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Introduction.

A Weyl manifold is a smooth manifold $M$ equipped with a torsion free affine connection
$D$ and a conformal structure $[g]$ such that $D$ preserves $[g]$ , in other words, for a representative
metric $g$ within $[g]$ there is a $\omega_{g}\in\Omega^{1}(M)$ for which $Dg=\omega_{g}\otimes g$ .

We assume dim $M\geq 3$ .
Since the affine connection $D$ leaves the conformal structure $[g]$ invariant, $D$ has the

holonomy group contained in C $O(n)$ , the conformal orthogonal group.
For a Weyl manifold $(M, D, [g])$ the Riemannian curvature tensor $R^{D}$ and the Ricci ten-

sor $Ric^{D}$ are defined in terms of $D$ . The Ricci tensor is, in general, not necessarily symmetric.
The skew-symmetric part of $Ric^{D}$ coincides, up to constant, with the closed 2-form $d\omega_{g}$

(Lemma 1 in \S 1). This 2-form is an invariant of a Weyl manifold measuring the extent to
which the manifold differs from a trivial Weyl manifold. Here a Weyl manifold is called
trivial if the affine connection coincides with the Levi-Civita connection of a representative
metric within $[g]$ .

In the present paper we are interested in Weyl manifolds carrying a particular geometric
structure, especially in geometry of affine locally symmetric Weyl manifolds and of Weyl
manifolds whose Ricci tensor is proportional to the conformal structure.

We consider in the first part Weyl manifolds admitting a D-parallel tensor, especially
Weyl manifolds with D-parallel curvature tensor. It is shown in \S 1 that if the 2-form $d\omega_{g}$

is D-parallel, then a Weyl manifold is called locally trivial, that is, $d\omega_{9}=0$ . As a direct
consequence an affine locally symmetric Weyl manifold must be locally trivial, since $R^{D}$ is
D-parallel (see Theorem 2 in \S 1).

As Proposition 2 in \S 1 shows, the local triviality implies that an affine locally symmetric
Weyl manifold $(M, D, [g])$ tums out to be locally Riemannian, that is, $M$ has at each point an
open neighborhood on which $Dg=0$ for a certain local metric $g$ in $[g]$ .
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We remark that as Pedersen, Poon and Swann [13] showed, the local triviality hold
also for Hermitian-Weyl manifolds of dimension at least 6, i.e., Weyl manifolds $(M,$ $D,$ $[g]$

admitting a D-parallel almost complex structure $J$ which is Hermitian with respect to $[g]$ .
The second part of this paper is devoted to showing the finiteness theorem which con

cems compact Einstein-Weyl manifolds having positive Gauduchon constant.
A Weyl manifold $(M, D, [g])$ is called Einstein-Weyl, if the symmetric part of $Ric^{l}$

is proportional to a representative metric $g$ in $[g];sym(Ric^{D})=\Lambda g$ for $\Lambda\in C^{\infty}(M)$

An Einstein-Weyl manifold is a generalization of ordinary Einstein manifold in the sense $0$

conformal geometry.
As shown in [6], [10], [15], every compact connected Einstein-Weyl manifold admits

constant, which we call Gauduchon constant whose definition will be given in \S 2. Intuitivel
this constant behaves like the Einstein constant for Einstein metrics.

In \S 2 we exhibit for Einstein-Weyl 4-manifolds the finiteness theorem which assert
that, given positive numbers $B$ and $C$ , the collection of compact connected Einstein-Weyl 4
manifolds $(M, D, [g])$ of Gauduchon constant $c$ satisfying $b_{2}(M)\leq B,$ $C\leq c$ and obeying
certain scalar curvature supnorm bound has at most a finite number of diffeomorphism types

Finiteness theorems for Einstein-Weyl n-manifolds, $n=3$ and $n\geq 5$ are investigated $i$

\S 3.
Especially, in virtue of the finiteness theorem for Einstein-Weyl 3-manifolds, the diffeo

morphism finiteness of the collection of minitwistor spaces is available for compact Einstein
Weyl 3-manifolds fulfilling certain bounds. Here, due to Hitchin ([9]), the minitwistor space $i$

the space of all oriented D-geodesics in an Einstein-Weyl 3-manifold which carries a canoni
cally defined integrable almost complex structure.

Remark that in [17] possible geometric structures for compact Einstein-Weyl 3-manifold
are classified into four types, three of which are well known.

In the last section we investigate geometric structure of an affine locally symmetrit
Einstein-Weyl manifold (refer to Theorems 6, 7 in \S 4).

1. Affine locally symmetric Weyl manifolds.

A manifold $M$ with an affine connection $D$ (with torsion tensor $T^{D}$ ) is called affine $lo$

cally symmetric if each point of $M$ has an open neighborhood on which the geodesic symmetr
is an afPne transformation. The following theorem is well known.

