On Additive Volume Invariants of Riemannian Manifolds

Chinatsu UEDA

Osaka University
(Comunicated by T. Nagano)

Introduction.

Let (M, g) be an *n*-dimensional Riemannian C^{ω} manifold and $p \in M$ a point. For small r > 0, we denote by $V_p(r)$ the volume of the geodesic ball of radius r with the center p. It is known that $V_p(r)$ is given by a power series expansion

$$V_p(r) = V_0(r)(1 + B_2(p)r^2 + B_4(p)r^4 + \dots + B_{2k}(p)r^{2k} + \dots)$$

where $V_0(r)$ is the volume of an *n*-dimensional Euclidean ball of the same radius and B_2 , $B_4, \dots, B_{2k}, \dots$ are the volume invariants, which are analytic functions of p, or, more specifically, scalar curvature invariants of order $2, 4, \dots, 2k, \dots$ respectively (see e.g. [G1]). If (M, g) is flat, $B_{2k} \equiv 0$ for all $k \in \mathbb{N}$; we have the following conjecture:

VOLUME CONJECTURE [Gray and Vanhecke, 1979]. Assume that $V_p(r) = V_0(r)$ for any $p \in M$ and small r > 0 i.e. $B_{2k} \equiv 0$ for any $k \in \mathbb{N}$. Then (M, g) is flat.

In general case this conjecture is open. A. Gray and L. Vanhecke [GV] has proved that, under some assumptions on the dimension n and/or the curvature, the conjecture is true by calculating the first three invariants B_2 , B_4 , B_6 explicitly in terms of the curvature tensor, the Ricci tensor, the scalar curvature and their covariant derivative. Moreover, they constructed an example of a non-flat homogeneous Riemannian manifold such that $V_p(r) = V_0(r)(1 + O(r^8))$ for each $p \in M$ ([GV]). O. Kowalski [K] defined the additive volume invariants of a Riemannian manifold (cf. the next section) and proved the following theorem by using them.

THEOREM [K]. There exists a non-flat homogeneous Riemannian manifold such that $V_p(r) = V_0(r)(1 + O(r^{16}))$ for each $p \in M$.

This paper is concerned with the following question: For given $k \in \mathbb{N}$, does there exist a non-flat homogeneous Riemannian manifold such that $V_p(r) = V_0(r)(1 + O(r^{2k+2}))$? We will prove the following.

THEOREM. For each $k_0 \le 100$, there exists a non-flat homogeneous Riemannian manifold M such that $V_p(r) = V_0(r)(1 + O(r^{2k_0+2}))$ for each $p \in M$.

ACKNOWLEDGMENT. The author would like to express her gratitude to Professor Yusuke Sakane for many helpful conversations and encouragements.

1. Additive volume invariants.

In this section we recall the additive volume invariants and their properties briefly. The readers should refer to [K] for details.

Let $x_0^{-1}, x_1, x_2, \dots, x_n, \dots$ be independent variables and $\mathbf{Q}[x_0^{-1}, x_1, x_2, \dots, x_n, \dots]$ the corresponding ring of polynomials over rational numbers. We shall write briefly x_0^{-k} instead of $(x_0^{-1})^k$. Let us define a derivation D in $\mathbf{Q}[x_0^{-1}, x_1, x_2, \dots, x_n, \dots]$ as follows: D(r) = 0 for $r \in \mathbf{Q}$, $D(x_0^{-1}) = -x_1x_0^{-2}$, $D(x_i) = x_{i+1}$ for $i \ge 1$. We also define formally

$$D(\log x_0) = x_1 x_0^{-1} .$$

As we see easily by the induction, for every $k \ge 1$, the k-iteration $D^{(k)}(\log x_0) \in \mathbb{Q}[x_0^{-1}, x_1, x_2, \dots, x_n, \dots]$ has the form

$$D^{(k)}(\log x_0) = \sum_{\substack{i_1 + \dots + i_l = k \\ i_1 \ge i_2 \ge \dots \ge i_l > 0}} c_{i_1 \dots i_l} x_{i_1} \dots x_{i_l} x_0^{-l}, \quad c_{i_1 \dots i_l} \in \mathbf{Q}.$$
 (1.0)

Here each $c_{i_1\cdots i_l} \in \mathbf{Q}$ is uniquely determined.

We shall call the polynomial $D^{(k)}(\log x_0)$ the logarithmic operator form of order k, and we denote it by L_k .

If X is a linear differential operator on a smooth manifold M, and if f is a smooth function on M, then we can consider a non-linear differential operator $L_k(X)$ on M defined by the following formula:

$$L_k(X)(f) = \sum_{\substack{i_1 + \dots + i_l = k \\ i_1 \ge i_2 \ge \dots \ge i_l > 0}} c_{i_1 \dots i_l}(X^{(i_1)} f) \dots (X^{(i_l)} f) f^{-l}.$$

An informal definition of $L_k(X)$ is the following: consider the arbitrary function F(t) of one variable (of class C^{ω}) and calculate the expression $d^k/(dt)^k(\log F(t))$. Then substituting $F \to f, F' \to Xf, \dots, F^{(k)} \to X^{(k)}f$ everywhere, we obtain the value of $L_k(X)$ on f.

