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Introduction.

Let (M, g) be an n-dimensional Riemannian C*® manifold and p € M a point. For small
r > 0, we denote by V),(r) the volume of the geodesic ball of radius  with the center p. It is
known that V,(r) is given by a power series expansion

Vp(r) = Vo(r)(1 + Bo(p)r® + Ba(p)r* +- - + Bu(p)r* + )

where Vo(r) is the volume of an n-dimensional Euclidean ball of the same radius and B;,
By, .-, By, - - - are the volume invariants, which are analytic functions of p, or, more specif-
ically, scalar curvature invariants of order 2,4, ---,2k, --- respectively (see e.g. [G1]). If
(M, g) is flat, By, = O for all kK € N; we have the following conjecture:

VOLUME CONJECTURE [Gray and Vanhecke, 1979]. Assume that V,(r) = Vy(r) for
any p € M and small r > 0 i.e. By = 0 for any k € N. Then (M, g) is flat.

In general case this conjecture is open. A. Gray and L. Vanhecke [GV] has proved that,
under some assumptions on the dimension n and/or the curvature, the conjecture is true by
calculating the first three invariants B>, By, Bg explicitly in terms of the curvature tensor, the
Ricci tensor, the scalar curvature and their covariant derivative. Moreover, they constructed
an example of a non-flat homogeneous Riemannian manifold such that Vpo(r) = Vo(r)(1 +
O (r®)) for each p € M ([GV]). O. Kowalski [K] defined the additive volume invariants of a
Riemannian manifold (cf. the next section) and proved the following theorem by using them.

THEOREM [K]. There exists a non-flat homogeneous Riemannian manifold such that
Vo(r) = Vo(r)(1 + O(r'%)) for each p € M.

This paper is concerned with the following question: For given k € N, does there exist
a non-flat homogeneous Riemannian manifold such that Vpo(r) = Vo(r)(1 + 0(r2k+2))? We
will prove the following.
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THEOREM. For each kg < 100, there exists a non-flat homogeneous Riemannian man-
ifold M such that V,(r) = Vo(r)(1 + O(r*0*2)) for each p € M.

ACKNOWLEDGMENT. The author would like to express her gratitude to Professor
Yusuke Sakane for many helpful conversations and encouragements.

1. Additive volume invariants.

In this section we recall the additive volume invariants and their properties briefly. The
readers should refer to [K] for details.

Let x(;l,xl,xz, .+, Xn, -+ be independent variables and Q[xo'l,xl,xz, s Xp, o]
the corresponding ring of polynomials over rational numbers. We shall write briefly x, k
instead of (xg l)k . Let us define a derivation D in Q[x, L X1,X2,+++ ,Xn, -] as follows:

D(r)=0forr € Q, D(xo_l) = —x1x0_2, D(x;) = xj4+1 fori > 1. We also define formally
D(log xo) = xlxo_1 .

As we see easily by the induction, for every k > 1, the k-iteration D® (log xo) € Q[xo—l’ x1,
X2, +++ 4 Xn, - - - ] has the form

D(k)(logxo) = Z Ciyeiy Xiy * -x,~,x0_l ,  Cipip €Q. (1.0)
iy +--tip=k
i1 >ip=>i;>0

Here each ¢;,...; € Q is uniquely determined.

We shall call the polynomial D®)(log xo) the logarithmic operator form of order k, and
we denote it by Lg.

If X is a linear differential operator on a smooth manifold M, and if f is a smooth
function on M , then we can consider a non-linear differential operator L;(X) on M defined
by the following formula:

L= Y XD XD fft
A=k .
i1Zip>->i1>0 '
An informal definition of L;(X) is the following: consider the arbitrary function F(t) of
one variable (of class C®) and calculate the expression dk / (dr)k (log F (¢t)). Then substituting
F— f,F' > Xf,---, F® - X® f everywhere, we obtain the value of Li(X) on f.

Let N be another smooth manifold, g a smooth function on N, and Y a linear differential
operator on N. We shall consider the product manifold M x N with the projections m; :
M xN —> M,ny: M x N — N. The function (f o w1)(go m2) on M x N will be denoted
briefly by fg, and the linear differential operator 7 X + 7Y on M x N will be denoted by
X + Y. Now we have the following proposition.

