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Reproducing Kernels Related to the Complex Sphere

Keiko FUJITA and Mitsuo MORIMOTO

Saga University and International Christian University

We shall introduce four Hilbert spaces with a reproducing kernel and study relations
among them. These Hilbert spaces are related to Fourier transforms of analytic functionals on
the complex sphere.

Introduction.

PtE=R"*" and E=C"t! (n >2). Forz,t e Eweputz-{ =z181 + 2280+ -+ +
Znt1tnt1. Let L(z) = \/||Z|I2 + /l1zII* — |z2|2 be the Lie norm on E, where ||z||2 = z - Z and
2 = 7. z. We denote the closed Lie ball of radius r > 0 by B[r] ={z € E; L(z) <r}and
the complex sphere of radius A € C by Sy = {z € E; z2 = A2} (see Hua [6], Morimoto [8]

and [12] for the Lie ball and the Lie ' sphere). Espec1ally for A = 0 sometime we call So the
complex light cone. For |[A| < r put S;\[r] SA N B[r]. If A # 0, then

Salrl = {z € E; 22 = A2, |Im(z/M)|| < (72 — |A 1)/ 2r|AD) .

If [A] < r, then S 1[r] is a complex variety of complex dimension n with boundary. If |A| = r,
then SA [r] reduces to the real sphere of complex radius A : S; = ASy, where §; = {x €
E; x|l = 1}. For x| < rweputS,, = 8S,[r] = {z € S;; L(z) = r}. If |A| < r, then S, , is
a compact real analytic manifold of real dimension 2n—1. If |A| = r, then S)h, = SA [r] =
The rotation group acts transitively on gx,, and there is a unique normalized invariant measure
on Sk, re

We denote by O A(E[r]) the space of germs of complex harmonic functions on 1§[r]. In
§1 we consider the sesquilinear form on O 4 (B[r)) defined by

(f. 95, , Z/S f@9(@dz,

where dz denotes the normalized invariant measure on g;\, r- We shall show that (f, g)gk . is
an inner product on OA(B[r]). We denote by bi (B(r)) the completion of Q4 (f?[r]) with
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respect to the inner product (,)§Jt - If |A] = r, then we denote bz(ﬁ(r)) = bi(é(r)). The

Poisson kernel K, ,(z, w) is a reproducing kernel for the Hilbert space b%(ﬁ(r)).
We have the following inclusion relations (Theorem 1.5):

OA(BIr]) C b2(B(r)) C B2(B(r)) C h3(B(r)) C Oa(B(r)).

Let §A(r) = sx N fi’(r), |A] < r, be the open truncated complex sphere. We denote
by OGS, (r)) the space of holomorphic functions on S, (7). In §2 we introduce the Hardy
space H 2 (§A (r)) as a subspace of O(SA (r)) in such a way that the restriction mapping ag :
h%(é(r)) — H2S,(r))isa unitary isomorphism (Theorem 2.3). The restriction K rr(z, w)
of K; ,(z, w) to s;‘ (r)x Si (r) is called the Cauchy kernel for S, (r). Itis areproducing kernel
for H2(Sx(r)).

In §83 and 4 we shall review some results on harmonic functionals on the Lie ball and
analytic functionals on the complex sphere.

In §5 we define the conical Fourier transform of f € b%(ﬁ(r)) by

FA £ = / exp(z - O)F@dz, ¢ €S,

Sk,r

and denote by 52(§0; A, r) the image of b%(fi‘(r)) under .7-'/\“,,. If |A| = r, then we denote
E2(So; r) = E%2(So; A, r). We introduce an inner product on £2(Sg; A, r) in such a way that
the conical Fourier transformation F; f , 1s an antilinear unitary transformation from b% (B(r))
onto £2 (So; A, r). We shall construct the F-Poisson kernel Ej:o(g', &), which is a reproducing
kernel for the Hilbert space £ 2 (So; A, r). We shall prove the following relation (Theorem 6.4):

Exp(So; [r]) € £2(S0; 0, ) C E2(So; A, r) < E2(So; r) C Exp(So; (1)) .

In §7 we review results on spaces of eigenfunctions of the Laplacian of exponential type and
define the Fourier transformation F; , for the Hardy space H 2(§A (r)). We denote the image
of the Hardy space H 2 (SA (r)) under the Fourier transformation 7, _, by SZ_ A2 (E; r).

In the last section §8, we shall construct the F-Cauchy kernel Eﬁ‘ ¢, &), which is a re-
producing kernel for the Hilbert space 83\—12 (E; r). The F-Poisson kernel EQO(;, ) is the
restriction of Eﬁ‘ ¢, &) to §0 X 50.

The relations among our four Hilbert spaces can be summarized as the following com-
mutative diagram (Theorem 8.1):

N FA i
b2(B(r)) —— &%(So; A, 1)
|a Tes

2(& For o2 R
HSr(r)) — > &5 _.(E;n),

where o and B} are the restriction mappings. The Hilbert spaces H2(Sy (r)) and SZ_ 2 E; r)
are discussed in Fujita [4].
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In our previous papers Morimoto-Fujita [14], [15] and [16] we considered the bilinear
form

(fo95,, = [, F@od:

on (’)(SA [7]), but this is well-defined only for A € R. For a general complex parameter A we
should consider the sesquilinear form (£, g) 5, Accordingly, the Poisson transformation and
the Cauchy transformation are redefined to be antilinear mappings in this paper.

1. Complex harmonic functions.

Let B(r) = {zeE:L(z) < r} be the open Lie ball of radius r. We denote by O(B(r))
the space of holomorphic funtions on B(r) and by O (B(r)) = {f € OB(r)); A, f =0}
the space of complex harmonic functions on 1§(r), where

3% 82 32

Py 2 + 82% +---+ an+1
is the complex Laplac1an Equlpped W1th the topology of uniform convergence on compact
sets, the spaces O(B(r)) and © A(B(r)) are Fréchet-Schwartz spaces (FS spaces, for short),
and O 4 (B(r)) is a closed subspace of O(B(r)) (for FS spaces and DFS spaces (dual Fréchet-
Schwartz spaces), see, for example, Morimoto [10]).