THEOREM (Helgason [7]). An affine manifold $(M, D)$ is affine locally symmetric ifan
only if $T^{D}=0$ and $DR^{D}=0$ .

Refer also to [12], Chapter XI.

The main purpose of this section is to show that every affine locally symmetric We)
manifold is locally trivial.

We first provide several facts which hold for general Weyl manifolds.
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Let $(M, D, [g])$ be a connected Weyl n-manifold. Denote by $\Phi^{0}$ its restricted holonomy
group, the holonomy group with respect to closed null homotopic piecewise smooth curves at
a fixed point. Then

PROPOSITION 1. $\Phi^{0}\subset CO^{+}(n)$ , where $CO^{+}(n)=\{\lambda A|\lambda\in R^{+}, A\in SO(n)\}$ is
the conformal orthogonal group.

PROOF. While this fact is standard in Weyl geometry, we will give a proof.
Fix $p\in M$ and let $c$ : $[0,1]\rightarrow M$ be a closed piecewise smooth curve in $M$ with

$c(0)=c(1)=p$ .
Choose a metric $g$ in $[g]$ such that $Dg=\omega\otimes g$. The pull-back l-form $c^{*}\omega=(c^{*}\omega)(\frac{dc}{dt})dt$

along $c$ can be integrated as $c^{*}\omega=du$ where $u(t)=\int_{0}^{t}(c^{*}\omega)(\frac{dc}{dt})dt$ . Then a conformal
change metric $\tilde{g}_{t}=e^{-u(t)}g_{c(t)}$ is parallel along $c$ because

$D_{X}(fg)=(Xf+\omega(X))g$ .

So, for D-parallel vector fields $\{X_{j}(t)\}_{i=1,\cdots,n}$ along $c$ , orthonormal at $p$ with respect to $g$, we
have

$\tilde{g}_{t}(X_{i}, X_{j})=e^{-u(0)}\delta_{ij}$ , $i,$ $j=1,$ $\cdots$ $n$ .

Then, the parallel transport $\tau_{c}$ : $T_{p}M\rightarrow T_{p}M$ along $c$ is conformal with respect to $[g]$ .
It follows that $\Phi^{0}$ is a connected Lie subgroup of C $O^{+}(n)$ .

PROPOSITION 2. For a Weyl n-manifold $(M, D, [g])$ thefollowing are equivalent each
other

(i) $\Phi^{0}\subset SO(n)$ ,
(ii) $d\omega_{g}=0$ ,

(iii) $Ric^{D}$ is symmetric,
(iv) each point of $M$ has a neighborhood on which $Dg=0$ for a certain metric $g$ in

$[g]$ .

PROOF. $(iv)\Rightarrow(i)$ is obvious. To see $(i)\Rightarrow(iv)$ choose an orthonormal base $\{e_{i}\}$ at $p$

with respect to some representative metric $\overline{g}_{p}$ and transport it parallelly by $D$ to each point in
a neighborhood of $p$ . Since $\Phi^{0}\subset SO(n)$ , we get a metric $g$, in $[g]$ and $Dg=0$ . $(ii)\Leftrightarrow(iv)$

follows from the formula $D(fg)=(df+f\omega_{g})\otimes g$ and the Poincar\’e lemma.
To see $(ii)\Leftrightarrow(iii)$ we will provide the following

LEMMA 1.

$d\omega_{g}=\frac{4}{n}skew(Ric^{D})$

PROOF. Let $X,$ $Y$ be vector fields satisfying [X, $Y$ ] $=0$ at $p$ . Then we have for any
vector fields $Z,$ $W$

$Xg(Z, W)=\omega_{g}(X)g(Z, W)+g(D_{X}Z, W)+g(Z, D_{X}W)$ ,
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$Y(Xg(Z, W))=(Y\omega_{g}(X))g(Z, W)+\omega_{g}(X)\omega_{g}(Y)g(Z, W)$

$+\omega_{g}(X)g(D_{Y}Z, W)+\omega_{g}(X)g(Z, D_{Y}W)$

$+\omega_{g}(Y)g(D_{X}Z, W)+g(D_{Y}D_{X}Z, W)$

$+g(D_{X}Z, D_{Y}W)+\omega_{g}(Y)g(Z, D_{X}W)$

$+g(D_{Y}Z, D_{X}W)+g(Z, D_{Y}D_{X}W)$

and obtain the formula for $X(Yg(Z, W))$ by exchanging $X$ and $Y$ in the above formula.
Subtracting $Y(X(g(Z, W)))$ from $X(Y(g(Z, W)))$ yields

$d\omega_{g}(X, Y)g(Z, W)=g(R^{D}(X, Y)Z,$ $W$ ) $+g(Z, R^{D}(X, Y)W)$ . (1

So
$-nd\omega_{g}(X, Y)=2\sum_{i}g(R^{D}(X, Y)E_{i},$

$E_{i}$ ),

where $\{E_{i}\}$ is an orthonormal base at $p$ with respect to $g$. By the aid of the first Bianch
identity (notice that the connection $D$ is torsion free so that the first Bianchi identity holds)

$-nd\omega_{g}(X, Y)=-2\sum_{i}\{g(R^{D}(Y, E_{i})X, E_{i})+g(R^{D}(E_{i}, X)Y, E_{i})\}$

$=-2Ric^{D}(X, Y)+2Ric^{D}(Y, X)$ .
From this lemma we can conclude the proposition.

