Токуо J. Матн. Vol. 23, No. 2, 2000

Homotopically Energy-Minimizing Harmonic Maps of Tori into RP³

Norio EJIRI

Nagoya University

(Communicated by M. Oka)

Abstract. We determine homotopically energy-minimizing harmonic maps of tori into the 3-dimensional real projective space \mathbb{RP}^3 of constant sectional curvature 1.

Introduction.

Let N be a compact Riemannian manifold with $\pi_2(N) = 0$ and ϕ a continuous map of a Riemann surface M into N. Then Sacks and Uhlenbeck [S-U] proved that there exists a homotopically energy-minimizing harmonic map in the homotopy class of ϕ . The energy and the number of the energy-minimizing harmonic maps are not however explicit.

In this paper, in the case $M = T^2$ (a flat torus), $N = \mathbf{RP}^3$, we determine the energy and the number of the energy-minimizing harmonic maps $T^2 \to \mathbf{RP}^3$.

A flat torus is represented by $\mathbf{R}^2/[1, z]$, where 1, z are lattice vectors such that Im z > 0, that is, $z \in H$ (the upper half plane). Let $\langle 1 \rangle$, $\langle z \rangle$ denote the generator of $\pi_1(\mathbf{R}^2/[1, z])$ represented by 1, z. Since $\pi_1(\mathbf{RP}^3)$ is $\mathbf{Z}_2(=\{0, 1\})$, there exist k, l such that

$$\phi(\langle 1 \rangle) = k, \quad \phi(\langle z \rangle) = l,$$

where k, l = 0 or 1. So the homotopy set of maps of the torus into \mathbb{RP}^3 are classified according to

$$(k, l) = (0, 0), (1, 0), (0, 1), (1, 1).$$

If (k, l) = (0, 0), then ϕ is null-homotopic and hence the harmonic maps corresponding to ϕ are constant maps. If (k, l) = (1, 0), then $\mathbb{R}^2/[1, -1/z]$ is homothetic $\mathbb{R}^2/[1, z]$ and the map $\tilde{\phi}$ of $\mathbb{R}^2/[1, -1/z]$ into $\mathbb{R}\mathbb{P}^3$ corresponding to ϕ satisfies

$$\tilde{\phi}(\langle 1 \rangle) = 0, \quad \tilde{\phi}\left(\left\langle -\frac{1}{z}\right\rangle\right) = 1.$$

Received July 12, 1999

If (k, l) = (1, 1), then we have the homothety of $\mathbb{R}^2/[1, z]$ onto $\mathbb{R}^2/[1, z/(z+1)]$ and corresponding to $\tilde{\phi}$ again satisfies

$$\tilde{\phi}(\langle 1 \rangle) = 0, \quad \tilde{\phi}\left(\left(\frac{z}{z+1}\right)\right) = 1.$$

Thus it is enough to consider the case where (k, l) = (0, 1) in the homotopy set and hence determine homotopically energy-minimizing harmonic maps φ of $\mathbb{R}^2/[1, z]$ into \mathbb{RP}^3 such that $\varphi((1))$ is null-homotopic and $\varphi((z))$ is not null-homotopic in \mathbb{RP}^3 .

So, in this paper, we assume that homotopically enegy-minimizing harmonic maps are in the homotopy class corresponding to (k, l) = (0, 1).

Let $SL(2, \mathbb{Z})$ be the modular group acting on H and Γ' the subgroup defined by

$$\begin{pmatrix} l & k \\ n & m \end{pmatrix}$$

with l odd and n even (so m is odd). Then Ω defined by

$$\left\{z \in H: \left|z - \frac{1}{2}\right| \ge \frac{1}{2}, \quad 0 \le \operatorname{Re} z \le 1\right\}$$

is a fundamental domain of Γ' . Furthermore we denote by Υ

$$\left\{z\in H: \left|z-\frac{1}{2}\right|=\frac{1}{2}\right\}.$$

We obtain the following on the number of homotopically energy-minimizing harmonic maps of a flat torus into \mathbb{RP}^3 :

THEOREM A. (i) The number of homotopically energy-minimizing harmonic maps φ of $\mathbb{R}^2/[1, z]$ for $z \in H$ and $z \notin \Gamma' \Upsilon$ such that $\varphi(\langle 1 \rangle)$ is null-homotopic and $\varphi(\langle z \rangle)$ is not null-homotopic in \mathbb{RP}^3 is one up to isometries of \mathbb{RP}^3 and the image is a geodesic. (ii) The number of homotopically energy-minimizing harmonic maps φ of $\mathbb{R}^2/[1, z]$ for $z \in \Gamma' \Upsilon$ such that $\varphi(\langle 1 \rangle)$ is null-homotopic and $\varphi(\langle z \rangle)$ is not mull-homotopic in \mathbb{RP}^3 is infinity up to isometries of \mathbb{RP}^3 . More precisely, two of these have geodesics as their images and the others are a one parameter family of homotopically energy-minimizing harmonic maps with all Clifford tori (in \mathbb{RP}^3) as images. Furthermore, the limits of the one parameter family are the above two maps (whose images are geodesics).

Note that the space of homotopically energy-minimizing harmonic maps of a flat torus into \mathbb{RP}^3 is path-connected. Mukai [M] has studied a one parameter family of harmonic maps of the square torus into $S^3(1)$ whose images are Clifford tori in $S^3(1)$ and has determined the Jacobi fields and their integrability and hence a connected component containing the above harmonic maps in the moduli of harmonic maps of the square torus into $S^3(1)$.

Let E(z) denote the energy $E(\varphi)$ of a homotopically energy-minimizing harmonic map φ of $\mathbb{R}^2/[1, z]$ into $\mathbb{R}\mathbb{P}^3$. Then E(z) is a function on H and has the following property:

THEOREM B. (i) $E(z) = \pi^2/(2 \operatorname{Im} z)$ for $z \in \Omega$. (ii) E(z) is invariant by Γ' and is not smooth on $\Gamma' \Upsilon$.

1. The Clifford minimal surface.

Let \mathbb{R}^4 be the 4-dimensional Euclidean space and (X, Y, Z, W) a canonical coordinate system of \mathbb{R}^4 . Let $S^3(1)$ be the 3-dimensional unit sphere with center at the origin in \mathbb{R}^4 and *P* the stereographic projection of $S^3(1)\setminus(0, 0, 0, 1)$ onto the (X, Y, Z)-plane. We denote by (x, y, z) the image of $(X, Y, Z, W) \in S^3(1)\setminus(0, 0, 0, 1)$, so that

$$x = \frac{X}{1 - W}, \quad y = \frac{Y}{1 - W}, \quad z = \frac{Z}{1 - W}.$$

Let ϕ be the Clifford minimal embedding of the torus $S^1(1/\sqrt{2}) \times S^1(1/\sqrt{2})$ into $S^3(1)$ given by

$$\phi(s,t) = \left(\frac{1}{\sqrt{2}}\cos\sqrt{2}s, \frac{1}{\sqrt{2}}\sin\sqrt{2}s, \frac{1}{\sqrt{2}}\cos\sqrt{2}t, \frac{1}{\sqrt{2}}\sin\sqrt{2}t\right).$$

Then we get an embedding

$$P\phi(s,t) = \left(\frac{\cos\sqrt{2}s}{\sqrt{2} - \sin\sqrt{2}t}, \frac{\sin\sqrt{2}s}{\sqrt{2} - \sin\sqrt{2}t}, \frac{\cos\sqrt{2}t}{\sqrt{2} - \sin\sqrt{2}t}\right),$$

for which the following is well known [S-T]:

LEMMA 1. $P\phi$ is an embedding of $S^1(1/\sqrt{2}) \times S^1(1/\sqrt{2})$ into the (x, y, z)-plane and the image is a surface of revolution about the z-axis of a circle of center $(\sqrt{2}, 0)$ and radius 1 in the (x, z)-plane.

