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1. Introduction.

In this paper we shall show the principle of limiting absorption for the quadratic operator
pencil

(1.1) L(k) = —A —ikB —«?

in the N-dimensional euclidean space RN with N s 2. Here A is the N-dimensional Lapla-
cian, k € C and B denotes the multiplication operator by a real-valued function b(x) on RV
Throughout the paper we require
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(1.2) There exist constants by and § € (0, 1] such that 0 < by <
and |b(x)| < bo(1 + r)~1=2 for any x € RY, wherer = |x|.
The operator L (k) is derived from the wave equation
(1.3) w(x,t) — Aw(x,t) + b(x)w,(x,t) =0

where x € RV, t > 0, w, = 8w/dt, wy, = 8%w/8¢? and b(x) € CI(RN). If b(x) > 0,
b(x)w, represents a friction of viscous type. As is known in Mochizuki [14], under a more
general assumption than (1.2) with b(x) > 0, the solutions of (1.3) are asymptotically equal
for t — +o0 to those of free wave equations

(1.4) wore (x, 1) — Awp(x,2) =0.
If we consider the solutions of the form w(x, ) = u(x)e~** in (1.3), then u(x) satisfies
(1.5) L(u(x) = (—A —ikb(x) — K2)u(x) =0.

The principle of limiting absorption states that there exist two Hilbert spaces

L2U+D/2RNY  and  [2~U+9/2(RN)y
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such that

) L2,(1+3)/2(RN) C L2(RN) C L2,—(1+5)/2(RN)
(the definition of these spaces is given in section 3), and R((o £ it)*) = L(o +it)7!is
continuously extended to T = 0 as an operator from L2(1+8/2(RN) to L2~(1+)/2(RN),
More precisely,

MAIN THEOREM. Assume N # 2 and (1.2). Let
Kf={k=0+iteC\{0}|o €I=(aj,a), 7 €(01)
withQ < a; <ay < oo. Fora +it € K, and f € L>U+9/2RN) (0 < § < 1), we define
u(o, ) = R((o +it)>) f.

Then u(o, t) € L%~U+t)/2(RN) converges in L2~ U+D/2(RNY as t | 0. Moreover this
convergence is uniform with respect to o € 1. If we denote this limit by u(o), then u(o)

is a solution of L(o)u(x) = f(x) and is uniformly continuous with respect to o € I in

REMARK. In this theorem, we can replace K} by KX, KT or K_:
Kf={k=0—-iteC\{0}|o €l=(a1,m), 7€ (O]},
Ki ={k=0+it€C\{0}|0o € I = (—az, —a1), 7 € (0, 1)},
 KZI={k=0—-iteC\{0}|o €= (-az —ai),t € (0, 1)}.
The principle of limiting absorption has been studied for the Schrodinger equation
(1.6) (—A+V(x)—kDu(x) = f(x) in RN.

After the pioneering work of Eidus [2], Agmon [1], Ikebe-Saito [4] and Mochizuki [13] ex-
tended it to a wider class of real valued potentials. The spectral theory is also developed for
complex potentials by Kato [7], Mochizuki [11], [12] and Saito [18], [19], and Saito extended
the principle there to complex potentials. '

The methods developed in these works are not directly applied to our problem since
ikb(x) depends on the energy «. In order to overcome the difficulty we suppose the smallness
condition (1.2). Then Mochizuki’s method [14] directly applies to obtain the key a-priori
estimate (Theorem 3.5 (3.18)). From this, the uniqueness of solutions for L(x)u(x) = f(x)
(Im« % 0) which play an important role in the proof of Main Theorem follows.

As for the wave equations with dissipative term, Mizohata-Mochizuki [10] and Iwasaki
[5] proved the limiting amplitude principle. Energy decay, non-decay and asymptotic behav-
ior of solutions were shown by Mochizuki [15] and Mochizuki-Nakazawa [16], [17]. Among
them, in [17] the energy decay (in an exterior domain) was shown under the dissipation effec-
tive only in exterior of the large ball in RY (N # 2). Recently, Kadowaki [6] and Matsuyama
[9] also treated the dissipative wave equation. Kadowaki [6] showed the existence of scat-
tering states in stratified media and Matsuyama [9] proved the energy non-decay and local
energy decay in an exterior domain without any geometrical condition of the boundary under
the dissipation effective only near the boundary.