Denote by Pg (E) the space of k-homogeneous harmonic polynomials and by N (k, n) =
dim PX (E) the dimension of PX (E). We know

Rk+n—-1Dk+n—-2)! -1
Nk, n) = =0Kk"").
(k. ) Kl(n — 1)1 S
Let Py ,(t) be the Legendre polynomial of degree k& and of dimension n + 1 and y4 , the

principal coefficient of P , (¢):

AZ=

2KF(k + (n + 1)/2)
K\l ((n+1)/2)N(k,n)
In our previous papers Fujita [2], [3], [4], Fujita-Morimoto [5], Morimoto [8], [9], [11], [12],
Morimoto-Fujita [13], [14], [15] and [16], we defined the extended Legendre polynomial by

Pkn(z,w)—<f>k<\/“>kpkn(f \/’”_)

We have A; Py n(z, w) = AyPin(z, w) = 0and Py n(z, w) = Pen(w, 2). Prnlz, w)isa
k-homogeneous polynomial in z and in w. Note that

Yk.n =

i’k,n(z, w) = Ve,n(z - w)k for z2=0 or w?=0.
In this paper, we shall use the following notation:
P n(z, w) = Py n(z, ).

The two-variable function P ,(z, w) is a reproducing kernel for the finite dimensional space
P"Z (E). The following theorem is due to Wada [17] and [18].
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THEOREM 1.1. (1) Iffix € ’PZ (E), fi e PIA (E), and k # 1, then we have the orthog-
onality:
fi(@) fikz)dz =0,
SA,r

where dz denotes the normalized invariant measure on SA, re
Gi) I fx, g € PX(E), then we have

fi@u@dz =Ly, | fix)g(x)dx,

Si.r S
where
rek Al =r,
(1) Lipr = { IMFPen(r2/IM2 + M2/rD)/2) 0 <Al <7,
2 %y nr?k A=0.

Note that Ly, , is continuous with respect to A and r.
(i) If fr € ’Pﬁ (E), then we have the reproducing formula:

Nk, n .
fi() = L( ) f Je(w) Py n(z, w)dw
k,A,r Sar
— N, n) fs Fe®) Pen(z, x)dx .
1
COROLLARY 1.2.
N(k, ,
Prn(z, w) = k. n) Pin(z, W) Py (W', wydw'

kA, r S)“,-

=2y Nk, n) [z W)@ - w)kdw .
So.1

Suppose f € O4(B(r)) is given. Then
N (k, .
2 Ji(z) = & ) ./§-’ f (W) P,n(z, wydw
A,r

Lk,k,r’

belongs to PX(E) and does not depend on A, ' with |A| <r’ <r. We call (2) the k-

homogeneous harmonic component of f € O4(B(r)). We have the following theorem
(Morimoto [9], Theorem 5.2):

THEOREM 1.3. Let f € Oy (B(r)) and fr € 'PZ (E) be the k-homogeneous harmonic
component of f. Then

3) f@=)_ fi@,. zeB@)
k=0

converges uniformly on compact sets of B(r) and we have

] 1
4 limsup /|| fxlls, < =

k— 00
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where || fx|ls, is the L? normon S;.

Conversely, if a sequence { fi} of homogeneous harmonic polynomials f; € P]Z\ (E)
satisfies (4), then the right-hand side of (3) converges uniformly on compact sets of E‘(r) and
f(2) is a complex harmonic function on E(r).

Put
O(BI[r]) = limind,»,O(B(r')) and OA(B[r]) = limind,~,Os(B("))

and equip them with the locally convex inductive limit topology. The spaces O(B[r]) and
Oa(B[r]) are DFS spaces, and OA(é[r]) is a closed subspace of O(B[r]). For f, g €
O (B[r]) we define

(9. s, , =/§ g(w) f(w)dw.
A,r

(9, g, , is a sesquilinear form on OA(B[r]). Let f (resp. g) € OA(B[r]) and fi (resp. g)
be the k- homogeneous harmonic component of f (resp.g). Then f(z) = ) ;o fi(z) and
9(z) = Y 72 9k (z) converge uniformly on SA r. By Theorem 1.1 we have

(9 P, = fs 9() f(@ydz = / ng(z)Zﬁ(z)dz
A,r

Ark

= Z/ 9 (@) fr(R)dz = ZLk,A,r(gk, Jo)s, -
k=0 YSxr.r k=0

This implies (g, f )g is an inner product on O4 (B[r].

Let g € OA(B[r]) and f € OA(B(r)). Then there is ¢ > 1 such that f(t—lz) and g(t7)
belong to O, (B[r]) as functions in z. Put

I =fs 9(tz) f(t~1z)dz.

Then I, = Z/?io Lga,r(9k, fr)s, and it is independent of ¢+ > 1 sufficiently close to 1. We
call I; the symbolic integral form on §A,, and denote it by ‘

S. /; g(z)?(z_)oiz .

By the definition, it is a separately continuous sesquilinear form on O 4 (B[r]) x O4(B(r)).
Define the Poisson kernel K, ,(z, w) by

A Nk, n)
Kpr(z,w) =3 —=—Pin(z, w).
k=0 k,A,r

K r(z, w) is holomorphic in z and antiholomorphic in w on

2, ={(z,w) € ExE; L(z)L(w) <r?}
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and satisfies A; K, ,(z, w) = 0 and K ,(z, w) = K, ,(w, 2) = K, (w, 7). We have the
Poisson integral representation formula for f € OA(B(r)):

f@= S'./S FW)Ky ,(z, wdw, ze B(r).
A,r

Note that K, ,(z, w) reduces to the classical Poisson kernel when |A| = r.
LEMMA 1.4. If0 < |A| < |u| < r and k € N, then we have

) 2"kyk,nr2k < Lgar < Ligp,r < rik

PROOF. Puta(s) = sk Pr.n((s+1/s)/2) for s > 0. Then by the Laplace representation
formula

