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A Representation of Spin(4) on the Eigenspinors
of the Dirac Operator on S>
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Abstract. We construct the eigenspinors of the Dirac Operator D3 on S3 from a representation theoretical
point of view and give a representation of Spin(4) on them explicitly. These eigenspinors are extended to zero mode
spinors of the Dirac operator D;'f on upper or lower hemisphere of 54,

0. Introduction.

In this paper we construct the eigenspinors of the Dirac operator D3 on the 3-dimensional
sphere S3 from a representation theoretical point of view and show that each eigenspace gives
a highest weight representation of Spin(4). Moreover, because we represent the eigenspinors
by using matrix components of irreducible representations of SU(2), we can calculate the
actions of Spin(4) and D on the eigenspinors explicitly. When we think of S as the equator
of the 4-dimensional sphere S*, D3 is the tangential part of the Dirac operator Df on S*,

0 D
Df o
eigenspinors of D3 to zero mode spinors of Df on upper or lower hemisphere of S*. This
extension is important in (1 + 3)-dimensional quantum field theory (see [11]) and the Dirac
boundary value problem (see [4]).

In the case of the eigenvalue problem on S 1 the Dirac operator is —i(d/d6) on L%(S1, 0
and the eigenspinors are {¢!"%},,cz. Here, each eigenspace gives an irreducible representation
of U(1). Furthermore, L2(S!, C) splits as the direct sum of the spaces of the positive and the
negative spinors, that is, L2(S!, C) = H, @ H_, where Hy = @,,.(C(¢"®) and H_ =
D, Ce~"™?). The positive eigenspinors {€™°},,> are extended to holomorphic functions
(zero mode spinors) {z"},,>0 on C! ¢ P1(C). The negative spinors are extended to {w™ },n>0,
where w = 1/z. Our results give analogues of these facts for the higher dimensional case.

Section 1 and 2 are preliminary. In section 1 we explain the spin bundle and the spinor
bundle over S” as homogeneous bundles. To decompose the space of spinors as a represen-
tation space of Spin(n + 1), we employ Frobenius reciprocity. In particular, we construct
the spinor bundle on S and give its trivializations. By Frobenius reciprocity, we obtain an

where the (total) Dirac operator D4 splits as Dy = ( ) It follows that we extend our
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irreducible decomposition of the space of spinors on $3 with respect to Spin(4). In section
2, we give a formula of the Dirac operator D, on S” as a homogeneous differential operator.
Under the trivializations given in section 1, we obtain an explicit formula of D3 on S3, which
is represented by using right invariant vector fields on SU(2) = S3. In section 3 we solve
the eigenvalue problem of the Dirac operator D3 and show that each eigenspace gives an ir-
reducible representation of Spin(4). Moreover, we construct the eigenspinors explicitly and
calculate the action of Spin(4) on them. As a result we obtain the main theorem 3.5. Some
results in section 1-3 are known ([3], [7] and [9]). But we describe them from a new point of
view based on representation theory or the theory of homogeneous vector bundles. In the last
section we extend our eigenspinors to zero mode spinors of fo on R* c §%. We consider the
following embedding of S3 into S* as the equator:

S3 = SU(2) x SU(2)/diag SU(?2) 5 [(p, )] = [(p, q)] € P!(H) = §*, (0.1)

where we use SU(2) = Sp(1) C H. This embedding is related to the trivializations of the
spin bundle on S3 given in section 1. We have a local trivialization of the spinor bundle on $*
and a local formula of the Dirac operator Dg4. In this situation we give a polar decomposition
of Df such that its tangential part is D3. It follows that the positive (resp. negative) spinors
of D3 can be extended to zero mode spinors of DI on upper (resp. lower) hemisphere of S*.

