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Abstract. We determine homotopically energy-minimizing harmonic maps of tori into the 3-dimensional real
projective space $RP^{3}$ of constant sectional curvature 1.

Introduction.

Let $N$ be a compact Riemannian manifold with $\pi_{2}(N)=0$ and $\phi$ a continuous map of
a Riemann surface $M$ into $N$ . Then Sacks and Uhlenbeck [S-U] proved that there exists a
homotopically energy-minimizing harmonic map in the homotopy class of $\phi$ . The energy and
the number of the energy-minimizing harmonic maps are not however explicit.

In this paper, in the case $M=T^{2}$ (a flat torus), $N=RP^{3}$ , we determine the energy and
the number of the energy-minimizing harmonic maps $T^{2}\rightarrow RP^{3}$ .

A flat torus is represented by $R^{2}/[1, z]$ , where 1, $z$ are lattice vectors such that ${\rm Im} z>0$ ,

that is, $z\in H$ (the upper half plane). Let $\langle$ 1), $(z\rangle$ denote the generator of $\pi_{1}(R^{2}/[1, z])$

represented by 1, $z$ . Since $\pi_{1}(RP^{3})$ is $Z_{2}(=\{0,1\})$ , there exist $k,$ $l$ such that

$\phi((1\rangle)=k,$ $\phi(\langle z\rangle)=l$ ,

where $k,$ $l=0$ or 1. So the homotopy set ofmaps of the torus into $RP^{3}$ are classified according
to

$(k, l)=(0,0)$ , $(1, 0)$ , $(0,1)$ , $(1, 1)$ .

If $(k, l)=(0,0)$ , then $\phi$ is null-homotopic and hence the harmonic maps corresponding to $\phi$

are constant maps. If $(k, l)=(1,0)$ , then $R^{2}/[1, -1/z]$ is homothetic $R^{2}/[1, z]$ and the map
$\tilde{\phi}$ of $R^{2}/[1, -1/z]$ into $RP^{3}$ corresponding to $\phi$ satisfies

$\tilde{\phi}(\langle 1))=0$ , $\tilde{\phi}(\left\{\begin{array}{l}1\\--\\z\end{array}\right\})=1$ .
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If $(k, l)=(1,1)$ , then we have the homothety of $R^{2}/[1, z]$ onto $R^{2}/[1, z/(z+1)]$ and corre-
sponding to $\tilde{\phi}$ again satisfies

$\tilde{\phi}(\langle 1))=0$ , $\tilde{\phi}(\{\frac{z}{z+1}\})=1$ .

Thus it is enough to consider the case where $(k, l)=(0,1)$ in the homotopy set and hence
determine homotopically energy-minimizing harmonic maps $\varphi$ of $R^{2}/[1, z]$ into $RP^{3}$ such
that $\varphi(\langle 1))$ is null-homotopic and $\varphi((z))$ is not null-homotopic in $RP^{3}$ .

So, in this paper, we assume that homotopically enegy-minimizing harmonic maps are
in the homotopy class corresponding to $(k, l)=(O, 1)$ .

Let $SL(2, Z)$ be the modular group acting on $H$ and $\Gamma^{\prime}$ the subgroup defined by

$\left(\begin{array}{ll}l & k\\n & m\end{array}\right)$

with $l$ odd and $n$ even (so $m$ is odd). Then $\Omega$ defined by

$\{z\in H:|z-\frac{1}{2}|\geq\frac{1}{2}$ $0\leq{\rm Re} z\leq 1\}$

is a fundamental domain of $\Gamma^{\prime}$ . Furthermore we denote by $\gamma$

$\{z\in H$ : $|z-\frac{1}{2}|=\frac{1}{2}\}$ .

We obtain the following on the number of homotopically energy-minimizing harmonic
maps of a flat torus into $RP^{3}$ :

THEOREM A. (i) The number of homotopically energy-minimizing hamonic maps $\varphi$

of $R^{2}/[1, z]$ for $z\in H$ and $z\not\in\Gamma^{\prime}T$ such that $\varphi((1))$ is null-homotopic and $\varphi((z))$ is not
null-homotopic in $RP^{3}$ is one up to isometries of $RP^{3}$ and the image is a geodesic. (ii) The
number of homotopically energy-minimizing hamonic maps $\varphi$ of $R^{2}/[1, z]$ for $z\in\Gamma^{\prime}T$

such that $\varphi((1))$ is null-homotopic and $\varphi(\langle z\rangle)$ is not mull-homotopic in $RP^{3}$ is infinity up
to isometries of $RP^{3}$ . More precisely, two of these have geodesics as their images and the
others are $a$ one parameter family of homotopically energy-minimizing hamonic maps with
all Clifford tori (in $RP^{3}$ ) as images. Furthemore, the limits of the one parameterfamily are
the above two maps (whose images are geodesics).

Note that the space of homotopically energy-minimizing harmonic maps of a flat torus
into $RP^{3}$ is path-connected. Mukai [M] has studied a one parameter family of harmonic maps
of the square torus into $S^{3}(1)$ whose images are Clifford tori in $S^{3}(1)$ and has determined the
Jacobi fields and their integrability and hence a connected component containing the above
harmonic maps in the moduli of hannonic maps of the square torus into $S^{3}(1)$ .

Let $E(z)$ denote the energy $E(\varphi)$ of a homotopically energy-minimizing harmonic map
$\varphi$ of $R^{2}/[1, z]$ into $RP^{3}$ . Then $E(z)$ is a function on $H$ and has the following property:

THEOREM B. (i) $E(z)=\pi^{2}/(2{\rm Im} z)$ $ forz\in\Omega$ . (ii) $E(z)$ is invariant by $\Gamma^{\prime}$ and is
not smooth on $\Gamma^{\prime}T$ .
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1. The Clifford minimal surface.

Let $R^{4}$ be the 4-dimensional Euclidean spac$e$ and (X, $Y,$ $Z,$ $W$) a canonical coordinate
system of $R^{4}$ . Let $S^{3}(1)$ be the 3-dimensional unit sphere with center at the origin in $R^{4}$ and
$P$ the stereographic projection of $S^{3}(1)\backslash (0,0,0,1)$ onto the (X, $Y,$ $Z$)-plane. We denote by
$(x, y, z)$ the image of (X, $Y,$ $Z,$ $W$ ) $\in S^{3}(1)\backslash (0,0,0,1)$ , so that

$x=\frac{X}{1-W}$ , $y=\frac{Y}{1-W}$ , $z=\frac{Z}{1-W}$ .

Let $\phi$ be the Clifford minimal embedding of the torus $S^{1}(1/\sqrt{2})\times S^{1}(1/\sqrt{2})$ into $S^{3}(1)$

given by

$\phi(s, t)=(\frac{1}{\sqrt{2}}\cos\sqrt{2}s,$ $\frac{1}{\sqrt{2}}$ sin $\sqrt{2}s,$
$\frac{1}{\sqrt{2}}$ cos $\sqrt{2}t,$

$\frac{1}{\sqrt{2}}$ sin $\sqrt{2}t)$ .

