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Abstract. Let G be a finite abelian group and let SK *G (pt, pt) be a cutting and pasting group (an SK group)
based on G manifolds with boundary. In this paper, we first obtain a basis for a Z module ’T*G consisting of all
homomorphisms (G-SK invariants) 7 : SK f (pt, pt) > Z. Let SK f; be the SK group based on closed G manifolds.
We next study a relation between the theories SK *G and SK f (pt, pt) by performing equivariant cuttings and pastings
of G manifolds, and characterize a class of multiplicative invariants which are related to x G,

0. Introduction.

Throughout this paper G is a finite abelian group and a G manifold M means an un-
oriented compact smooth manifold M, which may have boundary d M, with smooth action
of G onit. Let T be a map for G manifolds which takes values in the ring Z of rational
integers and is additive with respect to the disjoint union of G manifolds. Such T is said
to be a G-SK invariant if it is invariant under equivariant cuttings and pastings (G-SK pro-
cesses) ([4]). Let x(M) = x(M) — x(dM), where yx is the Euler characteristic, and K a
subgroup of G. Then ¥ X (M) = 3 (MX) (or xX (M) = x(MX)) is a G-SK invariant, where
MX = {x € M; kx = x for any k € K}. In [3], H. Koshikawa and the author have studied an
SK group SK f (pt, pt) resulting from equivariant cuttings and pastings of G manifolds. An
invariant 7T is considered to be an additive homomorphism T : SKC (pt, pt) — Z.

The main object of this paper is to characterize these invariants, and we also remark a
relation between our theory and the SK theory SK *G of closed G manifolds ([5], [8]).-

In Section 1, we explain the basic properties of G slice types, especially a total ordering
on the family S¢(G) of all slice types, and define the theory SK *G (pt, pt), whose structure is
known by using the ordering (Proposition 1.6). v

Let 7,0 be the set consisting of all G-SK invariants. In Section 2, we first obtain a basis
for ’I;G as a free Z module. As a result, we show that a set {x (M, )} of integers determines
aclass [M] in SKE (pt, pt), where M, is the invariant submanifold of M which consists of
those points with slice type containing o € St(G) (Theorem 2.6 and Corollary 2.11).
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The theories SK f ® Ry and SK f (pt, pt) @ R, are closely related to each other, where
R, is the subring of the rationals given by R, = Z[%] In Section 3, we first obtain an
exact sequence consisting of these theories. Using this, we show that the set {x (M)} deter-
mines a class [M] in SK*G modulo torsion (Propositions 3.1 and 3.3). There is a basis for
S K*G (pt, pt) ® R which comes from the one for SK*G ® R; (Corollary 3.5). Finally we
study a relation between such basis and the original one in Proposition 1.6, and give some

related examples by using G-SK processes (Theorem 3.11, Examples 3.13 and 3.15).

1. Preliminaries.

Let M be an m-dimensional G manifolds. Let (L,3dL) C (M,9M) be a G invariant
codimension one submanifold which satisfies the condition that the normal bundle of (L, dL)
in (M, 0M) is G equivalent to the trivial bundle (L, dL) x R with trivial action of G on the
set R of real numbers. We admit the case in which dL = and M # 0.

We further assume that L separates M, that is, M = N; U N, (pasting along the com-
mon parts L) for some G invariant submanifolds N; of codimension zero, and denote this
decomposition simply by M = N; U N».

DEFINITION 1.1. Let M; and M; be m-dimensional G manifolds. Then M; and M»
are said to be obtained from each other by an equivariant cutting and pasting (a G-SK process)
if M3 has been obtained from M, by the process as mentioned above, that is, M1 = N U, N,
and M, = Ny Uy N, pasting along the common parts L C M; for some G diffeomorphisms
g and ¥y : L — L. Moreover we say that M; and M, are G-SK equivalent, in symbols
My ~ M, if there is a G manifold K, which may be @, such that the disjoint union M, + K
can be obtained from M; + K by a finite sequence of equivariant cuttings and pastings.

The SK equivalence ~ is an equivalent relation on the set of m-dimensional G manifolds.
Denote by [M] the equivalence class containing a G manifold M. The set I“,f,; (pt, pt) of all
these classes forms a cancellative abelian semigroup if we use disjoint union as addition, and
has a zero [@]. We define by SKZ (pt, pt) the Grothendieck group of this semigroup. By
defining SKC (pt, pt) = D,,-0 SKS (pt, pt) we have a graded SK, module with multi-
plication given by the cartesian product of manifolds, where SK, is the SK ring of closed
manifolds.

REMARK 1.2. SK, = Zm20 SK,, is a polynomial ring Z[«] with a generator « rep-
resented by the real projective plane RP2, and a class [M] in SK,, is determined by the value
x(M) € Z. Let SK+(pt, pt) = SKV(pt, pt) ({1}; the trivial group), which is a free SK,
module with basis {{D°], [D!]}, where D™ is the m-disk in general. Moreover a class [M] in
SK,(pt, pt) is determined by the value x (M) € Z. In particular, o" = [D?*] and hence the
inclusion map i, : SK, — SK.(pt, pt) is injective (cf. [5], [7; Theorem 1.2] and Example
3.9). Note that j (M) = (—1)4mM) y (M) by applying x to the double DM = M U M of M.

Let H be a subgroup of G, then an H module means a finite dimensional real vector
space together with a linear action of H on it. If M is a G manifold and x € M, then the
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slice theorem tells us that there is a G module U, which is equivariantly diffeomorphic to a
G neighbourhood of x, where G, = {g € G; gx = x} is the isotropy subgroup at x. This
U, decomposes as U, = R? & V,, where G, acts trivially on R? and VxG" = {0}. The pair
[Gx; Vi]is called the slice type of x. By a slice type in general, we mean a pair [H; V] of a
subgroup H and an H module V such that V# = {0}.

DEFINITION 1.3. Suppose that J is a subgroup of H such that the quotient H/J is
cyclic. Then an irreducible # module V(J, j) (1 < j < (3)¢(1H/J|) + 1), where |H/J|
denotes the number of elements in H/J and ¢ is the Euler phi-function, is defined as follows.