1. Spinor bundles over S” as homogeneous vector bundles.

Let G be the spin group Spin(n + 1). The action of G on R**! is defined by Ad(g)x =
g-x-g~! for x in R**! and gin G, where the multiplications are the Clifford multiplication.
Then the orbit of base point e = (0, - - - , 0, 1) is the n-dimensional sphere $” in R"*! and
its isotropy subgroup is Spin(n). We denote this subgroup Spin(n) by H. Thus we have the
Riemannian symmetric space S" = G/H. We also have the principal H-bundle G on $". This
principal bundle gives a spin structure for S” as follows: by the linear isotropy representation
Ad : H — SO(T.(S™), we obtain the orthonormal frame bundle of S, G x44 SO(n).
Since the representation Ad gives a double covering of SO (n), the following bundle double
covering gives a spin structure for S”:

G>gr>[g,idl € G x4q SO(n). (1.1)

Since S admits only one spin structure for n > 2, we denote this principal spin bundle G by
Spin(S").
Now, we consider the complex (unitary) spinor representation,
Ay : Spin(n) - U(W,). (1.2)

The representation space W, is 2[*/?l-dimensional complex vector space with an Hermitian
metric and a Clifford module structure. The spinor representation A, induces the spinor
bundle on S” as a homogeneous vector bundle, that is,

S(5™) :=G x4, Wn. (1.3)
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For n = 2m, the representation (4,, W, ) decomposes as the direct sum of two inequivalent
irreducible representations, (A;", W) and (4, , W), with each dimension 21*/21=1, Hence
the spinor bundle S(S™) also splits as the direct sum of S*(8”) and S™(S"), where SE(S™) is

G x 4+ WE
Ay n:
The spinor sections are given by the H-equivariant functions from G to W,,
C®(G; Ap) :={¥ :G —> W, |W(gh) = An(h~YHw(g), forany h € H}. (1.4)

If we define an action of G on these spinor sections by (®(go)¥)(g) = ¥(gy 1 g) for go in
G, then the representation @ becomes a unitary representation of G on L%*(G; A,), where
L%(G; A,) is the L2-completion of C*°(G; A,). We shall use Frobenius reciprocity to ob-
tain an irreducible decomposition of (@, L2(G; A,)). So we prepare some objects of rep-
resentation theory. First, let G be the set of all equivalent classes of irreducible unitary
representations of G. For y in G, (my, V,) denotes a representative of y. Secondly, let
Hompg (V,,, W,) be the vector space of all H-module homomorphisms from V,, to W,. If A
is in Homg (V,,, W,), then the following diagram is commutative for any 4 in H:

Vy —4—') Wn
7, |1 (h) l lAn(h) (1.5)
A

Vy _— Wn
where 7, | g is the restriction of &, to H. We put E,, :=V,, ® Homy (V,,, W,,) and define an

action IT of G on E, by IT(go)(v ® A) := Jr,,(go)v ® Aforv® Ain E, and go in G. Then
the direct sum of E,, for every y in G gives an irreducible decomposition of (@, L2(G; A,)).

THEOREM 1.1 (Frobenius reciprocity). Let (®, L3(G; Ap)) and (11, ®yeé y) be

representations of G as above. Then (©, L%(G; Ap)) is unitarily equivalent to (I1, @y ¢ Ev)
by the mapping x

X @yeG E, 2v®A > Amy (g7 Hv € LX(G; 4Ap), (1.6)

where v ® A is in E,. In particular, x (Ey) consists of smooth sections and the multiplicity
ofy in L%(G; A,) coincides with the dimension of Homg (V,,, Wy).

It is easy to see that Am, (9~ Yv is a H-equivariant function from G to W, and that
©(90)x = xII(go). For a proof of this theorem see [13].