_ I'(n/2) ! /77 1vk(] _ +24(n=3)/2
Prn(t) = =T = D)2) /_l(t + xV't D*A —x°) dx for t>1,
for 0 < s <1 we have

r'(n/2) 1
VL ((n—1)/2) J_,

1
B ﬁf(lgrfn—/zl))/z)zk / 1(*‘2(1 —x) + A+ x5 —xH I 2y

Then it is clear that a(s) is a monotone increasing function in s with 0 < s < 1. By the
definition (1), we get (5). O

Let h2(B(r)) be the completion of Oa(B[r]) with respect to the norm || f s, =
I(f, f )gl K Then bi(é(r)) is a Hilbert space and is isomorphic to the space

a(s) = 2751+ 5%) + x(1 = 2R = xH I 2dx

(6) h2(B(r)) = {{fk}; fe € PR, Y Lea sl fill§, < oo} ,
k=0

If |A| = r, we write h2(B(r)) = b2(B(r)). By Lemma 1.4, for 0 < |A| < |u| < r, we
have h2(B(r)) C h2(B(r)) C b2(B(r)) C b3(B(r). If { fk} € h3(B(r)), then we have

o0

—k 2k
D 2y ar N fill§, < 0o
k=0

Therefore, there exists M > 0 such that || fxlls, < Mr—*(Q2 %y ,)~!/2. Because of

—k 1 r'ec+m+1/2) —(n=1)/2
D 2 = N Tarre+n ~ 2« )

we have (4). Therefore, by Theorem 1.3, f(z) = E/ﬁo frx(z) converges and complex har-
monic on B(r). With this identification we have the following theorem:
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THEOREM 1.5. (i) The Hilbert space h%(é (r)) is the Hilbert space direct sum of the
Jinite dimensional subspaces PZ (E):

b3 (B(r) = P PL(E).
k=0

‘ ~(ii) The Poisson kernel K, ,(z, w) is a reproducing kernel for the Hilbert space
f)i(B(r)); that is, for f € b%(ﬁ(r)) we have

@ = (fw), Kpr(w, D)g, , -
(i) If0 < |A| < || < r, then we have
Oa(BIrD) C *(B(r)) C bZ(B(r)) C b3(B(r)) C b3(B(r)) C Oa(B(r)).

2. Holomorphic functions on S;.

Put S;‘(r) = §A N E(r) and SA[r] = §k N fi[r]. Let us denote by O(gk(r)) the space
of holomorphic functions on the open subset S (r) of the complex sphere S,. Equipped
with the topology of uniform convergence on compact sets, O(S;.(r)) is an FS space. Put
H (SA) = { fk = fklsl; fr € PZ (E)} and call it the space of k-spherical harmonics on SA.
Especially for A = 0, sometimes we call H*(So) the space of k-conical harmonics on the
complex light cone So. Note that dim H* Sy) = Nk, n).

Put O(S,, [*]) = limind, -, O(S, (")) and equip it with the locally convex inductive limit
topology. It is a DFS space.

In general, we shall denote functions on a subset of the complex sphere S, by f, g etc.
Let f € O(S,.(r)). Then the right-hand side of

Nk, n)
fi(@) = 7 :
kA, r’ SA’,/

fW)Pen(z, wdw, zeE,

is independent of r’ with |A| < r’ < r and defines f; € PZ (E). The series
o0
f@Q=) fix), zeBw
k=0

converges uniformly on compact sets of B (r) and defines f € OA(E‘(r)), which satisfies
f | S = f. We call f the harmonic extension of f (see Morimoto [9]). If we put f; =

Jx ,SA )’ then f; e H*(S;), which will be called the k-spherical harmonic component of f .
The series

®) f@=) Ak, ze8¢)
k=0

converges uniformly on compact sets of éx (r) and we have f lé,\ " = f . We call (8) the

spherical harmonic expansion of f.
For the later reference, we summarize this fact as a theorem:
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THEOREM 2.1. The restriction mappings
a) i Oa(B(r)) = OBA(r)) and o : Oa(Blr]) — OGSAIr])
are topological linear isomorphisms.

PROPOSITION 2.2. Let|A| < r and (8) be the expansion of fin spherical harmonics.
@ f € OB(r)) if and only if limsupi.oo ¥/ Il fellg,, < 1.

() f € OE.[r)) if and only if lim supg— o {/ |lf~k||§“ <L
For §, f € OS,[r]) put

G P, = [, 1@F@dz.
A.r
Then Theorem 1.1 implies
) @ Dg,, =2 G g, =D G fg,, -
k=0 " k=0 '
By Proposition 2.2, the right-hand side of (9) converges for g € 0(§A [r] and f € O(SA r)).

So we define the sesquilinear form (g, f )5, , by (9) and call it the symbolic integral form. We
sometimes denote it by

G g, =s f

Sa.

i) F(2)dz.

Let IZ}L,r(Z, w) be the restriction of the Poisson kernel X ,(z, w) on S, x SA. We call it
the Cauchy kernel on S,. K .r(z, w) is holomorphic in z and antiholomorphic in w on

2, = {(z, w) € Sy x S; L)L (w) < r?}

and satisfies K Az, w) = K A,r(w, 2). We have the Cauchy integral representation formula
for f € O(S,(r)):

(10) F@) =s. fs F)Brr(z, wdw, ze80r).
AT

Let f € OSA(r)), |A| < r. For r’ with |A| < ¥’ < r we put

1/2
1£ls, , = { fs |f(z)|2d'z} :

I oy = suplll fllg, 3 1Al <7 <7}

The Hardy space H2(S, (r)) is defined to be the class of all £ € O(S; (r)) for which || fll.ry <
oco. If f € O(sx[r]), then ||f||(;\,,) = ||f||§“. Hence, Hz(SA(r)) is the completion of
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O(Sa[r]) with respect to the norm | f IISA - In the sequel, we denote the norm || f la,r) by
”f”& , even for f~ € H2(§A(r)). For f, g € HZ(S,.(r)) we can define the sesquilinear form
@ s, = fs 9@ f(2)dz.
AL r
By Theorem 1.1 we have the following theorem:

THEOREM 2.3. (i) The Hilbert space H? (gx (r)) is the Hilbert space direct sum of
the finite dimensional subspaces H*(S,.):

HSu(r) =P H S .
k=0

For f € H3(Sy(r)) we deﬁne the k-spherical harmonic component fk of f by
Nk, n)
Lk.k,r s)“,

fi) = FW) Pz, wydw, zeSy(r).