(1) If|H/J|=1,then V(J, 1) = R with trivial H action.

(2) If|H/J| = 2,then V(J,1) = R with action of 4 € H given by multiplication by
+lifheJor—1ifthe H\ J.

3) If|H/J|=d > 2,then V(J, ji) is the set C of complex numbers with a generator
h of H/J = Z, acting by multiplication by exp(2miji/d), where {ji} is a complete set of
integers such that 0 < j; < --- < jg() < d and each ji is prime to d (cf. [8; 1.6]).

The G slice types are therefore of the form o = [H; V], where V is a product of non-
trivial irreducible H modules V(J, j¢) as in (2) or (3). We denote by o_; the slice type
[{1}; {O}]. For any positive divisor k of |G|, let L(k) be the set consisting of all subgroups H
of G with |H| = k. Now consider a total ordering on L (k), then the ordering gives the one
of all subgroups of G naturally, preserving inclusion of subgroups, that is, if H# € K then
H < K. Moreover, for any H this ordering leads to the one of the non-trivial irreducible H
modules: V(Ji, j1) < V(J2, o) if J < Jy or J; = J; and j; < jp. We then order the set
St (G) of all G slice types as follows.

(1) [H;V]<I[K; W]ifdim(V) < dim(W).

(2) Suppose that dim(V) = dim(W), then [H; V] < [K; W]if H < K.

(3) Suppose that dim(V) = dim(W) and H = K, then [H; V] < [H; W]if V < Win
the ordering of H modules induced lexicographically from the one of irreducible H# modules.

DEFINITION 1.4. Let W be a K module and H a subgroup of K, then denote by Wy
and H module W induced from H C K. Let {W;} be the set of non-trivial irreducible K

modules. If t = [K; W], W = ]—[j W;l(j) (a(j) = 0) is a slice type, we define a slice type

Ty by ty = [H; V] where V is the non-trivial part of the H module [ j(Wj)‘;;j ). Note that
7{1) = o_1 for any 7.

REMARK 1.5. (i) More precisely, let W; = V(L,!) for some L C K with K/L
cyclicand (/,a) =1 (a = |K/L|). Then (W;)ig = V(L N H,1’) for some I’ with (', b) = 1
(b = |H/L N H|). The integer I’ is determined by the action of H/L N H ~ LH/L on
(W;) g induced from the one of K/ L on W;. We see that (W;)y is the trivial H module only
if H C L,and (W;)y =Rifa=2or R2ifa > 2. Moreover it follows that || — |Tg| is the
sum of dim((W;)g) such that (W;)g =R or R2, where |T| = dim(W).

(i) Wy = RlTI=ltalx V as an H module, and a K invariant subspace W# = Rl¥I=I7a 1 x
{0} of W has slice types Ty with H C U € K. We note that ty < 7 because |ty| < |T].
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Now rename the G slice types: 01 = pp < p1 < --- < px < --- by using the total
ordering on St(G). Then it follows from Remark 1.5(ii) that 7 = {0;; 0 < i < k} is a family
of G slice types in the sense of [8; 1.2] (k > 0). Using these families, we have the following
proposition.

PROPOSITION 1.6 (cf. [3; Proposition 1.13}). SKf (pt, pt) is a free SK, module with
basis B = {x5, X5; 0 € St(G)}, where xo =[G xg D(V)] and X5 = [G xug D(V x R)] for
o = [H; V] (D(V); the associated H disk).

2. G-SK invariants.

DEFINITION 2.1. Ifo =[H; V] and M is a G manifold, then define M, to be the set
consisting of those points x € M whose slice types o, satisfy the condition (o) = o in the
sense of Definition 1.4.

REMARK 2.2. (i) Let My be M with the induced H action, then M, is precisely the
set(My)o = {x € My; ox = o}. Thus the maximality of o in the family F(My) = {o,; x €
My} implies that M, is a G invariant submanifold of M with dim(M,) = dim(M) — |o| via
the slice theorem. It is easy to see that 3(M,) = (dM), by using a G collar. Note that
M,;_, = M. Further, if o = [H; V] and 0’ = [H; V'] with 0 # o', then M, N M, = 0.
Thus M7 = [, Ms; summing over all o with H as isotropy subgroup. It follows from the
definition that if My ~ M3 then (M), ~ (M2), naturally (cf. [5; Chapter 3)).

(i)) Let M x N be the cartesian product of G manifolds M and N straightening the
angle. Then, for any 0 = [H; V] we have (M x N), = ]_[(a,,a,,) Mg x Ny by using the
decomposition of (M x N)# as mentioned above, where the sum is taken over all paires
(o', 0”) of slice types with H as isotropy subgroup such that o’ x ¢” = o.

EXAMPLE 2.3. Let M = G xg D(W) fort = [K; W], then My, = G xx D(W#) if
H C K and o0 = ty, or ¥ otherwise. Therefore it follows from Remarks 1.2 and 1.5(ii) that

[M:,]1 = |G/K|[D"*I=I™]

_ | 16/K1a307 1= DO) i 2] = |2y (mod 2),
IG/K|a201=1T1=D D1} if 7] = |zg| + 1 (mod 2)

in SK.(pt, pt).

DEFINITION 2.4. Let T be a map for m-dimensional G manifolds, which is assumed
to take values in Z and to be additive with respect to disjoint union +, thatis, if M = M; + M,
then T7(M) = T (M) + T (Mz). Wecall T a G-SK invariant if T (N1 Uy N2) = T (N Uy N3)
for any G diffeomorphisms ¢ and ¥ : L — L in Definition 1.1. If M}, ~ M5, then T (M;) =
T (M>). Thus the map T induces an additive homomorphism T : SKZ (pt, pt) — Z. The set
7,9 consisting of all these invariants is a Z module under the natural addition.