LIMITING ABSORPTION FOR THE NON-SELFADJOINT SCHRODINGER OPERATOR 521

The contents of the present paper will be outlined as follows. In section 2 we study
the spectral structure of L(k). The key a-priori estimate is shown in section 3 (Theorem 3.5
(3.18)). As a corollary, non-existence of positive eigenvalue for L(x) follows (Propositon
2.6). The Main Theorem is proved in section 4. In the final section 5, we shall state the

A -—-B
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limiting absorption principle for the operator i (O 1 )

2. Spectral structure of L(x).

In this section, for the sake of simplicity, we assume the non-negativity of b(x) and study
the spectral structure of L(x). We define the linear operators Hy by

(2.1) | D(Ho) = H*(RY) Ho=—A.
As is well known, Hj is a selfadjoint operator and we have
p(Ho) = C\ [0,00), o (Ho) = Oess(Ho) = 0c(Ho) = [0,00), o0,(Ho) =0p(Ho) =0,

where p(Ho), 0 (Hp), 0ess(Ho), oc(Hp), o,(Hop) and o,(Hp) denote the resolvent set, the
spectrum, the essential spectrum, the continuous spectrum, the residual spectrum and the
point spectrum, respectively.

For k € C\ {0}, we define the linear operator L (k) by

(2.2) L) = Hy—ikB — k%, D(L{k)) = H*RY).

This is a non-selfadjoint but closed operator. In this section, we consider L(k) in Imx > 0.
The adjoint operator L*(x) of L(k) is given by

L*(k) = Ho + ik B — %, D(L*«k)) = H*RY).

The resolvent set, the spectrum, the essential spectrum, the continuous spectrum, the
residual spectrum and the point spectrum of L(x) are defined as follows (cf. Markus [8] p. 56,
Saito [18] p. 406):

p(L(k)) = {k* € C| Ker(L(k)) = {0}, R(L(x)) = L?RM), (L(x))"! € £L*RY))},
o(L(k)) = C\ p(L(x)),

Oess(L(K)) = [x2 € o (L) | {fu} CDLE)) st fullp2 = 1,

LW 3000 = 00, fu 201 > o))
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(where e and — denote the strongly and weakly convergence in L? respectively),
w

oe(L(k)) = {k? € a(L(x)) | Ker(L(k)) = {0}, R(LK)) = L*RY),
(L)™' ¢ SL2RVY)Y,

or(L(k)) = {k* € a(L(k)) | Ker(L(x)) = {0}, R(L(x)) # L*RM)},

op(L(K)) = {k? € o(L(k)) | Ker(L(x)) # {0}},

where Ker(L(x)) = {f € D(L(x)) I L(k) f = 0}, R(L(x)) is the range of the operator L(x),
(L (x)) denotes the closure of R(L(x)) in L2(R"), and £(L2(RV)) is the set of the bounded
linear operator on L2(RM). For k2 € p(L(x)), we put R(k2) = (L(x))~! and call it resolvent
of L(x). We can define the spectrum sets for L* (k) similarly as above. As in the case of the
usual definition, we see

(2.3) k2 € 0,(L(k)) & k2 €ap(L*(k)), Kk*¢op(L(K)).
It follows from the second resolvent equation that
(2.4) R(c?) = Ro(k?) + ik Ro(k?) BR(x?)

for any k2 € p(Hop) N p(L(x)), where Ro(lcz) = (Hy — k)~
Let A be the operator of multiplication by 4/b(x). Then since B = A2, we see from (2.4)

(2.5) AR(K?) = ARy(x®) + ik ARy(kA - AR(k?).
Now we define the operator Q(k) by

(2.6) Q(k) = ik ARy(kHA.

Then we have from (2.5)

Q.7 [l — Q()JAR(?) = ARo(k?).

If the bounded inverse of I — Q(k) exists, then

(2.8) AR = I — Q)" ARo(k?).
Therefore we obtain from (2.4) and (2.8) that

(2.9) R(x?) = Ro(k?) + ik Ro(®)ALI — Q)] 'ARo(x?).

LEMMA 2.1. Assume that 0 < b(x) < bo(1 +r)~¢ for some positive constants bg and
e. Then Q(x) and ik BRo(x?) are compact operators on L2(RN) for any k € C\ {0} with
Im« > 0.

For the proof of this lemma, it suffices only to check the compactness of ARo(x?). But
it is easily verified since b(x) satisfies the well-known Stummel condition.

Moreover, noting that ix B is Ho- and (Hp — i« B)-compact, we can follow the same line
of proof as Schechter [20] Chapter 3 to show the following proposition:

PROPOSITION 2.2. 0g55(L(x)) = 0ess(Hp) = [0, 00).

Next, we shall study the invertibility of I — Q (k) for Imx > 0. To do so, we give
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DEFINITION 2.3. ¥ ={x € C\ {0} withImk > 0 | I — Q(k) is not invertible}.
Then we obtain (cf. Mochizuki [12] Theorem 2.1, Ikebe [3] Lemma 2.4)

LEMMA 2.4. Letk € C\ {0} withImk > 0. Then « belongs to X if and only if k2 is
an eigenvalue of L (k) of finite multiplicity.