Since the Clifford minimal torus $S^1(1/\sqrt{2}) \times S^1(1/\sqrt{2})$ is invariant under the antipodal map of $S^3(1)$, it admits and isometry. Using lattice vectos $(\sqrt{2\pi}, 0), (0, \sqrt{2\pi})$, we can identify $\mathbf{R}^2/[(\sqrt{2\pi}, 0), (0, \sqrt{2\pi})]$ with $S^1(1/\sqrt{2}) \times S^1(1/\sqrt{2})$, and the above isometry is given by

$$[s,t] \mapsto \left[s + \frac{1}{\sqrt{2}}\pi, t + \frac{1}{\sqrt{2}}\pi\right].$$

We now have a map ψ of a torus $\mathbf{R}^2/[e, f]$ with the lattice generated by

$$e = (\sqrt{2}\pi, 0), \quad f = \left(\frac{1}{\sqrt{2}}\pi, \frac{1}{\sqrt{2}}\pi\right)$$

into \mathbf{RP}^3 . We shall also call this the Clifford minimal surface.

Now we can study the homotopy class and the energy of ψ as follows:

LEMMA 2. The curve $P\phi(s, 0)$ is a circle of center (0, 0) and radius $\pi/\sqrt{2}$ in the plane $z = 1/\sqrt{2}$, and so $\psi(\langle e \rangle)$ is null-homotopic in \mathbb{RP}^3 . The curve $P\phi(t, t)$ is a circle of center (0, 1) and radius $\sqrt{2}$ in the (\tilde{x}, \tilde{y}) -plane defined by an orthonormal basis $\{1/\sqrt{2}(1, 0, 1), (0, 1, 0)\}$, and so $\psi(\langle f \rangle)$ is the generator of $\pi_1(\mathbb{RP}^3)$. Furthermore $\psi(\langle f \rangle)$ is a geodesic in \mathbb{RP}^3 , and the energy of ψ equals π^2 .

Since ψ is an isometric minimal embedding, ψ is a harmonic map. Similarly, using the Clifford embedding of $S^1(1/r_1) \times S^1(1/r_2)$ into $S^3(1)$, that is,

$$(s,t) \mapsto \left(\frac{1}{r_1}\cos r_1 s, \frac{1}{r_1}\sin r_1 s, \frac{1}{r_2}\cos r_2 t, \frac{1}{r_2}\sin r_2 t\right),$$

where $(1/r_1)^2 + (1/r_2)^2 = 1$, we also obtain an isometric embedding $\tilde{\psi}_{r_1}$ of $\mathbb{R}^2/[(2\pi/r_1, 0), (\pi/r_1, \pi/r_2)]$ into \mathbb{RP}^3 . Note that $\tilde{\psi}_{r_1}$ is not a harmonic map except when $r_1 = \sqrt{2}$, because it is not minimal except when $r_1 = \sqrt{2}$ (the Clifford minimal surface). Changing the flat metric of $\mathbb{R}^2/[(2\pi/r_1, 0), (\pi/r_1, \pi/r_2)]$, we shall find the flat metric such that $\tilde{\psi}_{r_1}$ is harmonic.

We consider flat metrics on $\mathbb{R}^2/[(2\pi/r_1, 0), (\pi/r_1, \pi/r_2)]$ defined by

$$\alpha ds^2 + 2\beta ds dt + \gamma dt^2,$$

where $\alpha > 0$ and $\alpha \gamma - \beta^2 > 0$. Since the harmonicity is conformally invariant, we may assume $\alpha = 1$. Our problem is as follows:

PROBLEM. When is $\widetilde{\psi_{r_1}}$ harmonic with respect to the above flat metric given by β and γ ?

We define a diffeomorphism $T_{a,b}$ of the torus $\mathbb{R}^2/[(2\pi/r_1, 0), (a, b)]$ (b > 0) onto $\mathbb{R}^2/[(2\pi/r_1, 0), (\pi/r_1, \pi/r_2)]$ by

$$T_{a,b}(\tilde{s},\tilde{t}) = \left(\tilde{s} + \frac{1}{b}\left(\frac{\pi}{r_1} - a\right)\tilde{t}, \frac{\pi}{br_2}\tilde{t}\right).$$

Then the flat metric on $\mathbf{R}^2/[(2\pi/r_1, 0), (a, b)]$ (b > 0) induces the flat metric on $\mathbf{R}^2/[(2\pi/r_1, 0), (\pi/r_1, \pi/r_2)]$ by $T_{a,b}$, which is given by

$$ds^{2}+2\left(-\left(\frac{\pi}{r_{1}}-a\right)\frac{r_{2}}{\pi}\right)dsdt+\left(\left(\left(\frac{\pi}{r_{1}}-a\right)\frac{r_{2}}{\pi}\right)^{2}+\left(\frac{br_{2}}{\pi}\right)^{2}\right)dt^{2}.$$

When $a = \pi/r_1 + (\pi/r_2)\beta$ and $b = (\pi/r_2)\sqrt{\gamma - \beta^2}$, the induced metric is $ds^2 + 2\beta ds dt + \gamma dt^2$. Thus the problem is reduced to studying whether $\psi_{r_1,a,b} = \psi_{r_1}T_{a,b}$ for a and b > 0 is harmonic.

 $\psi_{r_1,a,b}$ is given by

$$\psi_{r_1,a,b}(\tilde{s},\tilde{t}) = \left[\frac{1}{r_1}\cos r_1\left(\tilde{s} + \frac{1}{b}\left(\frac{\pi}{r_1} - a\right)\tilde{t}\right), \frac{1}{r_1}\sin r_1\left(\tilde{s} + \frac{1}{b}\left(\frac{\pi}{r_1} - a\right)\tilde{t}\right), \frac{1}{r_2}\cos r_2\frac{\pi}{br_2}\tilde{t}, \frac{1}{r_2}\sin r_2\frac{\pi}{br_2}\tilde{t}\right].$$

By a simple calculation, we obtain the following:

PROPOSITION 3. $\psi_{r_1,a,b}$ is a harmonic map if and only if

$$\left(a-\frac{\pi}{r_1}\right)^2+b^2=\left(\frac{\pi}{r_1}\right)^2.$$

Then $E(\psi_{r_1,a,b})$ is given by $(1/2)(\pi^2/b)(2\pi/r_1)$.