REMARK. (i) The formula (1) gives us the decomposition of $R^{D}$ according to the Lit
algebra decomposition $co(n)=R\oplus so(n)$ for the conformal orthogonal group $CO(n)^{+}$ as

$R^{D}=\frac{1}{2}d\omega_{g}\otimes id_{T_{p}M}+R^{0}$
$(2_{0}^{\backslash }$

where $R^{0}$ denotes the so $(n)$ -part of $R^{D}$ .
THEOREM 1. Let $(M, D, [g])$ be a Weyl mamfold. If the 2-form $d\omega_{g}$ is parallel, i.e.

$D_{X}d\omega_{g}=0$ for any tangent vector $X$ , then $d\omega_{g}=0$ , namely, $(M, D, [g])$ is locally trivial.

PROOF. Assume that $d\omega_{g}$ is non-zero. It suffices from this assumption to deduce ’

contradiciton.
Take a point $p\in M$ where $d\omega_{g}\neq 0$ . Since $D(d\omega_{g})=0,$ $d\omega_{g}$ is holonomy invariant

Namely,
$d\omega_{g}(\varphi X, \varphi Y)=d\omega_{g}(X, Y)$

for $X,$ $Y\in T_{p}M$ and $\varphi\in\Phi^{0}$ .
Choose a metric $g$ representing the conformal structure $[g]$ and fix it so that we have ar

endomorphism $\Omega$ : $T_{p}M\rightarrow T_{p}M$ satisfying

$(d\omega_{g})_{p}(X, Y)=g_{p}(\Omega(X), Y)$ , $X,$ $Y\in T_{p}M$ .
Since $d\omega_{g}$ is skew-symmetric,

$\Omega+\Omega^{*}=0$ (3)

for the adjoint $\Omega^{*}$ of $\Omega$ .
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For the inner product $g_{p}$ at $p$ each $\varphi\in\Phi^{0}$ has as an endomorphism of $T_{p}M$ the form

$\varphi=\lambda A$ , $\lambda\in R^{+}$ $A\in SO(n)$ .
Denote by $\varphi^{*}$ : $T_{p}M\rightarrow T_{p}M$ the adjoint of $\varphi$ . Then,

$\varphi^{*}\circ\varphi=\lambda^{2}id_{T_{p}M}$ ,

i.e., $g_{p}(\varphi^{*}(\varphi(X)), Y)=\lambda^{2}g_{p}(X, Y)$ .
On the other hand, we have

1
$\Omega(\varphi(X))=\overline{\lambda^{2}}\varphi(\Omega(X))$ , $X\in T_{p}M$ ,

or equivalently
$\Omega(\varphi^{-1}(X))=\lambda^{2}\varphi^{-1}(\Omega(X))$ . (4)

This is from the holonomy invariance of $d\omega_{g}$ .
From (3) eigenvalues of $\Omega$ are all pure imaginary so that we write them as

$ia_{1},$ $ia_{2},$ $\cdots$ $ia_{r}$ ,

where all $a_{i}’ s$ are real and $a_{1}<\cdots<a_{r}$ . Since $d\omega_{g}\neq 0$ at $p$ , one has either $a_{r}>0$ or
$a_{1}<0$ .

As the case $a_{1}<0$ is similar, we can assume $a_{r}>0$ . So, there is a complex vector
$X_{r}\in(T_{p}M)^{C}$ such that $\Omega(X_{r})=ia_{r}X_{r}$ . Then, from (4) $\varphi^{-1}(X_{r})$ is an eigenvector for $\Omega$ of
eigenvalue $i\lambda^{2}a_{r}$ .

That $\lambda=1$ for $\varphi\in\Phi^{0}$ can be then concluded from $a_{r}$ being largest among $\{a_{1}, \cdots , a_{r}\}$ .
It follows that all $\varphi$ have only the $SO(n)$ factor. So from Propositon 1 $(M, D, [g])$ is locally
trivial, which contradicts to $d\omega_{g}\neq 0$ .

If $R^{D}$ is parallel, then $Ric^{D}$ , the trace of $R^{D}$ and hence $d\omega_{g}=\frac{4}{n}$ skew $Ric^{D}$ is also
parallel. Therefore the following is immediate from Theorem 1.

THEOREM 2. Let $(M, D, [g])$ be a connected Weyl mamfold. If it is affine symmetric
(or affine locally symmetric), or more generally the Ricci tensor $Ric^{D}$ is D-parallel, then it
must be locally trivial.