Now, we shall investigate the case n = 3, where G = Spin(4) and H = Spin(3). It is
well-known that Spin(4) and Spin(3) are isomorphic to SU(2) x SU(2) and SU (2) respec-
tively. To obtain the action of Spin(4) on S explicitly, we realize S3 as SU (2):

S 5 x = (x1,x2, %3, x4) > h = (_";2":_’33 ii + iﬁ) esSUQ), (1.7)

where we remark that the base point e = (0, 0, 0, 1) corresponds to the identity matrix /. Then
we know that the action of Spin(4) can be written by the following matrix multiplication: for
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(p,q) in SU(2) x SU(2) = Spin(4),

Spin(4) x 83 5 ((p,q),h) — phq ' € S>. (1.8)
Here, it is clear that the isotropy subgroup Spin(3) is diag SU(2) in SU (2) x SU(2), where
the map ‘diag’ is

diag : SU2)>hw—> (h,h) e SUQR) x SU(Q2). (1.9

Thus S3 is the homogeneous space (SU(2) x SU(2))/diag SU(2) and the bundle projection
of Spin(S3) is given by

Spin(S3) = Spin(4) > (p,q) — pg~ ' € $3. (1.10)
Since the spinor representation (A3, W3) is the natural representation of SU (2) denoted by
(p1, V1), the spinor bundle S(S3) is Spin(4) x,, V).

We can trivialize the bundle Spin(S3) and S(S53). In fact, we have two natural trivializa-
tions,

@, : Spin(S®) = Spin(4) > (p,q) — (pq~!, p) € §* x Spin(3), (1.11)
@_ : Spin(S3) = Spin(4) 5 (p,q) > (pq~', q) € $3 x Spin(3). (1.12)

The maps ¢, and @_ induce trivializations of the associated bundles, that is, the Clifford
bundle, the spinor bundle, and so on. Then we trivialize S(S?) as follows:

¢+ : S(S*) = Spin(4) xp V1 3 [(p, q), vl (pg~', pv) € 3 x C2,  (1.13)
¢- : S(5%) = Spin(@) x,, Vi 2 [(p, @), vl (pg~ ', quv) € 3 xC2.  (1.14)

We call the first trivialization (1.13) ‘A™-trivialization’ and the second one (1.14) ‘A~-
trivialization’. We shall explain why we call them so, for this fact is related to the extension
problem in section 4. We consider the 4-dimensional sphere S* including S> as the equator.
Although Spin(S5*) is not a trivial bundle, if we restrict Spin(5*) to R* = $4 \ {north pole},
then we can trivialize it, that is, Spin(5*)|gs = R* x Spin(4) and have the following inclusion
from Spin($3) into R* x Spin(4) as a spin bundle:

Spin(s*) = Spin4) > (p, ) = (pq™", (P, 9)) € R* x Spin(4). (1.15)
Here we realize R* by
x= ( *atix X +‘.x3) eR*. (1.16)
—Xx2 +1Iix3 X4 —1Ix]
p
0
direct sum of Aj (p,q) = p on C? and A (p,q) =qon C2. Then we get the spinor bundles
R* x (Spin(4) x A% C*) and their trivializations:

The spinor representation A4 is given by A4(p, q) = ( 2) on C* and decomposes as the

R* x (Spin(4) X At C?) > (x, [(p, q), v]) ~ (x, pv) € R* x C2, (1.17)
R* x (Spin(4) X az C?) 5 (x,[(p, 9), v]) ~ (x,qv) e R* x C2. (1.18)

These trivializations correspond to (1.13) and (1.14) respectively. So we call the trivialization
(1.13) A*-trivialization and (1.14) A~ -trivialization.
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We shall see how spinor sections are expressed under A*-trivialization. If ¥ is in
C™>(Spin(4); Ag), that is, ¥ is a Spin(3)-equivariant function from Spin(4) to V1, then we
get a C2-valued (V;-valued) function on S> for A™ -trivialization;

¢+ (P, 9), ¥ (P, ) = (pq~ ", p¥ (. 9))
= (pg~ ", ¥((p.)P™N
=(pg~, W, qp™").
So we define a C2-valued function ¥+ associated to ¥ by
Yt sh wU,hhH e Cr (1.19)
We also have ¥~ (h) := ¥ (h, I) for A~ -trivialization and obtain a relation between 1[)*’ and
v, ,
VTR =w U, kY =W (h, T) =y~ (h). (1.20)
In other words, the multiplication 4 in (1.20) gives a bundle automorphism for S(S3).
Now, to describe Theorem 1.1 for G = Spin(4) and H = Spin(3), we need all the
equivalent classes of irreducible unitary representations of Spin(4). As Spin(4) is a product
Lie group SU(2) x SU(2), we need SU (2) first. It is well-known that SU(2) are given by

