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Abstract. We determine homotopically energy-minimizing harmonic maps of tori into the 3-dimensional real
projective space RP3 of constant sectional curvature 1.

Introduction.

Let N be a compact Riemannian manifold with r2(N) = 0 and ¢ a continuous map of
~a Riemann surface M into N. Then Sacks and Uhlenbeck [S-U] proved that there exists a
homotopically energy-minimizing harmonic map in the homotopy class of ¢. The energy and
the number of the energy-minimizing harmonic maps are not however explicit.

In this paper, in the case M = T? (a flat torus), N = RP3, we determine the energy and
the number of the energy-minimizing harmonic maps 72 — RP3.

A flat torus is represented by R?/[1, z], where 1, z are lattice vectors such that Imz > 0,
that is, z € H (the upper half plane). Let (1), (z) denote the generator of 1 (R? /1, zD)
represented by 1, z. Since m; (RP3) is Z,(= {0, 1}), there exist k, I such that

¢(1) =k, ¢(2)) =1,

where k, | = O or 1. So the homotopy set of maps of the torus into RP? are classified according
to

k,1)=(0,00, (1,0, @O, 11).

If (k, 1) = (0, 0), then ¢ is null-homotopic and hence the harmonic maps corresponding to ¢
are constant maps. If (k,l) = (1, 0), then Rz/[l, —1/z] is homothetic R2/[1, z} and the map
@ of R?/[1, —1/z] into RP3 corresponding to ¢ satisfies

. - 1
(1) =0, § ((—;}) =1.
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If (k,1) = (1, 1), then we have the homothety of R2/[1, z] onto R2/[1, z/(z + 1)] and corre-
sponding to ¢ again satisfies

- - Z
$(1) =0, ¢(<Z+1)) —1.

Thus it is enough to consider the case where (k,!) = (0, 1) in the homotopy set and hence
determine homotopically energy-minimizing harmonic maps ¢ of R2/[1, z] into RP3 such
that ¢((1)) is null-homotopic and ¢((z)) is not null-homotopic in RP3.

So, in this paper, we assume that homotopically enegy-minimizing harmonic maps are
in the homotopy class corresponding to (k, ) = (0, 1).

Let SL(2, Z) be the modular group acting on H and I’ the subgroup defined by

(= =)
n m
with [ odd and n even (so m is odd). Then £2 defined by
Lt
=%

2

is a fundamental domain of I"’. Furthermore we denote by 1"

1y 1
=51

273
We obtain the following on the number of homotopically energy-minimizing harmonic
maps of a flat torus into RP3:

{ZEH:

05Rez§1}

{zeH:

THEOREM A. (i) The number of homotopically energy-minimizing harmonic maps ¢
of R2/[1,z] for z € H and z ¢ I''T such that ¢((1)) is null-homotopic and ¢({(z)) is not
null-homotopic in RP3 is one up to isometries of RP3 and the image is a geodesic. (ii) The
number of homotopically energy-minimizing harmonic maps ¢ of R? /[l,z]1 forz € T''T
such that ¢({1)) is null-homotopic and ¢((z)) is not mull-homotopic in RP? is infinity up
to isometries of RP3. More precisely, two of these have geodesics as their images and the
others are a one parameter family of homotopically energy-minimizing harmonic maps with
all Clifford tori (in RP3) as images. Furthermore, the limits of the one parameter family are
the above two maps (whose images are geodesics).

Note that the space of homotopically energy-minimizing harmonic maps of a flat torus
into RP? is path-connected. Mukai [M] has studied a one parameter family of harmonic maps
of the square torus into S3(1) whose images are Clifford tori in S3(1) and has determined the
Jacobi fields and their integrability and hence a connected component containing the above
harmonic maps in the moduli of harmonic maps of the square torus into S3(1).

Let E(z) denote the energy E () of a homotopically energy-minimizing harmonic map
¢ of R%/[1, z] into RP3. Then E(z) is a function on H and has the following property:

THEOREM B. (i) E(2) = 71'2/(2 Imz) for z € 2. (ii) E(2) is invariant by I'' and is
not smoothon I''T .
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1. The Clifford minimal surface.