PROOF. (=) If x % O belongs to X then there exists f(s%£ 0) € L2(RY) such
that Q(k)f = f, ie, f = ikARo(k*)Af. Operating A from the left, we have Af =
ik A2Ro(k?)Af. If we set ¢ = Af then (£ 0) € L2(RV) and ¢ = ik A2Ry(k2)¢. Operating
Ro(x?) from the left, we obtain Ro(k2)¢ = ik Ro(k2)A2Ro(x2)¢. If we put = Ro(x2)v,
then ¥ (# 0) € H2(RY) and ¥ = ik Ro(k2)A%yr. Operating Ho — 2 from the left, we obtain
(Ho — k%)¢ = ik A%y, i.e., L(x)y = O with y(# 0) € H*(RV). Therefore, k2 € o, (L(x)).
(<) We can reverse the above argument. [J

As for X, the following lemma holds (cf. Mizohata-Mochizuki [10] Lemma 3.4, Iwasaki
[51 pp. 388).

LEMMA 2.5.
(2.10) Y =0.

PROOF. By the Fredholm alternative, it is sufficient to prove that Q(x)¢p = ¢, ¢ €
L?(RY) implies ¢ = 0. Since A is selfadjoint, we have

(2.11) 0= (I — QUN¢, 9) = llpll*> — ik (Ro(x?) Ag, Ap)

where (-, -) denotes the inner-product of L2(R"). By spectral resolution, we see

[e)
1
—ik(Ro(k?)Ap, Ap) = —ix / ——d(Eo(M) Ag, Ap),
0 A—K

where Eg(L) is the spectral measure for Hy. If we write k = o + it (0, T € R), then
—ik tA+0?2+1) +ic(h—0?—1?)
rA—kZ (A —02+4+12)2 4+ (207)?
Therefore taking the real part of (2.11), we have

_ 2 o (A + 0% + 12)
@.12) 0=llgl? + fo ot d(EdW A, Ap).

Since T = Imk > O by assumption, the second term of the right-hand side of (2.12) is
nonnegative. Therefore, we obtain ¢ = 0. [

From this lemma, we see that o, (L(x)) N (C \ [0, 00)) = @. Moreover, if we assume
N # 2 and '

There exist positive constants bg and dsuchthat 0 < bg <6 <1
and 0 < b(x) < bo(1 +r)"1"2 forany x e RV,

then the absence of positive eigenvalue of L(k) is obtained by the modifications of the proof
of (3.18) of Theorem 3.5. Therefore we have

(2.13)
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PROPOSITON 2.6. Assume that N # 2 and (2.13). Then 6,(L(x)) = @.
REMARK. The condition (2.13) is slightly weaker than (1.2) if b(x) > 0.

We give the proof after Theorem 3.5 in Section 3.
Next we examine the absence of residual spectrum of L (k).

PROPOSITION 2.7. o (L(k)) =0@.
PROOF. This is easily obtaind from (2.3). O

Summarizing what has been discussed so far, one can now state the following theorem
on the spectral structure of L(«x).

THEOREM 2.8. Assume that N # 2 and (2.13). Then the following assertions hold:

0 (L(k)) = Oess(L(k)) = 0c(L(x)) = [0, 00) ,
op(L(k)) =0, (L(k)) =0, p(Lk))=C\I[0,00).

3. Some inequalities—resolvent estimate.

In this section we shall show some inequalities for L2-solutions of the Schrodinger equa-
tion of the form

(3.1) —Au —ikb(x)u —k%u= f(x) in RV,
where k =0 + it (6(#£0), 7 € R) € C\ {0} and f(x) € LZU+O/2(RN), where

1/2
Il flle,c = (L(l + lxl)zalf(x)lzdx) < oo] :

If G = RV, we shall omit the second subscript G.
We define two operators D and DZ as follows (cf. Ikebe-Saito [4], Mochizuki [13],
[14], [15], Saito [18], [19]):

L>*(G) = [f(x)

N -1

DEy =Vu +
2r

X X
u— Fiku— (Imck E 0,
r r

x —
Dfu:;-'Diu=u,+

LEMMA 3.1. Ifuis a solution of (3.1), then the following identity holds:

1 2 N-—1
—f + e Plul? dS:i:f TN =D 24
2 S, S,

2r
(3.2) + f (z(\Vul? + k2 |u|?) + € 1?b(x)|u)?)dx
B,

uFiku (Imk EO).

“r 2r

u

1 —
—_ Ef |D,j.:u|2dS:FRe/ filcudx (t =Imk %O)’
Sp B,



LIMITING ABSORPTION FOR THE NON-SELFADJOINT SCHRODINGER OPERATOR 525
where S, = {x € RV l x| = p}, By ={x € RV | |x| < p} for p > 0 and Re means the real
part.

PROOF (cf. Mochizuki [14] Lemma 2.1). Multiplying by ixu on the both sides of 3.1),
we have

(3.3) —V - ((kuVu) + ic|Vul? — kb)) |u)? + ixlc*|u)? = ficu.