PROPOSITION 1.1. LetM, N, f, g, X, Y be as above. Then

LiX +Y)(fg9) = Le(X)(f) + Le(Y)(g9), keN.
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We also define the reduced logarithmic operator form Li of order k by substituting
Xg '=1in (1.0). For the reduced operator forms we have the following:

COROLLARY 1.2. Let M, N be smooth manifolds, (p,q) € M x N a fixed point, f, g
smooth functions on M, N respectively such that f(p) = g(q) = 1, and X, Y linear differential
operators on M, N respectively. Then

Li(X + V) (p.0)(f9) = Le(X)p(f) + L (Y)g(9) - (1.2)

Let us remark that (1.2) has a local character; the linear operators X, Y and the functions
f, g are to be defined only in some neighborhoods of the points p, g respectively.

We shall now recall concept and results on the volume of a geodesic ball in a Riemannian
manifold.

Let (M, g) be an n-dimensional analytic Riemannian manifold and pe M. If (xy, - - - , xp)
is any system of normal coordinates at p, then Euclidean Laplacian A p and normal volume
function 6,, are defined by the following formulas:

- "2
p= 3
i=1 9%
J d ~
9 = P R R s
P w(axl an)

where w is a volume element of (M, g) near p (such that 6, > 0). The definitions A p and
6, are independent of the choice of normal coordinates at p (here “independent” means in the
sense of germs). A p is a local linear differential operator on (M, g).

If we denote the volume of a small geodesic ball with center p € M and radius r by
Vp(r), we have the following power series expansion of V,(r);

Vo(r) = Vo(r)(1 + Ba(p)r® + - - + By (p)r¥ +--)

where Vj(r) is the volume of the n-dimensional Euclidean ball of the same radius r and

the coefficients By, -+, By, - -+, or “volume invariants” are curvature invariants of order
2,4, .- respectively. The coefficients { Bag }xeN. A p and 0, satisfy the following formula;
A% Bp)(p) = 2%k (n + 2k)(n + 2k — 2) -+ (n + 2) B (p) - (1.3)

If (M;, gi), i = 1,2, are two analytic Riemannian manifolds and (p1, p2) € M; X
M, we can consider an adapted normal coordinate system (X1, -+ , Xn;, Xny+1s " » Xnj+ny)
defined in a “rectangular” normal neighborhood Up,, x Up, in M| x M>. With respect to these
adapted normal coordinates, we can see easily that

A(py,p) = At,py + B2,p,
9(171,1)2) = 91,1)192,172

for the corresponding Euclidean Laplacians and normal volume functions (via the correspond-
ing projections 71, 772). Moreover, 61 p, (p1) = 62 p,(p2) = 1.
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On formula (1.2) now implies

Li(Apy, p2) 01, Op1,p) = Li(A1,p)py 61, p) + Lik(B2,,) p, (02,,) -
Now we are ready to define the additive volume invariants.

DEFINITION 1.3. Let (M, g) be an n-dimensional analytic Riemannian manifold and
Bé‘z be the 2kth coefficient of the power series expansion for the volume of a geodesic ball
V,(r) with center p € M and small radius r. The additive volume invariants of order 2k are
functions Ay : M — R defined by

A(p) = Le(Ap)p(0p) (peM).

We make the following conventions:

(a) For a given Riemannian manifold M, the corresponding invariant A;; will be writ-
ten as Ag’,’(.

(b) For a homogeneous Riemannian manifold M the invariants A% are constant func-
tions and denoted A,; (M) in this case.

THEOREM 1.4 [K]. (i) Foreach k € N, there exists a countable set of polynomials

with rational coefficients { Py i | Pox € Qlt1, - -, txl}neN with the following property: for
each analytic Riemannian manifold (M, g) of dimension n we have
A% = Pox(BY!, .-+, BY).
(i) B¥=BM=...=BM =0ifandonlyif AY =AY =... = AM = .

(i) If (My, g1), (M2, g2) are two analytic Riemannian manifolds, then on the product

manifold (M| x M5, g1 X g2)
AYPM = Al om + Ag 0wy (k€ N)

where wt; : M1 X My — M; are projections (i = 1, 2).

In particular, if (M;, g;) (i =1, 2) are homogeneous, then

A (M) X M3) = A (My) + A (M) .