The orthogonal projection of H 2(S, (r)) onto H* (SA) is given by f — ﬁ
(i) The Cauchy kernel K, ,(z, w) is a reproducing kernel for the Hilbert space
H2(S,(r)); that is, for f € H2(S,(r)) we have

an f@) = (Faw), Barw, g, . z€8i0).

(iii) The restriction mapping oz)L : bA(B(r)) — H 2(S;\(r)) is a unitary zsomorphzsm
The inverse mapping f > f is given by the Poisson integral formula

f@ = W), Krw, ), = fs F)Ks  (z,wydw, zeB@).

Combining (iii) with Theorem 2.1, we have the following commutative diagram:
OaBIr]) = Bi(B(r) <= Oa(B(r)

0 0 0
J{ak ldk lak

OSilrD) = H2Si(r) = OGL().

3. Harmonic functionals.

Let (’)’A (E[r]) be the dual space of Oy (E'[r]). An element T of O’A (E[r]) is called a
harmonic functional on E[r]. ForT e O’A(E[r]) we put

Ti(z) = Nk, n)(T, Pen(w,D))w, z€E,

where (, ),, denotes the canonical bilinear form with a dummy parameter w. Ti(z) is a k-
homogeneous harmonic polynomial in z and will be called the k-homogeneous harmonic
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component of 7. Note that T is antilinear with respect to 7. We know

(12) limsup ¥/ Tkllg, <r?.
k—o0 Ay

For g= Y 520 gk € Oa(BIr]), g € P4 (E), we have

o0
(T, gy =D (Tw, gt
k=0
by the continuity of 7. Then we have
N(k, n) .
(Tw, gk(w))w = <Tw, 3 9k (2) Prn(w, z)dz>
kA,r ISy, w

Nk, .
= /_‘ 9k (2) & =) (Ty, Pk,n('W, 2))wdz
S)..r L

k,A,r
1 _ 1
= Ters /;“ 9 ()T (2)dz = Loy (9> Th)g, | -
Therefore, we have
> 1 21
(T, g) = k2=0 Lo o Tos, , = I;) Lo @ s, -

Conversely, if a sequence {73} of homogeneous harmonic polynomials 7; € Pﬁ (E)
satisfies (12), then

o0
1 -
(T, g) = k;) L, @ Ws, for ge0aBUD

defines a harmonic functional 7 on E[r]. In the sequel, we represent T € O’A(E[r]) by the
sequence of its k-homogeneous harmonic components 7; and denote T = {7} }.
For T € O,(B[r]) we define the Poisson transform P, ,T of T by

Pi,T(w) = (T, K, (z, w)), w € B(r).

Then P, ,T € OA(E(r)). The mapping P, : T +—> P, T is called the Poisson transforma-
tion.

THEOREM 3.1. Let|A| < r. The Poisson transformation P, , establishes the topolog-
ical antilinear isomorphism

Prr : O4(BIr]) — Oa(B(r)).
ForT € O’A(E[r]) and g € OA(B[r]) we have

(13) (T, g) =s. fs gw)Py, T (wydw .
AL r
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PROOF. LetT € O’A(é[r]). Forg e OA(B[r]) we can find ¢ > 1 sufficiently close to
1 such that

(T, 9) = (T3, 9(2)): = <Tz»f

SA,r

g(tw)K; ,(z, t‘lw)d'w>
4
= /: g(tw)'PA,,T(t_lw)ciw = s.f~ g(w)PA,,T(w)d'w.
Sh,r Sk,r
Thus we have (13).
Now, for f € O 4(B(r)) we denote by Tf)‘ " the continuous linear functional on Q4 (B[r])
defined by
(T}, g) =s. fs 92)f@dz, geOa(BIr)).
Ar
Let f = Z/?io Ji € Op (E(r)), fr € PZ (E). Then the k-homogeneous harmonic component

(T}’r)k of the functional T}’r is Li,r fi(2):

(T} (@) = Nk (T} D, P (W, 2))w

= N(k, n)S-fg Pen(w, 2) fw)dw = Ly s » fi(2) -

Conversely, for T € (’)’A(fi’[r]) we denote by T the k-homogeneous harmonic compo-
nent of 7. Then we have

X, Nk, n) o
Pr,T(w) = (T, Pz, w)) = Ti(w) .
ror < : I; Lk,l,r o >z I;) Lk,k,r

Thus the k-homogeneous harmonic component of P, , T is (Lk,x, D7 T (w).
We have proved that two antilinear mapppings 7 — P, ,T and f +—> T;‘ " are inverse
to each other. O

Now put
O3B ={T}" € O(BIrD); f € b3 (B))}.
Then (h% (B(r))) is antilinearly isomorphic to b% (B(r)) by the Riesz theorem. By the defini-
tion (6), we can characterize the space (bf{(ﬁ(r)))’ of harmonic functionals as follows:

- SO 1
(b3 (B(r)) = {T ={Ti}; Tx e PL(E), )
k=0

2
I Tklls, < oot -
— Li,r !

If |A] = r, then we shall write (bz(é(r)))’ = (b%(é(r)))’. Finally, from Lemma 1.4 we
get the following theorem:

THEOREM 3.2. If0 < |A| < || < r, then we have
(14) W(B(r) C (h5(B(r))) < (h2(B(r)Y
C (L (B(r))' C (5*(B(r))) C OL(BIr).
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4. Analytic functionals on S,.