Let N be another smooth manifold, g a smooth function on N, and Y a linear differential operator on N. We shall consider the product manifold $M \times N$ with the projections $\pi_1 : M \times N \to M$, $\pi_2 : M \times N \to N$. The function $(f \circ \pi_1)(g \circ \pi_2)$ on $M \times N$ will be denoted briefly by fg, and the linear differential operator $\pi_1^*X + \pi_2^*Y$ on $M \times N$ will be denoted by X + Y. Now we have the following proposition.

PROPOSITION 1.1. Let M, N, f, g, X, Y be as above. Then

$$L_k(X+Y)(fg) = L_k(X)(f) + L_k(Y)(g), \quad k \in \mathbb{N}.$$

We also define the reduced logarithmic operator form \hat{L}_k of order k by substituting $x_0^{-1} = 1$ in (1.0). For the reduced operator forms we have the following:

COROLLARY 1.2. Let M, N be smooth manifolds, $(p, q) \in M \times N$ a fixed point, f, g smooth functions on M, N respectively such that f(p) = g(q) = 1, and X, Y linear differential operators on M, N respectively. Then

$$\hat{L}_k(X+Y)_{(p,q)}(fg) = \hat{L}_k(X)_p(f) + \hat{L}_k(Y)_q(g). \tag{1.2}$$

Let us remark that (1.2) has a local character; the linear operators X, Y and the functions f, g are to be defined only in some neighborhoods of the points p, q respectively.

We shall now recall concept and results on the volume of a geodesic ball in a Riemannian manifold.

Let (M,g) be an n-dimensional analytic Riemannian manifold and $p \in M$. If (x_1, \dots, x_n) is any system of normal coordinates at p, then Euclidean Laplacian $\tilde{\Delta}_p$ and normal volume function θ_p are defined by the following formulas:

$$\tilde{\Delta}_p = \sum_{i=1}^n \frac{\partial^2}{\partial x_i^2},$$

$$\theta_p = \omega \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \right),$$

where ω is a volume element of (M, g) near p (such that $\theta_p > 0$). The definitions $\tilde{\Delta}_p$ and θ_p are independent of the choice of normal coordinates at p (here "independent" means in the sense of germs). $\tilde{\Delta}_p$ is a local linear differential operator on (M, g).

If we denote the volume of a small geodesic ball with center $p \in M$ and radius r by $V_p(r)$, we have the following power series expansion of $V_p(r)$;

$$V_p(r) = V_0(r)(1 + B_2(p)r^2 + \dots + B_{2k}(p)r^{2k} + \dots)$$

where $V_0(r)$ is the volume of the *n*-dimensional Euclidean ball of the same radius r and the coefficients $B_2, \dots, B_{2k}, \dots$, or "volume invariants" are curvature invariants of order $2, 4, \dots$ respectively. The coefficients $\{B_{2k}\}_{k \in \mathbb{N}}$, $\tilde{\Delta}_p$ and θ_p satisfy the following formula;

$$\tilde{\Delta}_{p}^{k}(\theta_{p})(p) = 2^{k}k!(n+2k)(n+2k-2)\cdots(n+2)B_{2k}(p). \tag{1.3}$$

If (M_i, g_i) , i = 1, 2, are two analytic Riemannian manifolds and $(p_1, p_2) \in M_1 \times M_2$, we can consider an adapted normal coordinate system $(x_1, \dots, x_{n_1}, x_{n_1+1}, \dots, x_{n_1+n_2})$ defined in a "rectangular" normal neighborhood $U_{p_1} \times U_{p_2}$ in $M_1 \times M_2$. With respect to these adapted normal coordinates, we can see easily that

$$\tilde{\Delta}_{(p_1, p_2)} = \tilde{\Delta}_{1, p_1} + \tilde{\Delta}_{2, p_2}$$

$$\theta_{(p_1, p_2)} = \theta_{1, p_1} \theta_{2, p_2}$$

for the corresponding Euclidean Laplacians and normal volume functions (via the corresponding projections π_1, π_2). Moreover, $\theta_{1,p_1}(p_1) = \theta_{2,p_2}(p_2) = 1$.

On formula (1.2) now implies

$$\hat{L}_k(\tilde{\Delta}_{(p_1,p_2)})_{(p_1,p_2)}(\theta_{(p_1,p_2)}) = \hat{L}_k(\tilde{\Delta}_{1,p_1})_{p_1}(\theta_{1,p_1}) + \hat{L}_k(\tilde{\Delta}_{2,p_2})_{p_2}(\theta_{2,p_2}).$$

Now we are ready to define the additive volume invariants.