Then we get an embedding

$P\phi(s, t)=(\frac{\cos\sqrt{2}s}{\sqrt{2}-\sin\sqrt{2}t}$ $\frac{\sin\sqrt{2}s}{\sqrt{2}-\sin\sqrt{2}t}$ $\frac{\cos\sqrt{2}t}{\sqrt{2}-\sin\sqrt{2}t}I$

for which the following is well known [S-T]:

LEMMA 1. $ P\phi$ is an embedding of $S^{1}(1/\sqrt{2})\times S^{1}(1/\sqrt{2})$ into the $(x, y, z)$ -plane and
the image is a $su|face$ of revolution about the z-axis ofa circle ofcenter $(\sqrt{2},0)$ and radius 1
in the $(x, z)$ -plane.

Since the Clifford minimal torus $S^{1}(1/\sqrt{2})\times S^{1}(1/\sqrt{2})$ is invariant under the antipodal
map of $S^{3}(1)$ , it admits and isometry. Using lattice vectos $(\sqrt{2}\pi, 0),$ $(0, \sqrt{2}\pi)$ , we can iden-
tify $R^{2}/[(\sqrt{2}\pi, 0), (0, \sqrt{2}\pi)]$ with $S^{1}(1/\sqrt{2})\times S^{1}(1/\sqrt{2})$ , and the above isometry is given
by

$[s, t]\mapsto[s+\frac{1}{\sqrt{2}}\pi,$ $t+\frac{1}{\sqrt{2}}\pi]$ .

We now have a map $\psi$ of a torus $R^{2}/[e, f]$ with the lattice generated by

$e=(\sqrt{2}\pi, 0)$ , $f=(\frac{1}{\sqrt{2}}\pi,$ $\frac{1}{\sqrt{2}}\pi)$

into $RP^{3}$ . We shall also call this the Clifford minimal surface.
Now we can study the homotopy class and the energy of $\psi$ as follows:

LEMMA 2. The curve $P\phi(s, 0)$ is a circle of center $(0,0)$ and radius $\pi/\sqrt{2}$ in the
plane $z=1/\sqrt{2}$, and so $\psi((e))$ is null-homotopic in $RP^{3}$ . The curve $P\phi(t, t)$ is a circle of
center $(0,1)$ and radius $\sqrt{2}$ in the $(\tilde{x},\tilde{y})$ -plane defined by an orthonormal basis $\{1/\sqrt{2}(1,0,1)$ ,
$(0,1,0)\}$ , and so $\psi((f\rangle)$ is the generator of $\pi_{1}(RP^{3})$ . Furthemore $\psi((f\rangle)$ is a geodesic in
$RP^{3}$ , and the energy of $\psi$ equals $\pi^{2}$ .
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Since $\psi$ is an isometric minimal embedding, $\psi$ is a harmonic map. Similarly, using the
Clifford embedding of $S^{1}(1/r_{1})\times S^{1}(1/r_{2})$ into $S^{3}(1)$ , that is,

$(s, t)|\rightarrow(\frac{1}{r_{1}}\cos r_{1}s,$ $\frac{1}{r_{1}}$ sin $r_{1}s,$ $\frac{1}{r_{2}}\cos r_{2}t,$ $\frac{1}{r_{2}}$ sin $r_{2}t)$ ,

where $(1/r_{1})^{2}+(1/r_{2})^{2}=1$ , we also obtain an isometric embedding $\overline{\psi_{r_{1}}}$ of $R^{2}/[(2\pi/r_{1},0)$ ,

$(\pi/r_{1}, \pi/r_{2})]$ into $RP^{3}$ . Note that $\overline{\psi_{r_{1}}}$ is not aharmonic map except when $r_{1}=\sqrt{2}$, because it
is not minimal except when $r_{1}=\sqrt{2}$ (the Clifford minimal surface). $Ch\underline{tg}ing$ the flat metric
of $R^{2}/[(2\pi/r_{1},0), (\pi/r_{1}, \pi/r_{2})]$ , we shall find the flat metric such that $\psi_{r_{1}}$ is harmonic.

We consider flat metrics on $R^{2}/[(2\pi/r_{1},0), (\pi/r_{1}, \pi/r_{2})]$ defined by
$\alpha ds^{2}+2\beta dsdt+\gamma dt^{2}$

where $\alpha>0$ and $\alpha\gamma-\beta^{2}>0$ . Since the harmonicity is conformally invariant, we may
assume $\alpha=1$ . Our problem is as follows:

PROBLEM. When is $\overline{\psi_{r_{1}}}$ hamonic with respect to the aboveflat metric given by $\beta$ and
$\gamma$ ?

We define a diffeomorphism $T_{a,b}$ of the torus $R^{2}/[(2\pi/r_{1},0), (a, b)](b>0)$ onto
$R^{2}/[(2\pi/r_{1},0), (\pi/r_{1}, \pi/r_{2})]$ by

$T_{a,b}(\tilde{s}, t)=\sim(\tilde{s}+\frac{1}{b}(\frac{\pi}{r_{1}}-a)^{\sim\sim}t,$$\frac{\pi}{br_{2}}t)$ .

Then the flat metric on $R^{2}/[(2\pi/r_{1},0), (a, b)](b>0)$ induces the flat metric on
$R^{2}/[(2\pi/r_{1},0), (\pi/r_{1}, \pi/r_{2})]$ by $T_{a,b}$ , which is given by

$ds^{2}+2(-(\frac{\pi}{r_{1}}-a)\frac{r_{2}}{\pi})dsdt+(((\frac{\pi}{r_{1}}-a)\frac{r_{2}}{\pi})^{2}+(\frac{br_{2}}{\pi})^{2})dt^{2}$

When $ a=\pi/r_{1}+(\pi/r_{2})\beta$ and $b=(\pi/r_{2})\sqrt{\gamma-\beta^{2}}$, the induced metric is $ds^{2}+2\beta dsdt+$

$\gamma dt^{2}$ . Thus the problem is reduced to studying whether $\psi_{r_{1},a,b}=\psi_{r_{1}}T_{a,b}$ for $a$ and $b>0$ is
harmonic.

$\psi_{r_{1},a,b}$ is given by

$\psi_{r_{1},a,b}(\tilde{s}, t)\sim=[\frac{1}{r_{1}}$ cos $r_{1}(\tilde{s}+\frac{1}{b}(\frac{\pi}{r_{1}}-a)^{\sim}t),$ $\frac{1}{r_{1}}$ sin $r_{1}(\tilde{s}+\frac{1}{b}(\frac{\pi}{r_{1}}-a)^{\sim}t)$ ,

$\frac{1}{r_{2}}\cos r_{2}\frac{\pi}{br_{2}}t\sim,$ $\frac{1}{r_{2}}\sin r_{2}\frac{\pi}{br_{2}}t\sim]$ .