We sometimes write T (M) instead of T (x) for x = [M] if no confusioﬁ can arise.
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EXAMPLE 2.5. (i) For any o € St(G), a map x, (or x,) defined by y,(M) =
X (Ms) (or x5 (M) = x(M,)) is a G-SK invariant respectively. We see that xo = (—1)" 11 x,
as an element of 7.6. Further X (or xX) in Introduction is also an invariant because xX =
>, X (or x K = Y . Xr) summing over all T with K as isotropy subgroup respectively. Note
that {1} = Xo_, = X (cf. Remarks 1.2 and 2.2(i)). See Example 2.9 for another related
invariant. _

(ii) Suppose that an invariant T is defined for all G manifolds. In general, T is deter-
mined by the values T (a“x;) and T (¢x,) for T € St(G) and u, v (> 0) (cf. Proposition 1.6).
We now consider the case in which T is a sum of XK . First note that T (a“x;) = T(a’x:),
and it follows from Example 2.3 that the value T (x,) for T = [K; W] does not depend on a
specific slice type T but depends on K. Hence we may write T (x;) = Ag. An invariant T is
then of the form:

T =|GI7' ) &xx¥,
K
where
(k= ) |HIAgu(H, K)
HCK

and w is the Mobius function which is, in our case, defined inductively for H € K by
w(H,H) = 1 and u(H,K) = —ZHCUCK u(H,U) if H C K (Here H C K means
that H € K and H # K.). In fact, if we write T as T = |G|~ SvevxV (GI7 ey € 2,
then |K |1 ZUQK cy = Ak (= T (x7)) from Example 2.3. On the other hand, we have

dtv= Y |HAgu(H,U)

UCK HCUCK
=|Klrg+ ) |H|)~H( D wH, U))
HCK HCUCK
= |K|Ak .

Hence cx = &k by the uniqueness of the class {ck}, showing that T is of the desired form.
For example, let G, = Z, (p; a prime number and r > 1). Then (G, G;) = 1if s = ¢,
—lifs=t—1or0ifs <t —1,s0T is of the form

T=(1/p)y [/\ox + ) p o —Az_l)xc’l

O<t=<r
where A; = Ag,. In particular, we have
X+ 2 =pHx% =0 (mod p")
O<z<r
by setting A, = 1 (0 <t < r) (cf. [6; Corollary 5.20]).

Let H be a subgroup of G. Then define inductively an integer n g (K) for (totally ordered)
subgroups K with H € K € G by nyg(K) = |K/H| — ZHchK ng(L)yand ny(H) =1
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(cf. [6; Definition 5.3]). On the other hand, for 0 = [H; V] and a subgroup K with H C KX,
denote by Sk (o) the set consisting of those slice types T = [K; W] such that Ty = 0.

THEOREM 2.6. Foro = [H; V] € St(G), define 6, by

0o =IG/HI" { %+ Y nu®)| D (DFI7llx,

HCKCG t1€Sk (o)

Then the class {0 ; |o| < m} provides a basis for 'Z;nG as a free Z. module.

PROOF. Foro = [H; V], let g5 : SKE(pt, pt) > SK._|5(pt, pt) be a map given
by g, ([M]) = [M,] and define a map f, by

fo=I1G/HIT Ygo+ > nu)| D (DIIlNg,

HcCKcG 1eSk (o)

Now look at the basis elements of B in Proposition 1.6. Then the value f; (x;) fort = [K; W]
which does not vanish is

a2 0T=D DO if |z| = |rz| (mod 2),

, @.1)
(rl=lzl-Dyp1 ; —
al [D'] if || =|t] +1 (mod 2)

f'l’L(x't) = {

fof L C K. In fact

fo(ee) = 1G/L|™! {gq(xr) + > nL(U)[D"U'—"L'lgzUm)}

LcUCK

=|K/L|™! ( > nL(U)) [DITI=lmly

LCUCK
=[lﬂﬂ—WM]

by Example 2.3 and the identity ) Lcuck "L (U) = |K/L|. The values on the elements Xz
are given by f,(X;) = [Dl]fa (xz). Thus each f, induces a map f, : SKf (pt, pt) —
SK«—io)(pt, pt) of degree —|o|. Now define an S K, homomorphism f, by

fx=®cfo i SKE(pt, pt) > A = &k SKurjp(pt, pt), (2.2

where St(G) = {ox; k > 0} is totally ordered as mentioned in §1. Let B, = {[D°], [D']}
be the basis for the k-th copy of SK,.(pt, pt) in A (cf. Remark 1.2). We can totally order the
basis elements of B and B’ = Uy B;, (for A) naturally by using the ordering of St(G), that is,
for B first x,, < xp; if i < j and then xp,, < X, for any i. It follows from (2.1) that f is
an isomorphism because the matrix relative to the ordered bases B and B’ is triangular with
components 1 on the diagonal. Now let T be an element of TmG, then there is a factorization:

G L BxX T’
T : SKS(pt, pt) = Sk SKm—ip | (Pt, pt) = OHZ —> Z (2.3)
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for some 7', where the direct sum is taken over all k£ with |px| < m (cf. Remark 1.2). This
implies that T =}, T’(lk)épk where épk = X o fp, and 1; = 1 in the k-th copy of Z in & Z.
Thus we have the theorem. g.e.d.

EXAMPLE 2.7. Suppose that G = Z, (n > 2). Then, for o = [Z; V] with s | n, we
have

0o =/ X+ D S/ D (=DFllx,

s<t<n,s|t|n 1€Sz, (o)

because nz, (Z;) = ¢(t/s) by definition.

REMARK 2.8. Consider

O =IG/HIT' A xo+ Y. naK)| Y. x

HcKcG 1€Sk (o)

foro = [H; V]. Then 6, = (—1)"~1919, as an element of’Z;nG (cf. Example 2.5(1)). Thus the
class {6,; o € St(G)} is also a basis for Z,0.