Let R* be the 4-dimensional Euclidean space and (X, Y, Z, W) a canonical coordinate
system of R*. Let S3(1) be the 3-dimensional unit sphere with center at the origin in R* and
P the stereographic projection of S3(1)\(0, 0, 0, 1) onto the (X, Y, Z )-plane. We denote by
(x,y,z)theimage of (X, Y, Z, W) € S3(1)\(O, 0,0, 1), so that

X Y z

*Tiow YT 1w Titwe

Let ¢ be the Clifford minimal embedding of the torus S1(1/+/2) x S'(1/+/2) into S3(1)
given by

¢(s,t)=(%cos fs1nfs fcosft f81nft)

Then we get an embedding

Po(s. 1) = ( cos +/2s sin+/2s cos /2t ) ’

V2 = sina/2t" /2 —sin/2t’ /2 — sin/2t
for which the following is well known [S-T]:

LEMMA 1. P¢ is an embedding of S'(1/+/2) x S1(1/~/2) into the (x, y, z)-plane and
the image is a surface of revolution about the z-axis of a circle of center (+/2, 0) and radius 1
in the (x, z)-plane.

Since the Clifford minimal torus S!(1/ V2) x S1 1/ V/2) is invariant under the antipodal
map of 53(1), it admits and isometry. Using lattice vectos (W2, 0), (0, v/27), we can iden-
tify R2/[(+/27, 0), (0, v/27)] with §1(1/4/2) x S'(1/+/2), and the above isometry is given
by

1 1
—n,t+ —m .
V2 ﬁ]

We now have a map v of a torus R?/[e, f] with the lattice generated by

1 1
e= «/En, 0, = (—n, —Jr)
( d V2 V2
into RP?. We shall also call this the Clifford minimal surface.
Now we can study the homotopy class and the energy of ¥ as follows:

LEMMA 2. The curve Po(s,0) is a circle of center (0,0) and radius 7w/~/2 in the
plane z = 1/ V2, and so Vv ((e)) is null-homotopic in RP3. The curve P (t,t) is a circle of
center (0, 1) and radius ~/2 in the (%, ¥)-plane defined by an orthonormal basis {1/ V2(1,0,1),
(0,1,0)}, and so ¥ ({f)) is the generator of my (RP3) Furthermore Yy ({f)) is a geodesic in
RP3, and the energy of ¥ equals 7>

[s,t] > [s +
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Since ¥ is an isometric minimal embedding, ¥ is a harmonic map. Similarly, using the
Clifford embedding of S'(1/r;) x S1(1/ry) into S3(1), that is,
( 1 1 1 1 )
(s,t) = | —cosrys, —sinrys, — cosryt, —sinrzt | ,
r r r2 r2

where (1/r1)? + (1/r2)% = 1, we also obtain an isometric embedding ¥, of R?/[(27/r1, 0),
(mw/r1, m/ry)] into RP3. Note that 1/7:1 is not a harmonic map except whenr; = /2, because it
is not minimal except when r; = /2 (the Clifford minimal surface). Changing the flat metric
of R?/[(2rc/r1, 0), (;t/r1, 7w/ r2)], we shall find the flat metric such that 'Z:I is harmonic.

We consider flat metrics on R2/[(27/r1, 0), (;t/r1, 7 /r2)] defined by

ads? + 2Bdsdt + ydt?,

where « > 0 and @y — B2 > 0. Since the harmonicity is conformally invariant, we may
assume « = 1. Our problem is as follows:

PROBLEM. When is 117;1 harmonic with respect to the above flat metric given by B and
y?

We define a diffeomorphism 7, , of the torus R2/ [2r/r1,0), (a,b)] (b > 0) onto
R%/[27/r1,0), (m/r1, 7/r2)] by

- 1 /n - T .
TapGE, D)=(5s+-|— — t,—t]).
WG D) (s+b(,1 a) brz)

Then the flat metric on R? /[Qm/r1,0), (a,b)] (b >0) induces the flat metric on
R2/[(27t/r1, 0), (t/r1, w/r2)]1 by Ty p, which is given by

2 2
ds? +2 (— (E —a) r—2) dsdt + (((—’5 —a) 9—) + (bﬂ) )dﬂ.
r T r T b4
Whena = n/ry + (;/r2)B and b = (7 /r2)/y — B2, the induced metric is ds? +2Bdsdt +

ydt2. Thus the problem is reduced to studying whether ¥, 4.» = ¥y, Tap fora and b > O is
harmonic.