By a simple calculation, we obtain the following:

PROPOSITION 3. $\psi_{r_{1},a,b}$ is a hamonic map $\iota f$ and only if

$(a-\frac{\pi}{r_{1}})^{2}+b^{2}=(\frac{\pi}{r_{1}})^{2}$

Then $E(\psi_{r_{1},a,b})$ is given by $(1/2)(\pi^{2}/b)(2\pi/r_{1})$ .
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We set $ z=r_{1}a/2\pi+ir_{1}b/2\pi$ , then $ z\in\gamma$ and $R^{2}/[1, z]$ is homotheitc to $R^{2}/[(2\pi/r_{1},0)$ ,
$(a, b)](b>0)$ and hence we can define a one parameter family of hamonic maps $\psi_{z,r_{1}}$ of
$R^{2}/[1, z]$ with $E(\psi_{z.r_{1}})=\pi^{2}/(2{\rm Im} z)$ into $RP^{3}$ by $\psi_{r_{1},a,b}$ as follows:

$\psi_{z,r_{1}}(s, t)=[\frac{1}{r_{1}}\cos 2\pi(s+\frac{1-2{\rm Re} z}{2{\rm Im} z}t),$ $\frac{1}{r_{1}}\sin 2\pi(s+\frac{1-2{\rm Re} z}{2{\rm Im} z}t)$ ,

$\frac{1}{r_{2}}\cos 2\pi(\frac{1}{2{\rm Im} z}t),$ $\frac{1}{r_{2}}\sin 2\pi(\frac{1}{2{\rm Im} z}t)]$ ,

where $1<r_{1}$ . Note that $\psi_{z,r_{1}}((1))$ is null-homotopic and $\psi_{z,r_{1}}((z))$ is not null-homotopic.
Now we can answer our problem.

COROLLARY 4. The $\psi_{z,r_{1}}(r_{1}>1)$ are precisely the hamonic maps which we seek.
The conformal structures are given by 1, $z(z\in T)$ , and $E(\psi_{z,r_{1}})=\pi^{2}/(2{\rm Im} z)$ .

We may consider that ( $ z\rangle$ , ( $ z\rangle$ $-(1\rangle$ also express closed geodesics for the homology
cycles. Since $\psi_{z,r_{1}}((z\rangle)$ and $\psi_{z,r_{1}}((z)-(1\rangle)$ are geodesics in $RP^{3}$ , we note that only $(z)$ and
( $ z\rangle$ $-(1\rangle$ are asymptotic curves on a Clifford surface. This fact is used in Section 2.

REMARK. We refer to [D] on the terminology (asymptotic curve, second fundamental
form, etc.) of the geometry of submanifolds.

REMARK. $\psi_{z,r_{1}}$ induces a harmonic map of $R^{2}/[1,2z]$ into $S^{3}(1)$ , which has a constant
energy density. Harmonic maps with constant energy density into spheres were studied by
T\’oth [T].

2. An energy estimate.

We shall obtain an energy inequality.
We consider lattice vectors 1 and $z$ , where $0\leq{\rm Re} z\leq 1$ and define two diffeomorphisms

$F$ and $\tilde{F}$ of a torus $R^{2}/[(1,0), (0, {\rm Im} z)]$ onto $R^{2}/[1, z]$ by

$F(u, v)=(u+\frac{{\rm Re} z}{{\rm Im} z}v,$ $v)$ , $\tilde{F}(u, v)=(u-\frac{1-Rez}{{\rm Im} z}v,$ $v)$ .

Then

$F_{*}\frac{\partial}{\partial u}=\frac{\partial}{\partial s}$ $F_{*}\frac{\partial}{\partial v}=\frac{{\rm Re} z}{{\rm Im} z}\frac{\partial}{\partial s}+\frac{\partial}{\partial t}$

and the Riemannian metric $g_{ij}$ induced by $F$ is as follows:

$g_{11}=1$ , $g_{12}=\frac{{\rm Re} z}{{\rm Im} z}$ $g_{22}=1+(\frac{{\rm Re} z}{{\rm Im} z})^{2}$

and $F$ is hence an area element preserving map. Similarly so is $\tilde{F}$ .
Let $\varphi$ be a $C^{1}$ -map of $R^{2}/[1, z]$ into $RP^{3}$ such that $\varphi(\langle 1\rangle)$ is null-homotopic and $\varphi(\langle z))$

is not null-homotopic. Then, since the curve $\varphi F(u, v)$ , whre $u$ is fixed, is not null-homotopic
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in $RP^{3}$ , the length is greater than or equal to $\pi$ . Namely,

$\pi\leq\int_{0}^{{\rm Im} z}|\frac{\partial\varphi F}{\partial v}|dv$

holds. So, Schwarz’s inequality yields

$\pi^{2}\leq({\rm Im} z)\int_{0}^{{\rm Im} z}|\frac{\partial\varphi F}{\partial v}|^{2}dv$ ,

which implies

$\int_{0}^{1}\frac{\pi^{2}}{{\rm Im} z}du\leq\int_{0}^{1}\int_{0}^{{\rm Im} z}|\frac{\partial\varphi F}{\partial v}|^{2}dudv$ .

Since $F$ is an area element preserving map,

$\frac{\pi^{2}}{{\rm Im} z}\leq\int\int_{R^{2}/[1,z]}|(\frac{{\rm Re} z}{{\rm Im} z})\frac{\partial\varphi}{\partial s}+\frac{\partial\varphi}{\partial t}|^{2}dsdt$ .

Namely,

(2.1) $\frac{\pi^{2}}{{\rm Im} z}\leq\iint_{R^{2}/[1,z]}((\frac{{\rm Re} z}{{\rm Im} z})^{2}|\frac{\partial\varphi}{\partial s}|^{2}+\frac{2Rez}{{\rm Im} z}1\frac{\partial\varphi}{\partial s}$ , $\frac{\partial\varphi}{\partial t}\}+|\frac{\partial\varphi}{\partial t}|^{2})dsdt$ .

The equality holds if and only if

(2.2) $|\frac{{\rm Re} z}{{\rm Im} z}\frac{\partial\varphi}{\partial s}+\frac{\partial\varphi}{\partial t}|=\frac{\pi}{{\rm Im} z}$ .

Using $\tilde{F}$ , we obtain the following similar to (2.1):

(2.3)

$\frac{\pi^{2}}{{\rm Im} z}\leq\int\int_{R^{2}/[1,z]}((\frac{(1-{\rm Re} z}{{\rm Im} z})^{2}|\frac{\partial\varphi}{\partial s}|^{2}-\frac{2(1-{\rm Re} z)}{{\rm Im} z}\{\frac{\partial\varphi}{\partial s},$ $\frac{\partial\varphi}{\partial t}\}+|\frac{\partial\varphi}{\partial t}|^{2})dsdt$ .

The equality holds if and only if

(2.4) $|-\frac{1-{\rm Re} z}{{\rm Im} z}\frac{\partial\varphi}{\partial s}+\frac{\partial\varphi}{\partial t}|=\frac{\pi}{{\rm Im} z}$ .