EXAMPLE 2.9. If M isa G manifold and 0 = [H; V]aslice type, then define M{,) =
{x € M;0, = o}. The set M|,] is a codimension zero open invariant submanifold of M,
because M|, is given locally by G x gy (R? & {0}) in G xy U, with p = dim(M) — |o}|,
where U, = R? @ V is the H equivariant neighbourhood of x € M{,] in M. Since the triad
(M[s1, (N[0, (N2)[0]) is excisive for a decomposition M = N; U, N2, a map (o] defined
by x(o1(M) = x(M{s)) is a G-SK invariant as in the case of x, (Remark. The set M)
coincides with the one M[p 4] in [5; Chapter 3], where [H, 0] = ¢.). The above remark tells
us that x[s] is a linear combination of the invariants 6,. For example, let G, = Z pr (p;a
prime number and » > 1). In this case, if T = [G,; W] then

0, = (l/p)r_t Xz + Z pu——t—l Z Xu

t<u<r MESGu ()

because ¢ (p“~') = p*~'~! as mentioned in Example 2.7. Since x[o1(at¥x:) = x[o1(a?X;) =
X[o1(x7) for the basis elements of B, the invariant x|, is determined by the values {x[5](x1);
T € St(G)}. Now let 0 = [Gy; V] and denote M (t) = G, xg, D(W) the representative of
x¢. Then it follows from Remark 1.5(ii) that v

G, xG, (D(W)% \ D(W)Cs+1} ifo =1, with0<s <7,

) 2.4
) otherwise ,

M(t)p) = {
where D(W)% = DITI=I%l (z; = 15,) and D(W)%+1 = @. First we suppose that p = 2.
Note that |z5| is even if 0 < s < ¢ (cf. Remark 1.5(i)). Then x(D(W)%s \ D(W)Cs+1) = 1if
s=t, x(SIT-lm-1l=lyif s = ¢ — 1, |7| > |i_1| or Oif s = ¢ — 1, |t| = |5y—1|ors <t — 2.
Thus, in case |o| is even, x[o](M (7)) = 2" if Tt = o or 7 is of the form [Gs1; W] with
7s = o and || odd, or O otherwise. In case |o| is odd, x(o1(M (7)) = 2" if t = o or 0
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otherwise. On the other hand, 6, (M (7)) = (=DI"-Clg,(M(x)) = 1ift, =0 (0 <s < 1)
or 0 otherwise by (2.1) and Remark 2.8. We therefore have the following:

Xo)=2""" (Ga - Zf’u) : (2.5)
73

where the sum is taken over all u = [Gs+1; W] with u; = o and |u| even. Next suppose
that p is odd prime. In this case, |z5| is always even (0 < s < t) (cf. Definition 1.3(3) and
Remark 1.5(i)), so x (D(W)%s \ D(W)Cs+1) = 1 if s = t or O otherwise. This means that
Xio](M (7)) = p"~* if T = o or 0 otherwise from (2.4). Thus we also have the equality (2.5)
with 2" 7% replaced by p" 5.

REMARK 2.10. Let e, = (1/p) ~°x[s]. then it follows from (2.5) that the class
{es; o € Sr(G,)} is also a basis for TmG’.

Now go back to the basis {0, } in Theorem 2.6. We then have the following corollary by
using the isomorphism @8, in (2.3) and the equality x, = (—1)""1!,.

COROLLARY 2.11. Let My and M, be m-dimensional G manifolds. Then [M;] =
[M2] in SKS (pt, pt) if and only if Xo(M)) = Xo(M2) (or xo(M1) = xo(M2)) for all
o € St(G) with |o] < m.

3. G-SK processes.

Let SKC be the SK theory resulting from equivariant cuttings and pastings of closed G
manifolds (cf. [5] and [8]). In this section, we study a relation between the theory S Kf ®
R and the one SKC(pt, pt) ® R,, and give some related examples by performing G-SK
processes.

PROPOSITION 3.1. The sequence
0 —> SKS ® Ry —*> SKC(pt, pr) ® Ry —*> SKC @ Ry —> 0

is split exact, where i is the inclusion map and 0 is defined by 3,((M]® 1) = [IM]® 1. A
splitting map D, (or d,) to i, (or 3,) is given by D, ((Mi®1) = [DM]® % (ord,((MI1®1) =
[M x D1 ® 1/2) respectively. Here DM is the double of M if dM # @ or 2M if 9M = @.

PROOF. We see that the kernel of the inclusion map ig . : SKC — SKS(pt, pt)
consists of elements of order 2. This implies that i, in the above exact sequence is injec-
tive because SKC (pt, pt) has no torsion from Proposition 1.6 or (2.3). To show the above,
suppose that ig «(x) = O for x = [M)] — [M,] in SKC, then [M] x D'] = [M; x D']in
SKC (pt, pt) naturally. By applying the map 8, to this, we have 2[M;] = 2[M,] in SKGC,
that is, x is of order 2. Clearly 9 o i, = 0. Now, for any G manifold M we have

2[M] = [DM] + [dM x D'] 3.1

in SK*G (pt, pt) (cf. [7; Lemma 4.9]). Using this, we can prove that Ker(d,) € Im(i,) as
follows. If 8, (x) = O forx = ([M1]—[M2)®(1/2)%, thenx = ([DM;]1—[DM2])®(1/2)*+!
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from (3.1), showing that x is in the image of i.. By definition, d is a splitting map to 3. On
the other hand, consider a map D,. If [M1] = [M] in SKC (pt, pt) ® Ry with dM; # @ and
dMy = @, then [DM;] = 2[M5] in SK*G(pt, pt) ® Ry from (3.1) and hence in SKf ® R>
- via the injection i,. Thus D, is well-defined and a splitting map to i,. q.e.d.

We see that the torsion subgroup of SKC is a 2-group by using Triviality 2.10, Theorem
3.1 and Lemma 3.2 in [5]. More precisely, we have the following from the beginning of the
above proof.

COROLLARY 3.2. A possible torsion element of SK f is of order 2.
Now the following result is immediate from Corollary 2.11 and Proposition 3.1.