Yr,,a,b 18 given by

- 1 . 1 (n - 1 . 1 (m ~
Yr.ab(S,t) =|—cosr |§+—-\——a])t),—sinrn{s+-|\——a]t},
r b \n r b \r

1 cosrp——7 L sin

—_ —t, —sinr

r 2 bry nr 2 br;
By a simple calculation, we obtain the following:

PROPOSITION 3. Yy, 4.5 is @ harmonic map if and only if

2 2
(a - -JL) +b? = (1) .
r1 ry

Then E(Yr,,a,b) is given by (1/2)(7r2/b)(27r/r1).
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Wesetz = ria/2n+irib/2m,thenz € T and Rz/[l, z] is homotheitc to Rz/[(Zn/rl, 0),
(a, b)] (b > 0) and hence we can define a one parameter family of hamonic maps Yo, Of
R?/[1, z] with E(y,,,) = 72/(2Im z) into RP? by ¥, 4.5 as follows:

1 1-2 1—-2R
I/"z,rl(S, t) =| —cos2m |s + ——&—Z-t s isinZyr s+ _—ezt ,
r 2Imz r 2Imz

1cos27r ! t lsinZn' ! t
r 2Imz /' nrp 2Imz '

where 1 < r;. Note that ¥, ,, ((1)) is null-homotopic and ¥, ,, ({z)) is not null-homotopic.
Now we can answer our problem.

COROLLARY 4. The v, (r1 > 1) are precisely the harmonic maps which we seek.
The conformal structures are given by 1,z (z € 1), and E(Y; r)) = 72/(2Imz).

We may consider that (z), (z) — (1) also express closed geodesics for the homology
cycles. Since ¥, r, ((z)) and ¥, », ((z) — (1)) are geodesics in RP3, we note that only (z) and
(z) — (1) are asymptotic curves on a Clifford surface. This fact is used in Section 2.

REMARK. We refer to [D] on the terminology (asymptotic curve, second fundamental
form, etc.) of the geometry of submanifolds.

REMARK. ¥, induces a harmonic map of R2?/[1, 27] into $3(1), which has a constant

energy density. Harmonic maps with constant energy density into spheres were studied by
Té6th [T]. ’

2. An energy estimate.

We shall obtain an energy inequality.
We consider lattice vectors 1 and z, where 0 < Re z < 1 and define two diffeomorphisms
F and F of a torus R?/[(1, 0), (0, Im z)] onto R?/[1, z] by

R . 1 -R
F(u,v)=(u+-—e—z-v,v), F(u,v)=(u—~—ezv,v).
Imz

Imz

Then
0 _ 3 3 Rezd 0
*ou s’ *av  Imzds ot

and the Riemannian metric g;; induced by F is as follows:

1 __ Rez _1_’_(Rez)2
g1 =1, gi2= mz’ g = _Imz

and F is hence an area element preserving map. Similarly so is F.
Let ¢ be a C!-map of R?/[1, z] into RP3 such that ¢((1)) is null-homotopic and ¢({(z))
is not null-homotopic. Then, since the curve ¢ F (4, v), whre u is fixed, is not null-homotopic
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in RP3, the length is greater than or equal to 7r. Namely,
Imz
T < /‘ dpF
0

av
holds. So, Schwarz’s inequality yields

Imz
7% < (Imz) f
0

Imz
f = < f [
o Imz

Since F is an area element preserving map,

d¢F |?
Ldv,

which implies

dpF |?
(o dudv

2
ff (Rez) % 1+ 91 dsdr .
Imz R2/[1,z] Imz ) 0s ot

Namely,

Rez d¢|> 2Rez{d¢p 8<p> dp |?
2.1 — —| |dsdt.
@1 Imz .//Rz/[l 2] ((Imz) s Imz <3s at + at :
The equality holds if and only if

Rezde Od¢ /4
2.2 —_—t = —_—
2.2) Imz ds ot Imz

Using F, we obtain the following similar to (2.1):
2. 3)

(G5
Imz R2/[1 zl Imz

The equality holds if and only if

1—-Rezdp J¢
" "Imz os  o8t| Imz’
Summing up (2.1), (2.3), we obtain an inequality on E(¢p):

1 1 1 2 1 Imz Imz
— < , E R Oal 9
2<Rez+(l—Rez))Jr _max{lmz Rez-i_(l—Rez)}>< @) Rez# )

g |?
os

2(1 —Re2) <p 8<p + 3_(,0
Imz 3s’ ot

ot

2
) dsdt .