DEFINITION 1.3. Let (M, g) be an *n*-dimensional analytic Riemannian manifold and B_{2k}^M be the 2kth coefficient of the power series expansion for the volume of a geodesic ball $V_p(r)$ with center $p \in M$ and small radius r. The additive volume invariants of order 2k are functions $A_{2k}: M \to \mathbb{R}$ defined by

$$A_{2k}(p) = \hat{L}_k(\tilde{\Delta}_p)_p(\theta_p) \quad (p \in M).$$

We make the following conventions:

- (a) For a given Riemannian manifold M, the corresponding invariant A_{2k} will be written as A_{2k}^M .
- (b) For a homogeneous Riemannian manifold M the invariants A_{2k}^{M} are constant functions and denoted $A_{2k}(M)$ in this case.

THEOREM 1.4 [K]. (i) For each $k \in \mathbb{N}$, there exists a countable set of polynomials with rational coefficients $\{P_{n,k} \mid P_{n,k} \in \mathbb{Q}[t_1, \cdots, t_k]\}_{n \in \mathbb{N}}$ with the following property: for each analytic Riemannian manifold (M, g) of dimension n we have

$$A_{2k}^M = P_{n,k}(B_2^M, \cdots, B_{2k}^M).$$

- (ii) $B_2^M = B_4^M = \cdots = B_{2k}^M = 0$ if and only if $A_2^M = A_4^M = \cdots = A_{2k}^M = 0$.
- (iii) If (M_1, g_1) , (M_2, g_2) are two analytic Riemannian manifolds, then on the product manifold $(M_1 \times M_2, g_1 \times g_2)$

$$A_{2k}^{M_1\times M_2} = A_{2k}^{M_1}\circ\pi_1 + A_{2k}^{M_2}\circ\pi_2 \quad (k\in \mathbf{N})$$

where $\pi_i: M_1 \times M_2 \to M_i$ are projections (i = 1, 2).

In particular, if (M_i, g_i) (i = 1, 2) are homogeneous, then

$$A_{2k}(M_1 \times M_2) = A_{2k}(M_1) + A_{2k}(M_2)$$
.

(iv) On a Riemannian manifold (M, g),

$$A_2^M = -\frac{\tau}{3}, \quad A_4^M = \frac{-3\|R\|^2 + 8\|\rho\|^2 - 18\Delta\tau}{45}$$

where τ , ||R||, $||\rho||$ denote the scalar curvature, the length of the Riemannian curvature tensor and the length of the Ricci tensor respectively.

(v) We define a formal power series $h_p(s)$ by

$$h_p(s) = 1 + \sum_{i=1}^{\infty} \frac{\tilde{\Delta}_p^i(\theta_p)(p)}{i!} s^i,$$

that is,

$$h_p(s) = 1 + \sum_{i=1}^{\infty} 2^i (n+2)(n+4) \cdots (n+2i) B_{2i}^M(p) s^i$$
 (1.4.1)

by (1.3). Then we have

$$A_{2k}(p) = \frac{d^k}{ds^k} \log h_p(s) \bigg|_{s=0} \quad (p \in M),$$
 (1.4.2)

PROPOSITION 1.5 [K]. Let (M, g) an analytic Riemannian manifold and λ a positive real number. Let $M(\lambda)$ denote the manifold $(M, \lambda^{-1}q)$. Then

$$A_{2k}^{M(\lambda)} = \lambda^k A_{2k}^M \quad (k \in \mathbf{N}).$$

Let $\mathfrak{S}(r)$ denote the volume of a geodesic sphere with small radius r in the n-sphere S^n with constant sectional curvature 1. Then

$$\mathfrak{S}(r) = \mathfrak{S}_0(1)\sin^{n-1}r\tag{1.5}$$

where $\mathfrak{S}_0(1)$ denotes the volume of the unit sphere in the *n*-dimensional Euclidean space. The corresponding formula for the *n*-dimensional hyperbolic space H^n with the constant sectional curvature -1 is given by substituting sinh for sin. (see e.g. [G1]) Kowalski proved the next propositions by using these facts.

PROPOSITION 1.6 [K]. For the n-sphere S^n and the n-dimensional hyperbolic space H^n ,

$$A_{2k}(S^n) = (-1)^k A_{2k}(H^n) \in \mathbf{Q} \quad (k \in \mathbf{N}).$$

In particular $A_{2(2i-1)}(S^n)$ and $A_{2(2i-1)}(H^n)$ have opposite sign.

PROPOSITION 1.7 [K]. The first 6 additive volume invariants of (n + 2)-sphere S^{n+2} with constant sectional curvature 1 are given by the following formulas:

$$A_{2}(S^{n+2}) = -\frac{1}{3}(n+1)(n+2),$$

$$A_{4}(S^{n+2}) = \frac{2}{45}(n+1)(n+2)(4n+1),$$

$$A_{6}(S^{n+2}) = \frac{8}{945}(n+1)(n+2)(-16n^{2}+15n+1),$$

$$A_{8}(S^{n+2}) = \frac{16(n+1)(n+2)}{3^{3} \cdot 5^{2} \cdot 7}(16n^{3}-209n^{2}+89n-1),$$

$$A_{10}(S^{n+2}) = \frac{128(n+1)(n+2)}{3^{4} \cdot 5 \cdot 7 \cdot 11}(64n^{4}-461n^{3}-1008n^{2}+484n-1),$$

$$A_{12}(S^{n+2}) = \frac{256(n+1)(n+2)}{3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13}(-207744n^{5}+195125n^{4}+4349166n^{3}-6862618n^{2}+3266748n+23).$$