{(om,> Vm)}m>0, where V,, is the (m + 1)-dimensional vector space of all complex polynomials
of degree < m in z and the action p,, is defined by o, Wz = bz + d)"’"k (az + c)k for

h = (a z) in SU (2). Furthermore, if we introduce an inner product on V,, by

Zk zl
(\/k!(m—k)!’ ﬂ!(m—l)z) =, (1.21)

then (o, Vi) induces a unitary representation. All the irreducible unitary representations of
SU(2) x SU(2) are given by (om®pn, Vin®V,) form, n > 0, that is,

Spin@) = {(om®pn. Vn®Va) [ m, n = 0}. (1.22)

Here V,,®V,, is the (m + 1)(n + 1)-dimensional vector space whose basis is {z"l‘zl2 | 0<k<
m,0 <[ < n} and the inner product is -

ke K ’
142 , 1°2 = akki(S”I . (1.23)
VJERIm =)W (n =D K m =k (n =1")!

We shall investigate Homgy 2)(V,, W3) for any y in S;;n(\4). We have known that the
‘spinor representation (A3, W3) is the natural representation (o1, Vi) of SU (2) and (7wy, Vy)is
given by (0m®pn, Vm®V,). So we shall consider Homsy(z)(VméVn, V1) forany m, n > 0.
If A is in Homgy 2)(Vin® Vi, V1), then the following diagram is commutative for any A in
SUQ2):
Vu®V, —2s W,

om®pnlsu) (h)l lm (h) (1.24)
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Because pmép,,lsu(g) is the usual tensor representation p,, ® pn, we use Clebsch-Gordan
formula, o ® On = Pmtn D -+ ® Pym—n|.- For Im —n| = 1, thatis, forn = m + 1, only
the last part pjm—n| is (01, V1). By Schur’s lemma, A is a scalar on Vi—n = Vi and zero
on other parts. It follows that dim HomSU(2)(Vm®Vmi1, V1) = 1. On the other hand, for
|m — n| # 1, p; does not appear in Pm4n ® - -+ D Pjm—n| and A is zero on V,,&®V,,. Hence
dim Homgy 2) (V& Vs, V1) = 0.

Thus we have obtained the following proposition.

PROPOSITION 1.2. Put
E_p = (Vu®Vms1) ® Homsy 2y (Vi ®Vim+1, V1), (1.25)
Epm := (Vp+1®Vim) ® Homsy 2) (Vi +1®Vim, V1) . (1.26)
Then L?(Spin(4); A3) has the following decomposition as a representation space of Spin(4):

L*(Spin(4); A3) = D E-m ® En, (1.27)

m=>0
where each dimension of E_,, and E,, is (m + 1)(m + 2).

In section 3 we will show that the irreducible component E ., is an eigenspace of the
Dirac operator. So the above decomposition is nothing but the eigenspace decomposition of
the Dirac operator.

2. A formula for the Dirac operator.

The Dirac operator D, on S" is a first order differential operator acting on S(S”). We
represent D, as Y e; - V., locally, where V is the spin connection induced by the Levi-
Civita connection and {e;} is a local orthonormal frame of $”. When we think of S(S") as a
homogeneous bundle, D,, is a homogeneous differential operator, that is, D, commutes with
the action of G.

We decompose the Lie algebra g of G into the Lie algebra h of H and its orthonormal
complement p; g = h @ p. Since p is isomorphic to T,.(S"), we can find a basis {X;}1<i<n
of p corresponding to an orthonormal basis {e;}1<i<n Of T.(S"). Then D, is realized as a
differential operator acting on C*°(G; A,) and hence L2(G; 4A,,) as follows:

THEOREM 2.1. For V¥ in C*®(G; 4,),

Dalg, ¥(9))lg=go = [go, D e -X,-Ig=gotll] ; 2.1
=1

where Xi|g—g,¥ = g;(go exptX;)|:=0 and e;- is the Clifford multiplication by e;.