We set $z = r_1 a/2\pi + ir_1 b/2\pi$, then $z \in \Upsilon$ and $\mathbb{R}^2/[1, z]$ is homothetic to $\mathbb{R}^2/[(2\pi/r_1, 0), (a, b)]$ (b > 0) and hence we can define a one parameter family of hamonic maps ψ_{z,r_1} of $\mathbb{R}^2/[1, z]$ with $E(\psi_{z,r_1}) = \pi^2/(2 \operatorname{Im} z)$ into $\mathbb{R}\mathbb{P}^3$ by $\psi_{r_1,a,b}$ as follows:

$$\psi_{z,r_1}(s,t) = \left[\frac{1}{r_1}\cos 2\pi \left(s + \frac{1-2\operatorname{Re} z}{2\operatorname{Im} z}t\right), \frac{1}{r_1}\sin 2\pi \left(s + \frac{1-2\operatorname{Re} z}{2\operatorname{Im} z}t\right) - \frac{1}{r_2}\cos 2\pi \left(\frac{1}{2\operatorname{Im} z}t\right), \frac{1}{r_2}\sin 2\pi \left(\frac{1}{2\operatorname{Im} z}t\right)\right],$$

where $1 < r_1$. Note that $\psi_{z,r_1}(\langle 1 \rangle)$ is null-homotopic and $\psi_{z,r_1}(\langle z \rangle)$ is not null-homotopic. Now we can answer our problem.

COROLLARY 4. The ψ_{z,r_1} $(r_1 > 1)$ are precisely the harmonic maps which we seek. The conformal structures are given by 1, z $(z \in \Upsilon)$, and $E(\psi_{z,r_1}) = \pi^2/(2 \operatorname{Im} z)$.

We may consider that $\langle z \rangle$, $\langle z \rangle - \langle 1 \rangle$ also express closed geodesics for the homology cycles. Since $\psi_{z,r_1}(\langle z \rangle)$ and $\psi_{z,r_1}(\langle z \rangle - \langle 1 \rangle)$ are geodesics in **RP**³, we note that only $\langle z \rangle$ and $\langle z \rangle - \langle 1 \rangle$ are asymptotic curves on a Clifford surface. This fact is used in Section 2.

REMARK. We refer to [D] on the terminology (asymptotic curve, second fundamental form, etc.) of the geometry of submanifolds.

REMARK. ψ_{z,r_1} induces a harmonic map of $\mathbb{R}^2/[1, 2z]$ into $S^3(1)$, which has a constant energy density. Harmonic maps with constant energy density into spheres were studied by Tóth [T].

2. An energy estimate.

We shall obtain an energy inequality.

We consider lattice vectors 1 and z, where $0 \le \text{Re } z \le 1$ and define two diffeomorphisms F and \tilde{F} of a torus $\mathbb{R}^2/[(1, 0), (0, \text{Im } z)]$ onto $\mathbb{R}^2/[1, z]$ by

$$F(u, v) = \left(u + \frac{\operatorname{Re} z}{\operatorname{Im} z}v, v\right), \quad \tilde{F}(u, v) = \left(u - \frac{1 - \operatorname{Re} z}{\operatorname{Im} z}v, v\right).$$

Then

$$F_*\frac{\partial}{\partial u} = \frac{\partial}{\partial s}$$
, $F_*\frac{\partial}{\partial v} = \frac{\operatorname{Re} z}{\operatorname{Im} z}\frac{\partial}{\partial s} + \frac{\partial}{\partial t}$

and the Riemannian metric g_{ij} induced by F is as follows:

$$g_{11} = 1$$
, $g_{12} = \frac{\operatorname{Re} z}{\operatorname{Im} z}$, $g_{22} = 1 + \left(\frac{\operatorname{Re} z}{\operatorname{Im} z}\right)^2$

and F is hence an area element preserving map. Similarly so is \tilde{F} .

Let φ be a C^1 -map of $\mathbb{R}^2/[1, z]$ into $\mathbb{R}\mathbb{P}^3$ such that $\varphi(\langle 1 \rangle)$ is null-homotopic and $\varphi(\langle z \rangle)$ is not null-homotopic. Then, since the curve $\varphi F(u, v)$, whre u is fixed, is not null-homotopic

in \mathbf{RP}^3 , the length is greater than or equal to π . Namely,

$$\pi \leq \int_0^{\lim z} \left| \frac{\partial \varphi F}{\partial v} \right| dv$$

holds. So, Schwarz's inequality yields

$$\pi^2 \leq (\operatorname{Im} z) \int_0^{\operatorname{Im} z} \left| \frac{\partial \varphi F}{\partial v} \right|^2 dv,$$

which implies

$$\int_0^1 \frac{\pi^2}{\operatorname{Im} z} du \leq \int_0^1 \int_0^{\operatorname{Im} z} \left| \frac{\partial \varphi F}{\partial v} \right|^2 du dv.$$

Since F is an area element preserving map,

$$\frac{\pi^2}{\operatorname{Im} z} \leq \iint_{\mathbf{R}^2/[1,z]} \left| \left(\frac{\operatorname{Re} z}{\operatorname{Im} z} \right) \frac{\partial \varphi}{\partial s} + \frac{\partial \varphi}{\partial t} \right|^2 ds dt \, .$$

Namely,

(2.1)
$$\frac{\pi^2}{\operatorname{Im} z} \leq \iint_{\mathbf{R}^2/[1,z]} \left(\left(\frac{\operatorname{Re} z}{\operatorname{Im} z} \right)^2 \left| \frac{\partial \varphi}{\partial s} \right|^2 + \frac{2 \operatorname{Re} z}{\operatorname{Im} z} \left(\frac{\partial \varphi}{\partial s}, \frac{\partial \varphi}{\partial t} \right) + \left| \frac{\partial \varphi}{\partial t} \right|^2 \right) ds dt \, .$$

The equality holds if and only if

(2.2)
$$\left|\frac{\operatorname{Re} z}{\operatorname{Im} z}\frac{\partial\varphi}{\partial s} + \frac{\partial\varphi}{\partial t}\right| = \frac{\pi}{\operatorname{Im} z}.$$

Using \tilde{F} , we obtain the following similar to (2.1): (2.3)

$$\frac{\pi^2}{\operatorname{Im} z} \leq \iint_{\mathbb{R}^2/[1,z]} \left(\left(\frac{(1-\operatorname{Re} z)}{\operatorname{Im} z} \right)^2 \left| \frac{\partial \varphi}{\partial s} \right|^2 - \frac{2(1-\operatorname{Re} z)}{\operatorname{Im} z} \left(\frac{\partial \varphi}{\partial s}, \frac{\partial \varphi}{\partial t} \right) + \left| \frac{\partial \varphi}{\partial t} \right|^2 \right) ds dt$$

The equality holds if and only if

(2.4)
$$\left| -\frac{1 - \operatorname{Re} z}{\operatorname{Im} z} \frac{\partial \varphi}{\partial s} + \frac{\partial \varphi}{\partial t} \right| = \frac{\pi}{\operatorname{Im} z}$$

Summing up (2.1), (2.3), we obtain an inequality on $E(\varphi)$:

$$\frac{1}{2}\left(\frac{1}{\operatorname{Re} z} + \frac{1}{(1 - \operatorname{Re} z)}\right)\pi^{2} \le \max\left\{\frac{1}{\operatorname{Im} z}, \frac{\operatorname{Im} z}{\operatorname{Re} z} + \frac{\operatorname{Im} z}{(1 - \operatorname{Re} z)}\right\} \times E(\varphi) \quad (\operatorname{Re} z \neq 0, 1),$$
$$\frac{\pi^{2}}{2\operatorname{Im} z} \le E(\varphi) \quad (\operatorname{Re} z = 0, 1).$$

Consequently, we obtain the following energy estimate:

PROPOSITION 5.
$$\frac{1}{2} \frac{\pi^2}{\max\left(\frac{\operatorname{Re} z(1-\operatorname{Re} z)}{\operatorname{Im} z}, \operatorname{Im} z\right)} \leq E(\varphi)$$

In particular, if $|z - 1/2| \ge 1/2$ and $0 \le \text{Re } z \le 1$, then $E(\varphi)$ is greater than or equal to $\pi^2/(2 \text{Im } z)$.