PROPOSITION 3.3. Let M| and M, be m-dimensional closed G manifolds. Then
[M{] = [M3] in SKS ® Ry if and only if xo (M) = xo(M>) for all o € St(G) with
lo| < m and |o| = m (mod 2). In particular, the set {xs (M)} determines a class [M] in
SKE modulo torsion.

In the above, note that x, (M) = 0if |o| = m+1 (mod 2) because dim(M,) = m—|o| =
1 (mod 2) and M, is closed (cf. Remark 2.2(1)).

REMARK 3.4. Let M be aclosed G manifold and o = [H; V] aslice type of M. Then
the manifold M|, fibers over the orbit space M}/ G with fiber G/H. We see that M,1/G
is usually non-compact manifold given locally by R? & {0} C U, of x € M[4] (cf. Example
2.9). A G-SK process on M induces the one on M[,}/G naturally, so we can define a G-SK
invariant e, by e; (M) = x(M[s}/G). Now let 7 (Rz),(,f be the set consisting of all G-SK
invariants 7' : SK,E ® R; — R». Then we see that the set {e, ® id} with o] <m, |o|=m
(mod 2) provides a basis for 7 (Rz),(z, and it gives us another set {e, (M)} of integers which
also determines a class [M] in SK *G modulo torsion (cf. [5; Corollary 3.3]).

We know that SK*G ® Ry is afree SK, ® Ry = R[] module with basis C = {y,; 0 €
S$t(G)}, where y, = [G xg S(V x R)] and S(V x R) is the associated H sphere (cf. [5; p.
40]). Using this, we have the following from Proposition 3.1.

COROLLARY 3.5. SKZ(pt, pt) ® Ry is a free SK, ® R, module with basis By =
(Yo, Yo: 0 € St(G)}, where 3, =[G xg S(V x R) x D] for y, =[G xg S(V x R)].

On the other hand, the set B in Proposition 1.6 also provides a basis for SK f (pt, pt) ®
R>. The rest of this section will be devoted to studying a relation between these bases B and
By. To proceed our argument, we first need the following Lemmas 3.6 and 3.7.

Let us consider a multiplication on SKC (pt, pt) induced by the cartesian product of G
manifolds. :

LEMMA 3.6. The multiplicative relations on the basis elements of B are given by the
Sfollowing (i) and (ii):
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() [G xu D(V)]1-[G xx D(W)] = a(H, K)[D?)[G x D(VL x W)l forany o =
[H;V]andt =[K; W),where L= HNK,a(H,K) =|G||L|/|H||K|and b = |o|+|t|—
(loLl + |z D. .

(ii) £-y=x-y=x-yand(X)= ax foranyx andy, where X = [D!1x in general.

PROOF. The both sides of (i) have the slice types {o;/ x 77/; L’ € L} in the sense of
Definition 1.4 (cf. Remark 1.5(ii)), and it follows from Example 2.3 that each side has the
data:

Xoprxty = IG/H|(=DlI-lovl |G /K |(—1)lF -t
=a(H, K)(—l)b . |G/L|(_1)|<7LXTLI—IaL:er/|

and ¥, = 0if v ¢ {07/ x t/}. Thus (i) is obtained from Corollary 2.11. The last equality of
(ii) follows from the one o = [D?] in Remark 1.2. g.e.d.

Let M, and M, be H x Z, manifolds such that Z; acts freely on them. If there is an
H x Z,-SK equivalence between them in the sense of Definition 1.1, then we write it as

z
M, =2 M. This induces the one M; xz, P ~ M, xz, P naturally for any Z, manifold
P, where an H action on M; xz, P is given by that on M;. In particular, M, ~ M, where
M; = M;/Z, is the orbit space of M;.

LEMMA 3.7. LetW; (i = 1,2) be Hmodules, then

S(W1 x W2) + [0, 1] x S(Wy) x S(W2) 2 S(W1) x D(Wp) + D(W)) x S(W2)  (3.2)

where Zy acts on S(Y), Y = W x Wa, W; or D(W;) by multiplication by —1, and H (or Z3)
acts trivially on the interval [0, 1].

PROOF. Let N; = A; + B; (i = 1,2), where A = S(W;) x D(W), A, = D(W;) X
S(Wy), B = [0, 1/2] x S(W;) x S(W3) and B; = [1/2,1] x S(W)) x S(W2). Further let
L = L'+L"” where L’ = S(W;)xS(W,) = 0A; and L” = {1/2}xS(W;)xS(W>). By pasting
Nj to N3 in two ways by (H x Z;-equivariant) natural identifications g and ¢ : L — L, we
obtain

Ni Uy Ny = S(W; x W) + [0, 1] x S(W) x S(W2),
N1 Uy N2 = S(Wy) x D(W2) + D(W;) x S(W7).
This implies (3.2). q.e.d.

To obtain Theorem 3.11, we represent the class [S(W)] of an H sphere as a sum of basis
elements [H x; D(Z)] and [H x; D(Z x R)] for SKf (pt, pt) in the following Lemmas
3.8 and 3.10.

LEMMA 3.8. Let W =W . W’ xR?¥, where W =] Vo(K0)*®, W' =
I VW, m)'D and Vo(Ky) = V(Ki, 1) (or V(L;, m;)) are irreducible, inequivalent H

modules in Definition 1.3(2) (or (3)) respectively. Then we have S(W) Z @.
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Z
PROOF.  We first consider the case W = W” and suppose that S(W() ~ @ for any 174

. . . Z c .
with W' € W” and dim(W}) < dim(W"). Then we have S(W”) < @ by considering the H x
Z,-SK equivalence (3.2) when (Wy, Wo) = (W/, V(L, m)), where W = Wy x V(L,m).