We conclude this section by giving two applications of Proposition 2 for Weyl manifolds,
one for Weyl manifold being of constant curvature in the sense of Weyl manifold and another
one for Weyl 4-manifolds whose curvature tensor $R^{D}$ is self-dual.

Here we say $(M, D, [g])$ is of constant curvature if it satisfies

$R^{D}(X, Y)Z=\Lambda\{g(Y, Z)X-g(X, Z)Y\}$ , $\Lambda\in c^{\infty}$

for some metric $g$ in $[g]$ .
By taking trace of this equality one gets $Ric^{D}(X, Y)=(n-1)\Lambda g(X, Y)$ , whence $Ric^{D}$

is symmetric. Thus, we get from Proposition 2

COROLLARY 1. Let $(M, D, [g])$ be a Weyl manifold. If it is of constant curvature in
the sense of Weyl manifold, then it must be locally trivial.
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Consider, furthermore, an oriented Weyl 4-manifold whose $R^{D}$ satisfies
$*R^{D}=R^{D}$

in terms of the Hodge star $operator*$ . Here we regard $R^{D}$ as an End$(TM)$ -valued 2-form.
Then from (2) the diagonal component of $R^{D}$ must be a self-dual 2-form so that $ d\omega_{g}=\langle$

holds from the integral $\int_{M}d\omega_{g}\wedge*d\omega_{g}=0$ over $M$ when $M$ is compact. The conditio]

$*R^{0}=R^{0}$ then implies the Ricci flatness of the affine connection $D$ . Thus it is concluded tha
such a 4-manifold must be locally trivial and also Ricci-flat, provided it is compact (see [11]
Lemma 1.3.2 in which this self-duality curvature condition was investigated and the same
conclusion was derived).

2. Gauduchon constant and compact Einstein-Weyl 4-manifolds.

We will show the diffeomorphism finiteness theorem for compact Einstein-Weyl mani
folds satisfying certain boundedness.

Weyl manifolds we consider in this section and the subsequent section are assumed to be
compact, connected and oriented, unless stated otherwise.

For a Weyl manifold $(M, D, [g])$ the Einstein-Weyl equation sym $(Ric^{D})=\Lambda g$ can $b($

written in terms of the Levi-Civita connection $\nabla$ of a representative metric $g$ of $[g]$ as ([10])

$Ric_{g}+\frac{n-2}{4}(\nabla^{s}\omega_{g}+\omega_{g}\otimes\omega_{g})=\Lambda g$

(where $Ric_{g}$ is the Ricci tensor of $g$ and the covariant 2-tensor $\nabla^{s}\omega_{g}$ is defined $b$]

$(\nabla^{s}\omega_{g})(X, Y)=(\nabla_{X}\omega_{g})(Y)+(\nabla_{Y}\omega_{g})(X))$ .
By applying the gauge fixing argument given by Gauduchon ([5]) together with $Tod^{t}\llcorner$

observation ([16]), we can choose a special metric $g$ in $[g]$ uniquely up to homothety in such
a way that the Einstein-Weyl equation splits into the Killing field equation and the simplifiet
Einstein-Weyl equation as

(i) $\nabla^{s}\omega_{g}=0$

(ii) $Ric_{g}+\frac{n-2}{4}\omega_{g}\otimes\omega_{g}=\tilde{\Lambda}g$ , $\tilde{\Lambda}\in C^{\infty}(M)$

from which it tums out that
$c_{g}=s_{g}-\frac{n+2}{4}|\omega_{g}|^{2}$

is constant ( $s_{g}$ is the scalar curvature of $g$) ([6], [10]). We call it the Gauduchon constant. We
note that $c_{g}vol(M, g)^{2/n}$ is an invariant of an Einstein-Weyl n-manifold.

Notice that any pair $(g, \omega)$ on an n-manifold $M$ satisfying (i), (ii) yields an Einstein-Wey
manifold $(M, D, [g])$ by defining the torsion free affine connection

$D=\nabla+a$ , $a_{X}Y=\frac{1}{2}\{g(X, Y)\omega^{\#}-\omega(X)Y-\omega(Y)X\}$

so that $Dg=\omega\otimes g$.
We call a metric $g$ in $[g]$ satisfying the above (i), (ii) Gauduchon metric.
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In virtue of the Killing field equation, $\omega_{g}$ fulfils ([10]).

$\nabla^{*}\nabla\omega_{g}=Ric_{g}(\omega_{g})=(\frac{c_{g}}{n}+\frac{4-n}{4}|\omega_{g}|^{2})\omega_{g}$ . (5)

Further the Ricci tensor of the Gauduchon metric satisfies ([10])

$Ric_{g}=(\frac{1}{n}c_{g}+\frac{1}{2}|\omega_{g}|^{2})g-\frac{n-2}{4}\omega_{g}\otimes\omega_{g}$ .