Proposition 5, together with Corollary 4, implies

COROLLARY 6. The ψ_{z,r_1} $(r_1 > 1)$ are homotopically energy-minimizing harmonic maps.

Let S^1 be a geodesic with length π of \mathbb{RP}^3 , which is a one dimensional torus $\mathbb{R}/[\pi]$. We define a map of $\mathbb{R}^2/[1, z]$ into a geodesic $\mathbb{R}/[\pi] \subset \mathbb{RP}^3$ by

$$(s,t)\mapsto \left[\frac{\pi}{\operatorname{Im} z}t\right].$$

Then the energy is equal to $\pi^2/(2 \operatorname{Im} z)$. It follows from Proposition 5 that this map is a homotopically energy-minimizing harmonic map if $|z - 1/2| \ge 1/2$ and $0 \le \operatorname{Re} z \le 1$. We shall investigate the stability of a harmonic map of a torus into a geodesic in \mathbb{RP}^3 in Section 3.

We shall determine homotopically energy-minimizing harmonic maps of $\mathbb{R}^2/[1, z]$ ($z \in \Omega$) into $\mathbb{R}\mathbb{P}^3$ whose image is not a geodesic in $\mathbb{R}\mathbb{P}^3$.

If φ satisfies the equality in Proposition 5 for

$$\left|z-\frac{1}{2}\right|>\frac{1}{2}\,,$$

then the differentiation in the direction of s vanishes, that is, φ is a harmonic map into a geodesic in **RP**³. Using the classification (Lemma 9 in Section 3) of harmonic maps on $\mathbf{R}^2/[1, z]$ into $\mathbf{R}/[\pi]$, we find that φ is

$$(s,t)\mapsto \left[\pm \frac{\pi}{\operatorname{Im} z}t\right].$$

Note that $(s, t) \mapsto [-(\pi/\operatorname{Im} z)t]$ is congruent to $(s, t) \mapsto [(\pi/\operatorname{Im} z)t]$. Thus we obtain the following:

COROLLARY 7. The only homotopically energy-minimizing harmonic maps of $\mathbb{R}^2/[1, z]$ with $z \in \Omega$ and $z \notin \Upsilon$ into \mathbb{RP}^3 is

$$(s,t)\mapsto\left[\frac{\pi}{\operatorname{Im} z}t\right].$$

Next we consider the case where $z \in \Upsilon$, that is, |z - 1/2| = 1/2. (2.2) and (2.4) imply that

(2.5)
$$\left(\frac{\partial\varphi}{\partial s},\frac{\partial\varphi}{\partial s}\right) + \left(\frac{\partial\varphi}{\partial t},\frac{\partial\varphi}{\partial t}\right) = \frac{\pi^2}{\operatorname{Re} z(1-\operatorname{Re} z)} \quad (\operatorname{Re} z \neq 0,1).$$

(2.6)
$$\left\langle \frac{\partial \varphi}{\partial s}, \frac{\partial \varphi}{\partial s} \right\rangle = 0, \quad \left\langle \frac{\partial \varphi}{\partial t}, \frac{\partial \varphi}{\partial t} \right\rangle = \frac{\pi^2}{(\operatorname{Im} z)^2} \quad (\operatorname{Re} z = 0, 1).$$

On the other hand, since ψ is a harmonic map, the quadratic differential

$$\left\langle \frac{\partial \varphi}{\partial z}, \frac{\partial \varphi}{\partial z} \right\rangle dz^2$$

is holomorphic and hence is of the form ηdz^2 , where z = s + it and η is a constant. This implies that

(2.7)
$$\left\langle \frac{\partial \varphi}{\partial s}, \frac{\partial \varphi}{\partial s} \right\rangle - \left\langle \frac{\partial \varphi}{\partial t}, \frac{\partial \varphi}{\partial t} \right\rangle = 4 \operatorname{Re} \eta, \quad \left\langle \frac{\partial \varphi}{\partial s}, \frac{\partial \varphi}{\partial t} \right\rangle = -2 \operatorname{Im} \eta.$$

(2.5) and (2.7) state that

$$\left\langle \frac{\partial \varphi}{\partial s}, \frac{\partial \varphi}{\partial s} \right\rangle, \quad \left\langle \frac{\partial \varphi}{\partial t}, \frac{\partial \varphi}{\partial t} \right\rangle$$

are also constants and so is the rank of φ .

We have two possibilities, according to whether the rank of φ is one or two.

If the rank of φ is one, then φ is again a map into a geodesic. We shall determine energyminimizing harmonic maps of $\mathbb{R}^2/[1, z]$ ($z \in \Upsilon$) into a geodesic $\mathbb{R}/[\pi] \subset \mathbb{RP}^3$ (Corollary 10 in Section 3).

Assume the rank of φ is two. Then φ is a flat immersion of $\mathbb{R}^2/[1, z]$ into $\mathbb{R}\mathbb{P}^3$ and hence φ defines a surface in $\mathbb{R}\mathbb{P}^3$. We denote by σ the second fundamental form of the surface. Using the harmonicity of φ , we obtain

(2.8)
$$\sigma\left(\frac{\partial}{\partial s},\frac{\partial}{\partial s}\right) + \sigma\left(\frac{\partial}{\partial t},\frac{\partial}{\partial t}\right) = 0.$$

Let e_1 , e_2 be an orthonormal parallel fields with respect to the metric induced by φ . Then there exist constants a, b, c, d such that

$$\frac{\partial}{\partial s} = ae_1 + be_2, \quad \frac{\partial}{\partial t} = ce_1 + de_2,$$

which, together with (2.8), imply

(2.9)
$$(a^2 + c^2)\sigma_{11} + 2(ab + cd)\sigma_{12} + (b^2 + d^2)\sigma_{22} = 0,$$

where $\sigma_{11} = \sigma(e_1, e_1)$, etc.