Let O'(8[r]) be the dual space of O(S,[r]). An element T of ©'(Si[r]) is called an
analytic functional on S, [r]. For T € O'(S,[r]) we put

(15) Ti(z) = N(k, n)(Tw, Pen(w, 2w, 2z €8y,

where (, )y, denotes the canonical bilinear form with a dummy parameter w. We call Ty €
Hk (SA) the k-spherical harmonic component of T. Note that T is antilinear with respect to
7. We know

(16) limsup /I Tellg, , < r*.

k— o0

For § = 3520 §x € OGalrD), §x € H(S1), we have
o
3 = (T e @)w
k=0
by the continuity of 7. Then we have

~ ~ N,
(Twagk(w))w=<Twa L( ")

ﬁ Gx @) Pen(w, z)dz>

w

N(k,
_ / Rou ")<Tw,Pkn(w )dz
S, Lir

1 L
=7 f G T (2)dz.
k.A,r JS; ,

Therefore, we get

- O 1 - o0 1 -
T, q) = i, Ti)a. = g, Ti)e
. 9) kz=:0 Liar e g, ,; Lia,r @ T, ,
Conversely, if a sequence {Ti} of spherical harmonics T € H* (§A) satisfies (16), then
o0
_— | R . -
(T, 3) = ; Lo e Tog, for §eOGID

defines an analytic functional T on S, [r] by (5) and (7). In the sequel we represent T e
(o4 (SA r) by the sequence of its k- sphencal harmonic components Tk and denote T = {Tk}

Forz € SA (r) the function w — K a,r(w, 2) is a holomorphic function in a neighborhood
of S, [r]. Hence, we can define the Cauchy transform C, , T of T € O'S,[rD) by

CrrT(@) = (Tw, Knr(w, D)w, 2 €S2(r).
The mapping T — C, . T is called the Cauchy transformation.

THEOREM 4.1. Let |\A| < r. The Cauchy transformation. Cy..r establishes the topolog-
ical antilinear isomorphism

Crr : O'Salr]) = OGA(r)) -
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ForT € O'(S[r]) and § € OS,[r]) we have
(17) (F, ) =s. fs GW)Cr, T (wydw .
A7

PROOF. Let T € O'(S,[r]). We have

CrrT(2) = <Tw, Y XED p o w, z)>

k=0 Lk,k,r
X Nk, n)—= o . -
= ( <TII)1 Pk,n(w, Z))w =Z Tk(Z), < GSA(")'
k=0 Lk,A,r k=0 Lk,k,r

Therefore, the Cauchy transformation C, , maps O’ (SA [7]) into O(SA (r)) antilinearly.
Let § € O(Sy[r]). Then § can be expanded in spherical harmonics §(z) = 3 52, 5 (2),
which converges in the topology of O(S,[r]). Therefore, we have

N 0 * [ N, } ‘ )
(F.5) = Z(Tz,ﬁk(z)>z=Z<Tz,—L(—’2 5w Penz, w)dw>

k=0 k=0 k.A,r SA..r z
0 1 . . © - .
= gr(w) Ty (w)ydw = _/ g9 (w) T (w)dw
, ,;,fs“ S L ,; Si., Li,,r

=s. f FW)Co, T (w)dw .
SA,r

Thus, we have (17).
Now, for f € O(Sa(r)) we denote by T}"r the continuous linear functional on O(S; [r])

defined as follows:
o0 — ) "
@5 =Y [ @ fiwdw, §eo@i.
k=0 YSxr.r

Then the Cauchy transform of T}‘ " can be calculated as follows:

Ca.r “}”(z> = ,;, - K (w, 2) fr(w)dw = k; fi@ = f@).

ForT € O’(él(r)) we put f(z) = CA,rT(z). Then by (17) we have ff):" =T.

We have proved that the two antilinear mappings 7' +> Co.,T and f > T}‘ " are inverse
to each other. o O

COROLLARY 4.2. We have he following commutative diagram:

OaBlr) — BB < 0ABE) < 0,Blr)

el s Totr

OGilr) = H2Gi(r) = OGi(r) < O'Galr]).
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Especially, for f (2) € O(SA (r)) the harmonic extension f = (Olg)—l f =Puro (af\))* o
Cy. i f is given by the Poisson integral

f (@) =s./§ fW)Ky »(z, wydw.
Ar

Now put (H2(S,.(r))) = {T}‘" € O'SylrD; f € H2(S.(r))}. Then we have

OW(B(r)) — (B3(B(r)) <> OL(BIrD
T«xg)* T(a‘;)* T«xg)*
O'Ga(r)) = (H2E\(r))) — O'GalrD)
and (H? (§A (r))) is antilinearly isomorphic to H 2 (SA (r)) by the Riesz theorem.

5. Conical Fourier-Borel transformation.
Let T € O,(B[r]). We can define the conical Fourier-Borel transform of T by
(18) FAT(¢) = (T, exp(z - )

for¢ e So because the function z > exp(z - {) is complex harmonic if { € §0. We know that
the conical Fourier-Borel transformation 2 : T +— FT establishes a topological linear
isomorphism from (’)fA(B[r]) onto Exp(So; (r)), where

Exp(So; (r)) = {F € OSo); V¥’ > r,3C > 0s.t. |[F(¢)| < Cexp(r'L*(¢)), ¢ € So}

and L*(¢) = supflz - ¢|; L(z) < 1} = /(lIz]|2 + |z2])/2 is the dual Lie norm. The conical
Fourier-Borel transformation F4 : T + FAT also establishes a topological linear isomor-
phism from O’A(é(r)) onto Exp(So; [r]), where

ExpSo; [r]) = {F € OSo); 0 < 3r' <r,AC > 0s.t. |[F(Z)| < Cexp(r'L*(¢)), ¢ € So}.

Let Ty € ’PZ (E) be the k-homogeneous harmonic component of T € O’A(f?[r]). Then
the conical Fourier-Borel transform of 7' can be expanded as follows:

o0 l .
FAT @) = (T, exp(z - §)) = Z[ =@ - O T (x)dx
= Js, k!
o0 1 . o0 1 _
= Py n(x, &)T, dx = —T;
k;f& iy Pon 6 DTRGE = 3 s Tut0)

for¢ € §0, where we put Ty ({)~= Ti(2). Now we define the conical Fourier transformation
F2, on h2(B(r)). For f € b3(B(r)) we put

FLF@) = (expz-8), f(2)g,,. ¢€So.
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Then we have 7, f(¢) = .FA(T)‘ "(¢) for ¢ € Sg. Therefore, we have

o0

; A _ Lk,A,r = S
(19) FL @) = k;) T NET f@), ¢eSo,

where fi € PX(E) is defined by fi (2) = fi(Z).
Let F, G € O(Sp). We expand them as follows:

FO) =) FRE), G&) =Y G, ¢eb,
k=0 k=0

where Fy, G, € H¥ (§0). We define

i 2%k12y o N (k, n)?