2.4) il

2
<E Rez=0,1).
2Imz = () (Rez )
Consequently, we obtain the following energy estimate:
1 w2
PROPOSITION 5. — < E(p).

2 Rez(1—Rez)
max Tmz ,Imz

In particular, if |z — 1/2| = 1/2and 0 < Rez < 1, then E(p) is greater than or equal to
7?/Imz).
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Proposition 5, together with Corollary 4, implies

COROLLARY 6. The VY, ,, (r1 > 1) are homotopically energy-minimizing harmonic
maps.

Let S'bea geodesic with length 7 of RP3, which is a one dimensional torus R/[m]. We

define a map of R?/[1, z] into a geodesic R/[] C RP? by
.0 > [Z=1].
Imz

Then the energy is equal to 72/(2Imz). It follows from Proposition 5 that this map is a
homotopically energy-minimizing harmonic map if |z — 1/2| > 1/2and 0 < Rez < 1. We
shall investigate the stability of a harmonic map of a torus into a geodesic in RP3 in Section
3.

We shall determine homotopically energy-minimizing harmonic maps of R?/[1, z] (z €
£2) into RP? whose image is not a geodesic in RP3.

If ¢ satisfies the equality in Proposition 5 for

1

— — > — ,

‘7272
then the differentiation in the direction of s vanishes, that is, ¢ is a harmonic map into a
geodesic in RP3. Using the classification (Lemma 9 in Section 3) of harmonic maps on
R2/[1, z] into R/[r], we find that ¢ is

(s, 1) > [:i:i—:;—zt] .

Note that (s, t) — [—(r/Imz)¢] is congruent to (s, t) — [(w/Imz)?]. Thus we obtain the
following:

1

COROLLARY 7. The only homotopically energy-minimizing harmonic maps of R?/
[1,zlwithz € 2 and z ¢ T into RP3 is

(s, 1) > [ﬁt] :

Next we consider the case where z € 7, that s, |z — 1/2| = 1/2. (2.2) and (2.4) imply
that

dp B¢ dp g w2
. R 0,1).
(2.5 <8 8s>+<8t 8t> Rez(1 —Rez) Rez # )
dp d¢p dp Od¢ 72
2. —,—)=0, —— ([Rez=0,1).
(2.6) <3s 8s> 0 <8t Bt) (Im z)2 Rez )

On the other hand, since ¥ is a harmonic map, the quadratic differential

a(p 8<p dz?
az 0z
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is holomorphic and hence is of the form ndz?, where z = s + it and 7 is a constant. This
implies that

dp d¢ dp 3¢ dp d¢
. - 2)—(=,=)=4Repn, (=, —=)=-2Imp.
@7 ( ) (at ot en ds 0t 2Imn

(2.5) and (2.7) state that
dp dp\ [dp B¢
ds’ ds/’ at’ ot

are also constants and so is the rank of ¢.

We have two possibilities, according to whether the rank of ¢ is one or two.

If the rank of ¢ is one, then ¢ is again a map into a geodesic. We shall determine energy-
minimizing harmonic maps of R2/ [1, z] (z € T) into a geodesic R/[7] C RP3 (Corollary 10
in Section 3).

Assume tht the rank of ¢ is two. Then g is a flat immersion of R?/[1, z] into RP? and
hence ¢ defines a surface in RP3. We denote by o the second fundamental form of the surface.
Using the harmonicity of ¢, we obtain

0 0 0 d

Let e, e; be an orthonormal parallel fields with respect to the metric induced by ¢. Then
there exist constants a, b, ¢, d such that

0 0
— = aej + bey, §=ce1+de2,

which, together with (2.8), i?'jply

2.9 (a2 + c2)011 + 2(ab + cd)o1z + (b2 + d2)022 =0,
where 011 = o (e, €1), etc.

(2.10) 011022 — (012)* = —1

is the Gauss equation of the flat immersion of ¢. The Codazzi equation of ¢ is given by

(2.11) 012,1 —011,2 =021,2 —022,1 =0,

where 011,2 means (V,,0)(e1, 7). Note that (Vxo)(Y, Z) is defined by
(Vxo)(¥,Z)=Xo(Y,Z) —o0(VxY,Z)~0(Y,VxZ).