(iv) On a Riemannian manifold (M, g),
AM o D aM =3||R|*> + 8llplI> — 18AT
3 45
where T, || R||, || o|| denote the scalar curvature, the length of the Riemannian curvature tensor

and the length of the Ricci tensor respectively.
(v) We define a formal power series h,(s) by

hoto) = 1+ 3 22l 2D

that is,

hp(s) =1+ ) 2/ (n+2)(n +4)--- (n + 2) B} (p)s* (1.4.1)

i=l1
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by (1.3). Then we have

k

d
Ax(p) = R loghp(s) (peM), (1.4.2)
s=0

PROPOSITION 1.5 [K]. Let (M, g) an analytic Riemannian manifold and A a positive
real number. Let M ().) denote the manifold (M, A‘lg). Then

AP = Ak A¥ (keN).

Let &(r) denote the volume of a geodesic sphere with small radius r in the n-sphere S”
with constant sectional curvature 1. Then

S@r) = So(1) sin” ' r , (1.5)

where Go(1) denotes the volume of the unit sphere in the n-dimensional Euclidean space. The
corresponding formula for the n-dimensional hyperbolic space H" with the constant sectional
curvature —1 is given by substituting sinh for sin. (see e.g. [G1]) Kowalski proved the next
propositions by using these facts.

PROPOSITION 1.6 [K]. For the n-sphere S" and the n-dimensional hyperbolic space
H", .
Au(S") = (D' Ax(HMH € Q (ke N).
In particular Az2;—1)(S") and A2¢i—1)(H") have opposite sign.

PROPOSITION 1.7 [K]. The first 6 additive volume invariants of (n + 2)-sphere S"12
with constant sectional curvature 1 are given by the following formulas:

1
Ay(S"T?) = —3(+ D +2),
Ag(S"2) = %(n +D(n+2)@n+1),

8
Ag(S"?) = 5-4-5-(;1 +D(n+2)(=16n2 + 152+ 1),

16(n 4+ 1)(n +2)

+2\ 3 2

As(S™?) = =T (1607 — 20907 + 89n — 1),
128(n + 1)(n + 2)

+25 4 3 2 —

Ag(S"F?) = S (64n* — 461n° — 1008n? + 484n — 1),
256(n + 1 2 ‘

App(sn+d) = 220+ Din+2) (—207744n5 + 195125n* + 4349166n°

T 35.52.72.11.13
— 6862618n2 + 3266748n + 23).

We now consider the 3-dimensional Heisenberg group G3, that is,

I x vy
G3= 0 1 z
0O 0 1

(x,y,2) eR®
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with the left invariant metric dx2 + dz? + (dy — xdz)?. The vector fields X| = (8/0x), X, =
(0/0y), X3 = x(3/3y) + (8/9z) form an orthogonal basis of the corresponding Lie algebra
(G3). where e denotes the identify of G3. We can determine the Levi-Civita connection V in
the standard way:

1 1
Vx, X2 =Vx, X1 = —§X3, Vx, X3 =-Vx, X = EXZ’
1
Vx, X3 =—Vx, X5 = EX] .
By calculating the exponential map Exp : (u, v, w) € T.G3 — (x, Yy, z) € G3 explicitly, we
get the normal volume function € as follows (see e.g. [K]);

_ (@* 4+ w*)(2—2cosv —vsinv) + 2(1 —cosv)

0 : — (1.8.0)
Using (1.8.0), Kowalski proved the following proposition.
PROPOSITION 1.8 [K]. On G3, A (G3) € Q (k € N), and
A2(G3) = ! , A4(G3) = L , Ae(G3) = 39— Ag(G3) = _ = —0.21455.
6 20 945 37800

2. Propositions and our main theorem.

O. Kowalski proved that there exists a non-flat homogeneous Riemannian manifold such
that V,(r) = Vo(r)(1 + O(r'®)) for each p € M using additive volume invariants for the
direct product of non-flat homogeneous Riemannian manifolds and the existence of a positive
rational solution of a system of certain linear equations with 7 unknowns. But if we apply
the same method as Kowalski [K] in order to annihilate By, for £k > 7, we will need more
unknowns and have some difficulty to show the existence of a positive rational solution of the
system of the corresponding linear equations.

We begin with defining some concepts.

DEFINITION 2.1. A family {M}, -- -, M;} of homogeneous Riemannian manifolds is
said to be k-splitting if (1) all values Ay;(M;), i = 1,--- ,k; j = 1,---,1 are rational
numbers and (2) for eachi = 1, --- , k, the invariant A,; is negative for some M, and it is
positive for some Mg.