We restrict ourselves in this section to Einstein-Weyl 4-manifolds.
The above two formulas enjoying a keystone for analyzing Einstein-Weyl manifolds then

reduce to
$\nabla^{\star}\nabla\omega_{g}=\frac{1}{4}c_{g}\omega_{g}$ , (6)

$Ric_{g}=(\frac{1}{4}c_{g}+\frac{1}{2}|\omega_{g}|^{2})g-\frac{1}{2}\omega_{g}\otimes\omega_{g}$ . (7)

So, by integrating the first equation as

$\int_{M}|\nabla\omega_{g}|^{2}dv_{g}=\frac{1}{4}c_{g}\int_{M}|\omega_{g}|^{2}dv_{g}$ ,

we easily obtain the following, as stated in [10].
If $c_{g}$ is negative, then the Gauduchon metric $g$ is Einstein with $\omega_{g}=0$ and $D$ coincides

with the Levi-Civita connection $\nabla$ of $g$.
If $c_{g}=0$ , then $\nabla\omega_{g}=0$ and hence either (i) $\omega_{g}=0$ identically or (ii) $\omega_{g}$ is a nonzero

$\nabla$-parallel form so that (i) $g$ is Ricci flat or (ii) $b_{1}(M)=1$ and the universal covering of
$(M, g)$ is isometric to the Riemannian product of a round 3-sphere and a straight line.

If $c_{g}>0$ , then $Ric_{g}$ is positive definite, more precisely

$Ric_{g}\geq\frac{c_{g}}{4}g$ , (8)

and then $\pi_{1}(M)$ is Pnite. Actually one has

$Ric_{g}(\omega_{g}^{\#}, \omega_{g}^{\#})=\frac{c_{g}}{4}|\omega_{g}|^{2}$

$Ric_{g}(\omega_{g}\#, X)=0$ ,

$Ric_{g}(X, X)=(\frac{c_{g}}{4}+\frac{1}{2}|\omega_{g}|^{2})g(X, X)$

for any tangent vector $X$ orthogonal to $\omega_{g}^{\beta}$ .
The diffeomorphism finiteness theorem for compact Einstein-Weyl 4-manifolds is deeply

based upon the following

THEOREM (Anderson and Cheeger [2]). For positive constants $\Delta,$ $v,$ $\gamma$ and $\Gamma$ the col-
lection ofclosed, connected Riemannian n-manifolds $(M, g)$ satisfying the bounds

diam$(M, g)\leq\Delta$ , (9)

$vol(M, g)\geq v$ , (10)
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$|Ric_{g}|\leq\gamma$ , $(11_{\mathfrak{e}}^{\backslash }$

$\int_{M}|R_{g}|^{n/2}dv_{g}\leq\Gamma$ , $(12_{\mathcal{U}}^{\backslash }$

where $R_{g}$ is the Riemannian curvature tensor, contains at most afinite number ofdiffeomor
phism types.

This theorem was obtained by consideration of regions of three different types, $region_{\backslash }^{t}$

on which $R_{g}$ concentrates in $L^{n/2}$ -norm, regions on which $R_{g}$ does not concentrate and neck
regions between those of the previous types and then applying a slightly modified standare
argument in Cheeger’s finiteness theorem ([4]).

Our finiteness theorem can be stated as follows.

THEOREM 3. For positive numbers $B,$ $C$ and $S$ satisfying $C\leq S$ the collectiot
$\mathcal{E}\mathcal{W}^{4}(B, C, S)$ ofEinstein-Weyl 4-manifolds ofpositive Gauduchon constant $c_{g}$ satisping th‘

bounds

$b_{2}(M)\leq B$ ,

$c_{g}^{2}vol(M, g)\geq C^{2}$

$s_{g}^{2}vol(M, g)\leq S^{2}$

(where $g$ is a Gauduchon metric in $[g]$ ) contains at most a finite number of diffeomorphisn
types.

PROOF. The proof is given first by identifying $\mathcal{E}\mathcal{W}^{4}(B, C, S)$ with the collectior
$S\mathcal{E}\mathcal{W}(B, C, S)$ of certain quadruplets $(M, g, \omega, c)$ and then applying Theorem (Anderson ant
Cheeger) to $S\mathcal{E}\mathcal{W}$ . Here $S\mathcal{E}\mathcal{W}(B, C, S)$ is the collection of quadruplets $(M, g, \omega, c)$ such tha
$c$ is a positive constant, and $g$ and $\omega$ are a unit volume metric and a one-form on a compact
connected, oriented 4-manifold $M$ satisfying