Summing up (2.1), (2.3), we obtain an inequality on $E(\varphi)$ :

$\frac{1}{2}(\frac{1}{{\rm Re} z}+\frac{1}{(1-{\rm Re} z)})\pi^{2}\leq\max\{\frac{1}{{\rm Im} z},$ $\frac{{\rm Im} z}{{\rm Re} z}+\frac{{\rm Im} z}{(1-Rez)}\}\times E(\varphi)$ $({\rm Re} z\neq 0,1)$ ,

$\frac{\pi^{2}}{2{\rm Im} z}\leq E(\varphi)$ $({\rm Re} z=0,1)$ .

Consequently, we obtain the following energy estimate:

PROPOSITION 5. $\frac{1}{2}\frac{\pi^{2}}{\max(\frac{{\rm Re} z(1-{\rm Re} z)}{{\rm Im} z},{\rm Im} z)}\leq E(\varphi)$ .

In particular, $\iota f|z-1/2|\geq 1/2$ and $0\leq{\rm Re} z\leq 1$ , then $E(\varphi)$ is greater than or equal to
$\pi^{2}/(2{\rm Im} z)$ .



HOMOTOPICALLY ENERGY-MINIMIZING HARMONIC MAPS OF TORI 509

Proposition 5, together with Corollary 4, implies

COROLLARY 6. The $\psi_{z,r_{1}}(r_{1}>1)$ are homotopically energy-minimizing hamonic
maps.

Let $S^{1}$ be a geodesic with length $\pi$ of $RP^{3}$ , which is a one dimensional torus $R/[\pi]$ . We
define a map of $R^{2}/[1, z]$ into a geodesic $R/[\pi]\subset RP^{3}$ by

$(s, t)\mapsto[\frac{\pi}{{\rm Im} z}t]$ .

Then the energy is equal to $\pi^{2}/(2{\rm Im} z)$ . It follows from Proposition5that this map is a
homotopically energy-minimizing harmonic map if $|z-1/2|\geq 1/2$ and $0\leq{\rm Re} z\leq 1$ . We
shall investigate the stability of a harmonic map of a torus into a geodesic in $RP^{3}$ in Section
3.

We shall determine homotopically energy-minimizing harmonic maps of $R^{2}/[1, z](z\in$

$\Omega)$ into $RP^{3}$ whose image is not a geodesic in $RP^{3}$ .
If $\varphi$ satisfies the equality in Proposition 5 for

$|z-\frac{1}{2}|>\frac{1}{2}$

then the differentiation in the direction of $s$ vanishes, that is, $\varphi$ is a harmonic map into a
geodesic in $RP^{3}$ . Using the classification (Lemma 9 in Section 3) of harmonic maps on
$R^{2}/[1, z]$ into $R/[\pi]$ , we find that $\varphi$ is

$(s, t)\mapsto[\pm\frac{\pi}{{\rm Im} z}t]$ .

Note that $(s, t)\mapsto[-(\pi/{\rm Im} z)t]$ is congruent to $(s, t)\mapsto[(\pi/{\rm Im} z)t]$ . Thus we obtain the
following:

COROLLARY 7. The only homotopically energy-minimizing hamonic maps of $R^{2}/$

$[1, z]$ with $ z\in\Omega$ and $ z\not\in\gamma$ into $RP^{3}$ is

$(s, t)\mapsto[\frac{\pi}{{\rm Im} z}t]$ .

Next we consider the case where $z\in T$ , that is, $|z-1/2|=1/2$ . $(2.2)$ and (2.4) imply
that

(2.5) $\{\frac{\partial\varphi}{\partial s}\frac{\partial\varphi}{\partial s}\}+\{\frac{\partial\varphi}{\partial t}\frac{\partial\varphi}{\partial t}\}=\frac{\pi^{2}}{{\rm Re} z(1-{\rm Re} z)}$ $({\rm Re} z\neq 0,1)$ .

(2.6) $\{\frac{\partial\varphi}{\partial s}$ , $\frac{\partial\varphi}{\partial s}\}=0$ , $\{\frac{\partial\varphi}{\partial t},$ $\frac{\partial\varphi}{\partial t}\}=\frac{\pi^{2}}{({\rm Im} z)^{2}}$ $(Rez=0,1)$ .

On the other hand, since $\psi$ is a harmonic map, the quadratic differential

$\{\frac{\partial\varphi}{\partial z},$ $\frac{\partial\varphi}{\partial z}\}dz^{2}$
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is holomorphic and hence is of the form $\eta dz^{2}$ , where $z=s+it$ and $\eta$ is a constant. This
implies that

(2.7) $\{\frac{\partial\varphi}{\partial s},$ $\frac{\partial\varphi}{\partial s}\}-\{\frac{\partial\varphi}{\partial t},$ $\frac{\partial\varphi}{\partial t}\}=4{\rm Re}\eta$ , $\{\frac{\partial\varphi}{\partial s},$ $\frac{\partial\varphi}{\partial t}\}=-2{\rm Im}\eta$ .

(2.5) and (2.7) state that
$1\frac{\partial\varphi}{\partial s}\frac{\partial\varphi}{\partial s}\}$ , $\{\frac{\partial\varphi}{\partial t}\frac{\partial\varphi}{\partial t}\}$

are also constants and so is the rank of $\varphi$ .
We have two possibilities, according to whether the rank of $\varphi$ is one or two.
If the rank of $\varphi$ is one, then $\varphi$ is again a map into a geodesic. We shall determine energy-

minimizing harmonic maps of $R^{2}/[1, z](z\in T)$ into a geodesic $R/[\pi]\subset RP^{3}$ (Corollary 10
in Section 3).

Assume tht the rank of $\varphi$ is two. Then $\varphi$ is a flat immersion of $R^{2}/[1, z]$ into $RP^{3}$ and
hence $\varphi$ defines a surface in $RP^{3}$ . We denote by $\sigma$ the second fundamental form of the surface $($

Using the harmonicity of $\varphi$ , we obtain

(2.8) $\sigma(\frac{\partial}{\partial s},$ $\frac{\partial}{\partial s})+\sigma(\frac{\partial}{\partial t},$ $\frac{\partial}{\partial t})=0$ .

Let $e_{1},$ $e_{2}$ be an orthonormal parallel fields with respect to the metric induced by $\varphi$ . Thei
there exist constants $a,$ $b,$ $c,$ $d$ such that

$\frac{\partial}{\partial s}=ae_{1}+be_{2}$ , $\frac{\partial}{\partial t}=ce_{1}+de_{2}$ ,

which, together with (2.8), imply

(2.9) $(a^{2}+c^{2})\sigma_{11}+2(ab+cd)\sigma_{12}+(b^{2}+d^{2})\sigma_{22}=0$ ,

where $\sigma_{11}=\sigma(e_{1}, e_{1})$ , etc.