(20) (F, Gy = o

(Fk, Gig, -

Put
Eo(Z, ) = (exp(z - £). exp(z - §))g, |
=/§ exp(z - {)exp(z - €)dz, ¢, £€8Sp.
A7

We call E "0(§ £) the F-Poisson kernel on Sg. Then we have

& 1 - _ .
EA = '_—_f P n ) P n 'y d
r0, &) fg(k'ykn)z g, Fen(@ O Pen@, 0z
S kAr :
@1 <k'ykn)2 N, ny on )

Lk,A,r

. £ k Q
g€ Ot el

[
1 Tr

Note that Elo(; £) = E)(¢,©), Eﬁ‘o(;’ §) = E}(€, ¢), and the function ¢ > EX (£, §)
belongs to Exp(So, [r1), hence to £2(Sg; A, r).

6. Hilbert space of entire functions on S.

Define £2(So; A, r) to be the class of all F € O(So) for which ((F, F))g(')r < 0.

THEOREM 6.1. (i) The Hilbert space E£? (SO; A, r) is the Hilbert space direct sum of
the finite dimensional subspaces H*(So):

(22) E2So; A, 1) = P H So) .
k=0
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(ii) The F-Poisson kernel E:‘YO(Q‘,G ) is a reproducing kernel for the Hilbert space
E2(So; A, r); that is, for F € E2(So; A, r) we have

FQ) = (F®). E}G. O)g -
(iii) The conical Fourier transformation
(23) FL, : b3(B(r)) — £*(So; A, r)

is an antilinear unitary isomorphism.

PROOF. (i) is clear by the definition.
(ii) Let F € £%(So; A, r). Expand F into conical harmonics:

F@Q) =) FR(Q).
k=0

Then we have

.\ 2%k12y o N (k, n)?
((F, F))g,r — Z yk,n ( n)
0

k=0 Lk,k,r

E? .
Il

By (21) and (20) we have

(F &), E*o&, D) =i2kk!2y"’"N (km)> 1 Ligar
» Lo , S,

(Fk (), Pen (£, 8))g, |

k=0 Lia,r (k!'Yk,n)? N(k,n)
X 2kN(k,

=3 2N b6, Patc. g,
k=0 Vk.n )

o

=) F@E) =FE).
k=0

Thus we have (ii).
(i) Let f =322, fi € h2(B(r), fi € PX(E). Then we know that

fs Ng,, = D Liar(fi fids, -
k=0

Write F2, f(£) = F(¢) = X220 Fx(2), ¢ € So, with F € P4 (E). Then by (19) we have

Lk,A,r

—k!yk,,,N(k, n)fk(C), ¢ €E.

Fr($) =
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By Theorem 1.1 we have

i 2%k12y n N (k, n)?

o0
F, é’r = , F {"r =
(F, F)g I;)«Fk 05 =2

(Fy, Fk)go,1

_ i": (k!N (k, m))?
k=0

_ ’ 00
(Fis F)s, = D Lip r(frs f)s,
Lk,}\,,l’ k=0

=) (e s, = (f D, , -

k=0

Therefore, f > F = ff’, f is an isometry. Bec‘ause Flisa bijection from O’A (E[r]) onto
Exp(So; (r)), the composed mapping

FL, i f > T} > FATH)

is a bijection from h2(B(r)) onto £2(So; A, r). Thus we have proved that Fa, b2(B(r)) —
£2(So; A, r) is an antilinear unitary isomorphism. (]

EXAMPLE 6.2. If w € B(r) is fixed, then the function f(@) = K, ,(z, w) belongs to
O (B[r]) and we have

(24) FAFQ) = f exp(z - £)Kir(w, 2)dz = expw - §), ¢ € So.

sA,r

Therefore, the exponential function ¢ +— exp(w - ¢) belongs to Exp(go; [71), hence, to
E%(So; A, r) (see also Example 8.2).

EXAMPLE 6.3. If&¢ € So is fixed, then the function f(z) = exp(z - &) belongs to
Oa(E). The 7, image of f(z) = exp(z - §) is the F-Poisson kernel E}o(L, &) (see also
Example 8.3).

If |A| = r, then we shall put £2(So; r) = £2(So; A, r). By combining Theorem 3.2 with
Theorem 6.1 we have the following theorem:

THEOREM 6.4. If0 < |A| < |u| < r, then we have

Exp(So; [7]) € £2(So; 0, 7) € E2(So; A, 1)
C E%(So; i, r) € E2(So; r) < Exp(So; (1)) .
In fact, take the 74 image of (14).

Suppose F € 82(§0; A, 7). If z € B(r), then th¢ function ¢ — exp(z - ¢) belongs to
E2(Sp; A, r). Put

FrrF @) = (exp - £), FOVE -
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Then we have
2%k nN(k,n)? 1

M3

ForF(z) = (Pren(z, 8), Fi(9))g
rrF(2) e Lk,A,r k!}’k,n k.,n e k(¢ So.1
(23) % 2KEIN (K, m)? 2 Ky - © Kyt Nk, n) -
=> F@=) ————F@.
k=0 Lk,).,r N(k’ n) k=0 Lk,A,r

Therefore, ﬁk,r F belongs to bi(lrl(r)) and will be called the Fourier transform of F.
THEOREM 6.5. The Fourier transformation
Far : E2So; A, ) > b2 (B(r))

is an antilinear unitary isomorphism. F;_, is the inverse mapping of the conical Fourier
transformation (23). '

PROOF. The theorem is a consequence of (19) and (25). |

Because of (24), exp(w - ¢) is the ff, image of K, ,(z, w). Therefore, Theorem 6.5
implies the following corollary.