$\nabla^{s}\omega=0$ , $(13^{\backslash }$,

$ Ric_{g}=(\frac{1}{4}c+\frac{1}{2}|\omega|^{2})g-\frac{1}{2}\omega\otimes\omega$ $(14^{\backslash }$,

and obeying the bounds
$b_{2}(M)\leq B$ , $(15_{J}^{\backslash }$

$c\geq C$ , $(16^{\backslash }$,

$s_{g}\leq S$ . $(17^{t}$,

Let $(M, g, \omega, c)$ be a quadruplet in $S\mathcal{E}\mathcal{W}(B, C, S)$ . Then from (8)

$Ric_{g}\geq\frac{C}{4}g$

and by Myers’ theorem the diameter is uniformly bounded;

diam $(M, g)\leq\frac{\sqrt{12}}{\sqrt{C}}\pi$
$(18^{\backslash }$,
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For the upper bound for $|Ric_{g}|$ we have

$|Ric_{g}|\leq\frac{1}{\sqrt{3}}$ S. (19)

Actually,
$3|Ric_{g}|^{2}=s_{g}^{2}-\frac{1}{4}c^{2}-\frac{3}{4}c|\omega|^{2}$ (20)

so, $3|Ric_{g}|^{2}\leq S^{2}$ .
The uniform boundness of the $L_{2}$-norm of the Riemannian curvature tensor $R_{g}$ is derived

from the Chem-Gauss-Bonnet integral formula;

$\int_{M}|R_{g}|^{2}dv_{g}=32\pi\chi(M)+\int_{M}(4|Ric_{g}|^{2}-s_{g}^{2})dv_{g}$ .

Since
$4|Ric_{g}|^{2}-s_{g}^{2}\leq\frac{1}{3}s_{g}^{2}$ ,

the square $L_{2}$ -norm of $R_{g}$ is estimated by 3 $2\pi(2+B)+\frac{1}{3}S^{2}$ . We conclude then Theorem 3.

REMARK 1. As Anderson and Cheeger state implicitly ([2]), the finiteness theorem
holds also for the collection of compact Einstein 4-manifolds having the bounds in (9), (10)
and (11) of Theorem (Anderson and Cheeger) together with the Betti number bound $ b_{2}(M)\leq$

$B$ , instead of (12).

REMARK 2. The Thorpe-Hitchin inequality holds for both compact Einstein 4-mani-
folds and compact Einstein-Weyl 4-manifolds (see [8], [3], [14], [10]). Moreover we have
$\pi_{1}<\infty$ for both such 4-manifolds of positive Ricci tensor $Ric_{g}$ . So, geometric aspects
of compact Einstein-Weyl 4-manifolds resemble those of Einstein 4-manifolds. Note that
Pedersen, Poon and Swann constructed a nontrivial compact Einstein-Weyl 4-manifolds as
bundle metrics on sphere bundles over a compact 2-manifolds ([16]). These 4-manifolds are
$S^{2}\times S^{2}$ and $CP^{2}\#CP^{2}$ which are also equipped with Einstein metrics, the product standard
metric and the Page metric, respectively ([3]).

REMARK 3. Theorem 3 states the finiteness in terms of diffeomorphism types. How-
ever, a finiteness theorem which is more geometrical is available (refer to [2], Remark 3.2).
Actually we get in Theorem 3 a finite number of $\epsilon$ -quasiisometry types for compact Einstein-
Weyl 4-manifolds of positive Gauduchon constant.

REMARK 4. If we relax the bounds of Theorem 3 as $b_{2}(M)\leq B$ and $ C\leq$

$c_{g}Vol(M, g)^{1/2}$ , without any assumption on the scalar curvature, then by using the estimate
for the Sobolev constant we can estimate the bounds of $||Ric_{g}\Vert_{L_{4}},$ $||R_{g}\Vert_{L_{2}}$ in terms of $B$ and
$C$ . So, in view of the argument given by Anderson in [1] any sequence of Einstein-Weyl
4-manifolds $(M_{i}, g_{i})$ with a Gauduchon metric $g_{i}$ of $Vol(M_{i}, g_{i})=1$ has a subsequence
convergent to a compact Riemannian 4-orbifold having finite number of singular points.
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3. Other finiteness theorems.

For three dimensional Einstein-Weyl manifolds we have also the diffeomorphism finite
ness theorem.

THEOREM 4. For given positive numbers $C$ and $S,$ $C\leq S$ let $\mathcal{E}\mathcal{W}^{3}(C, S)$ be the col
lection ofEinstein-Weyl 3-manifolds $(M, D, [g])$ ofGauduchon constant $c_{g}$ satisfying bound

$c_{g}Vol(M, g)^{2/3}\geq C$ ,

$s_{g}Vol(M, g)^{2/3}\leq S$

for a Gauduchon metric $g$ within $[g]$ . Then, $\mathcal{E}\mathcal{W}^{3}(C, S)$ has at most afinite number ofdiffeo
morphism types.

This theorem then shows us that the collection of minitwistor spaces naturally $ari\sin\{$

from compact, oriented Einstein-Weyl 3-manifolds satisfying the bounds consists of a finit$($

number of complex surfaces, up to diffeomorphism.