(2.10) $\sigma_{11}\sigma_{22}-(\sigma_{12})^{2}=-1$

is the Gauss equation of the flat immersion of $\varphi$ . The Codazzi equation of $\varphi$ is given by

(2.11) $\sigma_{12,1}-\sigma_{11,2}=\sigma_{21,2}-\sigma_{22,1}=0$ ,

where $\sigma_{11,2}$ means $(\nabla_{e\iota}\sigma)(e_{1}, e_{2})$ . Note that $(\nabla_{X}\sigma)(Y, Z)$ is defined by

$(\nabla_{X}\sigma)(Y, Z)=X\sigma(Y, Z)-\sigma(\nabla_{X}Y, Z)-\sigma(Y, \nabla_{X}Z)$ .
Covariantly differentiating (2.9), (2.10) by $e_{1},$ $e_{2}$ , and using (2.11), we obtain the follow

ing homogeneous linear equations in $\sigma_{11,1},$ $\sigma_{11,2},$ $\sigma_{22,1},$ $\sigma_{22,2}$ :
$\sigma 22\sigma]1,1-2\sigma 12\sigma\iota 1,2+\sigma]1\sigma 22,1=0$ ,

$\sigma 22\sigma 11,2-2\sigma]2\sigma 22,1+\sigma]]\sigma 22,2=0$ ,

$(a^{2}+c^{2})\sigma_{11,1}+2(ab+cd)\sigma_{11,2}+(b^{2}+d^{2})\sigma_{22,1}=0$ ,

$(a^{2}+c^{2})\sigma_{11,2}+2(ab+cd)\sigma_{22,1}+(b^{2}+d^{2})\sigma_{22,2}=0$ .
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It follows from (2.9), (2.10) that the $\det e$rminant of the coefficient matrix of the $e$quations is

$4((a^{2}+c^{2})(b^{2}+d^{2})-(ab+cd)^{2})$

and hence is positive by the assumption of the rank of $\varphi$ . Thus $\varphi$ has a parallel second
fundamental form, that is, $\nabla\sigma=0$ .

In the geometry of submanifolds, submanifolds with parallel second fundamental form
in space forms have been classified (see, for example, [F]). In particular, Lawson [L] proved
that compact surfaces with parallel second fundamental forms in $S^{3}(1)$ are a totally geodesic
surface, Clifford tori and their covering spaces up to isometries of $S^{3}(1)$ . Since $\varphi$ has a
parallel second fundamental form, the image of $\varphi$ must be a totally geodesic surface $RP^{2}$ or a
Clifford surfac$eR^{2}/[(2\pi/r_{1},0), (\pi/r_{1}, \pi/r_{2})]$ in $RP^{3}$ . Since $\varphi$ is a flat immersion, $\varphi$ induces
a covering map of $R^{2}/[1, z]$ onto $RP^{2}$ or $R^{2}/[(2\pi/r_{1},0), (\pi/r_{1}, \pi/r_{2})]$ . We obtin only a
covering map $\theta$ of $R^{2}/[1, z]$ onto $R^{2}/[(2\pi/r_{1},0), (\pi/r_{1}, \pi/r_{2})]$ such that $\varphi=\overline{\psi_{r_{1}}}\theta$ . Indeed,
there does not exist a covering map of a torus onto $RP^{2}$ . Moreover, $\theta$ is a flat immersion.
Changing the flat metric on $R^{2}/[(2\pi/r_{1},0), (\pi/r_{1}, \pi/r_{2})]$ as in Section 1, we may consider
that $\theta$ is homothetic. So $\overline{\psi_{r_{1}}}$ is harmonic with respect to th$e$ new flat metric and hence, there
exists $z^{\prime}\in T$ such that $\varphi=\psi_{z^{\prime},r_{1}}\theta$ .

We shall prove the injectivity of $\theta$ as follows:
There exist integers $a,$ $b,$ $c,$ $d$ such that

$\theta(\langle 1\rangle)=a\langle 1\rangle+b(z^{\prime})$ , $\theta((z))=c(1\rangle$ $+d(z^{\prime})$ .
Since $\varphi((z\rangle)$ and $\varphi((z\rangle-(1))$ are geodesics with length $\pi$ in $RP^{3}$ ,

$\theta((z\rangle)=c\langle 1\rangle+d\langle z^{\prime}\rangle$ , $\theta((z\rangle$ $-(1\rangle)=(c-a)(1\rangle$ $+(d-b)\langle z^{\prime}\rangle$

are bijectively mapped geodesics with length $\pi$ in $RP^{3}$ by $\psi_{z^{\prime},r_{1}}$ and hence are asymptotic
curves. As only $\langle z^{\prime}), (z^{\prime})-(1\rangle$ express two asymptotic curves through each point (see Section
1), there exist four possibilities:

(2.12) $ c(1\rangle$ $+d(z^{\prime}\rangle=\pm\langle z^{\prime})$ , $(c-a)(1\rangle$ $+(d-b)(z^{\prime}\rangle$ $=\pm((z^{\prime})-(1))$ ;

(2.13) $ c(1\rangle$ $+d(z^{\prime})=\pm((z^{\prime})-(1)) , (c-a)(1\rangle$ $+(d-b)(z^{\prime}\rangle$ $=\mp(z^{\prime})$ ;

(2.14) $c(1)+d\langle z^{\prime}\rangle=\pm(z^{\prime})$ , $(c-a)\{1\rangle$ $+(d-b)(z^{\prime}\rangle$ $=\mp((z^{\prime})-\{1\rangle)$ ;

(2.15) $ c\langle 1\rangle+d(z^{\prime}\rangle$ $=\pm(\langle z^{\prime})-(1\rangle),$ $(c-a)\langle 1\rangle+(d-b)(z^{\prime}\rangle$ $=\pm(z^{\prime}\rangle$ ;

which yield

$(a, b, c, d)=(\pm 1,0,0, \pm 1)$ , $(\mp 1, \pm 2, \mp 1, \pm 1)$ , $(\mp 1, \pm 2,0, \pm 1)$ , $(\mp 1,0, \mp 1, \pm 1)$ .
Thus $\theta$ is injective and orientation-preserving for (2.12) and (2.13), orientation-reversing for
(2.14) and (2.15).

We shall determine $\psi_{z^{\prime},r_{1}}\theta$ for the above cases.
For (2.12), we may consider that $\theta$ is th$e$ identity.
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For (2.13), we may consider $z=(z^{\prime}-1)/(2z^{\prime}-1)$ and hence

$\theta(s, t)=((2Rez^{\prime}-1)s-(2{\rm Im} z^{\prime})t, (2{\rm Im} z^{\prime})s+(2{\rm Re} z^{\prime}-1)t)$ .
Then $\psi_{z^{\prime},r_{1}}\theta$ is given by

$[\frac{1}{r_{1}}\cos 2\pi(-\frac{1}{2{\rm Im} z}t),$ $\frac{1}{r_{1}}\sin 2\pi(-\frac{1}{2{\rm Im} z}t)$ ,

$\frac{1}{r_{2}}\cos 2\pi(s+\frac{1-2Rez}{2{\rm Im} z}t),$ $\frac{1}{r2}\sin 2\pi(s+\frac{1-2{\rm Re} z}{2{\rm Im} z}t)]$ ,

which is congruent to $\psi_{z,r_{2}}$ .
For (2.14), we may consider that $z=z^{\prime}$ and

$\theta(s, t)=((2{\rm Re} z^{\prime}-1)s+(2{\rm Im} z^{\prime})t, (2{\rm Im} z^{\prime})s-(2Rez^{\prime}-1)t)$ .
Then $\psi_{z^{\prime},r_{1}}\theta$ is congruent to $\psi_{z,r_{2}}$ .