We now consider the 3-dimensional Heisenberg group G_3 , that is,

$$G_3 = \left\{ \begin{pmatrix} 1 & x & y \\ 0 & 1 & z \\ 0 & 0 & 1 \end{pmatrix} \middle| (x, y, z) \in \mathbf{R}^3 \right\}$$

with the left invariant metric $dx^2 + dz^2 + (dy - xdz)^2$. The vector fields $X_1 = (\partial/\partial x)$, $X_2 = (\partial/\partial y)$, $X_3 = x(\partial/\partial y) + (\partial/\partial z)$ form an orthogonal basis of the corresponding Lie algebra $(G_3)_e$ where e denotes the identify of G_3 . We can determine the Levi-Civita connection ∇ in the standard way:

$$\nabla_{X_1} X_2 = \nabla_{X_2} X_1 = -\frac{1}{2} X_3, \quad \nabla_{X_1} X_3 = -\nabla_{X_3} X_1 = \frac{1}{2} X_2,$$

$$\nabla_{X_2} X_3 = -\nabla_{X_3} X_2 = \frac{1}{2} X_1.$$

By calculating the exponential map $Exp: (u, v, w) \in T_eG_3 \mapsto (x, y, z) \in G_3$ explicitly, we get the normal volume function θ as follows (see e.g. [K]);

$$\theta = \frac{(u^2 + w^2)(2 - 2\cos v - v\sin v)}{v^4} + \frac{2(1 - \cos v)}{v^2}.$$
 (1.8.0)

Using (1.8.0), Kowalski proved the following proposition.

PROPOSITION 1.8 [K]. On G_3 , $A_{2k}(G_3) \in \mathbf{Q}$ $(k \in \mathbf{N})$, and

$$A_2(G_3) = \frac{1}{6}, \quad A_4(G_3) = -\frac{1}{20}, \quad A_6(G_3) = \frac{26}{945}, \quad A_8(G_3) = -\frac{811}{37800} = -0.21455.$$

2. Propositions and our main theorem.

O. Kowalski proved that there exists a non-flat homogeneous Riemannian manifold such that $V_p(r) = V_0(r)(1 + O(r^{16}))$ for each $p \in M$ using additive volume invariants for the direct product of non-flat homogeneous Riemannian manifolds and the existence of a positive rational solution of a system of certain linear equations with 7 unknowns. But if we apply the same method as Kowalski [K] in order to annihilate B_{2k} for k > 7, we will need more unknowns and have some difficulty to show the existence of a positive rational solution of the system of the corresponding linear equations.

We begin with defining some concepts.

DEFINITION 2.1. A family $\{M_1, \dots, M_l\}$ of homogeneous Riemannian manifolds is said to be *k*-splitting if (1) all values $A_{2i}(M_j)$, $i = 1, \dots, k$; $j = 1, \dots, l$ are rational numbers and (2) for each $i = 1, \dots, k$, the invariant A_{2i} is negative for some M_{α} and it is positive for some M_{β} .

DEFINITION 2.2. A family $\{M_1, \dots, M_l\}$ of homogeneous Riemannian manifolds is said to be *d-flat* (k-d)-splitting if (1) $A_{2i}(M_j)=0$ for $i=1,\dots,d;$ $j=1,\dots,l$ (2) all values $A_{2i}(M_j)$, $i=d+1,\dots,k;$ $j=1,\dots,l$ are rational numbers and (3) for each $i=d+1,\dots,k$, the invariant A_{2i} is negative for some M_{α} and it is positive for some M_{β} .

Note that a k-splitting family can be regarded as d-flat (k - d)-splitting with d = 0.

LEMMA 2.3. For $d=0, 1, \dots, k-2$, if $\mathcal{L}=\{L_1, \dots, L_l\}$ is a d-flat (k-d)-splitting family of homogeneous Riemannian manifolds, then there exists a family $\{K_1, \dots, K_l\}$ of homogeneous Riemannian manifolds such that $A_{2k}(K_j)=0$ for $j=1,\dots,d+1$; $j=1,\dots,d+1$

 $1, \dots, l$ and for $i = d + 2, \dots, k$, $A_{2i}(K_j)$ has the same sign as $A_{2i}(L_j)$ for $j = 1, \dots, l$. In particular, the family $\{K_1, \dots, K_l\}$ is (d + 1)-flat (k - d - 1)-splitting of homogeneous Riemannian manifolds for d + 1 < k.

PROOF. Put $\mathcal{L}_+ = \{L \in \mathcal{L} \mid A_{2(d+1)}(L) > 0\}, \mathcal{L}_- = \{L \in \mathcal{L} \mid A_{2(d+1)}(L) < 0\}$ and $\mathcal{L}_0 = \{L \in \mathcal{L} \mid A_{2(d+1)}(L) = 0\}$. Then

$$\mathcal{L} = \mathcal{L}_+ \cup \mathcal{L}_- \cup \mathcal{L}_0$$

is a disjoint union and $\mathcal{L}_{+} \neq \phi$, $\mathcal{L}_{-} \neq \phi$.