DEFINITION 2.2. A family {M}, ---, M;} of homogeneous Riemannian manifolds is
said to be d-flat (k — d)-splitting if (1) Ap;(M;) =Ofori =1,---,d; j=1,---,1(2)
all values A;(M;),i =d+1,--- ,k; j = 1,---,1 are rational numbers and (3) for each
i=d+1,---,k, the invariant Ay; is negative for some M, and it is positive for some Mpg.

Note that a k-splitting family can be regarded as d-flat (k — d)-splitting with d = 0.

LEMMA 2.3. Ford=0,1,--- ,k—=2,ifL={Ly,---, L;}isad-flat (k—d)-splitting
family of homogeneous Riemannian manifolds, then there exists a family {K,,--- , K;} of
homogeneous Riemannian manifolds such that Ay (K;j) = Ofor j = 1,---,d+1; j =
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L,---,landfori =d+2,---,k, A2i(Kj) has the same sign as Ay;(L;) for j =1,--- 1.
In particular, the family {Ky, --- , K;} is (d + 1)-flat (k — d — 1)-splitting of homogeneous
Riemannian manifolds ford + 1 < k.

PROOF. Put Ly ={L € L l Azq+n(L) > 0}, L_ = {L e L ' Az(d+1)(L) < 0} and
Lo ={L € L| Axg+1)(L) = 0}. Then

L=LyUL_ULo

is a disjoint union and L # ¢, L_ # ¢.

Consider Lgo € L and fix it. Take an element L, € £_. Then for L go and L, there are
positive rational numbers x and y satisfying x A3(z+1)(La) + yA2(d+1)(Lgo) = 0. Consider
Riemannian manifolds L, (A) and L ﬂO(M) Then we have

rAzi (Lo (M) + s Az (Lgo(w)) = rAiAzi(Lg) +su A21 (Lgo) -

Now, by taking positive rational numbers A sufficiently large and u (sufficiently small),
we see that fori = d +2,--- ,k, xA{ 7471 Ay (Ly) + yu' =971 Ay (Lgo) has the same sign
as Ay (Ly), if A2i(Ly) # 0, and let positive rational numbers g; and g, be x = q1Ad+1
and y = qzudH. Now write q; and g as q1 = n)/m; and g2 = ny/m3, where pairs of
integers (n1, m1), (n2, my) are relatively prime. Put K, = [Ly(A)]"'"2 x [Lgo(un)]"?™1.
Then Aj;(Ky) =0fori =1,.--- ,d+1andori =d+2,---,k, A2;(K,) has the same sign
as Azi(Lq), if A2i(La) # 0. o

Now consider Loo € £- and fix it. Then, for each element Lg € £, we can associate
K g with the property that A»;(Kg) =0fori =1,--.,d+ 1andthat,fori =d +2,--- ,k,
A»; (Kp) has the same sign as Aj;(Kp), if A2;(Kg) # 0, by the same argument as above. For
each element L, € Lo, put K, = L,,. Then the family {K, - - - , K;} satisfies the conditions
of Lemma2.3. O

Now, using Lemma 2.3, we have the following proposition.

THEOREM 2.4. For given k € N, suppose that there exists a finite k-splitting family of
homogeneous Riemannian manifolds M = {My, M, --- , M;}. Then there exists a non-flat
homogeneous manifold M such that V,(r) = Vo(r)(1 + O (r¥+2y),

PROOF. Applying Lemma 2.3 for M as d = 0, we get a 1-flat (k — 1)-splitting family
N1. Now we get a d-flat (d — 1)-splitting family Ny ford = 2,--- ,k — 1 by Lemma 2.3,
inductively. Put Ny = {N € Ni—1 | A(N) > 0} and N_ = {N € Ni_1 | A (N) < O}.
Then Ny # ¢ and N_ # ¢.

Take elements Ng € N} and N, € N_. Then there are positive rational numbers x and
y satisfying x A2k (Ny) + y Aok (Ng) = 0. Now write x and y as x = n|/m/, and y = n},/m),
where pairs of integers (n}, m), (n},, m}) are relatively prime. Put M = [Ng]"1™2 x [Nﬂ]"lzm'l .
Then we see that Ay;(M) =0fori = 1,--- ,kie. Vp(r) = Vo(r)(1 + O(r%**2). O

- COROLLARY 2.5. There exists a non-flat homogeneous Riemannian manifold such
that Vp(r) = Vo(r)(1 + O(r?®)).
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PROOF. Put M = {S3, H?, G3)}, then M is 3-splitting from Propositions 1.6, 1.7
and 1.8. So there exists a non-flat homogeneous Riemannian manifold such that V,(r) =
Vo(r)(1 + O(@r®) from Theorem 2.4. O

COROLLARY 2.6. There exists a non-flat homogeneous Riemannian manifold such
that Vy,(r) = Vo(r)(1 + O(r'%)).