For (2.15), we may consider that $z=1-\overline{z^{\prime}}$ and

$\theta(s, t)=(s, -t)$ .
Then $\psi_{z^{\prime},r_{1}}\theta$ is congruent to $\psi_{z,r_{1}}$ .

By Corollary 6, we obtain the following:

PROPOSITION 8. The $\psi_{z,r_{1}}(r_{1}>1)$ are the only homotopically energy-minimizing
hamonic maps of $R^{2}/[1, z](z\in T)$ into $RP^{3}$ whose images are not geodesics in $RP^{3}$ .

3. The stability of harmonic maps of tori into a geodesic in $RP^{3}$ .
First of all, we shall determine harmonic maps $f$ of $R^{2}/[1, z]$ into $R/[\pi]$ .
Since $df$ is a harmonic l-form,there exist constants $\alpha,$ $\beta$ such that

$df=\alpha ds+\beta dt$ .
As $df$ should define a map of $R^{2}/[1, z]$ onto $R/[\pi]$ , the periods of $df$ satisfy

$\alpha$ , $\alpha{\rm Re} z+\beta{\rm Im} z=0(mod \pi)$ ,

that is, $(1/\pi)(\alpha, \beta)$ is a dual lattice vector. Note that the space $L^{*}$ of dual lattice vectors for
1, $z$ is generated by

$\hat{e}=(1,$ $-\frac{{\rm Re} z}{{\rm Im} z})$ , $f=(0,$ $\frac{1}{{\rm Im} z})$ .

We obtain the following classification of harmonic maps of $R^{2}/[1, z]$ into $R/[\pi]$ :

LEMMA 9. A hamonic map $ X\mu$ of $R^{2}/[1, z]$ into $R/[\pi]$ is given by

$\pi(\mu,$ $(s, t)\rangle$ $(mod \pi)$ ,

where $\mu\in L^{*}$ . In particular, $\chi_{\mu}((1\rangle)$ is null-homotopic, $\chi_{\mu}((z))$ is not null-homotopic in
$RP^{3}\iota f$and only $\iota f$

(3.1) $\mu=2n\hat{e}+(2m+1)f$ ,
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where $m$ and $n$ are integers. The map is given by

(3.2) $\pi(2ns+(\frac{(2m+1)-2nRez}{{\rm Im} z})t)$

with the energy

(3.3) $\frac{1}{2}\pi^{2}((2n)^{2}+(\frac{(2m+1)-2nRez}{{\rm Im} z})^{2})\times{\rm Im} z$ .

Now we can determine harmonic maps of $R^{2}/[1, z]$ into a geodesic $R/[\pi]$ with length $\pi$

in $RP^{3}$ with the energy $\pi^{2}/(2{\rm Im} z)$ for $z\in T$ .
Since $m,$ $n$ such that

$\frac{1}{2}\pi^{2}((2n)^{2}+(\frac{(2m+1)-2n{\rm Re} z}{{\rm Im} z})^{2})\times{\rm Im} z=\frac{\pi^{2}}{2{\rm Im} z}$

are $(0,0)$ , $(-1,0),$ $(0,1),$ $(-1, -1)$ , we obtain the following:

COROLLARY 10. For $z\in T$,

(3.4) $(s, t)\mapsto[\frac{\pi}{{\rm Im} z}t]$ ,

(3.5) $(s, t)\mapsto[\pi(2s+\frac{1-2Rez}{{\rm Im} z}t)]$

are the only homotopically energy-minimizing hamonic maps of $R^{2}/[1, z]$ into a geodesic in
$RP^{3}$ up to isometries of $RP^{3}$ .

Thus we can determine homotopically energy-minimizing harmonic maps of $R^{2}/[1, z]$

into $RP^{3}$ for $ z\in\Omega$ by Corollaries 7, 10 and Proposition 8. In particular, $\psi_{z,r_{1}}\mapsto(3.4),$ $(3.5)$

if $r_{1}\mapsto\infty,$ $1$ , respectively.
In the remaining part of this section, we shall investigate the stability of $\chi_{\mu}$ where $\mu$

satisfies (3.1), as a harmonic map into $RP^{3}$ . It is not necessary to prove Theorems A and $B$ ,
but we shall find that $\chi_{\mu}$ is energy-minimizing if it is stable.

Let $\tilde{\Delta}$ be the Laplacian of $\chi_{\mu}^{*}TRP^{3}$ . Then, since $RP^{3}$ has constant sectional curvatures
1, the Jacobi operator $J$ of $\chi_{\mu}$ is given by

$Ju=-\tilde{\Delta}u-\{\chi_{\mu*}\frac{\partial}{\partial s},$ $\chi_{\mu*}\frac{\partial}{\partial s}\}u+\{\chi_{\mu*}\frac{\partial}{\partial s},$ $u\}\chi_{\mu*}\frac{\partial}{\partial s}$

(3.6)
$-\{\chi_{\mu*}\frac{\partial}{\partial t},$ $\chi_{\mu*}\frac{\partial}{\partial t}\}u+\{\chi_{\mu*}\frac{\partial}{\partial t},$ $u\}\chi_{\mu*}\frac{\partial}{\partial t}$ ,

where $u$ is a section of $\chi_{\mu}^{*}TRP^{3}$ ($see$ , for example, [E-L]).

Over a geodesic $S^{1}$ of $RP^{3},$ $TRP^{3}$ decomposes as the sum of the tangent bundle $TS^{1}$ and
the normal bundle $NS^{1}$ , and $NS^{1}$ has the decomposition $N_{1}S^{1}+N_{2}S^{1}$ by parallel transport.
Moreover, $TS^{1}$ has a flat connection with trivial holonomy and $N_{1}S^{1}$ and $N_{2}S^{1}$ have flat con-
nections with $Z_{2}$ holonomy. Thus $\chi_{\mu}^{*}TRP^{3}$ decomposes into $\chi_{\mu}^{*}TS^{1}$ and $\chi_{\mu}^{*}N_{1}S^{1}+\chi_{\mu}^{*}N2S^{1}$ ,
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where $\chi_{\mu}^{*}TS^{1}$ has a trivial holonomy and $\chi_{\mu}^{*}N_{1}S^{1}$ and $\chi_{\mu}^{*}N_{2}S^{1}$ has a non-trivial holonomy
whose representation $\rho$ is given by

$\rho((1))=I$ , $\rho((z))=-I$ .
So $\chi_{\mu}^{*}N_{1}S^{1}$ and $\chi_{\mu}^{*}N_{2}S^{1}$ are the flat bundle $E_{\rho}$ on $R^{2}/[1, z]$ for $\rho$ (see [S1). Let $\Delta_{\rho}$ be the
Laplacian of $E_{\rho}$ and $\Delta_{0}$ the Laplacian of $\chi_{\mu}^{*}TS^{1}$ . Then, using (3.6), we obtain the following:

PROPOSITION 11. Itfollowsfrom the decomposition $u=u_{0}+u_{1}+u_{2}$ , where $u0$ is a
section of $\chi_{\mu}^{*}TS^{1},$ $ u\iota$ is a section of $\chi_{\mu}^{*}N\iota S^{1}$ and $u2$ is a section of $\chi_{\mu}^{*}N_{2}S^{1}$ that

$Ju=-\Delta_{0}u_{0}-\Delta_{\rho}u_{1}-\pi^{2}((2n)^{2}+(\frac{(2m+1)-2n{\rm Re} z}{{\rm Im} z})^{2})u_{1}$

$-\Delta_{\rho}u_{2}-\pi^{2}((2n)^{2}+(\frac{(2m+1)-2n{\rm Re} z}{{\rm Im} z})^{2})u_{2}$ .