Covariantly differentiating (2.9), (2.10) by e, e, and using (2.11), we obtain the follow-
ing homogeneous linear equations in 011,1, 011,2, 022,1, 022,2:

022011,1 — 2012011,2 + 011022,1 =0,

022011,2 — 2012022,1 + 0110222 =0,
@* + Hoi1,1 +2@ab + cd)orr 2 + B + d*oxn,1 =0,
(@2 + o112 + 2(ab + cd)oa,1 + (b* + d*)o22 = 0.



HOMOTOPICALLY ENERGY-MINIMIZING HARMONIC MAPS OF TORI 511

It follows from (2.9), (2.10) that the determinant of the coefficient matrix of the equations is
4((@® + ) (B* + d?) — (ab + cd)?)

and hence is positive by the assumption of the rank of ¢. Thus ¢ has a parallel second
fundamental form, that is, Vo = 0.

In the geometry of submanifolds, submanifolds with parallel second fundamental form
in space forms have been classified (see, for example, [F]). In particular, Lawson [L] proved
that compact surfaces with parallel second fundamental forms in S3(1) are a totally geodesic
surface, Clifford tori and their covering spaces up to isometries of S3(1). Since ¢ has a
parallel second fundamental form, the image of ¢ must be a totally geodesic surface RP? or a
Clifford surface R? /[2r/r1,0), (r/r1, w/r3)]in RP3. Since @ is a flat immersion, ¢ induces
a covering map of R?/[1, z] onto RP? or R?/[(27/r1,0), (t/r1, w/r2)]. We obtin only a
covering map 8 of R%/[1, z] onto R?/[(277/r1, 0), (t/r1, /r2)] such that ¢ = 6. Indeed,
there does not exist a covering map of a torus onto RP2. Moreover, 6 is a flat immersion.
Changing the flat metric on R?/[(27/r1, 0), (7 /r1, w/r2)] as in Section 1, we may consider
that 6 is homothetic. So 1,/7;1 is harmonic with respect to the new flat metric and hence, there
exists 2’ € T suchthat ¢ = ¥y , 6.

We shall prove the injectivity of 6 as follows:

There exist integers a, b, ¢, d such that

(1)) =a(l) +b(z), 6(z)) =c(l)+d(Z).
Since ¢((z)) and @({z) — (1)) are geodesics with length 7 in RP3,
0((z)) = c(l) +d(Z), 6({z) — (1)) = (c —a)(1) + (d — b)(Z')

are bijectively mapped geodesics with length 7 in RP3 by V¥ r, and hence are asymptotic
curves. As only (z), (z/) — (1) express two asymptotic curves through each point (see Section
1), there exist four possibilities:

(2.12) () +d{Z')y =x(Z), (c—a)l)+d—b))==%(() - (1);
(2.13) c(l) +d(z') =x((2) — (1)), (c—a)(1)+(d—b)) =F();
(2.14) c(l) +d(z') =x(z), (c—a)l)+(d—b))=F({)— (1);
(2.15) c(l) +d(Z') = £(() = (1)), (c—a)l)+ (d—b)(Z) = %();
which yield

(@, b,c,d)=(£1,0,0,x1), (F1,+£2,F1,+1), (F1,£2,0,£1), (FL,0,F1,=%1).

Thus 6 is injective and orientation-preserving for (2.12) and (2.13), orientation-reversing for
(2.14) and (2.15).

We shall determine v,/ ,, 6 for the above cases.

For (2.12), we may consider that 6 is the identity.
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For (2.13), we may consider z = (z’ — 1)/(2z’ — 1) and hence
0(s,t) = (QRez — 1)s — Q2Imz)t, QImz)s + QRez — 1)¢).
Then ¢,/ ,, 0 is given by

! cos 2w ! t ! sin 2w 1 t
- - , —8Sl1 - )
ri 08 2Imz r 2Imz

1 1—2Rez 1 . 1—2Rez
—cos2n|ls+ ——t ), —sin2n | s+ ——1t s
r 2Imz r 2Imz

which is congruent to ¥ r,.
For (2.14), we may consider that z = z’ and

0(s,t) = (QRez — 1)s + 2Imz)t, 2Imz')s — 2Rez' — 1)1).