Consider $L_{\beta 0} \in \mathcal{L}_+$ and fix it. Take an element $L_{\alpha} \in \mathcal{L}_-$. Then for $L_{\beta 0}$ and L_{α} , there are positive rational numbers x and y satisfying $xA_{2(d+1)}(L_{\alpha}) + yA_{2(d+1)}(L_{\beta 0}) = 0$. Consider Riemannian manifolds $L_{\alpha}(\lambda)$ and $L_{\beta 0}(\mu)$. Then we have

$$rA_{2i}(L_{\alpha}(\lambda)) + sA_{2i}(L_{\beta 0}(\mu)) = r\lambda^{i}A_{2i}(L_{\alpha}) + s\mu^{i}A_{2i}(L_{\beta 0}).$$

Now, by taking positive rational numbers λ sufficiently large and μ (sufficiently small), we see that for $i=d+2,\cdots,k$, $x\lambda^{i-d-1}A_{2i}(L_{\alpha})+y\mu^{i-d-1}A_{2i}(L_{\beta0})$ has the same sign as $A_{2i}(L_{\alpha})$, if $A_{2i}(L_{\alpha})\neq 0$, and let positive rational numbers q_1 and q_2 be $x=q_1\lambda^{d+1}$ and $y=q_2\mu^{d+1}$. Now write q_1 and q_2 as $q_1=n_1/m_1$ and $q_2=n_2/m_2$, where pairs of integers (n_1,m_1) , (n_2,m_2) are relatively prime. Put $K_{\alpha}=[L_{\alpha}(\lambda)]^{n_1m_2}\times[L_{\beta0}(\mu)]^{n_2m_1}$. Then $A_{2i}(K_{\alpha})=0$ for $i=1,\cdots,d+1$ and or $i=d+2,\cdots,k$, $A_{2i}(K_{\alpha})$ has the same sign as $A_{2i}(L_{\alpha})$, if $A_{2i}(L_{\alpha})\neq 0$.

Now consider $L_{\alpha 0} \in \mathcal{L}_{-}$ and fix it. Then, for each element $L_{\beta} \in \mathcal{L}_{+}$, we can associate K_{β} with the property that $A_{2i}(K_{\beta}) = 0$ for $i = 1, \dots, d+1$ and that, for $i = d+2, \dots, k$, $A_{2i}(K_{\beta})$ has the same sign as $A_{2i}(K_{\beta})$, if $A_{2i}(K_{\beta}) \neq 0$, by the same argument as above. For each element $L_{\gamma} \in \mathcal{L}_{0}$, put $K_{\gamma} = L_{\gamma}$. Then the family $\{K_{1}, \dots, K_{l}\}$ satisfies the conditions of Lemma 2.3. \square

Now, using Lemma 2.3, we have the following proposition.

THEOREM 2.4. For given $k \in \mathbb{N}$, suppose that there exists a finite k-splitting family of homogeneous Riemannian manifolds $\mathcal{M} = \{M_1, M_2, \cdots, M_l\}$. Then there exists a non-flat homogeneous manifold M such that $V_p(r) = V_0(r)(1 + O(r^{2k+2}))$.

PROOF. Applying Lemma 2.3 for \mathcal{M} as d=0, we get a 1-flat (k-1)-splitting family \mathcal{N}_1 . Now we get a d-flat (d-1)-splitting family \mathcal{N}_d for $d=2,\cdots,k-1$ by Lemma 2.3, inductively. Put $\mathcal{N}_+=\{N\in\mathcal{N}_{k-1}\ \big|\ A_{2k}(N)>0\}$ and $\mathcal{N}_-=\{N\in\mathcal{N}_{k-1}\ \big|\ A_{2k}(N)<0\}$. Then $\mathcal{N}_+\neq\phi$ and $\mathcal{N}_-\neq\phi$.

Take elements $N_{\beta} \in \mathcal{N}_{+}$ and $N_{\alpha} \in \mathcal{N}_{-}$. Then there are positive rational numbers x and y satisfying $xA_{2k}(N_{\alpha}) + yA_{2k}(N_{\beta}) = 0$. Now write x and y as $x = n'_{1}/m'_{1}$ and $y = n'_{2}/m'_{2}$, where pairs of integers $(n'_{1}, m'_{1}), (n'_{2}, m'_{2})$ are relatively prime. Put $M = [N_{\alpha}]^{n'_{1}m'_{2}} \times [N_{\beta}]^{n'_{2}m'_{1}}$. Then we see that $A_{2i}(M) = 0$ for $i = 1, \dots, k$ i.e. $V_{p}(r) = V_{0}(r)(1 + O(r^{2k+2}))$. \square

COROLLARY 2.5. There exists a non-flat homogeneous Riemannian manifold such that $V_p(r) = V_0(r)(1 + O(r^8))$.

