f},\tilde{g})_{\tilde{\mathbf{S}}_{\lambda,r}}$$

for \tilde{f} , $\tilde{g} \in H^2(\tilde{S}_{\lambda}(r))$. But this can be done by a direct calculation.

EXAMPLE 8.2. If $w \in \tilde{B}(r)$ is fixed, then the function $\tilde{f}(z) = K_{\lambda,r}(z, w)$ is holomorphic in a neighborhood of $\tilde{S}_{\lambda}[r]$. Then for $\zeta \in \tilde{E}$ we have

$$\mathcal{F}_{\lambda,r}f(\zeta) = \int_{\tilde{\mathbf{S}}_{\lambda,r}} \exp(z \cdot \zeta) K_{\lambda,r}(w,z) dz$$

$$= \sum_{k=0}^{\infty} \int_{\tilde{\mathbf{S}}_{\lambda,r}} \frac{1}{k! \gamma_{k,n}} \tilde{j}_k(i\lambda \sqrt{\zeta^2}) P_{k,n}(z,\bar{\zeta}) K_{\lambda,r}(w,z) dz$$

$$= \sum_{k=0}^{\infty} \frac{1}{k! \gamma_{k,n}} \tilde{j}_k(i\lambda \sqrt{\zeta^2}) P_{k,n}(w,\bar{\zeta}), \quad \zeta \in \tilde{\mathbf{E}}$$

(see also Example 6.2).

EXAMPLE 8.3. Let $\xi \in \tilde{\mathbf{E}}$ be fixed. The $\mathcal{F}_{\lambda,r}$ image of the function $\tilde{f}(z) = \exp(z \cdot \xi) \in \mathcal{O}(\tilde{\mathbf{S}}_{\lambda})$ is the F-Cauchy kernel $E_r^{\lambda}(\zeta, \xi)$ (see also Example 6.3).

Combining Theorem 6.4 with Theorem 8.1, we have the following theorem (see also Fujita [3]):

THEOREM 8.4. Let $|\lambda| < r$. We have the following commutative diagram:

$$\operatorname{Exp}(\tilde{\mathbf{S}}_{0}; [r]) \hookrightarrow \mathcal{E}^{2}(\tilde{\mathbf{S}}_{0}; \lambda, r) \hookrightarrow \operatorname{Exp}(\tilde{\mathbf{S}}_{0}; (r))$$

$$\uparrow^{\beta_{0}^{\lambda}} \qquad \uparrow^{\beta_{0}^{\lambda}} \qquad \uparrow^{\beta_{0}^{\lambda}}$$

$$\operatorname{Exp}_{\Delta-\lambda^{2}}(\tilde{\mathbf{E}}; [r]) \hookrightarrow \mathcal{E}^{2}_{\Delta-\lambda^{2}}(\tilde{\mathbf{E}}; r) \hookrightarrow \operatorname{Exp}_{\Delta-\lambda^{2}}(\tilde{\mathbf{E}}; (r))$$

If $z \in \tilde{\mathbf{S}}_{\lambda}(r)$, then the function $\zeta \mapsto \exp(z \cdot \zeta)$ belongs to $\exp_{\Delta - \lambda^2}(\tilde{\mathbf{E}}; [r])$ and

$$\exp(z \cdot \zeta) = \sum_{k=0}^{\infty} \frac{1}{k! \gamma_{k,n}} \tilde{j}_k(i\lambda \sqrt{\zeta^2}) P_{k,n}(z,\bar{\zeta})$$

by (28). Therefore, for $\tilde{F} \in \mathcal{E}^2_{\Lambda - \lambda^2}(\tilde{\mathbf{E}}; r)$ we form

$$\bar{\mathcal{F}}_{\lambda,r}^{S}\tilde{F}(z) = ((\exp(z\cdot\zeta),\tilde{F}(\zeta)))^{\lambda,r}, \quad z\in\tilde{\mathbf{S}}_{\lambda}(r).$$

Then we have

(32)
$$\bar{\mathcal{F}}_{\lambda,r}^{S}\tilde{F}(z) = \sum_{k=0}^{\infty} \frac{(k!\gamma_{k,n}N(k,n))^{2}}{L_{k,\lambda,r}} \frac{1}{k!\gamma_{k,n}} (P_{k,n}(z,\bar{\zeta}),\tilde{F}_{k}(\zeta))_{S_{1}}$$

$$= \sum_{k=0}^{\infty} \frac{k!\gamma_{k,n}N(k,n)}{L_{k,\lambda,r}} \overline{\tilde{F}}_{k}(z).$$

The function $\bar{\mathcal{F}}_{\lambda,r}^S \tilde{F}$ belongs to $H^2(\tilde{\mathbf{S}}_{\lambda}(r))$ and is called the spherical Fourier transform of \tilde{F} .