Integration on B, of the both sides of (3.3) gives

(3.4) —/ urikudS + f {ic|Vul® = [kPbx)|u)? + iclc 2 u?}dx = | ficudx.
SP Bp Bp

Noting that the identity

ur +

u

2 2r 2r
and taking the real part of the both sides of (3.4), we obtain the desired identity. [

— 1 1 —1 ? N -1
(3.5) Re(—ikuu,) = :EEID;tulz F = ( + |x|2|ul2> - E(__l|u|2

From this lemma, we have

PROPOSITION 3.2. Ifu is the solution of (3.1), then the following inequality holds:

2
dx + |x|2/RN {(1 +r)y 1% — M} lu|?dx

1 -1-5 -
1+r) 3

(3.6) RY 2r ,
= f a+ r)_lnslpﬁtulzdx + —/ Ifmldx (Imk E 0.
RV é RN

ur +

u

PROOF (cf. Mochizuki [14] Lemma 2.1). It follows from (3.2) that

K

s/ |Diu12ds+2/ | fikuldx .
S ’ RN

4

“rt

u

2
+ lxlzlulz) ds —2l«|? j 6@ |u|2dx
(3.7) R

Multiplying by (1+ ) =1~ on the both sides of (3.7) and integrating over [0, +060), we obtain
(3.6). O

LEMMA 3.3. Let ¢ = ¢(r) be a real-valued Cl-function. If u is a solution of (3.1),
then the following identity holds:

/RN {(“—LW + %r) ID*uf? + (% - wr) (ID*ul? - |'D;tu|2)} dx

b(x 2
i/N bxe (|D;tu|2 + P ul? — )dx
R

2
N-—DIN=3) ¢ 2 TN -"DWN=3) 5
T Ja {_ 8 (_2)r ul” = 4r? ol }dx

=Re f feDFudx (m« 2 0).
RN

N -1
ur +

u

(3.8)
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PROOF (cf. Mochizuki [13] pp. 37, [14] Lemma 2.2, and [15] pp. 43. See also Ikebe-
Saito [4] Lemma 2.2.).
Put v(x; k) = eP?" ) y(x) where p(r; k) = Fikr + (N — 1)/2) logr. Then v satisfies

3.9) —Av+2Vp-Vo+bx;k)v=2¢f,

where b(x; k) = —ikb(x) + (N — 1)(N — 3)/4r2. Multiplying by vr on the both sides of
(3.9) and using the relation Vv - V(7)) = V - ((IVv[2/2)(x/r)) — (N —3)/2r|Vv|? — |v, |*/r,
we see

2
)
|Vu|2 - _I’_l

2 -
—V-(Vvv_,— Vol f)_ (N -3)

2 r 2r
+2Vp - Vuu; + b(x; K)vT; = € fT; .

Noting that Vv = e*D*u, v, = e#Dfu and dividing the both sides of (3.10) by e¥>*rN =1,
we obtain

(3.10)

2 r r

3.11)

+7|D*ul? + 2ia|D§tu|2 + b(x; Ic)uDi':u = fDﬁtu .

Multiplying ¢ = ¢(r) on the both sides of (3.11), integrating over R and taking the real
part, we have

fRN [(zro+ &) D=ui? + (£ - o) (D*ul® - IDFUD) | ax

(3.12) _ _
+Ref @b(x; K)uDEudx = Re/ of DEudx .
RN : RN

We write u1 = Reu, up = Imu (i.e., u = uy + iuz). Then

(3.13)
Re/ goB(x; Ic)uDibudx
RN
T(N—-1)
=[x b(xw[—(—z;—luﬁ + i} |u|? + o (uaur, — uruz,) + t(Uiuy, +uzu2r)}dx
N-1DN-3 N-1
+f IV Gy +uauan) + u|® £ vluf? | dx
RN 4r 2r

where ¥k = o 4+ i7. Note that

@ pluPx\ N-—1lolu?> o\ |u?
r2 = V . r - - (_) I
r2 (uiuiy +uzuar) ( 2r2 r) r 2r2 r2/, 2

And we recall (3.5) to observe

o (uauy,r — uyuz,) + t(uiuy, + uguz,r) = Re(—ikuu,)

N—-1 |2 (N -1
ur + +|x|2|u|2> —(———3|u|2.

u

2

1 1
=4—|DFuP x -
2 PrulF ( 2 2r




LIMITING ABSORPTION FOR THE NON-SELFADJOINT SCHRODINGER OPERATOR 527

Substituting these relations to (3.13), we obtain

Re/ (pl;(x; lc)uD,iudx
RN

_ 2
(3.14) =i/ bx)e (lD,iu12+|lc|2|u|2— w+ N1, )dx
RN 2 2r
N —1)(N —3 N —1)(N -3
Y REEIIE RS

(3.12) and (3.14) give the desired identity. [
From this lemma, we obtain the next inequality.