(2.10)
$$\sigma_{11}\sigma_{22} - (\sigma_{12})^2 = -1$$

is the Gauss equation of the flat immersion of φ . The Codazzi equation of φ is given by

(2.11)
$$\sigma_{12,1} - \sigma_{11,2} = \sigma_{21,2} - \sigma_{22,1} = 0,$$

where $\sigma_{11,2}$ means $(\nabla_{e_1}\sigma)(e_1, e_2)$. Note that $(\nabla_X \sigma)(Y, Z)$ is defined by

$$(\nabla_X \sigma)(Y, Z) = X \sigma(Y, Z) - \sigma(\nabla_X Y, Z) - \sigma(Y, \nabla_X Z).$$

Covariantly differentiating (2.9), (2.10) by e_1 , e_2 , and using (2.11), we obtain the following homogeneous linear equations in $\sigma_{11,1}$, $\sigma_{11,2}$, $\sigma_{22,1}$, $\sigma_{22,2}$:

$$\sigma_{22}\sigma_{11,1} - 2\sigma_{12}\sigma_{11,2} + \sigma_{11}\sigma_{22,1} = 0,$$

$$\begin{aligned} \sigma_{22}\sigma_{11,2} - 2\sigma_{12}\sigma_{22,1} + \sigma_{11}\sigma_{22,2} &= 0, \\ (a^2 + c^2)\sigma_{11,1} + 2(ab + cd)\sigma_{11,2} + (b^2 + d^2)\sigma_{22,1} &= 0, \\ (a^2 + c^2)\sigma_{11,2} + 2(ab + cd)\sigma_{22,1} + (b^2 + d^2)\sigma_{22,2} &= 0. \end{aligned}$$

HOMOTOPICALLY ENERGY-MINIMIZING HARMONIC MAPS OF TORI

It follows from (2.9), (2.10) that the determinant of the coefficient matrix of the equations is

$$4((a^2 + c^2)(b^2 + d^2) - (ab + cd)^2)$$

and hence is positive by the assumption of the rank of φ . Thus φ has a parallel second fundamental form, that is, $\nabla \sigma = 0$.

In the geometry of submanifolds, submanifolds with parallel second fundamental form in space forms have been classified (see, for example, [F]). In particular, Lawson [L] proved that compact surfaces with parallel second fundamental forms in $S^3(1)$ are a totally geodesic surface, Clifford tori and their covering spaces up to isometries of $S^3(1)$. Since φ has a parallel second fundamental form, the image of φ must be a totally geodesic surface \mathbb{RP}^2 or a Clifford surface $\mathbb{R}^2/[(2\pi/r_1, 0), (\pi/r_1, \pi/r_2)]$ in \mathbb{RP}^3 . Since φ is a flat immersion, φ induces a covering map of $\mathbb{R}^2/[1, z]$ onto \mathbb{RP}^2 or $\mathbb{R}^2/[(2\pi/r_1, 0), (\pi/r_1, \pi/r_2)]$. We obtin only a covering map θ of $\mathbb{R}^2/[1, z]$ onto $\mathbb{R}^2/[(2\pi/r_1, 0), (\pi/r_1, \pi/r_2)]$ such that $\varphi = \tilde{\psi}_{r_1}\theta$. Indeed, there does not exist a covering map of a torus onto \mathbb{RP}^2 . Moreover, θ is a flat immersion. Changing the flat metric on $\mathbb{R}^2/[(2\pi/r_1, 0), (\pi/r_1, \pi/r_2)]$ as in Section 1, we may consider that θ is homothetic. So $\tilde{\psi}_{r_1}$ is harmonic with respect to the new flat metric and hence, there exists $z' \in \Upsilon$ such that $\varphi = \psi_{z',r_1}\theta$.

We shall prove the injectivity of θ as follows: There exist integers a, b, c, d such that

$$\theta(\langle 1 \rangle) = a \langle 1 \rangle + b \langle z' \rangle, \quad \theta(\langle z \rangle) = c \langle 1 \rangle + d \langle z' \rangle.$$

Since $\varphi(\langle z \rangle)$ and $\varphi(\langle z \rangle - \langle 1 \rangle)$ are geodesics with length π in **RP**³,

$$\theta(\langle z \rangle) = c \langle 1 \rangle + d \langle z' \rangle, \quad \theta(\langle z \rangle - \langle 1 \rangle) = (c - a) \langle 1 \rangle + (d - b) \langle z' \rangle$$

are bijectively mapped geodesics with length π in **RP**³ by ψ_{z',r_1} and hence are asymptotic curves. As only $\langle z' \rangle$, $\langle z' \rangle - \langle 1 \rangle$ express two asymptotic curves through each point (see Section 1), there exist four possibilities:

(2.12)
$$c\langle 1\rangle + d\langle z'\rangle = \pm \langle z'\rangle, \quad (c-a)\langle 1\rangle + (d-b)\langle z'\rangle = \pm (\langle z'\rangle - \langle 1\rangle);$$

(2.13)
$$c\langle 1\rangle + d\langle z'\rangle = \pm (\langle z'\rangle - \langle 1\rangle), \quad (c-a)\langle 1\rangle + (d-b)\langle z'\rangle = \mp \langle z'\rangle;$$

(2.14)
$$c\langle 1 \rangle + d\langle z' \rangle = \pm \langle z' \rangle, \quad (c-a)\langle 1 \rangle + (d-b)\langle z' \rangle = \mp (\langle z' \rangle - \langle 1 \rangle);$$

(2.15)
$$c\langle 1 \rangle + d\langle z' \rangle = \pm (\langle z' \rangle - \langle 1 \rangle), \quad (c-a)\langle 1 \rangle + (d-b)\langle z' \rangle = \pm \langle z' \rangle;$$

which yield

 $(a, b, c, d) = (\pm 1, 0, 0, \pm 1), \quad (\mp 1, \pm 2, \mp 1, \pm 1), \quad (\mp 1, \pm 2, 0, \pm 1), \quad (\mp 1, 0, \mp 1, \pm 1).$

Thus θ is injective and orientation-preserving for (2.12) and (2.13), orientation-reversing for (2.14) and (2.15).

We shall determine $\psi_{z',r_1}\theta$ for the above cases.

For (2.12), we may consider that θ is the identity.

For (2.13), we may consider z = (z'-1)/(2z'-1) and hence

$$\theta(s,t) = ((2\operatorname{Re} z' - 1)s - (2\operatorname{Im} z')t, (2\operatorname{Im} z')s + (2\operatorname{Re} z' - 1)t).$$

Then $\psi_{z',r_1}\theta$ is given by

$$\left[\frac{1}{r_1}\cos 2\pi \left(-\frac{1}{2\operatorname{Im} z}t\right), \frac{1}{r_1}\sin 2\pi \left(-\frac{1}{2\operatorname{Im} z}t\right), \frac{1}{r_2}\cos 2\pi \left(s+\frac{1-2\operatorname{Re} z}{2\operatorname{Im} z}t\right), \frac{1}{r_2}\sin 2\pi \left(s+\frac{1-2\operatorname{Re} z}{2\operatorname{Im} z}t\right)\right],$$

which is congruent to ψ_{z,r_2} .

For (2.14), we may consider that z = z' and

$$\theta(s,t) = ((2 \operatorname{Re} z' - 1)s + (2 \operatorname{Im} z')t, (2 \operatorname{Im} z')s - (2 \operatorname{Re} z' - 1)t)$$

Then $\psi_{z',r_1}\theta$ is congruent to ψ_{z,r_2} .

For (2.15), we may consider that $z = 1 - \overline{z'}$ and

$$\theta(s,t) = (s,-t) \, .$$

Then $\psi_{z',r_1}\theta$ is congruent to ψ_{z,r_1} .

By Corollary 6, we obtain the following:

PROPOSITION 8. The ψ_{z,r_1} $(r_1 > 1)$ are the only homotopically energy-minimizing harmonic maps of $\mathbb{R}^2/[1, z]$ $(z \in \Upsilon)$ into \mathbb{RP}^3 whose images are not geodesics in \mathbb{RP}^3 .