PROOF. Let $(M, D, [g])\in \mathcal{E}\mathcal{W}^{3}(C, S)$ . Then

$Ric_{g}=(\frac{1}{3}c_{g}+\frac{1}{2}|\omega_{g}|^{2})g-\frac{1}{4}\omega_{g}\otimes\omega_{g}$

for a Gauduchon metric $g$. Normalizing volume of the metric $g$ one has $C\leq c_{g}$ and $s_{g}\leq\iota($

so that from the above
$\frac{1}{3}Cg\leq Ric_{g}\leq\frac{1}{2}Sg$ .

These, in fact, follow from

$Ric_{g}(\omega^{\#}, \omega^{\#})=(\frac{1}{3}c_{g}+\frac{1}{4}|\omega_{g}|^{2})|\omega^{Q}|^{2}$

$Ric_{g}(X, X)=(\frac{1}{3}c_{g}+\frac{1}{2}|\omega_{g}|^{2})|X|^{2}$

for $X$ orthogonal to the dual $\omega^{\#}$ of $\omega_{g}$ .
So, from Myers’ theorem diam$(M, g)$ is uniformly bounded from above.
To get the boundedness $of|R_{g}|^{2}$ we diagonalize $Ric_{g}$ .
We must consider the two possibilities.
At a point where $\omega_{g}$ vanishes the metric is Einstein; $R_{ij}=(1/3)c_{g}\delta_{ij}$ , so that the metri $($

is of constant curvature and hence $|R_{g}|^{2}$ has a bound in terms of $S^{2}$ .
We consider another case, namely, the bound for $|Ric_{g}|$ at a point $p$ where $\omega_{g}\neq 0$ . $Il$

fact at $p$ the Ricci tensor takes the form

$R_{ij}=\gamma_{i}\delta_{ij\prime}$ $i,$ $j=1,2,3$

$\gamma_{1}=\frac{1}{3}c_{g}+\frac{1}{4}|\omega|^{2}$

$\gamma_{2}=\gamma_{3}=\frac{1}{3}c_{g}+\frac{1}{2}|\omega_{g}|^{2}$
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Then $R_{1212}=R_{1313}=(1/2)\gamma_{1}$ and $R_{2323}=\gamma_{2}-(1/2)\gamma_{1}$ , and hence at $p$

$|R_{ijij}|\leq\frac{1}{3}S$ , $1\leq i<j\leq 3$ ,

and other components of $R_{g}$ vanish.
Therefore, $|R_{g}|$ is bounded above uniformly in terms of $S$ . So we can apply Cheeger’s

finiteness theorem ([4]) to obtain the theorem.

For Einstein-Weyl $n(\geq 5)$ -manifolds the finiteness theorem can be stated as follows in
terms of a bound on the $L^{n}z$ -norm of the Riemannian curvature.

THEOREM 5. For given positive numbers $C_{1},$ $\Delta,$ $\Gamma$ let $\mathcal{E}\mathcal{W}^{n}(C_{1}, \Delta, \Gamma)$ be the collec-
tion of Einstein-Weyl $n(\geq 5)$ -manifolds $(M, D, [g])$ having positive Gauduchon constant $c_{g}$

fulfilling the bounds

$c_{g}vol(M, g)^{\frac{2}{n}}\leq C_{1}$

diam $(M, g)vol(M, g)^{-\frac{1}{n}}\leq\Delta$ ,

$\int_{M}|R_{g}|zdv_{g}\leq\Gamma n$

for a Gauduchon metric $g$ in $[g]$ . Then $\mathcal{E}\mathcal{W}^{n}(C, \Delta, \Gamma)$ has at most afinite number ofdiffeo-
morphism types.

This is verified by choosing a Gauduchon metric $g$ of unit volume. In fact, unlike the
case of $n=3,4$ we have the sup-norm bound on $|\omega_{g}|^{2}$ for Einstein-Weyl $n(\geq 5)$ -manifolds
([10])

$sup|\omega_{g}|^{2}\leq\frac{4}{n(n-4)}c_{g}$

and hence from the formula (7) in \S 2 the sup norm of $Ric_{g}$ is bounded above as
$|Ric_{g}|\leq k_{n}C_{1}$ .

( $k_{n}$ is the universal constant depending only on $n.$ )
So, we can apply Theorem (Anderson and Cheeger) to get the theorem.

4. Affine locally $s$ymmetric Einstein-Weyl manifolds.

We are finally in a position to give the triviality remark for compact, affine locally sym-
metric, Einstein-Weyl manifolds.

Let $(M, D, [g])$ be an Einstein-Weyl n-manifold with a Gauduchon metric $g$ having
Gauduchon constant $c_{g}$ .