PROPOSITON 3.4. Assume that N # 2. If u is a solution of (3.1), then the following
inequality holds:
2
) dx

fRN(l +r)—1+8|D:tu|2dx
PROOF. Putg = ¢(r) = (1 + r)? in Lemma 3.3. Then since § < 1, we have

(3.16) ? >0,
r

N -1

Mr ¥ 2r

u

1 2 21,12
(3.15) -3 fR 1BCoIA + 7Y (miul + I Pluf? +

2 —
< —f (1+r)’|fDFuldx (Imk Z0).
8 RN

%
(3.17) (r—z) <o0.
(3.16), (3.17), N # 2, and |D¥u| < |D*u| give the desired inequality. [

THEOREM 3.5. Assume that N # 2 and (1.2). If u is a solution of (3.1) then there
exist positive constants C1 and C; independent of k such that the following inequalities hold:

(3.18)  klllwll-a+82 = Cill flla+sy2  mk % 0,

(3.19) ID*ull=14+82 < C2ll fla+sy2  (Imk 2 0).
PROOF. Since by < ((2 — ﬁ) /2)é, there exists a constant £ such that
2b% — 48bg + 82

(3.20) O<e< 52 (<.
Then

2o _ 2bo(d — b
(3.21) 1—-%9>1—e——~9>—b—0(37—0)>0.

By (3.20) and (3.21), there exists a constant ¢g (> 0) such that

1+¢ ) 2by
3.2 —_— —ll—-—g——).
3.22) 1—bo/6<‘”°<bo( ; 6)



528 HIDEO NAKAZAWA

Adding (3.6) to go-times (3.15), we obtain

Iic|2 /N [(1 T 2"’;")' _ ‘p"'l;(x)l a+ r)‘s} |uldx
R

+f~ {(po(l +r)" 10— @%Sx—)l(l +n -+ r)“—“] | DY u|?dx
R

+/ (A +r)"1% = @olb(x)|(1 + r)®
RN

(3.23) 2

dx

N —
ur + u

5
2
< 3/ | firculdx + -—/ (1 + r)’| fDFuldx .
RV
Note that by the Schwarz inequality,

2 — 1
(3.24) —f | fikuldx < ——2f (1+r)1+5|f|2dx+e|x|2f (1 +r)' P ufdx,
é RN €8% JRN RN

2 —

—‘g—"fN(l +r)8| fDEuldx

(3.25) R

< ‘D—Ozf a +r)1+8|f|2dx+sf (1 + 1)~ DEuPdx .
8 RN RN

Then (3.23), (3.24) and (3.25) give

(3.26)
lic |2 fN {(1 +r)7170 2"’;")' - ‘p"";(x)'(l +r)¥ —e( + r)-1—8] |u|*dx

R

+[N {¢0(1 + )1+ "";";(in(l +r) -+ - + r)—1+5}|Diu|2dx
R

8 2

+/ [(1 +r)—1—5 _ (polb(x)la(l +l") } u, + : ul dx

1 + (po

f A+ f%dx .
By (3.22) and (1.3), we see

1+~ - 2|b;x)l — ¢°|I;(x)| A+ —e(l +r)71

427 20 gobo
2 (1= - 552 - aen 0,

go(1 +r)71*° — @1;_@_)1(1 +r = +n)1 Q4 )7

(3.28) oo
(cvo— = -1 —e) (1+n7* 50
and
é

(3.29) A+ )-8 — ‘Polb(x)la(l +r) > (1 (p()8b0) 4717 > 0.
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Therefore by (3.26), (3.27), (3.28) and (3.29), we obtain (3.18) and (3.19). [

PROOF OF PROPOSITON 2.6. It suffices to show that op(L(k)) N (0,00) = @ with
b(x) = 0. To do so, we have only to show the inequality (3.18) for Imx = O under the
assumption in Proposition 2.6.

Similary with the proof of Propositon 3.2 and 3.4, we can show the following inequali-
ties:

e
(3.30)

2 N
< f a1+ r)_l_‘le;"ulzdx + = f | fikuldx ,
RN & JrN

ur +

2
ul + |/c|2|u|2) dx

2r

2

1 N -1
f A +r) Dy 2dx — —f bx)1 +rllu, + u| dx
RV 8 JrN
(3.31) )
<3 [ A+ DFuldx,
(S RN

for Imx = 0. Since by < &, there exists a constant gg such that 1 < @o < 8/bg. Then
(3.32) 1— b"aﬂ > 0.
Next since g9 — 1 > 0, there exists a constnat & such that
(3.33) 0 < & <min{gpy — 1, 1}.