3. The stability of harmonic maps of tori into a geodesic in RP³.

First of all, we shall determine harmonic maps f of $\mathbb{R}^2/[1, z]$ into $\mathbb{R}/[\pi]$. Since df is a harmonic 1-form, there exist constants α , β such that

$$df = \alpha ds + \beta dt \, .$$

As df should define a map of $\mathbb{R}^2/[1, z]$ onto $\mathbb{R}/[\pi]$, the periods of df satisfy

 $\alpha, \quad \alpha \operatorname{Re} z + \beta \operatorname{Im} z = 0 \pmod{\pi},$

that is, $(1/\pi)(\alpha, \beta)$ is a dual lattice vector. Note that the space L^* of dual lattice vectors for 1, z is generated by

$$\hat{e} = \left(1, -\frac{\operatorname{Re} z}{\operatorname{Im} z}\right), \quad \hat{f} = \left(0, \frac{1}{\operatorname{Im} z}\right).$$

We obtain the following classification of harmonic maps of $\mathbb{R}^2/[1, z]$ into $\mathbb{R}/[\pi]$:

LEMMA 9. A harmonic map χ_{μ} of $\mathbf{R}^2/[1, z]$ into $\mathbf{R}/[\pi]$ is given by

 $\pi \langle \mu, (s, t) \rangle \pmod{\pi}$,

where $\mu \in L^*$. In particular, $\chi_{\mu}(\langle 1 \rangle)$ is null-homotopic, $\chi_{\mu}(\langle z \rangle)$ is not null-homotopic in **RP**³ if and only if

(3.1)
$$\mu = 2n\hat{e} + (2m+1)\hat{f},$$

where m and n are integers. The map is given by

(3.2)
$$\pi \left(2ns + \left(\frac{(2m+1) - 2n\operatorname{Re} z}{\operatorname{Im} z} \right) t \right)$$

with the energy

(3.3)
$$\frac{1}{2}\pi^2 \left((2n)^2 + \left(\frac{(2m+1) - 2n \operatorname{Re} z}{\operatorname{Im} z} \right)^2 \right) \times \operatorname{Im} z.$$

Now we can determine harmonic maps of $\mathbb{R}^2/[1, z]$ into a geodesic $\mathbb{R}/[\pi]$ with length π in \mathbb{RP}^3 with the energy $\pi^2/(2 \operatorname{Im} z)$ for $z \in \Upsilon$.

Since *m*, *n* such that

$$\frac{1}{2}\pi^2 \left((2n)^2 + \left(\frac{(2m+1) - 2n \operatorname{Re} z}{\operatorname{Im} z}\right)^2 \right) \times \operatorname{Im} z = \frac{\pi^2}{2 \operatorname{Im} z}$$

are (0,0), (-1, 0), (0,1), (-1, -1), we obtain the following:

(3.4)

$$(s, t) \mapsto \left[\frac{\pi}{\operatorname{Im} z}t\right],$$

$$\left[\frac{\pi}{\operatorname{Im} z}t\right]$$

(3.5)
$$(s,t) \mapsto \left[\pi \left(2s + \frac{1-2\operatorname{Re} z}{\operatorname{Im} z}t\right)\right]$$

are the only homotopically energy-minimizing harmonic maps of $\mathbb{R}^2/[1, z]$ into a geodesic in \mathbb{RP}^3 up to isometries of \mathbb{RP}^3 .

Thus we can determine homotopically energy-minimizing harmonic maps of $\mathbb{R}^2/[1, z]$ into \mathbb{RP}^3 for $z \in \Omega$ by Corollaries 7, 10 and Proposition 8. In particular, $\psi_{z,r_1} \mapsto (3.4)$, (3.5) if $r_1 \mapsto \infty$, 1, respectively.

In the remaining part of this section, we shall investigate the stability of χ_{μ} where μ satisfies (3.1), as a harmonic map into **RP**³. It is not necessary to prove Theorems A and B, but we shall find that χ_{μ} is energy-minimizing if it is stable.

Let $\tilde{\Delta}$ be the Laplacian of $\chi_{\mu}^* T \mathbf{R} \mathbf{P}^3$. Then, since $\mathbf{R} \mathbf{P}^3$ has constant sectional curvatures 1, the Jacobi operator J of χ_{μ} is given by

$$(3.6) Ju = -\tilde{\Delta}u - \left(\chi_{\mu*}\frac{\partial}{\partial s}, \chi_{\mu*}\frac{\partial}{\partial s}\right)u + \left(\chi_{\mu*}\frac{\partial}{\partial s}, u\right)\chi_{\mu*}\frac{\partial}{\partial s} \\ - \left(\chi_{\mu*}\frac{\partial}{\partial t}, \chi_{\mu*}\frac{\partial}{\partial t}\right)u + \left(\chi_{\mu*}\frac{\partial}{\partial t}, u\right)\chi_{\mu*}\frac{\partial}{\partial t},$$

where u is a section of $\chi^*_{\mu}T\mathbf{RP}^3$ (see, for example, [E-L]).

Over a geodesic S^1 of \mathbb{RP}^3 , $T\mathbb{RP}^3$ decomposes as the sum of the tangent bundle TS^1 and the normal bundle NS^1 , and NS^1 has the decomposition $N_1S^1 + N_2S^1$ by parallel transport. Moreover, TS^1 has a flat connection with trivial holonomy and N_1S^1 and N_2S^1 have flat connections with \mathbb{Z}_2 holonomy. Thus $\chi_{\mu}^*T\mathbb{RP}^3$ decomposes into $\chi_{\mu}^*TS^1$ and $\chi_{\mu}^*N_1S^1 + \chi_{\mu}^*N_2S^1$, where $\chi_{\mu}^* T S^1$ has a trivial holonomy and $\chi_{\mu}^* N_1 S^1$ and $\chi_{\mu}^* N_2 S^1$ has a non-trivial holonomy whose representation ρ is given by

$$\rho(\langle 1 \rangle) = I$$
, $\rho(\langle z \rangle) = -I$.

So $\chi_{\mu}^* N_1 S^1$ and $\chi_{\mu}^* N_2 S^1$ are the flat bundle E_{ρ} on $\mathbb{R}^2/[1, z]$ for ρ (see [S1). Let Δ_{ρ} be the Laplacian of E_{ρ} and Δ_0 the Laplacian of $\chi_{\mu}^* T S^1$. Then, using (3.6), we obtain the following:

PROPOSITION 11. It follows from the decomposition $u = u_0 + u_1 + u_2$, where u_0 is a section of $\chi_{\mu}^* T S^1$, u_1 is a section of $\chi_{\mu}^* N_1 S^1$ and u_2 is a section of $\chi_{\mu}^* N_2 S^1$ that

$$Ju = -\Delta_0 u_0 - \Delta_\rho u_1 - \pi^2 \left((2n)^2 + \left(\frac{(2m+1) - 2n \operatorname{Re} z}{\operatorname{Im} z} \right)^2 \right) u_1$$
$$-\Delta_\rho u_2 - \pi^2 \left((2n)^2 + \left(\frac{(2m+1) - 2n \operatorname{Re} z}{\operatorname{Im} z} \right)^2 \right) u_2.$$

So we should know the eigenvalues of $-\Delta_{\rho}$ to determine of the stability of χ_{μ} . Following [S2], we must calculate a dual lattice vector α such that

$$1 = \exp 2\pi i \langle (1,0), \alpha \rangle, \quad -1 = \exp 2\pi i \langle (\operatorname{Re} z, \operatorname{Im} z), \alpha \rangle,$$

and hence α is given by

$$\alpha = \left(N, \frac{1+2M-2N\operatorname{Re} z}{2\operatorname{Im} z}\right),\,$$

where N, M are integers. For example, we can set N = M = 0 and hence $\alpha = (0, 1/(2 \text{ Im } z))$, which implies the following:

PROPOSITION 12 ([S2]). The eigenvalues of $-\Delta_{\rho}$ are given by

$$\left\{4\pi^2 \left|\mu + \left(0, \frac{1}{2\operatorname{Im} z}\right)\right|^2 : \mu \in L^*\right\},\,$$

that is,

(3.7)
$$\pi^2 \left((2q)^2 + \left(\frac{(2p+1) - 2q \operatorname{Re} z}{\operatorname{Im} z} \right)^2 \right)$$

where p and q are integers.