Z
Hence, to complete the proof in this case, we must show that S(V) L @ifVv = V(L,m). Now
divide the circle S(V) = S! into four parts A, = Zq,{exp2rit); (u — 1)/4do <t < u/4dy)
(1 <u =<4),wherei =+/—1, H/L = Z, for some d (> 2),dy = d if d is even or 2d if d is
odd, and Z,,{- - - } means the union of the orbits Zgj(x)of x € {---}. These A, are H x Z»
invariant naturally. Let Ny = Aj+A3 and Ny = A,+Ay4, andset 9N = {aj}and 9N, = {bj}
where a; = bj = exp(2mij/4dp) (0 < j < 4dp). Further define an H x Z-equivariant
‘identification ¢ or ¥ : 9N — 3Nz by @(a;) = bj or Y(azj) = byj, ¥(azj+1) = baji3
(bagy+1 = b)) respectively. Then N; Up N2 = §(V) and N1 Uy Np = 25(V). This implies
that S(V) z 2S(V) and hence S(V) ?\3 @. Next consider the case W = W’ or R?". If
Wi = Vo(Kk)? or R?, then S(W;) = S! (via W; C C) is the union of four H x Z; invariant
parts A, = {exp2mit); (u — 1)/4 <t < u/4} (1 < u < 4). The same argument as above
) V/ V/ . .
implies that S(W1) ~ @ and hence S W) =g by induction. Consequently, we have the result
for a general W = W’ . W” x R?" by using (3.2). g.e.d.
>EXAMPLE 3.9. Let RP(W x R) be the associated projective space for the above H
module W, then we have [G xg RP(W x R)] = [G xgxg D(W)] in SKf(pt, pt). To show
Z
this, consider the H x Z,-SK equivalence (3.2) when (W}, W,) = (W, R). Since S(W) <%
as stated above, there exists the induced SK equivalence

[RP(W x R)] = [S(W) xz, D'+ [D(W)] — [D' x S(W)] = [D(W)]. (3.3)

Thus if W* is another H* module as W, then it follows from Remark 1.5(i) and Lemma 3.6(1)
that

[G xg RP(W x R)] - [G xg» RP(W* x R)]
= a(H, H*)a??[G x, D(W, x W})]
= a(H, H*)a"?[G x, RP(W], x W} x R)]

in SKC (pt, pt). We note that this equality holds in SK& modulo torsion via the injection
io, in the proof of Proposition 3.1. Hence, if G, = Z,r or (Z;)" for example, then the both
sides actually coincide because SKE " has no torsion (cf. [8; Theorems 5.5.1 and 5.6]). Now
let us consider {1} x Z,-SK equivalence (3.2) when (W, W>) = (R?", R). Then it gives that
[RP?"] = [D?"] in Remark 1.2 by the same way as in (3.3). By applying the double D in
Proposition 3.1 to this equality or (3.3), we have 2[RP?"] = [§2"] in SK, or more generally
2[RP(W x R)] = [S(W x R)] in SK*G " respectively. We will study such relations in detail
in case G, = (Z)? (See Example 3.13.).
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In general, if M| + M3 ~ M, for G manifolds M;, then we write it by M| ~ M — M3.
Now we recall that Vo(J, N J;) in the following lemma is the J; module Vo(J;), in Definition
1.3(1) or (2) induced from an H module Vy(J,) (cf. Remark 1.5(i)).

LEMMA 3.10. Let {Vo(J;);1 <i < p} be a set of one-dimensional irreducible,
inequivalent H modules as in Lemma 3.8. Then S(Vo(J))Z M+ v (Jp)2 P+ ~
letfp(—l)t—lDt_l x Y (t), where

Y(t) =Y RPHVDla@gy) - H xy, D (]‘[ Vo(Jy N J,)zj<r)+1)
I re¢l

summing over all t-tuples I = (iy,--- ,i)in{l,---, p}such thatiy < --- < ir; |j(I)| =
JE)+ -+ jl), Jr = Jy NN T and a(Jy) = |H' I/ T, 1 i | = 2°AHI /1D
Ift = p, then the disk D(—) in Y (p) means that D({0}) = DO.

PROOF. First suppose that p = 1, and put Vi = Vp(J1). Since S(V12 J (1)+1) fibers
equivariantly over (RP2)/) = S(Vlzj(l)H)/Zz, we have

SWHOTy ~ P2V .2, ~ RP?YDH x5, D{O) =Y (1) (3.4)

from [8; Theorem 2.4.1(iii)]. In general, we consider (3.2) when Wi = []o; ., Vo(Ji)*/ ©O+!
and Wy = Vo(J,,)%/(P+1, Then the result follows straightforwardly by induction on p. Here
we use the following equalities in Lemma 3.6(1):

rel

~Hxy D (]—[ Vo(J, N IOy, N J,)21'<P>+1) ,
rél
a(Jp) -a(J1, Jp) = a(J1uip))

(I=(i19"' ’it); t-tuplein {1"" ’p_l})'

g.e.d.

THEOREM 3.11. Anelement yo» =[G xy S(V x R)] (of By) is represented as a sum
of elements of B over SK, by using the following equalities (i) and (ii):

Let V. = Vo(J)H D . Vo(Ip)2 P+ . W, where W = W’ - W” as in Lemma 3.8.
Then

(6))

S(VxR)~2D(V) — Z (—1)7ID" x Y @),

l<t=<p
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where

Y0 =) RPHIDlag(sp) - H xy, D (H Vo(Jr N J,)2f<’)+1W,,) ,
1 rél

Wy, = [ Vo 0 In=® - TTv@win g, mp!®
k I

Y@ =0if Vv=w).
) If Jr € Jr or Ky then Vo(J, N J;1) or Vo(Kx N J;) = R respectively, while if

J; € L then V(L; N J;) = R2. Further D?> ~ RP?, where [RP?] = o (cf. Remark 1.5(i)).

PROOF. It follows from (3.2) (when Wi = V and W> = R) that S(V xR) ~2D(V) —
D' x S(V). Moreover we have

S(V) ~ S(Vo(J1)> DFL ... v (J,)2 P+ 5 D(W) (3.5)

similarly from Lemma 3.8. Thus the result follows immediately from Lemmas 3.6(i) and
3.10. ’ g.e.d.