Adding (3.30) to gp-times (3.31) and using (3.24) and (3.25), we obtain

¢! —8)|x|2/ A+ )18 u)dx + (o — 1 —s)/ A +r)~ D udx
RN RN
2

é
-1
(3.39) +/ {(1 e L fﬂob(x)((sl +7) ] Ak W
1 + go
=2 [ aentisia,
By the condition 0 < b(x) < bo(1 + r)~12% and (3.32), we have
1 8 b
(3.35) (1+r)~18 — goob(x); 1) > (1 - L(:S 0) 1+r~1"%>0.

Therefore, noting (3.34) and (3.35), we obtain (3.18) forImx =0. O
From Theorem 3.5, we have

COROLLARY 3.6. Assume that N # 2 and (1.3).

(1) There exists a unique solution u of (3.1) in Lz'“(l*"s)/z(RN)for Imxk % 0.

(2) There exists a positive constant C3 independent of k such that the following in-
equality holds:

(3.36) P lul2 (145y/2, 55 < C3(L+ RN f 115, (Amic 2 0),
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where Eg = {x € RY | |x| > R} for R > 0.

PROOF. (1) is a direct consequence of Theorem 3.5 (3.18). Therefore, we shall show
the assertion (2).
It follows from (3.7) that

lic|? f |u|?dS — |k|? f 1b(x)| |ul?dx < f |D*u|?ds + 2 f | fixu|dx .
Sp RN Sp RN

Multiplying by (1 + p)~!~% on the both sides of this and integrating on p € [R, +00), we
have

(1+R)~°
——IxI?

2 f (1 + 1)~ ufPdx <
Ix|>R 8

fR b luldx
(3.37)

2 —_
+f A+ DEuPdx + (1 + R)“S/ | ficu|dx .
|x|>R ) RN
Note that the following inequalities:

fl | R(l +r) 1D u?dx < 1+ R /RN(1 + )14 DEu2dx

(3.38) x>

<21+ R f A+ fidx,
R

(3.39) f | fixuldx < Ci / (1+ P fPdx
RN RN

where we have used (3.19) and (3.18) in (3.38) and (3.39), respectively. Moreover it follows
from (1.3) and (3.18) that

(3.40) lic|? f |b(x)| |u|*dx < C?bo f (1 + )48 £2dx .
RN RN

Using (3.38), (3.39) and (3.40) in (3.37), we obtain (3.36). O

From Theorem 3.5 and Corollary 3.6 (1), we can show the invertibility of I — Q (k) with
Imx = 0.
<

THEOREM 3.7. Assume that N # 2 and (2.13). If ¢ = Imk = 0, we define Q(o +
i0) = lim;_,0 Q(o =% i€), where lim means the limit in the uniform operator topology. Then
for Imk % 0, [I — Q(/c)]_1 € L(L%*(RM)) holds, where in general lim;_,o Q(o + ig) #
lim, o Q(o —ig).

PROOF. Firstly, we shall show that I — Q(x) € £(L%(RV)). For any f € L*(RN),
we see Af € L2U+9/2(RN). Then we find from (3.18) of Theorem 3.5 that R(k?)Af €
L2—(1+8)/2(RN) holds. Since it follows from this and the resolvent estimate (cf. Mochizuki
[14] or Theorem 3.5 with b(x) = 0) that [Q(x) fil < C|| f|l for Imx % 0 (where C is some
positive constant independent of k), we obtain the conclusion.

Next we shall show that I — Q(«) is injection. If [1 — Q(k)]1f = O for any f € L2(RY),
then we see Af — ik A2ZRo(k2)Af = 0 (Af € L2(+D/2(RNY), Operating Ro(k?) from the
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left, we have g— ik Ro(k?)A%g = 0 (g = Ro(k?)Af € L2~ (1+9/2(RN)). Operating Hy — «2
from the left, we obtain L(k)g = 0. By Corollary 3.6 (1), g = 0, therefore, f = 0 follows.

Finally, we shall show that I — Q(«x) is surjection. To do so, it suffices to show that
L2RM) € R - Q(k)), ie., for any f € L2(RV), there exists ¢ € L2(RY) such that
f = [I — Q(x)lg holds. Since f € L%2(RY), we see Af € L%>U+9/2(RN). Consider
the equation: L(k)¢ = Af. Then, there exists unique ¢ € L>~U+3/2(RN) by Corollary
3.6 (1). Therefore, we find Ap € L?(RM). Now we define g by g = ikAp + f. Then
we have g € L2(RY). Moreover the equation above is equivalent to (Hy — k2)p = Ag.
Since g € L2(RV), Ag € L%(+9/2(RVN) holds. Therefore, we find ¢ = Ro(k2)Ay, that is,
ik Ap = Q(k)g. From this and the definition of g, we obtain [/ — Q(x)]lg = f.