THEOREM 8.5. (i) The spherical Fourier transformation

$$\bar{\mathcal{F}}_{\lambda,r}^S: \mathcal{E}_{\lambda-\lambda^2}^2(\tilde{\mathbf{E}};r) \to H^2(\tilde{\mathbf{S}}_{\lambda}(r))$$

is an antilinear unitary isomorphism. $\bar{\mathcal{F}}_{\lambda,r}^S$ is the inverse mapping of the Fourier transformation:

$$\mathcal{F}_{\lambda,r}: H^2(\tilde{\mathbf{S}}_{\lambda}(r)) \to \mathcal{E}^2_{\Delta=\lambda^2}(\tilde{\mathbf{E}};r).$$

(ii) We have the following commutative diagram:

$$\mathcal{E}^{2}(\tilde{\mathbf{S}}_{0}; \lambda, r) \xrightarrow{\bar{\mathcal{F}}_{\lambda,r}} \quad \mathfrak{h}^{2}_{\lambda}(\tilde{B}(r)) \\
\uparrow^{\beta_{0}^{\lambda}} \qquad \qquad \downarrow^{\alpha_{\lambda}^{0}} \\
\mathcal{E}^{2}_{\Lambda-\lambda^{2}}(\tilde{\mathbf{E}}; r) \xrightarrow{\bar{\mathcal{F}}^{S}_{\lambda,r}} \quad H^{2}(\tilde{\mathbf{S}}_{\lambda}(r)).$$

PROOF. This theorem is a consequence of (25), (30) and (32).

COROLLARY 8.6.

(33)
$$(\alpha_{\lambda}^{0})^{-1} = \bar{\mathcal{F}}_{\lambda,r} \circ \beta_{0}^{\lambda} \circ \mathcal{F}_{\lambda,r} .$$

Let $\tilde{f} \in H^2(\tilde{\mathbf{S}}_{\lambda}(r))$. Calculate $f(z) = ((\alpha_{\lambda}^0)^{-1}\tilde{f})(z) \in \mathfrak{h}^2_{\lambda}(\tilde{B}(r))$ by (33). Put $F(\xi) = \mathcal{F}_{\lambda,r}\tilde{f}(\zeta) = (\exp(w \cdot \zeta), \, \tilde{f}(w))_{\tilde{\mathbf{S}}_{\lambda,r}}$. Then we have

$$\begin{split} f(z) &= ((\bar{\mathcal{F}}_{\lambda,r} \circ \beta_0^{\lambda} \circ \mathcal{F}_{\lambda,r}) \tilde{f})(z) \\ &= ((\bar{\mathcal{F}}_{\lambda,r} \circ \beta_0^{\lambda}) F)(z) \\ &= ((\exp(z \cdot \zeta), F(\zeta)))^{\lambda,r} \\ &= ((\exp(z \cdot \zeta), (\exp(w \cdot \zeta), \tilde{f}(w))_{\tilde{\mathbf{S}}_{\lambda,r}}))^{\lambda,r} \\ &= (\tilde{f}(w), ((\exp(w \cdot \zeta), \exp(z \cdot \zeta)))^{\lambda,r})_{\tilde{\mathbf{S}}_{\lambda,r}} \\ &= (\tilde{f}(w), K_{\lambda,r}(w, z))_{\tilde{\mathbf{S}}_{\lambda,r}}, \quad z \in \tilde{B}(r) \,. \end{split}$$

This is the Poisson integral formula (see Theorem 2.3 (iii)).