REMARK 3.12. Weseethat G xyg D(V) ~ %(G x g S(V x R) 4+ z) from the above
(i), where z is a sum of elements G x; D(Z) (or G x; D(Z x R)) suchthat Z < V. If
o = o_1, then G x(1;3 D({0}) = 1G x(1j S({0} x R). Hence, by induction on the ordering,
any element of B is also represented as a sum of elements of By in SKC (pt, pt) ® R».

EXAMPLE 3.13. Let L, be an SK, submodule of SKC generated by the class C =
{yo; 0 € St(G)}. Since C is a basis for SK*G ® R; as an SK, ® Ry module and the inclusion
map SK, — SK. ® R; is injective, we see that the class C is linearly independent over
SK, and for any x € SKC there is an integer u (> 0) such that 2“x € L,. We now give
an example related to this fact. Let G = (Z;)? with generators {g1, g2} in particular. The
non-trivial irreducible G modules are V; = Vo(J;) (1 < i < 3), where J; = (g1), J» =
(g2) and J3 = (g1 + g2). Note thatif i # j then Vo(J; N J;) = R with a generator of
Jj acting by multiplication by —1, while if i = j then Vo(J; N J;) = R. Given a triple
A = (a(1), a(2), a(3)) of non-negative integers, denote by o (A) a slice type [G; VA] where
VA = VI“(I)VZ“(Z)V;(3). We show that 2“[RP(VA x R)] € L, (u = 1 or 2) for any A. First
suppose that A; = (2a(1) + 1,2a(2) + 1, 2a(3) + 1) and consider G x Z,-SK equivalence
(3.2) when (W, W,) = (VA1 R). We then have

RP(VA x R) ~ S(VA) xz D' + D(VA1) — D! x S(v41). (3.6)
2
Write VAL = V¥ ang v/ = y 2@+ y 280+ Then we further have
S(VA1) xz, D' ~ Q1 + Q2 — D' x Q3
by (3.2) when (Wy, Wa) = (V2D vy where
01 = SV x D(V)) xz, D', 02 = (D(VF*PH) x S(V')) xz, D,
03 = (S(V*DHY) 5 S(V')) xgz, D'.
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Note that Q; (i = 1 or 3) fibers equivariantly over RP%() = § (Vlza(l)+1)/zz with fiber
Fi = (Zz x D(V")) xz, D' =~ D(v; v+ y2e@+ly o
F3 = (Zy x S(V')) xz, D' ~ D(V}) x S(vpe@+!y2e@+1y

respectively by an obvious equivariant identification. Thus Q; ~ RP22() » F; (cf. [8; The-
orem 2.4.1(iii)]). On the other hand, by continuing the same SK process on S(V’) in 05, we
have

05 ~ RP24a? D(VIZa(3)+1V2V32a(1)+1) + RP2O) D(VIZa(2)+1V22a(1)+1V3)

—RP%® x D! x sV x D v+, (3.7
Now it follows from Lemma 3.10 that
SO ~ RPYH*PG x4, DO},
S(Vzla(3)+1 V32a(2)+1)

~ Z(O)(sz)a(jl)G X Jj, DR

S(vAn

) — (RP?)* PG x (1) D({0} x R),

52(a(j2)+a(j3)+1)

~ Z(])(RP2)a(j‘)G x 1, D(R ) — (RPH)Ue@nI=-D/2G x 1) D({O}),

where the sum ) (or 3 ) is taken over (ji1, j2) € {(2,3),(3,2)} (or (j1, j2, j3) €
{(1,2,3),(2, 1, 3), (3, 1, 2)}) respectively. Take the first equality (or the second one) in (3.7)
(or F3 in Q3) respectively. Then we have

i 2a(j3)+1y,2a(j2)+1 .
S(VAI) Xz, D1 ~ Z(l) a“(]l)[D(le ija(]3)+ Vj3 G+ )] + wy, (38)

w == 3, @ UHBG g, DRI < Ry 4 ADID2(G ) D((0) x R)]
by using Lemma 3.6(i). By taking the third equality and (3.8) in (3.6), we therefore have

j 2a(j3)+1y,2a(jz)+1
[RP(VA xR = [DVAN] + 3 | a®[D(V; VIPTIVED 42 3.9)

where z; = w; — [D! x S(VA1)]. Further let A, = (2a(1) + 1,2a(2) + 1,2a(3)), A3 =
(2a(1) + 1, 2a(2),2a(3)) and A4 = (2a(1), 2a(2), 2a(3)). In a similar manner, if k = 2, 3
or 4 then
[RP(VA« x R)] = (3.10)
[D(VA2)] + 2(2) aa(jl)[D(le Vj22a(3) V50(12)+1)] +a{a(A2)|/2[G X (1) D{OH]+z2,
[DVA)] + DDV V2PV D) 423 or [D(VA4)]
respectively, where

e a(j1) ~2(a(j2)+a(3))+1
22==2 5@ WIG x;; DR x

2(a(2)+a(3))
X

~2a(3)+1
X

R)] — a*MHD[G x ; D(R R)],

z3 = —a*D[G x5, DR R)],
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and the sum Z(z) is taken over (ji, j2) € {(1,2), (2, 1)}. For our purpose, we apply the

double D to both (3.9) and (3.10). If z = [G xj, D(R™""" x R)] in general, then D(z) =

[G x;, SR x R»)] and

_ i 1
SR x R ~RP? x S®*"™) ~ 3

by using (3.2) and a similar SK equivalence as in (3.4). Thus we have

RPH"1J; x (13 S({0} x R)

D(e2) = ~5a" @G x 1) ({0} x R].

On the other hand, D(z;) = 0 (i = 1 or 3) because z; is a sum of terms of the form ¢t =
[G x; D(R™ x R)] and D(1) = [G x; S(R" x R?)] = 0 from Lemma 3.8. Using these,
we therefore obtain the desired equality: if K = 1, 3 or 4, then

2[RP(VA4 x R)] =
[S(VA x R)] + Z(l) AUDS(v;, Y2RUDTL Y20+ | gy

17 j2 J3

[S(VA x B+ a*D[s( VAP V@ x R)] or [S(VA x R)]
respectively, while

A[RP(VA2 x R)] =
2AS(VA2 x R +2) . DSV, Vj?“(” ViR S R

2

_ aIG(Az)I-H[G x (1} S{0} x R)]

in SKC ® R,. Since SKC has no torsion as mentioned in Example 3.9, the above equalities
actually hold in SKC. Therefore 2“[RP (VA x R)] € L, (u = 1 or 2).