Thus, the conclusion follows from the inverse mapping principle. [J

Before closing this section, we derive an elliptic estimate for (3.1) required in the proof
of the limiting absorption principle.

PROPOSITION 3.8. Letk = o +it € C\{O}witho € I = (a1,a2) 0 < a1 <
ay < oo) or I = (—az, —ay), |t| < 19 < 00 for some positive 1y and let G, G’ are bounded
domains such that G € G' C RN where G € G’ means G (closure of G) C G’. Then there
exists a positive constant C = C(I, 19, G') such that

(3.41) / |Vu2dx < cf (ul?> + | f1Ddx .
G G’

PROOF. We may assume 0 € G without loss of generality. Multyplying by i on the
both sides of (3.1) where ¥ = ¥ (r) > 0, we have

N -1
2r

¥|Vul*> =V - (Y Vui) + V - (%Iulzg) - Y lu)?

Ve
2

(3.42)

> — ikb(x)¥|ul?> = K2y lul® = fyi.
Choose ¢ € C3°([0, 00)) such that

1 on G

(3.43) 1/,(’.) = {0 on RN \ Gl

and integrate (3.42) by parts on B(R), where B(R) is large ball in RM such that G ¢ G’ C
B(R) for sufficiently large R (> 0). Then

fqulzdx—-/ Vu,adS + -'/’—’|u|2ds-/
G Sk Sg 2 G’

— —Wllulzdx —i/cf b(x)|u|2dx;—lc2/ lu|2dx =/ fudx .
G G G

G 2

N

—1
5 Yrlu|?dx
(3.44) d
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The second and third terms of the left-hand side of (3.44) are 0 by (3.43). Then taking the real
part of (3.44), we obtain

f Vuldx — f L yrlulPdx — f "’”| 2dx
G 7’
+r/ b(x)lulzdx 2)[ |u|2dx—Re/ fudx .

It follows from this that
(3.45)

f [Vul?dx 5f ( Iwr|+ W”") |u|2dx+f |f12|dx+(02+1:obo)f lu|?dx .
G G’ G G
Noting that Y, = ¥,, = 0 on G, we find

rr N_l rr
f (N gl + 2] l)lulzdx=f ( i+ ‘)l 2dx
G G'\G r

N -1 1 ,
< dx,
< (S max i+ g max i) [ wPas

where ro = max,eg |x|. Moreover, by the Schwarz inequality

(3.46)

_ 1
3.47) [ vaax <5 [ ul+ s
G G’
Then (3.45), (3.46) and (3.47) give the desired inequality. [

4. Proof of Main Theorem.

We shall abbreviate u(o, ) = R((o + it)?)f by u(r). Let {r,} be any sequence such
that 7, | 0. It follows from (3.18) of Theorem 3.5 that

Ci
“4.1) lu(Ta)l—+8)/2 < |—0—|||f||(1+5)/2-

Firstly, we shall show that among {u(z,)} we can choose a strong convergent subse-
quence {u(tp, )} in L2~ (+D/2(RN),
If we note Corollary 3.6 (2), for given any ¢ > 0, we can choose R > O to satisfy
€
"u(Tn)||?_(1+5)/2,ER =< Z .

In the following we fix such an R. For this R, we see

4.2) Nu(Tn) — u(Tm)l—1+8)/2 < llue(zn) — u(Tm)ll B + %

Since {u(t,)} is a bounded in L%(Bg) by (4.1), it follows from Propositon 3.8 and the Rel-
lich theorem that {u(7,)} becomes compact in L?(Bg), namely there exists subsequence
{u(tn,)} € {u(7n)} such that {u(z,, )} becomes Cauchy sequence in L%(Bg). This and (4.2)
give the conclusion.



LIMITING ABSORPTION FOR THE NON-SELFADJOINT SCHRODINGER OPERATOR 533

Next, when {7,}, {t,} are sequences which converge to 0 and if

(4.3) u(tn) > tto, u(T;) > ug,  in L2UH+I2RNY a5 n — 00

then uo = ug holds.

Let us denote k, = o + it, and k;, = o + it,, then u(t,) and u(r,) satisfy (3.1) with
k = kn and Kk = «;, respectively. If we put v, = u(t,) — u(z,), then v, satisfies
(4.4) L(kn)vn = ib(x)(kn — k))ulky) + (kn® — k) 2)u(k)) .

Since k,, — k), and k,2 — k)2 — 0 as n — 00, we find the right-hand side of (4.4) goes to 0
as n — o¢. Thus we see
L(o)(ug — u6) =0.

Noting (3.18) of Theorem 3.5, we obtain the conclusion.