PROOF. Put $\mathcal{M} = \{S^3, H^2, G_3\}$, then \mathcal{M} is 3-splitting from Propositions 1.6, 1.7 and 1.8. So there exists a non-flat homogeneous Riemannian manifold such that $V_p(r) = V_0(r)(1 + O(r^8))$ from Theorem 2.4. \square

COROLLARY 2.6. There exists a non-flat homogeneous Riemannian manifold such that $V_p(r) = V_0(r)(1 + O(r^{16}))$.

PROOF. We put $\mathcal{M} = \{S^2, S^{15}, H^2, G_3\}$. Then \mathcal{M} is 7-splitting from Propositions 1.6, 1.7 and 1.8. Applying Theorem 2.4 to \mathcal{M} , we have a non-flat homogeneous Riemannian manifold such that $V_p(r) = V_0(r)(1 + O(r^{16}))$. \square

REMARK. Gray and Vanhecke have constructed a non-flat homogeneous Riemannian manifold satisfying $V_p(r) = V_0(r)(1 + O(r^8))$ from G_3 , H^2 and S^3 in [GV]. Kowalski [K] used a family of homogeneous Riemannian manifolds $\{S^2, H^2, M_1, M_2, M_3\}$ where M_1 , M_2 , M_3 satisfy $A_4(M_1) < 0$, $A_8(M_2) > 0$, $A_{12}(M_3) < 0$ (e.g. $M_1 = G_3$, $M_2 = S^{15}$, $M_3 = S^6$) to prove the existence of a non-flat homogeneous Riemannian manifold such that $V_p(r) = V_0(r)(1 + O(r^{16}))$.

For *n*-sphere S^n with the constant curvature 1, it is not easy to calculate $A_{2k}(S^n)$ for all k explicitly in general. But, for n=3 we obtain the following proposition.

PROPOSITION 2.7. For 3-sphere S^3 , $A_{2k}(S^3) \in \mathbb{Q}$ $(k \in \mathbb{N})$ ([K]) and

$$A_2(S^3) < 0, \quad A_{2(4i-2)}(S^3) > 0,$$

$$A_{2\cdot 4i}(S^3) < 0$$
, $A_{2(4i+1)}(S^3) = A_{2(4i-1)}(S^3) = 0$ $(i \in \mathbb{N})$.

PROOF. First we recall the Bernoulli numbers β_i defined by

$$\frac{z}{e^z - 1} = 1 - \frac{z}{2} - \sum_{i=1}^{\infty} \frac{(-1)^i \beta_i z^{2i}}{(2i)!}.$$

It is known that all β_i are positive rational numbers and

$$\frac{x}{\sinh x} = 1 + 2\sum_{i=1}^{\infty} \frac{(2^{2i-1} - 1)(-1)^i}{(2i)!} \beta_i x^{2i}$$
 (2.7.1)

(see e.g. [L]). Next we calculate $h_p(s)$ in Theorem 1.4 for S^3 . By (1.5), the volume of a small geodesic sphere $\mathfrak{S}(r)$ in S^3 is

$$\mathfrak{S}(r) = 4\pi \sin^2 r$$

$$= 4\pi r^2 \left(1 + \sum_{i=1}^{\infty} \tilde{B}_{2i} r^{2i} \right),$$

where

$$\tilde{B}_{2i} = \frac{2^{2i+1}(-1)^i}{(2i+2)!} \,. \tag{2.7.2}$$

Noting that $\mathfrak{S}(r) = \frac{d}{dr} V_p(r)$ for any dimension n, we have

$$B_{2i} = \frac{n}{n+2i}\tilde{B}_{2i} \,. \tag{2.7.3}$$

By (1.4.1), (2.7.2), (2.7.3) and n = 3, we get

$$h_p(s) = \sum_{i=0}^{\infty} \frac{(-4s)^i}{(i+1)!}$$
 (2.7.4)

$$=\frac{1-e^{4s}}{4s}. (2.7.5)$$

Put $f(s) = \log h_p(s)$. Then we have $f^{(k)}(0) = A_{2k}(S^3)$ from (1.4.2), so we investigate the kth derivative of the f(s). It follows that $f'(0) = A_2(S^3) = -2 < 0$ from $f'(s) = h'_p(s)/h_p(s)$ and (2.7.4). By (2.7.5), it holds that

$$f''(s) = \frac{1}{s^2} \left\{ 1 - \left(\frac{2 \cdot 2s}{e^{2s} - e^{-2s}} \right)^2 \right\}.$$

By using (2.7.1),

$$\frac{2 \cdot 2s}{e^{2s} - e^{-2s}} = 1 + \sum_{i=1}^{\infty} (-1)^i a_i (2s)^{2i}$$

where $a_i = 2(2^{2i-1} - 1)\beta_i/(2i)!$. Note that a_i are also positive rational ones. Define \tilde{a}_i by

$$\tilde{a}_j = \sum_{j_1+j_2=j+1} a_{j_1} a_{j_2}$$
.