So we should know the eigenvalues $of-\Delta_{\rho}$ to determine of the stability of $\chi_{\mu}$ . Follow-
ing [S2], we must calculate a dual lattice vector $\alpha$ such that

$1=exp2\pi i((1,0),$ $\alpha\rangle$ , $-1=\exp 2\pi i(({\rm Re} z, {\rm Im} z),$ $\alpha$ ) ,

and hence $\alpha$ is given by

$\alpha=(N,$ $\frac{1+2M-2N{\rm Re} z}{2{\rm Im} z})$ ,

where $N,$ $M$ are integers. For example, we can set $N=M=0$ and hence $\alpha=(0,1/(2{\rm Im} z))$ ,

which implies the following:

PROPOSITION 12 ([S2]). The eigenvalues $of-\Delta_{\rho}$ are given by

$\{4\pi^{2}|\mu+(0,$ $\frac{1}{2{\rm Im} z})|^{2}$ ; $\mu\in L^{*}\}$

that is,

(3.7) $\pi^{2}((2q)^{2}+(\frac{(2p+1)-2q{\rm Re} z}{{\rm Im} z})^{2})$ ,

where $p$ and $q$ are integers.

PROOF. Sunada’s proof is as follows:

$\varphi_{\mu}(s, t)=A^{-\iota/2}$ exp $2\pi i((s, t),$ $\mu\rangle$

for $\mu\in L^{*}$ , where $A$ is the area of $R^{2}/[1, z]$ , is an orthonormal basis of $L^{2}(R^{2}/[1, z])$ which
$satisfies-\Delta_{0}\varphi_{\mu}=4\pi^{2}|\mu|^{2}\varphi_{\mu}^{2}$ . Hence $\{4\pi^{2}|\mu|^{2} : \mu\in L^{*}\}$ are eigenvalues $of-\Delta_{0}$ . For
$f\in L^{2}(R^{2}/[1, z])$ ,

$u(s, t)=exp2\pi i((s, t),$ $\alpha\rangle$ $f(s, t)$
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is an element of $L^{2}(E_{\rho})$ , because $u((s, t)+\sigma)=\rho(\sigma)u(s, t)$ holds. This correspondence
$f\mapsto u$ is isometric and hence

$s_{\mu}(s, t)=A^{-1/2}exp2\pi i((s, t),$ $\mu+\alpha$ )

for $\mu\in L^{*}$ is an orthonormal basis on $L^{2}(E_{\rho})$ . Since
$-\Delta_{\rho}s_{\mu}=4\pi^{2}|\mu+\alpha|^{2}s_{\mu}$ ,

$\{4\pi^{2}|\mu+\alpha|^{2} : \mu\in L^{*}\}$ are eigenvalues. Q.E.D.

Thus by Propositions 11, 12, we can determine the satability of $\chi_{\mu}$ .
COROLLARY 13. $\chi_{\mu}$ , where $\mu=2n\hat{e}+(2m+1)f$ , is stable if and only if $m$ and $n$

satisfy

$(2n)^{2}+(\frac{(2m+1)-2n{\rm Re} z}{{\rm Im} z})^{2}\leq(2q)^{2}+(\frac{(2p+1)-2qRez}{{\rm Im} z})^{2}$

for all integers $p$ and $q$.
Let $m$ and $n$ be integers which minimize

$(2n)^{2}+(\frac{(2m+1)-2nRez}{{\rm Im} z})^{2}$

for a fixed $z\in H$ . Then the map $ X\mu$ for $m$ and $n$ is a stable harmonic map and other maps are
unstable by Corollary 13. In particular, since

$2^{2}+(\frac{1-2{\rm Re} z}{{\rm Im} z})^{2}<(\frac{1}{{\rm Im} z})^{2}$

we know the following:

COROLLARY 14. $(s, t)\mapsto[\frac{\pi}{{\rm Im} z}t]$

is unstablefor $z$ such $that|z-1/2|<1/2$ .
Let $\chi_{z,m,n}$ denote the stable map with above $m$ and $n$ for $z$ . Then we obtain the following:

THEOREM 15. $Xz,m,n$ is a homotopically energy-minimizing hamonic map.

PROOF. As $m$ and $n$ are integers which minimize

$(2n)^{2}+(\frac{(2m+1)-2nRez}{{\rm Im} z})^{2}$

$2n$ and $2m+1$ are coprime, and there exist integers $p$ and $q$ such that

$p(2n)+q(2m+1)=1$ .
Since

$\left(\begin{array}{lll}q & & p\\-2n & 2m & +1\end{array}\right)\in SL(2, Z)$ ,

$e^{\prime}=(2m+1)(1,0)-2n({\rm Re} z, {\rm Im} z)$ , $f^{\prime}=p(1, O)+q({\rm Re} z, {\rm Im} z)$
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is a generator of the lattice vectors.
Considering $e^{\prime}$ and $f^{\prime}$ as complex numbers, we denote by $z^{\prime}$ the complex number $f^{\prime}/e^{\prime}$ .

Then $Xz,m,n$ may be a stable map of $R^{2}/[1, z^{\prime}]$ . Since the curve $\chi_{z,m,n}(e^{\prime})$ is a constant and
a curve $\chi_{z,m,n}(f^{\prime})$ is a geodesic with length $\pi$ , the map is $\chi_{z^{\prime},m^{\prime},n^{\prime}}$ , where $m^{\prime}=0$ or-l and
$n^{\prime}=0$ . If $0\leq Rez\leq 1$ , then $\chi_{z^{\prime},m^{\prime},n^{\prime}}$ is homotopically energy-minimizing by Corollaries
7, 14 and so is $Xz,m,n$ . If ${\rm Re} z<0$ or $Rez>1$ , then we obtain $\hat{z}$ such that $0\leq{\rm Re}\hat{z}\leq 1$

and $z^{\prime}=\hat{z}+l$ , where $l$ is an integer, then $\chi_{\hat{z},m^{\prime},n^{\prime}}=\chi_{z^{\prime},m^{\prime},n^{\prime}}$ . Sinc $e\chi_{\hat{z},m^{\prime},n^{\prime}}$ is stable and
henc$e$ homotopically energy-minimizing as the above, $Xz,m,n$ is again homotopically energy-
minimizing. Q.E.D.