PROOF. We put M = {52, S!5, H?, G3}. Then M is 7-splitting from Propositions
1.6, 1.7 and 1.8. Applying Theorem 2.4 to M, we have a non-flat homogeneous Riemannian
manifold such that V,(r) = Vo(r)(1 + O(r'%)). O

REMARK. Gray and Vanhecke have constructed a non-flat homogeneous Riemannian
manifold satisfying V,(r) = Vo(r)(1 + O(r?)) from G3, H? and $* in [GV]. Kowalski
[K] used a family of homogeneous Riemannian manifolds {S2, H? M, M, M3} where M,
Mj, M3 satisfy Ag(M)) < 0, Ag(M3) > 0, Aj2(M3) < 0 (e.g. M; = G3, My = S5,
Mz = S%to prove the existence of a non-flat homogeneous Riemannian manifold such that
Vp(r) = Vo(r)(1 + O ('%)).

For n-sphere $” with the constant curvature 1, it is not easy to calculate A (S") for all
k explicitly in general. But, for n = 3 we obtain the following proposition.

PROPOSITION 2.7. For 3-sphere S3, A2 (S3) € Q (k € N) ([K]) and
A2(8%) <0,  Azui—2(8* >0,

A24i(8%) <0,  Azuir)(8®) = Azui—1)(8*) =0 (i eN).

PROOF. First we recall the Bernoulli numbers 8; defined by

_ (—1) giz*
1———2 e

et —1
It is known that all 8; are positive rational numbers and

x _ o0 (22i—1 _ 1)(_1); 2
sinh x =1+ 22 (21)' ﬂix (2.7.1)

i=1

(see e.g. [L]). Next we calculate &, (s) in Theorem 1.4 for s3. By (1.5), the volume of a.small
geodesic sphere G(r) in S3 is

S(@r) = 4r sin’r

o0
= 4mr? (1 + Z Ezirzi) ,
i=1

where
- 22i+1(_1)i
By = ——— | : 2.7.2
= T2y (2.7.2)
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Noting that &(r) = ;1‘-1; V,(r) for any dimension n, we have
By .
n-+2i 2
By (1.4.1), (2.7.2), (2.7.3) and n = 3, we get

N (—4s)’
ho(s) = ; G+ D!

1_e4s

T 4s

109

(2.7.3)

(2.7.4)

(2.7.5)

Put f(s) = loghp(s). Then we have f®(0) = A% (S?) from (1.4.2), so we investigate
the kth derivative of the f(s). It follows that f'(0) = A3(S3) = —2 < 0 from f/(s) =

h;,(s)/hp(s) and (2.7.4). By (2.7.5), it holds that

Y 1 2-2s \?

By using (2.7.1),

2.2s 0 , .
=1+ § (—Dia; (25)%
i=1

e%s — e~

where a; = 2(2%~! — 1)8;/(2i)!. Note that a; are also positive rational ones.

Define a; by
aj = § : ajaj, -
J1ti2=j+1

By using {a;} we can write f”(s) as follows.

f7(s) =) (=)' (8a; + 4a;_1)(4s?) 7",
i=1

where we put agp = 0 formally. Now we have

A4 (S%) <0,

A2.4i-2(S?) > 0,

A24i+1)($?) = A2ui—1y($*) =0 (eN). O

Now we consider 3-Heisenberg group G3.

PROPOSITION 2.8. On G3,

A20i-1)(G3) >0, A22)(G3) <0 (@ eN).
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PROOF. By using (1.8.0), we calculate A*(8). Put

2-2 — vsi X (—1)i(2i .
cCOsv — vsinv _ Z ( 1)- i+2) V2
v 2i + 4)!

2—-2cosv A 2(=1)F
g2(v) = — Q0= = ;0 @ 2)!v .

g1(v) =

b

Then
A*0) = AF{u? + w?) g1 (v) + g2(v)}
= w2 +w)g P W) + ¢ ) + 4kgHF D).