By using $\{\tilde{a}_i\}$ we can write f''(s) as follows.

$$f''(s) = \sum_{i=1}^{\infty} (-1)^{i-1} (8a_i + 4\tilde{a}_{i-1})(4s^2)^{i-1},$$

where we put $\tilde{a}_0 = 0$ formally. Now we have

$$A_{2\cdot 4i}(S^3)<0\,,$$

$$A_{2\cdot(4i-2)}(S^3) > 0\,,$$

$$A_{2(4i+1)}(S^3) = A_{2(4i-1)}(S^3) = 0 \quad (i \in \mathbb{N}). \quad \Box$$

Now we consider 3-Heisenberg group G_3 .

Proposition 2.8. $On G_3$,

$$A_{2(2i-1)}(G_3) > 0$$
, $A_{2(2i)}(G_3) < 0$ $(i \in \mathbb{N})$.

PROOF. By using (1.8.0), we calculate $\tilde{\Delta}^k(\theta)$. Put

$$g_1(v) = \frac{2 - 2\cos v - v\sin v}{v^4} = \sum_{i=0}^{\infty} \frac{(-1)^i (2i+2)}{(2i+4)!} v^{2i},$$

$$g_2(v) = \frac{2 - 2\cos v}{v^2} = \sum_{i=0}^{\infty} \frac{2(-1)^i}{(2i+2)!} v^{2i}.$$

Then

$$\begin{split} \tilde{\Delta}^k(\theta) &= \tilde{\Delta}^k \{ (u^2 + w^2) g_1(v) + g_2(v) \} \\ &= (u^2 + w^2) g_1^{(2k)}(v) + g_2^{(2k)}(v) + 4k g_1^{(2k-2)}(v) \,. \end{split}$$

Hence we have

$$\tilde{\Delta}^k(\theta) \big|_e = \frac{2(-1)^{k+1}}{(2k+1)(2k+2)(2k-1)} \quad (k \in \mathbb{N}).$$

For simplicity we put

$$c_j = \frac{2}{(j+1)!(2j+3)(2j+4)(2j+1)} > 0,$$

then we have from (1.4.1)

$$\log h_p(s) = \log \left(1 + \sum_{j=0}^{\infty} (-1)^j c_j s^{j+1} \right)$$

$$= \sum_{i=0}^{\infty} \frac{(-1)^i}{i+1} \left\{ \sum_{j=0}^{\infty} (-1)^j c_j s^{j+1} \right\}^{i+1}$$

$$= \sum_{i=0}^{\infty} \left\{ \sum_{j=0}^{\infty} (-1)^{ij+i+j} \frac{G_{i,j}}{i+1} s^{ij+i+j+1} \right\}$$

$$= \sum_{k=0}^{\infty} (-1)^k \hat{C}_k s^{k+1},$$

where

$$C_{i,j} = \sum_{j_1 + \dots + j_{i+1} = ij + i + j + 1} c_{j_1} \dots c_{j_{i+1}}$$
 and $\hat{C}_k = \sum_{i+j=k} \frac{C_{i,j}}{i+1}$.

Since $C_{i,j}$ are positive rational numbers, \hat{C}_k are also positive rational ones. From (1.4.2), we obtain

$$\log h_p(s) = \sum_{k=1}^{\infty} \frac{A_{2k}(G_3)}{k!} s^k$$
$$= \sum_{k=1}^{\infty} (-1)^{k+1} \hat{C}_{k-1} s^k.$$

Thus $A_{2(2i-1)}(G_3) > 0$, $A_{2(2i)}(G_3) < 0$ $(i \in \mathbb{N})$. \square

Kowalski proved $A_8(S^n) > 0$ for $n \ge 15$ (see Proposition 1.7). So using (1.4.1) and (1.4.2) we show the following.

PROPOSITION 2.9. For each i ($i \le 25$), there exists $n \in \{2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15\}$ such that $A_{8i}(S^n) > 0$.

PROCEDURE OF PROOF. From (1.5) and (2.7.3), we can get the coefficients $\tilde{B}_2, \dots, \tilde{B}_{2k}$ of the expansion of $\mathfrak{S}(r)$ around r=0 by using the first k coefficients of the expansion of $\sin r$ around r=0.

From (1.4.1) we obtain the first k coefficients of the expansion of $h_p(s)$ around s = 0. Using them, we will calculate the expansion of $\log h_p(s)$ around s = 0 by kth order. Put

$$h(s) = \sum_{l=1}^{k} 2^{l} n(n+2)(n+4) \cdots (n+2l-2) \tilde{B}_{2l} s^{l},$$