If $(M, D, [g])$ is locally trivial, then the one-form $\omega_{g}$ for which $Dg=\omega_{g}\otimes g$ is harmonic,
since $d^{\star}\omega_{g}=-tr_{g}\nabla^{s}\omega_{g}=0$ .

THEOREM 6. Let $(M, D, [g])$ be a compact, connected and oriented, Einstein-Weyl
n-mamfold with a Gauduchon metric $g$ ofGauduchon constant $c_{g}$ .

Suppose that $(M, D, [g])$ be affine locally symmetric. Then we have
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(i) $(M, D, [g])$ is globally trivial, in other words, $g$ is Riemannian locally symmetri
and $D$ coincides with the Levi-Civita connection of $g$, provided that $c_{g}>0$ and one of th
following is satisfied;

(a) $n=3,4$ ,
(b) $n\geq 5$ and $\omega_{g}$ satisfies $|\omega_{g}|^{2}\leq\{4/n(n-4)\}c_{g}$ , but not equal identically, and

(ii) the same conclusion holds as that of (i), provided that $c_{g}\leq 0$ and one of th
following is satisfied;

(c) $n\geq 5$ ,

(d) $n=4$ and $c_{g}<0$ ,

(e) $n=3$ and $c_{g}/3+(1/4)|\omega_{g}|^{2}\leq 0$, but not identically equal.

PROOF. Since an affine locally symmetric Weyl manifolds is locally trivial, the $on\epsilon$

form $\omega_{g}$ for our manifold $(M, D, [g])$ is harmonic.
For (i) it suffices to show $b_{1}(M)=0$ . If $n=3,4$ , then $c_{g}>0$ implies $Ric_{g}>0,$ $s$

$\pi_{1}(M)<\infty$ and hence $b_{1}(M)=0$ . For the case where $n\geq 5$ and $\omega_{g}$ satisfies the abov
inequality, $Ric_{g}\geq 0$ and $Ric_{g}>0$ at some point. So, the Bochner-Weitzenb\"ock formul
yields $b_{1}(M)=0$ and then $\omega_{g}=0$ , from which $D$ coincides with the Levi-Civita connectio
of the Gauduchon metric $g$.

For (ii) the integral formula $\int_{M}|\nabla\omega_{g}|^{2}dv_{g}=\int_{M}(-cns-\frac{n-4}{4}|\omega_{g}|^{2})|\omega_{g}|^{2}dv_{g}$ leads us th
conclusion.

The following characterizes compact Einstein-Weyl manifolds which are affine locall
symmetric, but not globally trivial.

THEOREM 7. Let $(M, D, [g])$ be a compact, connected and oriented Einstein-Wq
n-mamfold with a Gauduchon metric $g$ of Gauduchon constant $c_{g}$ . If $(M, D, [g])$ is affin
locally symmetric, but not globally trivial, then the universal covering of $(M, g)$ must be
Riemannian product of the straight line $R$ and a simply connected Riemannian symmetri
Einstein space ofcompact type.

PROOF. Since, from (5) in \S 1 the one-form $\omega_{g}$ satisfies

$\nabla^{\star}\nabla\omega_{g}=Ric_{g}(\omega_{g})=\frac{1}{n}(c_{g}-\frac{n(n-4)}{4}|\omega_{g}|^{2})\omega_{g}$ ,

one has $\nabla^{\star}\nabla\omega_{g}=0$ , because $\omega_{g}$ is harmonic and $\Delta\omega_{g}=\nabla^{\star}\nabla\omega_{g}+Ric_{g}(\omega_{g})$ . So, $b$

integrating one gets $\nabla\omega_{g}=0$ and hence $|\omega_{g}|$ is constant. On the other hand, since $(M,$ $D,$ $[g]$

is not globally trivial, $\omega_{g}$ is non-zero and it follows from $Ric_{g}(\omega_{g})=0$ that $|\omega_{g}|^{2}=$

$\{4/n(n-4)\}c_{g}>0$ for $n\neq 4$ and $c_{g}=0$ for $n=4$ . Therefore, the results of Theorer
2, (iii), (v) and of Theorem 4, (iii) in [10] apply and the universal covering of $(M, g)$ is
Riemannian product of $R$ and a positive Ricci, Einstein $(n-1)$ -manifold $N$ . One can see $th^{t}$

$N$ is a Riemannian symmetric space.

REMARK. The possible universal covering spaces in the above theorem are $R\times S^{2}$ fc
$n=3,$ $R\times S^{3}$ for $n=4$ , and $R\times G/K$ for $n\geq 5$ where $G/K$ is a simply connected Rie
mannian symmetric Einstein space of compact type. In these spaces the Gauduchon metri
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$g$ is a product metric $dt^{2}+g_{0}$ and the one-form $\omega_{g}$ defining the connection $D$ is $\omega_{g}=adt$

(where $a>0$ is some constant and $t$ is the coordinate of $R,$ $g_{0}$ is the invariant metric on the
symmetric space).
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