PROOF. Sunada's proof is as follows:

$$\varphi_{\mu}(s,t) = A^{-1/2} \exp 2\pi i \langle (s,t), \mu \rangle$$

for $\mu \in L^*$, where A is the area of $\mathbb{R}^2/[1, z]$, is an orthonormal basis of $L^2(\mathbb{R}^2/[1, z])$ which satisfies $-\Delta_0 \varphi_{\mu} = 4\pi^2 |\mu|^2 \varphi_{\mu}^2$. Hence $\{4\pi^2 |\mu|^2 : \mu \in L^*\}$ are eigenvalues of $-\Delta_0$. For $f \in L^2(\mathbb{R}^2/[1, z])$,

$$u(s,t) = \exp 2\pi i \langle (s,t), \alpha \rangle f(s,t)$$

is an element of $L^2(E_{\rho})$, because $u((s, t) + \sigma) = \rho(\sigma)u(s, t)$ holds. This correspondence $f \mapsto u$ is isometric and hence

$$s_{\mu}(s,t) = A^{-1/2} \exp 2\pi i \langle (s,t), \mu + \alpha \rangle$$

for $\mu \in L^*$ is an orthonormal basis on $L^2(E_{\rho})$. Since

$$-\Delta_{\rho}s_{\mu}=4\pi^2|\mu+\alpha|^2s_{\mu}\,,$$

 $\{4\pi^2|\mu+\alpha|^2: \mu \in L^*\}$ are eigenvalues.

Thus by Propositions 11, 12, we can determine the satability of χ_{μ} .

COROLLARY 13. χ_{μ} , where $\mu = 2n\hat{e} + (2m + 1)\hat{f}$, is stable if and only if m and n satisfy

$$(2n)^{2} + \left(\frac{(2m+1) - 2n\operatorname{Re} z}{\operatorname{Im} z}\right)^{2} \le (2q)^{2} + \left(\frac{(2p+1) - 2q\operatorname{Re} z}{\operatorname{Im} z}\right)^{2}$$

for all integers p and q.

Let m and n be integers which minimize

$$(2n)^2 + \left(\frac{(2m+1) - 2n\operatorname{Re} z}{\operatorname{Im} z}\right)^2$$

for a fixed $z \in H$. Then the map χ_{μ} for *m* and *n* is a stable harmonic map and other maps are unstable by Corollary 13. In particular, since

$$2^2 + \left(\frac{1-2\operatorname{Re} z}{\operatorname{Im} z}\right)^2 < \left(\frac{1}{\operatorname{Im} z}\right)^2,$$

we know the following:

COROLLARY 14.
$$(s, t) \mapsto \left[\frac{\pi}{\operatorname{Im} z}t\right]$$

is unstable for z such that |z - 1/2| < 1/2.

Let $\chi_{z,m,n}$ denote the stable map with above m and n for z. Then we obtain the following:

THEOREM 15. $\chi_{z,m,n}$ is a homotopically energy-minimizing harmonic map.

PROOF. As m and n are integers which minimize

$$(2n)^2 + \left(\frac{(2m+1)-2n\operatorname{Re} z}{\operatorname{Im} z}\right)^2,$$

2n and 2m + 1 are coprime, and there exist integers p and q such that

$$p(2n) + q(2m + 1) = 1$$
.

Since

$$\begin{pmatrix} q & p \\ -2n & 2m+1 \end{pmatrix} \in SL(2, \mathbb{Z}),$$

 $e' = (2m + 1)(1, 0) - 2n(\operatorname{Re} z, \operatorname{Im} z), \quad f' = p(1, 0) + q(\operatorname{Re} z, \operatorname{Im} z)$

Q.E.D.

is a generator of the lattice vectors.

Considering e' and f' as complex numbers, we denote by z' the complex number f'/e'. Then $\chi_{z,m,n}$ may be a stable map of $\mathbb{R}^2/[1, z']$. Since the curve $\chi_{z,m,n}(e')$ is a constant and a curve $\chi_{z,m,n}(f')$ is a geodesic with length π , the map is $\chi_{z',m',n'}$, where m' = 0 or -1 and n' = 0. If $0 \le \operatorname{Re} z \le 1$, then $\chi_{z',m',n'}$ is homotopically energy-minimizing by Corollaries 7, 14 and so is $\chi_{z,m,n}$. If $\operatorname{Re} z < 0$ or $\operatorname{Re} z > 1$, then we obtain \hat{z} such that $0 \le \operatorname{Re} \hat{z} \le 1$ and $z' = \hat{z} + l$, where l is an integer, then $\chi_{\hat{z},m',n'} = \chi_{z',m',n'}$. Since $\chi_{\hat{z},m',n'}$ is stable and hence homotopically energy-minimizing as the above, $\chi_{z,m,n}$ is again homotopically energyminimizing. Q.E.D.

4. An energy function and the proofs of Theorems A, B.

Let $SL(2, \mathbb{Z})$ be the modular group acting on H. Let $\Gamma(2)$ be the principal congruence subgroup of level 2 of $SL(2, \mathbb{Z})$, that is, the set of

$$\begin{pmatrix} l & k \\ n & m \end{pmatrix} \in SL(2, \mathbb{Z})$$

which satisfies

$$\begin{pmatrix} l & k \\ n & m \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{2}.$$

Then $\Gamma(2)$ is generated by

$$z \mapsto z+2, \quad z \mapsto \frac{z}{2z+1}$$

and a fundamental domain is given by

$$\left\{z \in H : 0 \le \operatorname{Re} z \le 2, \quad \left|z - \frac{1}{2}\right| \ge \frac{1}{2}, \quad \left|z - \frac{3}{2}\right| \ge \frac{1}{2}\right\}.$$

Next we define a subgroup Γ' as the set of

$$\begin{pmatrix} l & k \\ n & m \end{pmatrix}$$

of $SL(2, \mathbb{Z})$ with *l* odd and *n* even (so *m* is odd). Then Γ' is a subgroup of $SL(2, \mathbb{Z})$ which contains $\Gamma(2)$ and is generated by

$$z \mapsto z+1, \quad z \mapsto \frac{z}{2z+1}$$

Moreover Ω is a fundamental domain of Γ' .

We consider the energy $E(\varphi)$ of a homotopically energy-minimizing harmonic map φ of $\mathbb{R}^2/[1, z]$ into \mathbb{RP}^3 such that $\varphi(\langle 1 \rangle)$ is null-homotopic and $\varphi(\langle z \rangle)$ is not null-homotopic in \mathbb{RP}^3 . This gives a function E(z) on H which we call the energy function.