COROLLARY 6.6.
K. r(z, w) = ((exp(z - ), exp(w - ;)))g;’ .
REMARK 6.7. Let p, ,(s) be a C* function on [0, 00) satisfying

o /°° s*Hnl oy r(s)ds = 2k 2y n N (k, n)? .
. | Lk,A,r

Such a function does exist by the following theorem of Duran [1]:

THEOREM 6.8. For any sequence (ax) of complex numbers, there exists a rapidly de-
creasing C function ¥ such that supp ¢ C [0, c0) and

0
f skllf(s)ds=ak, k=0,1,2,---.
0

In case of [A| = r, one such p,(s) = p,,,(s) was constructed by Ii [7] and Wada [17] by
means of modified Bessel functions. We call o, (s) the Ii-Wada function. Their function p, (s)
is not positive valued. It is not known that there is a non-negative function p, ,(s) satisfying
(26).

Using the function p, ,, we can write the inner product ((F, G))g(’)r as follows:

Jeo o) - .
(F. Gl = fo ( /S F(s;)G(s;)dc) P,r()s"1ds .
0,1

Because §0 = U{sso,l;s > 0} = U{go,s: s > 0}, we can understand the inner product
«F, G))g" is defined by a kind of integral over Sg.
0
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7. Fourier-Borel transformation.

Consider the space O 4_,2 (E) = {F € O(E); A F(¢) = A2F(¢))} of entire eigenfunc-
tions of the complex Laplacian. For F € O, _,2(E) we put

i N, i .
Fu) = 26 Y& f F () Pen(t, £)dE
Yk,n So,1
— 2N (k, n) /S FE)¢ Btde, tek.
0,1

Then F’k-(g) € Pﬁ (E) and is called the k-homogeneous harmonic component of F. We have
the following expansion formula (see Wada-Morimoto [19]): .

@7) F©) =Y Rinm/erF@), ¢ <k,
k=0

where the convergence is uniform on compact sets of E and

Jk® = Tt m—1)2(t)

is the entire Bessel function;

- A DI+ AN
J"(t)_;r(uﬂﬂ)l! (5) =T+ (E) Tu(®)-

Note that
J0) =1, Ju,0) =Ju(=1), |J.@)] <exp(lt]).
By (27), it is clear that the following theorem holds:

THEOREM 7.1. The restriction mapping aé‘ :Op 52 (E) —> O(So) is a topological
linear isomorphism.

EXAMPLE 7.2. The exponential function can be expanded as follows:

V2D Pen(z, ).

k'vi,n

>, 1

(28) exp(z-¢) =)

If z2 = 0 or £? = 0, then (28) reduces to the Taylor expansion:

o0

' 1
expz-¢) =) = O

(see Morimoto [9]).
For an analytic functional T € O'(S,[r]) we put

(29) FT() = (T, exp(z-¢)),, ¢ €E

and call it the Fourier-Borel transform of 7.
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We know that the Fourieir-Borel transformatiog F : T +— FT establishes a topological
linear isomorphism from O’ (S, [r]) onto Exp,_,2(E; (r)), where

Exps_n2(E; () =(F € O4_p2(E);
Vr' > r,3C >0, s.t.|F(2)| < Cexp(r'L*(0)), ¢ € E}.
The Fourier-Borel transformation F : f — FT also establishes a topological linear isomor-
phism from O'(S, (r)) onto Exp ,_;2(E; [r]), where
Expy_2(E; [r]) ={F € O, _,2(E);
0<3r <r,3C 20, st.|F(@)| < Cexp(r'L*()), ¢ € E}

(see Wada [17] and Morimoto-Fujita [13]). By the definitions of the Fourier-Borel transfor-
mation (29) and the conical Fourier-Borel transformation (18), we have the following com-
mutative diagram:

0, (BIr) -2 Expo; ()

T(af\’)* Tﬂé

OGlr) —— Expy 2 (E: ().
where ,86‘ is the restriction mapping. Hence ,B(’)‘ is also a topological linear isomorphism (see
Morimoto-Fujita [13], [14] and [16]).
Let T € O'(S,[r]). Then we have

FT (@) = (T, exp(z - {)),

- B =
=(T,.)_ JeGAED) Pen(z, O)
k=0 k Vin b4

(o ]
1 -~ =
= —_ 0 2
=2 N VT,

where T (¢) is the k-homogeneous harmonic component of 7 defined by (15).
For f € H?(S)(r)) we define the Fourier transform F;, , f(¢) by

Frr f @) = (exp(z- £), f@)g, =f§ exp(z - ) F (2)dz.
Ar

Then F; , f € Exp4_,2(E; ()) and we have

(30) Farf@) = Z T e ACNIZVACY

where f} is the k-homogeneous harmonic component of f.
We are going to characterize the image of H 2 (S,.(r)) under the Fourier transformation
Fa,r.-Let F, G € Exp,_,2(E). We define

(F,G)*" = (B F, B3 Gy,



REPRODUCING KERNELS 181

where ,B(’)‘ :Expa_;2 (E) — Exp(So) is the restriction mapping.
Put :

A,r

E}¢. &) = (exp(z - ¢), exp(z - £))5, = fs exp(z - £)exp(z - £)dz .

By the orthogonality and (28), we have

X, FiATD) e (iAVED) _ .
B 5 =3 RAVORME [ s e
k=0

(k!yk,n)z s;‘,,

-3 AT jeliA/ED) Ly
k=0

(k!'yr,n)? N(k,n)

Pen(2, &), ¢ E€E.

We call Eﬁ‘(;‘, &) the F-Cauchy kernel, whose restriction to §0 x §0 coincides with the F-
Poisson kernel Eﬁto(g, &) (see (21)). Note that Eﬁ‘(;‘, &) = E}E, ¢) and the function ¢
EX(¢, &) belongs to 52_A2 (E; r), where we define 52—}2 (E; r) to be the class of all eigen-
functions F € O 4_;2(E) for which (F, F))*" < oo.