It is easy to show that D, is a homogeneous differential operator. Therefore, the vector
space E,, = V,, ® Hompg (V,,, W,) for any y in G is invariant subspace with respect to D,,.
In facts, we see the action of D, on E,,.
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COROLLARY 2.2. In the decomposition L*(G; A,) = @y < Ey. the restriction of

the Dirac operator Dy to E, = V,, ® Hompg(V,,, W,,) is given by id ® D}, where

D} (A):= =) e - Amy~(X;) for A € Homp(Vy, W), (2.2)
i=1

and 1y« is the infinitesimal representation of 7, .

This corollary is important to calculate the eigenvalues of D,. The above theorem and
corollary follows from a general result provided in [3].

Now, we shall investigate the case n = 3 and give an explicit formula of D3 on S>. Since
g = su(2) @ su(2) and h = diag su(2), if we fix an orthonormal basis of su(2) as

o1 _1/i 0 oo 170 1) o3 1/0i
F=30%) F=3(50) $=3(0) >
then we have orthonormal bases of g, h and p as follows: ,
- = [(% 9i
basis of g := {( > O) s (0, > )}lsi,j_<_3 , 2.4
. o; Oj
={l—=, = , S
basis of b {( 72 )}15i53 (2.5)
. o O
basis of p := {X;}; = {(—2'- ——2’-)}1«3. (2.6)

Since the standard basis {e;} of 7.(S3) is {o;} under the realization (1.7) of S3, we see that the
above {X;} corresponds to {e;} under p >~ T,(S3): ‘

=) (e (=3)”

[of] g;
=273
=0, =¢; € Te(S3) .

We shall show that the Clifford multiplication e;- is given by o; as a matrix multiplication.
The (complex) spinor representation is obtained by restricting a complex irreducible Clifford
representation to the spin group. We realize the complex Clifford algebra Cl3 ® C as C(2) &
C(2) by setting e; = (07, —0;) for 1 <i < 3, where C(k) is the set of k x kK complex matrices.
Then we have two inequivalent irreducible Clifford representations,

CQ)®eC®2)> (a,B) —» x € C(2), 2.7)
CQ)®C2) >3 (a,B) > BeC(2). (2.8)

If we restrict them to Spin(3), then we know that these representations are equivalent to each
other because Spin(3) is diag SU(2) in C(2) & C(2). Thus we have the spinor representation
(A3, W3) where the Clifford multiplication e; - is given by o; or —o;. So we choose o; as the
Clifford multiplication ¢;- for 1 <i < 3.

We are now in a position to obtain a formula of D3. We use A™ -trivialization to represent
D3 explicitly, where Ds is a differential operator acting on C2-valued functions.

d
—(exptX;)e
dt l t=0
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PROPOSITION 2.3. For A*-trivialization (1.13), the Dirac operator D3 on S(S3) is
given by

3
D3 = 51 + 0121+ 0223 +0323. 2.9
Here Z1, Z», and Z3 are differential operators on S> defined by

7z 0 " 0 B 0 + 9
= —X X - X2,
! ! 0x4 4 axy 3 dax3 2 ax3
d ] 0 0
Z) = — - , 2.10
2= R T e T M Man (2.10)
7z 0 0 + 0 N 0
= — — X X X. .
3 3 0x4 2 dx1 ! 0xy 4 0x3

PROOF. Let y*(h) = ¥, h~1) be a spinor section of S(S3) for At -trivialization.
We calculate (o; X;W)(I,h V) for1 <i < 3.

X)), Y = d%""((l’ AT exprXo) (=0
_ %q] (exp ‘-'zit, h~! exp (—%’)) —o
= Zid_,'l’ ((1, h~! exp(—o;t)) exp irzit) =0
_ % (exp (—5)) W b~ exp(—oir)) i

o; _ d -
== SR+ (U k™ exp(=ain)

=_%wam*yHLWXLWﬂ

t=0

=—%¢++awh
where Z; is a right invariant vector field on §3 = SU(2) corresponding to o;, that is,
d
(Zi fHh) = z;f((exp toi)h) for f € C*(SU(Q2)).
t=0

Then we have 0; X; = (1/2)I + 0;Z; and complete the proof.