Hence we have

AY@®) |, = 2D (keN
( T Dek+ k=1 KN

For simplicity we put
2
GEGIDC DG T he +D
then we have from (1.4.1)

x
loghp(s) = log (1 + Z(_l)jCij+])

j=0
2. (-1 | o
= (z+)1 [Z(—l)’cj'sj“}
i= j=
Z( l)lj+l+j G'! l_}+l+j+1
i +1

( l)kéksk+l ,

i+1

|

I

M8 EM8

x
Il

0

A Cl ]
> J
Cij= > Cjr +Cjy and Cp= ) Tl
Ji+eFjip=ij+i+j+1 i+j=k

where

Since C;,; are positive rational numbers, ék are also positive rational ones. From (1.4.2), we
obtain

Thus Az(z,'_l)(G3) > 0, A2(2,')(G3) <0 (l € N). O
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Kowalski proved Ag(S") > 0 for n > 15 (see Proposition 1.7). So using (1.4.1) and
(1.4.2) we show the following.

PROPOSITION 2.9. Foreachi (i < 25), thereexistsn € {2,4,5,6,7,8,9,10,11, 12,
13, 14, 15} such that Ag; (S™) > O.

PROCEDURE OF PROOF. From (1.5) and (2.7.3), we can get the coefficients By, -,
By, of the expansion of &(r) around r = 0 by using the first k coefficients of the expansion
of sinr around r = 0.

From (1.4.1) we obtain the first k coefficients of the expansion of 4, (s) around s = 0.
Using them, we will calculate the expansion of log 4, (s) around s = 0 by kth order. Put

k
h(s) =) 2'n(n+2(n+4) - (n+21 - 2)Bys’,
=1

hi(s) =h(s), hj(s) = —h(s)-hj_1(s) (mods)
and

o0
hi(s)
§) = ,
£ ; :
then the first & terms of f(s) as a polynomial of s agree with those of the expansion of
loghp(s) around s = 0. By (1.4.2) we obtain Ay, -- -, Azx. Now we can compute Ay, of
S§" (n=2,4,5,---,14,15) for k < 100. The following program for Mathematicag 2.2. is
used to calculate Ap; of S”.

n=?; (% the dimension of the sphere x)

d=101;

blr,1l]=Normal[Series[(Sin[r]/r),{r,0,2xd}1];
blr_,i_]:=blr,i]l=Normal[Series[bl[r,i-11xb[r,1],{r,0,2xd}]1];
clii]:=c[1i]

=(2"1) *Product [ (n+2x(j-1)),{j,1,i}]1*Coefficient[blr,n-1],
r,2%1i];

hl{s_]:=hl[s]l=Sum[c[ilx*xs"i,{i,1,d-1}1;

his,1l]=hl[s];

his_,k_1:=h[s, k]

=Normal [Series[(-1)xh[s,k-1]1xh[s,1],{s,0,d-1}11;
fls]=Sum[h[s,i]/i,{i,1,d-1}];
add[i_-]:=Coefficient{f[s],s,il*i!
Do[Print[add[i]],{i,1,d-1}]

We omit the precise values of Ag;(S") (n = 2,4, 5, ---, 14, 15) but list their signatures.
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The signatures of Ag; (S") (n =2,4,5,---, 14, 15)

SZ S4 SS S6 S7 S8 S9 Slo Sll 512 513 Sl4 SIS
Ag - - - - - - - - - - - - +
Ale + +
Aoy + + +
Az + +
7Y R e
+
+

++

Agg | -
Ase | -
Agq +
A7y + -
Ago +
Asgsg -1 -
Age | - | - | -
Ao - +
Al12 + +
Ao | + +
+ | +
+

L}

1

1
+[+
+

Aqzs
Alze - + +

A144 - - - + - + + - -
A2 - - - + +

Ajeo | +
Aleg | + | -
A6 | +
Alga | - | +
A92 | - + -
A200 - +

+|+
+ [+

]

L}
++
+

+
+|+
]
1}
1

Now we can prove the main theorem.

THEOREM. For each k (k < 100), there exists a non-flat homogeneous manifold M
such that V,(r) = Vo(r)(1 + O (rk+2)).

PROOF. Put M = {Gs, §2, $3, §4, §°, 8, S15, H2, H3, H*, H®, H®, H'5} then M
is k-splitting by Propositions 1.6, 2.7, 2.8 and 2.9. Applying Theorem 2.4 to M, we obtain a
non-flat homogeneous manifold M such that V,(r) = Vo(r)(1 + o@r*+2y. 0O
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