COROLLARY 8.7.

$$(\beta_0^{\lambda})^{-1} = \mathcal{F}_{\lambda,r} \circ \alpha_{\lambda}^0 \circ \bar{\mathcal{F}}_{\lambda,r}.$$

Let $F \in \mathcal{E}^2(\tilde{\mathbf{S}}_0; \lambda, r)$. Calculate $\tilde{F} = (\beta_0^{\lambda})^{-1} F \in \mathcal{E}^2_{\Delta - \lambda^2}(\tilde{\mathbf{E}}; r)$ by (34). Put $f(z) = \bar{\mathcal{F}}_{\lambda, r} F(z) = ((\exp(z \cdot \zeta), F(\zeta)))^{\lambda, r} \in \mathfrak{h}^2_{\lambda}(\tilde{B}(r))$. We have

$$\begin{split} \tilde{F}(\xi) &= ((\mathcal{F}_{\lambda,r} \circ \alpha_{\lambda}^{0} \circ \tilde{\mathcal{F}}_{\lambda,r}) F)(\xi) \\ &= ((\mathcal{F}_{\lambda,r} \circ \alpha_{\lambda}^{0}) f)(\xi) \\ &= (\exp(z \cdot \xi), ((\exp(z \cdot \zeta), F(\zeta)))^{\lambda,r})_{\tilde{\mathbf{S}}_{\lambda,r}} \\ &= ((F(\zeta), (\exp(z \cdot \zeta), \exp(z \cdot \xi))_{\tilde{\mathbf{S}}_{\lambda,r}}))^{\lambda,r} \\ &= ((F(\zeta), E_{r}^{\lambda}(\zeta, \xi)))^{\lambda,r} \,. \end{split}$$

Thus the F-Cauchy kernel $E_r^{\lambda}(\zeta, \xi)$ defined the inverse mapping of β_0^{λ} (see Fujita-Morimoto [5]).

REMARK 8.8. Suppose $\tilde{\rho}_{\lambda,r}(s)$ is a function on $[0,\infty)$ satisfying

(35)
$$\int_0^\infty |\tilde{j}_k(i\lambda s)|^2 s^{2k+n-1} \tilde{\rho}_{\lambda,r}(s) ds = \frac{(k! \gamma_{k,n} N(k,n))^2}{L_{k,\lambda,r}}.$$

Let \tilde{F} , $\tilde{G} \in \mathcal{O}_{\Delta-\lambda^2}(\tilde{\mathbf{E}})$. Then for s > 0

$$\int_{\mathbf{S}_{1}} \tilde{F}(sx) \overline{\tilde{G}(sx)} dx = \int_{\mathbf{S}_{1}} \left(\sum_{k=0}^{\infty} \tilde{j}_{k}(i\lambda s) \tilde{F}_{k}(sx) \right) \left(\sum_{l=0}^{\infty} \overline{\tilde{j}_{l}(i\lambda s) \tilde{G}_{l}(sx)} \right) dx$$
$$= \sum_{k=0}^{\infty} |\tilde{j}_{k}(i\lambda s)|^{2} s^{2k} (\tilde{F}_{k}, \tilde{G}_{k})_{\mathbf{S}_{1}}.$$

Therefore, by means of the function $\tilde{\rho}_{\lambda,r}$ the inner product $((\tilde{F}, \tilde{G}))^{\lambda,r}$ can be written as follows:

$$((\tilde{F},\tilde{G}))^{\lambda,r} = \int_0^\infty \left(\int_{\mathbf{S}_1} \tilde{F}(sx) \overline{\tilde{G}(sx)} dx \right) \tilde{\rho}_{\lambda,r}(s) s^{n-1} ds.$$

Because $\mathbf{E} = \bigcup \{s\mathbf{S}_1; s \geq 0\} = \bigcup \{\mathbf{S}_s; s \geq 0\}$, we can understand that the inner product $((\tilde{F}, \tilde{G}))^{\lambda, r}$ is defined by a kind of integral over \mathbf{E} .

If $\lambda = 0$, then the condition (35) becomes as follows:

$$\int_{0}^{\infty} s^{2k+n-1} \tilde{\rho}_{0,r}(s) ds = \frac{2^{k} k!^{2} \gamma_{k,n} N(k,n)^{2}}{r^{2k}}.$$

Therefore, we can take $\tilde{\rho}_{0,r}(s) = \rho_{r,r}(s) = \rho_r(s)$, where $\rho_r(s)$ is the Ii-Wada function. This remark is due to Fujita [2].