Then ¥ ., 6 is congruent to ¥, r,.
For (2.15), we may consider that z = 1 — 2z’ and

0(s,t) =(s,—t).
Then ¢, ,, 0 is congruent to ¥, r, .
By Corollary 6, we obtain the following:

PROPOSITION 8. The v, (r1 > 1) are the only homotopically energy-minimizing
harmonic maps of R2/[1,z] (z € T') into RP? whose images are not geodesics in RP3.

3. The stability of harmonic maps of tori into a geodesic in RP3,

First of all, we shall determine harmonic maps f of R?/[1, z] into R/[x].
Since df is a harmonic 1-form,there exist constants «, 8 such that

df = ads + Bdt.
As df should define a map of R?/[1, z] onto R/[r], the periods of df satisfy
a, aRez+BImz=0 (modrw),

that is, (1/7)(«, B) is a dual lattice vector. Note that the space L* of dual lattice vectors for

1, z is generated by
A Rez ~ l
={1,——1, =10, — .
¢ ( ImZ) f ( Imz)

We obtain the following classification of harmonic maps of R?/[1, z] into R/[r]:
LEMMA 9. A harmonic map x, of R%/[1, z] into R/[7] is given by
w{p, (s, 1)) (modm),

where u € L*. In particular, x,({1)) is null-homotopic, x,({z)) is not null-homotopic in
RP3 if and only if '

3.1) w=2né+Cm+1f,
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where m and n are integers. The map is given by

1)—-2
(3.2) : T (2ns + ((2m +D nRez) t)
Imz
with the energy
1 2m + 1) —2nRez\?
(3.3) —n? ((2n)2+ (( m+1—2n ez) ) x Imz.
2 Imz

Now we can determine harmonic maps of R? /[1, z] into a geodesic R/[x] with length 7
in RP3 with the energy 72/(2Imz) forz € 7.
Since m, n such that

_ 2 2
lyzz ((2n)2+((2m+1) 2nRez> ) xImz = —

2 Imz 2Imz
are (0,0), (-1, 0), (0,1), (—1, —1), we obtain the following:
COROLLARY 10. Forz e 7,

T
(3.4) (s, 1) > [El—zt] ,
(3.5) (s, 1) > [n (2s + %jezt)]

are the only homotopically energy-minimizing harmonic maps of R?/[1, z] into a geodesic in
RP? up to isometries of RP3.

Thus we can determine homotopically energy-minimizing harmonic maps of R2/[1, z]
into RP3 for z € 2 by Corollaries 7, 10 and Proposition 8. In particular, ¥, ,, —> (3.4), (3.5)
if r1 —> oo, 1, respectively.

In the remaining part of this section, we shall investigate the stability of x,, where u
 satisfies (3.1), as a harmonic map into RP3. It is not necessary to prove Theorems A and B,
but we shall find that x,, is energy-minimizing if it is stable.

Let A be the Laplacian of x, TRP3. Then, since RP? has constant sectional curvatures
1, the Jacobi operator J of x,, is given by

U=—AQU =\ Xux7—> Xux7— U Xux 775 W ) Xux 7=
3.6) ds s as s

a a a d
- X;L*‘é't's XM*E u—+ X//,*a, u X[L*E )
where u is a section of x ;TRP3 (see, for example, [E-L]).
Over a geodesic S! of RP3, TRP? decomposes as the sum of the tangent bundle 75! and
the normal bundle N'S!, and N S! has the decomposition N1 S! + N, S! by parallel transport.

Moreover, T S! has a flat connection with trivial holonomy and N; S! and N2S1 have flat con-
nections with Z, holonomy. Thus x;7RP? decomposes into x T S! and x* N1 S! + XAN2SY,
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where xT S' has a trivial holonomy and x,;N1S !'and x*N,S' has a non-trivial holonomy
whose representation p is given by

p((I) =1, pUz)=-I.

So xN1S! and % N2S! are the flat bundle E, on R?/[1, z] for p (see [S1). Let A, be the.
Laplacian of E, and Ag the Laplacian of x ;TS‘. Then, using (3.6), we obtain the following:

PROPOSITION 11. It follows from the decomposition u = ug + u1 + uz, where ug is a
section of)(;‘;TSl, u1 is a section of)(l’:NlS1 and u3 is a section ofx;Nle that

2m +1) —2nRez 2
u
Imz !