4. An energy function and the proofs of Theorems $A$, B.

Let $SL(2, Z)$ be the modular group acting on $H$ . Let $\Gamma(2)$ be the principal congruence
subgroup of level 2 of $SL(2, Z)$ , that is, the set of

$\left(\begin{array}{ll}l & k\\n & m\end{array}\right)\in SL(2, Z)$

which satisfies
$\left(\begin{array}{ll}l & k\\n & m\end{array}\right)=\left(\begin{array}{ll}1 & 0\\0 & 1\end{array}\right)$ (mod2).

Then $\Gamma(2)$ is $ge$nerated by
$z\mapsto z+2$ , $z\mapsto\frac{z}{2z+1}$

and a fundamental domain is given by

$\{z\in H:0\leq{\rm Re} z\leq 2$ , $|z-\frac{1}{2}|\geq\frac{1}{2}$ $|z-\frac{3}{2}|\geq\frac{1}{2}\}$ .

Next we define a subgroup $\Gamma^{\prime}$ as the set of

$\left(\begin{array}{ll}l & k\\n & m\end{array}\right)$

of $SL(2, Z)$ with $l$ odd and $n$ even (so $m$ is odd). Then $\Gamma^{\prime}$ is a subgroup of $SL(2, Z)$ which
contains $\Gamma(2)$ and is generated by

$z\mapsto z+1$ , $z\mapsto\frac{z}{2z+1}$

Moreover $\Omega$ is a fundamental domain of $\Gamma^{\prime}$ .
We consider the energy $E(\varphi)$ of a homotopically energy-minimizing harmonic map $\varphi$

of $R^{2}/[1, z]$ into $RP^{3}$ such that $\varphi(\langle 1))$ is null-homotopic and $\varphi((z))$ is not null-homotopic in
$RP^{3}$ . This gives a function $E(z)$ on $H$ which we call the energy function.

We shall investigate $E(z)$ .
For $ z\in\Omega$ , we have determined homotopically energy-minimizing harmonic maps of

$R^{2}/[1, z]$ of $RP^{3}$ in Section 3. For $z$ in other fundamental domains of $\Gamma^{\prime}$ , we can determine
homotopically energy-minimizing harmonic maps as follows:
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For
$\omega=\left(\begin{array}{ll}l & k\\n & m\end{array}\right)\in SL(2, R)$ ,

the lattice vectors $nz+m$ and $lz+k$ form 1 and $z$ Note that $\varphi((nz+m\rangle)$ is null-homotopic
and $\varphi((lz+k\rangle)$ is not null-homotopic if and only if $\omega\in\Gamma^{\prime}$ . Then $\varphi$ is considered as a
harmonic map of the parallelogram spanned by $nz+m$ and $lz+k$ , which define an energy-
minimizing harmonic map $\varphi^{\prime}$ of $R^{2}/[1, z^{\prime}]$ , where $z^{\prime}=(lz+k)/(nz+m)$ . Moreover, $\varphi^{\prime}((1))$

is null homotopic and $\varphi^{\prime}((z^{\prime}\rangle)$ is not null-homotopic. Since there exists $\omega$ such that $ z^{\prime}\in\Omega$ ,

we can use our classification of energy-minimizing harmonic maps of $R^{2}/[1, z^{\prime}]$ into $RP^{3}$ .
Namely, homotopically energy-minimizing harmonic maps $\varphi$ of $R^{2}/[1, z]$ such that $\varphi((1))=$

$0$ and $\varphi(\langle z\rangle)\neq 0$ are made from homotopically $e$nergy-minimizing harmonic maps $\varphi^{\prime}$ of
$R^{2}/[1, z^{\prime}]$ such that $\varphi^{\prime}((1))=0$ and $\varphi^{\prime}((z^{\prime}))\neq 0$ by using $\omega^{-1}$ . In particular, if $z^{\prime}\not\in T$ ,

then the number of homotopically energy-minimizing harmonic maps of $R^{2}/[1, z]$ is one up
to isometri$es$ of $RP^{3}$ and the image is a geodesic, if $z^{\prime}\in T$ , then we obtain a one parameter
family of homotopically energy-minimizing harmonic maps of $R^{2}/[1, z]$ with all Clifford tori
as imag$es$ , whose limits are harmonic maps in geodesics in $RP^{3}$ .

Thus we obtain Theorems A and $B$ except for the assertion that $E$ is not smooth on $\Gamma T$ .
Note that, for an interior point $z$ of other fundamental domain $\Omega^{\prime}$ of $\Gamma^{\prime}$

$\Omega^{\prime}=\{z\in H$ : $|z-\frac{1}{2}|\leq\frac{1}{2}$ $|z-\frac{1}{4}|\geq\frac{1}{4}$ $|z-\frac{3}{4}|\geq\frac{1}{4}\}$ ,

the energy-minimizing harmonic map $\varphi$ of $R^{2}/[1, z]$ into $RP^{3}$ such that $\varphi((1))$ is null-homo-
topic and $\varphi(\langle z))$ is not null-homotopic is given by (3.5), that is,

$(s, t)\mapsto[(\pi(2s+\frac{1-2Rez}{{\rm Im} z}t)]$

with the energy

$\frac{\pi^{2}}{2}(4+(\frac{1-2Rez}{{\rm Im} z})^{2}){\rm Im} z$ .

This is suggested by Corollari$es7,10,14$ and Theorem A. We directly state the reason as
follows:

$\Omega^{\prime}$ is the image of $\Omega$ by $(z-1)/(2z-1)$ and hence there exists an interior point $z^{\prime}$ of
$\Omega$ such that

$z=\frac{z^{\prime}-1}{2z^{\prime}-1}$

Thus, using the homotopically energy-minimizing harmonic map of $R^{2}/[1, z^{\prime}]$ into $RP^{3}$ :

$(\tilde{s}, t)\sim\mapsto[\frac{\pi}{{\rm Im} z^{\prime}}t\sim]$ ,

$\tilde{s}=(2Rez^{\prime}-1)s-(2{\rm Im} z^{\prime})t$ , $t\sim=(2{\rm Im} z^{\prime})s+(2Rez^{\prime}-1)t$ ,

we obtain the homotopically enegy-minimizing harmonic map of $R^{2}/[1, z]$ into $RP^{3}$ :

$(s, t)\mapsto[\frac{\pi}{{\rm Im} z’}((2{\rm Im} z^{\prime})s+(2Rez^{\prime}-1)t)]$ ,
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which is equal to

$(s, t)\mapsto[\pi(2s+\frac{1-2{\rm Re} z}{{\rm Im} z}t)]$

by
$\frac{2{\rm Re} z^{\prime}-1}{{\rm Im} z^{\prime}}=-\frac{2{\rm Re} z-1}{{\rm Im} z}$ .

Finally we give the proof of the last part of (ii) in Theorem $B$ : Since $E(z)=\pi^{2}/(2{\rm Im} z)$

for $z\in\Omega$ and

$E(z)=\frac{\pi^{2}}{2}(4+(\frac{1-2{\rm Re} z}{{\rm Im} z})^{2}){\rm Im} z$

for $z\in\Omega^{\prime},$ $E$ is not smooth at each point of $T$ .
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