References

- [1] A. J. DURAN, The Stieltjes moments problem for rapidly decreasing functions, Proc. AMS 107 (1989), 731–741.
- [2] K. FUJITA, Hilbert spaces related to harmonic functions, Tôhoku Math. J. 48 (1996), 146-163.
- [3] K. FUJITA, On some function spaces of eigenfunctions of the Laplacian, Proc. of the Fifth International Colloquium on Complex Analysis, Beijing (1997), 61–66.

- [4] K. FUJITA, Hilbert spaces of eigenfunction of the Laplacian, *Reproducing Kernels and their Application*, (eds. S. Saitoh et al.), Kluwer Academic Publishers (1999), 65–80.
- [5] K. FUJITA and M. MORIMOTO, Integral representation for eigenfunction of the Laplacian, J. Math. Soc. Japan 51 (1999), 699–713.
- [6] L. K. Hua, Harmonic Analysis of Functions of Several Complex Variables in Classical Domains, (1959) (in Russian), [Transl. Math. Monographs 6 (1963), Amer. Math. Soc.].
- [7] K. II, On the Bargmann-type transform and a Hilbert space of holomorphic functions, Tôhoku Math. J. 38 (1986), 57-69.
- [8] M. MORIMOTO, Analytic functionals on the Lie sphere, Tokyo J. Math. 3 (1980), 1–35.
- [9] M. MORIMOTO, Analytic functionals on the sphere and their Fourier-Borel transformations, *Complex Analysis*, Banach Center Publ. 11 (1983), PWN-Polish Scientific Publishers, 223–250.
- [10] M. MORIMOTO, An Introduction to Sato's Hyperfunctions, Translations of Mathematical Monograph, 129 (1993). A. M. S.
- [11] M. MORIMOTO, Entire functions of exponential type on the complex sphere, Proc. V. A. Stekkov Inst. Math. 203 (1994), 334–364, (in Russian), [Transl. Proc. Steklov Inst. Math. 203 (1995), 281–303].
- [12] M. MORIMOTO, A generalization of the Cauchy-Hua integral formula on the Lie ball, Tokyo J. Math. 22 (1999), 177-192.
- [13] M. MORIMOTO and K. FUJITA, Analytic functionals and entire functionals on the complex light cone, Hiroshima Math. J. 25 (1995), 493–512.
- [14] M. MORIMOTO and K. FUJITA, Analytic functionals on the complex sphere and eigenfunctions of the Laplacian on the Lie ball, *Structure of Solutions of Differential Equations*, Katata/Kyoto 1995 (eds., M. Morimoto and T. Kawai), World Scientific (1996), 287–305.
- [15] M. MORIMOTO and K. FUJITA, Conical Fourier-Borel transformation for harmonic functionals on the Lie ball, *Generalizations of Complex Analysis and their Applications in Physics*, (ed. J. Ławrynowicz), Banach Center Publ. 37 (1996), 95–113.
- [16] M. MORIMOTO and K. FUJITA, Eigen functions of the Laplacian of exponential type, *New Trend in Microlocal Analysis* (eds. J.-M. Bony and M. Morimoto), Springer (1997), 39–58.
- [17] R. WADA, On the Fourier-Borel transformations of analytic functionals on the complex sphere, Tôhoku Math. J. 38 (1986), 417–432.
- [18] R. WADA, Holomorphic functions on the complex sphere, Tokyo, J. Math. 11 (1988), 205-218.
- [19] R. WADA and M. MORIMOTO, A uniqueness set for the differential operator $\Delta_z + \lambda^2$, Tokyo J. Math. 10 (1987), 93–105.

Present Addresses:

KEIKO FUJITA

FACULTY OF CULTURE AND EDUCATION, SAGA UNIVERSITY,

SAGA, 840-8502 JAPAN.

e-mail: keiko@cc.saga-u.ac.jp

MITSUO MORIMOTO

DIVISION OF NATURAL SCIENCES, INTERNATIONAL CHRISTIAN UNIVERSITY,

MITAKA, TOKYO, 181-8585 JAPAN.

e-mail: mitsuo@icu.ac.jp