2
N ((2n>2+ ((2m +1) —-2nRez) )uz.

Imz

Ju =— Aoug — Apuy — w2 ((2’1)2 + (

So we should know the eigenvalues of —A , to determine of the stability of x,. Follow-
ing [S2], we must calculate a dual lattice vector  such that

1 =exp2mi{((1,0),a), —1=-exp2ni((Rez,Imz2),a),

and hence « is given by

14+2M —2NRez
o= N 9 ’
2Imz
where N, M are integers. For example, we canset N = M = 0 and hence ¢ = (0, 1/(2Im z)),
which implies the following:

PROPOSITION 12 ([S2]). The eigenvalues of — A, are given by

1 2
4n? 0, — || : L*Y
’”““L( 21mz) He ]
that is,
) ) (2p+1) —2gRez\?
3.7 /4 ((Zq) +( mz ,

where p and q are integers.

PROOF. Sunada’s proof is as follows:

ouls, ) = A7V 2 exp2mi((s, 1), )

for w € L*, where A is the area of R2/[1, z], is an orthonormal basis of L2(R?/[1, z]) which
satisfies —Aogp, = 47r2lp,|2<pi. Hence {472|u|? : u € L*} are eigenvalues of —Aq. For
f e LAR*/1, 2],

u(s,t) =exp2mi((s,t),a)f(s,t)
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is an element of L?(E o), because u((s,t) + o) = p(o)u(s,t) holds. This correspondence
f +— u is isometric and hence

su(s, 1) = A~V 2 exp2mi((s, 1), u + )
for u € L* is an orthonormal basis on L?(E 0). Since
—Apsy = 4% |+ al?s,
{4n%\u + a)?: u € L*} are eigenvalues. Q.E.D.
Thus by Propositions 11, 12, we can determine the satability of x,,.

COROLLARY 13. x,, where u = 2né + 2m + l)f, is stable if and only if m and n
satisfy

2 1) —2nRez\? 2p +1) —2g Rez\?
2m+1)—2nRez 5(2q)2+(p+) qRez
Imz Imz

@2n)* + (
for all integers p and q.

Let m and n be integers which minimize

, (@m+1)—2nRez)>2
e

for a fixed z € H. Then the map yx,, for m and » is a stable harmonic map and other maps are
unstable by Corollary 13. In particular, since

1 —2Rez\? 1 \?
2 -
2 +( Imz ) = (Imz) ’

COROLLARY 14. (s5,1) — [Lt]
Imz

is unstable for z such that |z — 1/2| < 1/2.

we know the following:

Let xz,m,» denote the stable map with above m and n for z. Then we obtain the following:
THEOREM 15.  x; m.n is a homotopically energy-minimizing harmonic map.
PROOF. Asm and n are integers which minimize

(2m + 1) —2nRez\?
Imz ’

2n)? + (

2n and 2m + 1 are coprime, and there exist integers p and g such that

pn) +q2m+1)=1.

g p
(—2n 2m + 1) €SLR.Z),

€ =02m+1)(1,0)—2nRez,Imz), f = p,0)+qgRez,Imz)

Since
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is a generator of the lattice vectors.

Considering ¢’ and f’ as complex numbers, we denote by z’ the complex number f’/e’.
Then x; m.» may be a stable map of R?/[1, z’]. Since the curve x; m.n(e’) is a constant and
a curve xz.m.n(f') is a geodesic with length 7, the map is x,’ '/, where m’ = 0 or —1 and
n’ =0. If0 < Rez < 1, then x,/ , » is homotopically energy-minimizing by Corollaries
7, 14 and so is x;mn- If Rez < O or Rez > 1, then we obtain Z such that 0 < Rez < 1

and z/ = Z + [, where [ is an integer, then x; , p = Xg/.m’,n’- SINCE€ X3, is stable and
hence homotopically energy-minimizing as the above, x; m,» is again homotopically energy-
minimizing. Q.E.D.