We shall investigate E(z).

For $z \in \Omega$, we have determined homotopically energy-minimizing harmonic maps of $\mathbb{R}^2/[1, z]$ of \mathbb{RP}^3 in Section 3. For z in other fundamental domains of Γ' , we can determine homotopically energy-minimizing harmonic maps as follows:

For

$$\omega = \begin{pmatrix} l & k \\ n & m \end{pmatrix} \in SL(2, \mathbf{R}),$$

the lattice vectors nz + m and lz + k form 1 and z. Note that $\varphi(\langle nz + m \rangle)$ is null-homotopic and $\varphi(\langle lz + k \rangle)$ is not null-homotopic if and only if $\omega \in \Gamma'$. Then φ is considered as a harmonic map of the parallelogram spanned by nz + m and lz + k, which define an energyminimizing harmonic map φ' of $\mathbb{R}^2/[1, z']$, where z' = (lz + k)/(nz + m). Moreover, $\varphi'(\langle 1 \rangle)$ is null homotopic and $\varphi'(\langle z' \rangle)$ is not null-homotopic. Since there exists ω such that $z' \in \Omega$, we can use our classification of energy-minimizing harmonic maps of $\mathbb{R}^2/[1, z']$ into \mathbb{RP}^3 . Namely, homotopically energy-minimizing harmonic maps φ of $\mathbb{R}^2/[1, z]$ such that $\varphi(\langle 1 \rangle) =$ 0 and $\varphi(\langle z \rangle) \neq 0$ are made from homotopically energy-minimizing harmonic maps φ' of $\mathbb{R}^2/[1, z']$ such that $\varphi'(\langle 1 \rangle) = 0$ and $\varphi'(\langle z' \rangle) \neq 0$ by using ω^{-1} . In particular, if $z' \notin \Upsilon$, then the number of homotopically energy-minimizing harmonic maps of $\mathbb{R}^2/[1, z]$ is one up to isometries of \mathbb{RP}^3 and the image is a geodesic, if $z' \in \Upsilon$, then we obtain a one parameter family of homotopically energy-minimizing harmonic maps of $\mathbb{R}^2/[1, z]$ with all Clifford tori as images, whose limits are harmonic maps in geodesics in \mathbb{RP}^3 .

Thus we obtain Theorems A and B except for the assertion that E is not smooth on $\Gamma \Upsilon$. Note that, for an interior point z of other fundamental domain Ω' of Γ'

$$\Omega' = \left\{ z \in H : \left| z - \frac{1}{2} \right| \le \frac{1}{2}, \quad \left| z - \frac{1}{4} \right| \ge \frac{1}{4}, \quad \left| z - \frac{3}{4} \right| \ge \frac{1}{4} \right\},\$$

the energy-minimizing harmonic map φ of $\mathbb{R}^2/[1, z]$ into \mathbb{RP}^3 such that $\varphi(\langle 1 \rangle)$ is null-homotopic and $\varphi(\langle z \rangle)$ is not null-homotopic is given by (3.5), that is,

$$(s, t) \mapsto \left[\left(\pi (2s + \frac{1 - 2\operatorname{Re} z}{\operatorname{Im} z} t) \right] \right]$$

with the energy

$$\frac{\pi^2}{2} \left(4 + \left(\frac{1 - 2\operatorname{Re} z}{\operatorname{Im} z} \right)^2 \right) \operatorname{Im} z \,.$$

This is suggested by Corollaries 7, 10, 14 and Theorem A. We directly state the reason as follows:

 Ω' is the image of Ω by (z-1)/(2z-1) and hence there exists an interior point z' of Ω such that

$$z=\frac{z'-1}{2z'-1}\,.$$

Thus, using the homotopically energy-minimizing harmonic map of $\mathbb{R}^2/[1, z']$ into $\mathbb{R}\mathbb{P}^3$:

$$(\tilde{s}, \tilde{t}) \mapsto \left[\frac{\pi}{\operatorname{Im} z'}\tilde{t}\right],$$

$$\tilde{s} = (2 \operatorname{Re} z' - 1)s - (2 \operatorname{Im} z')t, \quad \tilde{t} = (2 \operatorname{Im} z')s + (2 \operatorname{Re} z' - 1)t,$$

we obtain the homotopically energy-minimizing harmonic map of $\mathbb{R}^2/[1, z]$ into $\mathbb{R}\mathbb{P}^3$:

$$(s,t) \mapsto \left[\frac{\pi}{\operatorname{Im} z'}((2\operatorname{Im} z')s + (2\operatorname{Re} z' - 1)t)\right],$$

which is equal to

$$(s, t) \mapsto \left[\pi \left(2s + \frac{1 - 2\operatorname{Re} z}{\operatorname{Im} z} t \right) \right]$$

by

$$\frac{2\operatorname{Re} z' - 1}{\operatorname{Im} z'} = -\frac{2\operatorname{Re} z - 1}{\operatorname{Im} z}$$

Finally we give the proof of the last part of (ii) in Theorem B: Since $E(z) = \pi^2/(2 \operatorname{Im} z)$ for $z \in \Omega$ and

$$E(z) = \frac{\pi^2}{2} \left(4 + \left(\frac{1 - 2\operatorname{Re} z}{\operatorname{Im} z} \right)^2 \right) \operatorname{Im} z$$

for $z \in \Omega'$, E is not smooth at each point of Υ .

ACKNOWLEDGEMENT. During the author's stay at Warwick University (1988–1989), Professors J. Eells and M. Micallef asked him whether the Clifford minimal surface in \mathbb{RP}^3 is a homotopically energy-minimizing harmonic map. He expresses gratitude to Professors J. Eells and M. Micallef.

References

- [D] M. P. DOCARMO, Differential geometry of curves and surfaces, Prentice-Hall (1976).
- [E-L] J. EELLS and L. LEMAIRE, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), 385– 524.
- [F] D. FERUS, Immersions with parallel second fundamental form, Math. Z. 140 (1974), 87–93.
- [L] H. B. LAWSON, Jr., Local rigidity theorems for minimal hypersurfaces, Ann. of Math. 89 (1969), 187–197.
- [M] M. MUKAI, The deformation of harmonic maps given by the Clifford tori, Kodai Math. J. 20 (1997), 252-268.
- [S1] T. SUNADA, Unitary representations of fundamental groups and the spectrum of twisted Laplacians, Topology 28 (1989), 125–132.
- [S2] T. SUNADA, Kihongun to Rapurasian (The fundamental groups and Laplacians) (in Japanese), Kinokuniya (1988).
- [S-T] K. SHIOHAMA and R. TAKAGI, A characterization of a standard torus in E³, J. Differential Geom. 4 (1970), 477–485.
- [S-U] J. SACKS and K. UHLENBECK, The existence of minimal immersions of 2-spheres, Ann. of Math. 113 (1981), 1-24.
- [T] G. TÓTH, Construction des applications harmoniques non rigides d'un tore dans la sphère, Ann. Global Anal. Geom. 1 (1983), 105–118.

Present Address: THE GRADUATE SCHOOL OF MATHEMATICS, NAGOYA UNIVERSITY, CHIKUSA-KU, FUROU-CHO, NAGOYA, 464-8602 JAPAN. *e-mail*: ejiri@math.nagoya-u.ac.jp