$$h_1(s) = h(s), \quad h_j(s) = -h(s) \cdot h_{j-1}(s) \pmod{s^k}$$

and

$$f(s) = \sum_{i=1}^{\infty} \frac{h_i(s)}{i},$$

then the first k terms of f(s) as a polynomial of s agree with those of the expansion of $\log h_p(s)$ around s=0. By (1.4.2) we obtain A_2, \dots, A_{2k} . Now we can compute A_{2k} of S^n ($n=2,4,5,\dots,14,15$) for $k\leq 100$. The following program for $Mathematica_{\mathbb{R}}$ 2.2. is used to calculate A_{2k} of S^n .

```
n=?; (* the dimension of the sphere *)
d=101;
b[r,1]=Normal[Series[(Sin[r]/r),{r,0,2*d}]];
b[r_,i_]:=b[r,i]=Normal[Series[b[r,i-1]*b[r,1],{r,0,2*d}]];
c[i_]:=c[i]
=(2^i)*Product[(n+2*(j-1)),{j,1,i}]*Coefficient[b[r,n-1],
r,2*i];
h1[s_]:=h1[s]=Sum[c[i]*s^i,{i,1,d-1}];
h[s,1]=h1[s];
h[s_,k_]:=h[s,k]
=Normal[Series[(-1)*h[s,k-1]*h[s,1],{s,0,d-1}]];
f[s]=Sum[h[s,i]/i,{i,1,d-1}];
add[i_]:=Coefficient[f[s],s,i]*i!
Do[Print[add[i]],{i,1,d-1}]
```

We omit the precise values of $A_{8i}(S^n)$ $(n = 2, 4, 5, \dots, 14, 15)$ but list their signatures.

	g2	g4	S ⁵	-a6	<i>S</i> ⁷	- R		S ¹⁰	~11	~12	S ¹³	-14	~15
L	S^2	S ⁴	23	<i>S</i> ⁶	S'	<i>S</i> ⁸	S ⁹	510	S ¹¹	S ¹²	513	S ¹⁴	S ¹⁵
A ₈		-	-	-	-	-	-	-		-	-	-	+
A ₁₆	+		+	+	+	+	+	+	+	+	+	+	+
A ₂₄	+	+	+	+	+	+	-	-	-	-	-		
A ₃₂	+	+	+		-		-	-	-	-	-	-	-
A ₄₀	-	+	-	-	-	_	+	+	+	+	+	+	+
A ₄₈	-	+	-	-	+	+	+	+	+	-	-	-	-
A ₅₆	-	+	-	+	+	+	-	-	-	-	-	-	-
A ₆₄	+	-	+	+	-	-	-	-	+	+	+	+	+
A ₇₂	+	-	+	-	-	-	+	+	+	+	+	-	-
A ₈₀	+	-	+	-	-	+	+	+	-	-	-	-	-
A ₈₈	-	-	+	-	+	+	-	-	-	-	+	+	+
A ₉₆	-	-	-	+	+	-	-	+	+	+	+	+	-
A ₁₀₄	•	+	-	+	-	-	+	+	+	-	-	-	-
A ₁₁₂	+	+	-	+	-	+	+	-	-	-	-	+	+
A ₁₂₀	+	+	+	-	+	+	-	-	-	+	+	+	+
A ₁₂₈	+	+	+	-	+	-	-	+	+	+	-	-	-
A ₁₃₆	-	+	+	+	-	-	+	+	-	-	-	-	+
A 144	-		-	+	-	+	+	-	-	+	+	+	+
A ₁₅₂	-	-	-	+	-	+	-	-	+	+	+	-	-
A ₁₆₀	+	-	-	-	+	-	-	+	+	-	-	_	+
A ₁₆₈	+	-	+	-	+	-	+	+	-	-	+	+	+
A ₁₇₆	+	-	+	+	-	+	+	-	-	+	+	-	_
A ₁₈₄	-	+	+	+	-	+	-	+	+	+	-	-	-
A ₁₉₂	-	+	-	+	+	-	-	+	-	-	-	+	+
A ₂₀₀	_	+	-	-	+	_	+	-	-	+	+	+	_

The signatures of $A_{8i}(S^n)$ $(n = 2, 4, 5, \dots, 14, 15)$

Now we can prove the main theorem.

THEOREM. For each k ($k \le 100$), there exists a non-flat homogeneous manifold M such that $V_p(r) = V_0(r)(1 + O(r^{2k+2}))$.

PROOF. Put $\mathcal{M} = \{G_3, S^2, S^3, S^4, S^5, S^6, S^{15}, H^2, H^3, H^4, H^5, H^6, H^{15}\}$ then \mathcal{M} is k-splitting by Propositions 1.6, 2.7, 2.8 and 2.9. Applying Theorem 2.4 to \mathcal{M} , we obtain a non-flat homogeneous manifold M such that $V_p(r) = V_0(r)(1 + O(r^{2k+2}))$. \square

References

- [G1] A. GRAY, The volume of a small geodesic ball of a Riemannian manifold, Michigan Math. J. 20 (1973), 329-344.
- [GV] A. GRAY and L. VANHECKE, Riemannian geometry as determinded by the volume of small geodesic balls, Acta Math. 142 (1979), 157–198.
- [K] O. KOWALSKI, Additive volume invariants of Riemannian manifolds, Acta Math. 145 (1981), 205–225.
- [K.N] S. KOBAYASHI and K. NOMIZU, Foundations of Differential Geometry I, II, Interscience (1963, 1969).
- [L] S. LANG, Complex Analysis, Addison-Wesley (1977).

Present Address:

4-2-1, HARUMIDAI, SAKAI, OSAKA, 590-0113 JAPAN. *e-mail*: chinat-u@fa2.so-net.ne.jp