4. An energy function and the proofs of Theorems A, B.

Let SL(2, Z) be the modular group acting on H. Let I"(2) be the principal congruence
subgroup of level 2 of SL(2, Z), that is, the set of

(i k) e SL(2,2)

m

which satisfies

I k 1 0
(L 5= (5 ).
Then I'(2) is generated by
V4
2,
Z> 2z + z1—>22+1
and a fundamental domain is given by
1 1 3 1
H:0<Rez <2, - = > =, — 2> =
lcemosreasa [o-2f=1 |-3[=1)

Next we define a subgroup I'’ as the set of

I k

n m
of SL(2, Z) with ! odd and n even (so m is odd). Then I'’ is a subgroup of SL(2, Z) which
contains I"(2) and is generated by

z
2z+1°

z—>z+1, z+—

Moreover £2 is a fundamental domain of I"’.

We consider the energy E(¢) of a homotopically energy-minimizing harmonic map ¢
of R2/[1, z] into RP? such that ¢((1)) is null-homotopic and ¢((z)) is not null-homotopic in
RP3. This gives a function E(z) on H which we call the energy function.

We shall investigate E (7).

For z € £, we have determined homotopically energy-minimizing harmonic maps of
R?/[1, z] of RP? in Section 3. For z in other fundamental domains of I/, we can determine
homotopically energy-minimizing harmonic maps as follows:
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For
w = (l k) e SL2,R),
n m

the lattice vectors nz + m and [z + k form 1 and z. Note that ¢ ({nz + m)) is null-homotopic
and ¢({lz + k)) is not null-homotopic if and only if w € I'’. Then ¢ is considered as a
harmonic map of the parallelogram spanned by nz + m and Iz + k, which define an energy-
minimizing harmonic map ¢’ of R?/[1, 7’1, where 7’ = (Iz + k)/(nz + m). Moreover, ¢’({1))
is null homotopic and ¢’({z’)) is not null-homotopic. Since there exists w such that 7’ € £2,
we can use our classification of energy-minimizing harmonic maps of R?/[1, z’] into RP3.
Namely, homotopically energy-minimizing harmonic maps ¢ of R2/ [1, z] such that ¢ ({1)) =
0 and ¢({z)) # O are made from homotopically energy-minimizing harmonic maps ¢’ of
R2/[1, 7] such that ¢’((1)) = 0 and ¢’({(z’)) # O by using w~!. In particular, if 7’ ¢ 7T,
then the number of homotopically energy-minimizing harmonic maps of R?/[1, z] is one up
to isometries of RP3 and the image is a geodesic, if z € 7, then we obtain a one parameter
family of homotopically energy-minimizing harmonic maps of R?/[1, z] with all Clifford tori
as images, whose limits are harmonic maps in geodesics in RP3.

Thus we obtain Theorems A and B except for the assertion that E is not smooth on I' Y.

Note that, for an interior point z of other fundamental domain 2’ of I’

1’ 1 1 1 3 1}
= - ’

—_ = —_ | > = [
z—3 z il 7 z- 7
the energy-minimizing harmonic map ¢ of R? /[1, z] into RP3 such that ¢((1)) is null-homo-
topic and ¢((z)) is not null-homotopic is given by (3.5), that is,

1—-—2Rez
(s, 1) > n(2s + ————t¢
Imz
2 _ 2
T a4+ (L122R2) Y ims,
2 Imz

This is suggested by Corollaries 7, 10, 14 and Theorem A. We directly state the reason as
follows:

£2’ is the image of £2 by (z — 1)/(2z — 1) and hence there exists an interior point z’ of
£2 such that

' ={zeH: <=,
[z =2

with the energy

— z’ — 1
z= 71
Thus, using the homotopically energy-minimizing harmonic map of R?/[1, z’] into RP3:
-~ T
’ t — ’
. 1) = [Im b ]
§=QRRezZ —1)s —(2Imz)t, f=@QImz)s+ 2Rez — 1)z,

we obtain the homotopically enegy-minimizing harmonic map of R?/[1, z] into RP?:

(s,1) > [%zl((ZImz’)s + (2ReZ — 1):)] ,
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(s, t) > [Tr (2s + -1————2-135t):|
Imz

which is equal to

by
2Rez’—1  2Rez-—1
Imz  Imz
Finally we give the proof of the last part of (ii) in Theorem B: Since E(z) = 72/(2Imz)
for z € £2 and

2 1 —2Rez\?
E() = i 4+ ~—crez Imz
2 Imz

for z € 2/, E is not smooth at each point of T".
po
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