REMARK 3.14. Itis seenthatifa(j) > 0(1 < j <4 — k) then [RP(VA x R)] =
[D(VA4%)] (mod SK, decomposables) from (3.9) and (3.10). Hence we can replace [D(V 4¢)]
(or [D(VA x R)]) by [RP(V4* x R)] (or [RP(VA* x R) x D!]) respectively as an basis
element for S K*G (pt, pt) (cf. Proposition 1.6).

EXAMPLE 3.15. For any finite abelian group G, let us consider a ring homomorphism
T : SK¢ — Z, which is called a multiplicative G-SK invariant. By the statement in the
beginning of Example 3.13, such T is determined by the values a = T(«) and Yo = T (y5)
(o € St(G)). If T([D°]) = 0, then T is trivial. From now on we consider that T is always
non-trivial, so T([D°]) = 1. We now characterize these 7 which also satisfy the condition
that 7(y,) = O for all y; with T = [H; Z] and H # G. For example, xG is one of these
invariants. First we recall the expression of y, for 0 = [G; V] in Theorem 3.11, that is,
Yo = 2[D(V)] + w, for some w, € Q., where Q, is an ideal of SK*G (pt, pt) generated
by all elements x; and x; of B with T = [H; Z] and H # G. Consider another y,» =
2[D(V*)] 4+ wg* with 6* = [G; V*]. Then y, - yo* = 2Yoxo* + w for some w € Q4, and w
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is written as
w = (1/2)* (Zk,y, +Z/€,9r) (k. ky € SKy,u > 0)
T T

from Remark 3.12. Now apply the map 9, in Proposition 3.1 to the above. Since 9,(w) = 0
and 94(y;) = 2y, we have k; = 0 and

2%w = Z:k,,yt +t
T

in SK *G , where ¢ is a torsion (of order 2) (cf. Corollary 3.2). This implies that
T(Yo)T (Yox) =T (Yo - Yor) = 2T (Yo xo*) (3.11)

because T (y;) = T (¢t) = 0 by assumption. Let y; = T (S(V; x R)) € Z for any i, where {V;}
is the set of all (non-trivial) irreducible G modules. By using (3.11) inductively, we have

T(ys) = (1/2)/ @~ ] v® (3.12)

foro = [G; V] with V =[], V), where I(6) = Y, a(i). This means that T is determined
by the set {a, y;} of integers. To get the form of T, let us consider the induced invariant
T'"=TQ®id : S K*G ® Rz — Rj, which is also multiplicative naturally. It follows from
Remark 3.4 that 7’ can be expressed as
T' =) Pu.@ntiuhen rtiup ® id

n,u
summing over all u € St(G) and n (= 0), where e, () is defined by e, m)(M) = e, (M)
if dim(M) = m or O if dim(M) # m. Note that e, (n)(M) = 0 if dim(M) < |u| because
Mi,,; = @ by definition, so we may write m = 2n + || for some n (> 0). Let t = [H; Z]
with H # G. Then T'(y;) = T (y;) = 0, and hence

0= T/(an}’t) = Z Pt ,@2n+|T) €7 (yo) + Pr,@n+z)) ° 2

LCcH
by the definition of ey. This implies that p; (») = O by using the induction (starting from
T = o_1) on the totally ordered set St(G), and

T' =" Po.ntloh Xo,@n+lol) ® id (3.13)
n,o

summing over all o of the form [G; V] and n (> 0), where e, = x, by definition. Since
T("ys) =T'("ys) = Po,(2n+lo|) - 2, We have

Po,2n+|o)) = a"(1/2)!@ l_[ yia(i)
i

by (3.12). Note that y; is even because > = T (S(V; x R)?) = 2T (S(V? x R)) from (3.11).
We thus obtain the desired form:

T =) a" 0o Xo,@n+lo) (3.14)
n,o
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by setting n; = (1/2)y; € Z, where n, = []; nl‘.’(i). We see that it is in fact multiplicative by
using the formula (when H = G) in Remark 2.2(ii). If 0 (0) = [G; []; Vio] in particular, then
1 =T(D°) = aona(g)x (D% = qa° I n?. This means that a° (or n?) must be regarded as 1
if a = 0 (or n; = 0) respectively. Finally we list typical examples of these invariants.

(i) First suppose that a = 1. Further if n; = 1 for any i, then T(M) = }__ xo (M) for
any closed G manifold M, where the sum is taken over all o with |o| = dim(M) (mod
2). Thus T = x© (cf. Example 2.5(i)). On the other hand, if n; = O for any i, then
T = Y, Xo(),2n) because n,0) = [[;0° = 1. In other words, T(M) = x(My()),
where M, ) is, by definition, the union of all components of M G such that dim(M; ) =
dim(M) — |o(0)| = dim(M) (cf. Remark 2.2(i)). Now let Mg (or Mg ) be the set consisting
of those points x in MY, each of whose slice types o, is a product of one-dimensional (or
two-dimensional) irreducible G modules respectively. If ; = 1 for dim(V;) = 1and n; =0
for dim(V;) = 2,then T = xf{, where Xg(M) = X(Mg). If n; = 0 and n; = 1, then
T = x§ similarly.

(ii)) Next suppose that a = 0, then T = > _ 75 Xo,(jo|) because a® = 1. Hence if
ni = 1for any i, then T(M) = Y, Xo.(oh(M) = x(ME), where M is the set of all
isolated points of MC. We denote such T by XOG . In a similar manner, the invariant xﬁ;’ o OF

0

xg o is considered. On the other hand, if 7; = O for any i, then T = x5).c00 = (x%)0)
where (x %) 0)(M) = x (M) if dim(M) = 0 or 0 if dim(M) > 0.
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