8. Hilbert space of eigenfunctions.

£ 2 (E; r) is a Hilbert space. Let Pr (E) be the subspace of £2 _2(E; r) defined
by :

Ph_(B) = {fkm\/?)ﬁk(c); Fy e PL(E)};

that is, PX_,(E) = (e})~1#*(Sp). We have the following theorem which is parallel to
Theorem 6.1. ‘

THEOREM 8.1. (i) - The Hilbert space SZ_ 32 (E; r) is the Hilbert space direct sum of
the finite dimensional subspaces ’PZ_ 52 (E):

(1) 2 B =PPL . ®).
k=0

The restriction mapping ﬂ(})‘ : 53—)@ (E; r) — 82(§0; A, r) is a unitary isomorphism, which is
compatible with the decompositions (22) and (31).

(ii) The F-Cauchy kernel E} (¢,&) is a reproducing kernel for the Hilbert space
Si_}\z (E; r); that is, for F e EZ_AZ(E; r) we have

F(©) = (F@&), E}NE, O .
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(iii) The Fourier transformation F, , : H 2(S;‘(r)) — Ei_)‘z(l::; r) is an antilinear
unitary isomorphism. We have the following commutative diagram:

2R Fi 2§
bA(B(r)) e 8 (809 A‘v r)

I Ta
2/& fk.r 2 =
H*Sa(r) —— &4 _,,(E;r).

PROOF. The statements are clear by the definition. For example, to prove (iii), we have
to show

(Far £ Far™ = (f, Dg,
for f ,0€H 2(& (r)). But this can be done by a direct calculation. O

EXAMPLE 8.2. Ifw € B(r) is fixed, then the function f (z) = K r(z, w) is holomor-
phic in a neighborhood of S, [r]. Then for { € E we have

Farf) = f exp(z - £)Knr (w, 2)dz

SA,r

o0
1 - - )
=> :[S X JkGAE2) Pin(z, ) K r(w, 2)dz
k=0 /Su.r K:Vion

o0 1 - - ~
k=0 k')’k,n

(see also Example 6.2).

EXAMPLE 8.3. Let£ € E befixed. The F; , image of the function f(z) = exp(z-&) €
O(S,.) is the F-Cauchy kernel E} (¢, &) (see also Example 6.3).

Combining Theorem 6.4 with Theorem 8.1, we have the following theorem (see also
Fujita [3]):

THEOREM 8.4. Let |A| < r. We have the following commutative diagram:
ExpSo; ') > £2Sos A, 1) = Exp(So; ()

Ta Tes Tes
Exp,_j2(E; [r]) <> €3 ,(B;r) < Expy_p(E; ().

Ifz € SA (r), then the function ¢ — exp(z - ) belongs to Exp,_,2 (E; [r]D and

o0 1 - _
XP(+8) = D o It/ ) Punz. B)
k=0 """

k,n

by (28). Therefore, for Fe SZ—AZ (E; r) we form
F5,F(2) = (exp(z - £), FOW,  z€8(r).
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Then we have

i (k'Ven Nk, n)? 1

F L F(2) =
Aor k=0 Lk A,r k')’k,n

(Pen(z, 0), Fr(©))s,

32
¢2 Zk'yan(k nF

kar

Fi(z).

The function F. f ,I:" belongs to H Z(S;L (r)) and is called the spherical Fourier transform of F.
THEOREM 8.5. (i) The spherical Fourier transformation
F, €5 @ r) > HXSu(r)

is an antilinear unitary isomorphism. F f , is the inverse mapping of the Fourier transforma-
tion:

Far t H2Ga() > &5 _(E; ).

(i) We have the following commutative diagram.:

€280 hr) —2205  B2(B()

[ L=

s

£2_L(E:r) B, G
PROOF. This theorem is a consequence of (25), (30) and (32). O
COROLLARY 8.6.
(33) @) =FroBsoFur.
Let f € H*§,(r). Caleulate £(2) = (@)™ F)(2) € b3(B(r) by (33). Put F(§) =
Fir f(&) = (exp(w - §), f(w))g, - Then we have
f@ = ((Faro By 0 Far) @)
= ((Frr 0 B)F)(2)
= ((exp(z - £), FEON*"
= (exp(z - ), (exp(w - §), F(w)g, M
= (f(w), (exp(w - ), exp(z - HH*")g, |
= (fw), Kr,(w,2))g, ,, z€B@.
This is the Poisson integral formula (see Theorem 2.3 (iii)).

COROLLARY 8.7.

(34 BHY ' =Fi,oa)oFr.
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Let F € £2(So; A, r). Calculate F = (B))™'F e £2_,(E;r) by (34). Put f(z) =
FrrF(z) = (exp(z - §), FE)*" € h7(B(r)). We have
FE) = ((Faro0a) o FIF)E)
= ((Far 0 e ()
= (exp(z - §), (exp(z - £). F(ON g, |
= (F(¢). (exp(z - §), exp(z - §))g, W’
= (F(©), E} ¢, O™
Thus the F-Cauchy kernel E*(¢, £) defined the inverse mapping of ﬂé‘ (see Fujita-Morimoto
[5D.
REMARK 8.8. Suppose g, ,(s) is a function on [0, 00) satisfying
(k!N (k, n))?
Li,r

o0
(35) fo @A) R0 5, (s)ds =

Let F,G € O,_,2(E). Then for s > 0
f F(sx)G(sx)dx = ] (ka(ils)f‘k(sx)> (Zi,(ixs)c";,(sx)) dx
S S1 \k=0 1=0

o0
= Y ks 25 (Fi, G)s, -
k=0

Therefore, by means of the function g, , the inner product ((F, G)*" can be written as
follows:

(F, Gy = f0°° (./s F(Sx)é(sx)dx) Prr(s)s" ds .
1

Because E = U{sS1;s = 0} = J{Ss; s = 0}, we can understand that the inner product
((F, G)»" is defined by a kind of integral over E.
If A = 0O, then the condition (35) becomes as follows:
o0 2%k12y; N (k, n)?
f 82k+n—150,r(S)dS — Yk,nzk (k, n)
0 r

Therefore, we can take pg ,(s) = pr,(s) = pr(s), where p,(s) is the li-Wada function. This
remark is due to Fujita [2].
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