Finally, we shall show that the convergence of u(o, 7) to u(o) in L%~ (1+8)/2 s ypiform
with respectto o € I. :

If it is not uniform, there exist a positive number u, 0™ € I and {1,} (7, | 0) such that

(4.5) lu(c ™, 1) — u(c™)||—a+s8),2 = 1

holds. Without loss of generality we may assume that {o ™} converge o € I. On the other
hand, since u(oc™, t)—;u(a(")) in L2=(+9/2(RN) as 7 |, 0, there exists {7,} (z, | 0) such

that
7
(4.6) lu@™, 7,) — u(@™)—a4s8)/2 < -

for any n € N. Since we have 6™ + it, - o and o™ + it/ — o asn — oo,
both {u(c™, 7,)} and {u(c™, 7,)} converge to the same limit u(0). Moreover we also
obtain that u(or(”))—s>u(a) in L2—(1+9)/2(RN) by (4.6). Therefore u(c™, )2 u(0) in

L2~(+89/2(RN), and it is a contradiction to (4.5).
This completes the proof of Theorem 4.1 [

5. The principle of limiting absorption for i (g _IB) .
First of all, note that (1.3) with initial data w(x, 0) = w;, w;(x, 0) = wy is equivalent to
f w .0 1 w) (0 w0 ) _ (w
s ()@ ) E)-0) Ge)-()-

We define the Hilbert space H = H!(R"Y) x L2(RY) (H!(R") being the Beppo-Levi space)
with inner product

f, Hn = /I;N(Vfl Va1 + - @dx

forf:(j:;),ﬁ:(g;)e%.
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If b(x) > O then the solution of (5.1) is given by

Q) ()
Wy w2
0

where W = i A —IB) is the generator of the contraction semi-group {e~iW? }¢+>0 on H (cf.

Mochizuki [14] p. 384, or Kadowaki [6]).
The limiting absorption principle for W can be stated as follows:

THEOREM 5.1. Assume that N # 2, (1.2) and f = (2) e Hi = HHRM) n
LZ2A+O/2(RNy x [2.0+D2(RNY (¢ H). If i = fig+ic = Z;"i’t is a solution of the
,oxIT
equation:
(5.2) Wi— (o xit)i=f

(o0 € R\ {0}, T > 0), then there exists the limit

limigyir = ix
Tl

inHy = HLY—U+O/2(RN) x [2.-(+8)/2(RNY (D H) and it%. solves the equation
Wiy —ocuz = f,
where

HUL—(+8)/2 RNy = {f(x)

fR LAFNTITAVI@P + 1 f@)Pdx < oo] :

PROOF. Putx = o *it. From (5.2), we obtain
(5.3) L(k)ui,oxic = F(k),

5.4 Uz,otitr = —iKU1 oxir —if1,

where F(k) = (ib(x) +«) f1 — f>. Note that F (k) € L2(1+8/2_ Then by the Main Theorem,
U1 o+ir converge u) + in L2~U+8/2 a5 ¢ | 0 and u 4 is the solution of the equation:

(5.5) L(o)u1,+ = F(o).

Thus we find that v = u; 5+;r — 41,+ is the solution of the equation:
(5.6) Lk)v=G(x;1),

where

5.7 G(x; 1) = Frb(X)uy + + (F20ti — tHuy+ Fith .

Multiplying by ¢ on the both sides of (5.6) (¢ = ¢(r) = (1 + r)~!17%), we see
—V - (VD) + ¢rv, 0 + V|2 —ikb(x)P|v]? — k2@|v]? = G(x; T)PD.
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Integration on RY by parts gives
(5.8) /RN $IVvlPdx < fRNcwrvrm + Ikl BIpIvI* + Ik Plvl* + $1G (x; 1)) .

We choose £ as 0 < ¢ < 1. Noting |¢,| < (1 +8)(1 + r)~27% and (1.2), we obtain

1+ 6)2
(5.9) f |y v, 0|dx ssf a +r)‘1"8|Vv|2dx+£+—)—/ 1 +r)" 18 v)2dx
RN RN 48 RN

(5.10) lic| f Ib(x)|$|v|2dx < bolk| / 1+~ 2dx,
RN RN

(5.11)
1/2 1/2

f ¢|G(x; T)Dldx < ( f <1+r)“‘-5|G(x;r>|2dx) ( / <1+r)“—8|v|2dx) :

RN RN RN
Using (5.9), (5.10) and (5.11) in (5.8), we find
Q —e)/ 1+ )18 vu|dx
RN

(1 +68)2
4

172 1/2
+(/ (1+r)"1—8|G(x;t)l2dx) (f (1+r)’1"3lv|2dx) i
RN RN

By the Main Theorem, we see

(5.12) < + bolk| + |x|2) / LA+l
R

/ A+r)"bwPdx >0 (x10).
RN
Thus it follows from (5.12) that

IVuy,g+ic — Vur+ll—a+8,2 >0 (t 40).

On the other hand, as for u3 g +ir,

lifg Uz otic = —iouy + —ifi =up+ in L2~U¥D2 O
T
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