REMARK 2.1. For A~ -trivialization, Ds is represented by using the left invariant vec-
tor fields. Our formula of the Dirac operator coincides with the one discussed in [7] and

[91.

3. The eigenspinors on S°>.

In this section we shall solve the eigenvalue problem of the Dirac operator D3 and con-
struct the eigenspinors. A way of solving the eigenvalue problem is to use Corollary 2.2.
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So we shall investigate HomSU(z)(Vmé)Vm.H, V1) and HomSU(z)(Vm+1®Vm, V1) more pre-
cisely. As a first step we need the following lemma.

LEMMA 3.1. Let {z’lc Yo<k<m be a basis of V,, and {Zg}osks_mﬂ a basis of Vi 4n.
1. In the irreducible decomposition of V, ® Viyyn, the basis of the irreducible compo-
nent V,, is given by
{5 @2 — 21)"hisizn1 - 3.1
In particular, for n = 1, we have the following unitary basis of Vi in Vi @ Vipy1

o = z22(z2 — z1)™ and wy = (z2 —z)"™
m!/(m + 1)(m + 2)/2 ml/(m + )(m +2)/2°
where the inner product is given by (1.23).

2. The same result holds for Vi, n ® Vp, if we exchange z1 and z5.

(3.2)

PROOF. We prove only the case n = 1. Let h be (‘Cl Z) in SU(2). Then

+c  azi+c\"
3 _ m_ (p D™ (b d m+1 az) _ )
((om ® Pm+1) (M) (22 — z1) (bz1 +d)" (bz2 + d) (bzz +d bz1+d

= (bzz + d){(az2 + ¢)(bz1 +d) — (az1 + ¢)(bz2 + )}
= (bz2 +d)(z2 — z1)™ .
Similarly we have ((om ® om+1)(h))z2(z2 — 21)™ = (azz + ¢)(z2 — z1)™. Thus we get the

natural representation (01, V1) in Vi, @ Vipy1:

((om ® pm+1) (W) (w1, w2) = (w1, w2) (‘CI Z) = p1(h) (w1, ®2) .

The unitarity is clear and we have proved the lemma.

This lemma implies that there is a SU (2)-module homomorphism A from V;, & Vi 41 to
V1 such that, under the decomposition V,;, ® Viyy1 =~ Vo1 & --- & Vi,

A|V2m+1$--~®V3 =0 and Alyy(wi) =v; (=1, 2), (3.3)

where v; = (1, 0)’ and v, = (0, 1)’ are in C? ~ V.

Ifweputn =3 and (m,, V) = (om @ Pm+1, Vim®Vini1) in Corollary 2.2, then we find
a constant ¢, such that D;' (A) = ¢y A because of dim Homgy (2)(Vy, V1) = 1. We carry out
a similar discussion for 7, = py;+1®0m and have the following lemma.

LEMMA 3.2. We consider the case n = 3 in Corollary 2.2. Then, for m,, = Pm®Om+1,
3 A
D;’ = — (5 + m) id on Homgyo)(Vm®@Vim+i1, V1), (34)

and, for w,, = pm+1®Pm9

3 N
D; = (5 + m) id on Homgsyn)(Vim+1®Vm, V1). (3.5
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By virtue of this lemma we see how the Dirac operator D3 acts on the irreducible com-
ponent Ep,.

PROPOSITION 3.3. In the irreducible decomposition (1.27) of L*(Spin(4), A3), the
irreducible component E,, (resp. E_y,) is the eigenspace with the eigenvalue m + 3/2 (resp.
—(m + 3/2)) of D3. In particular, the multiplicity of the eigenvalue £(m + 3/2) is (m +
(m + 2).

We call E,, (resp. E_n) positive (resp. negative) eigenspace of spinors for any m > 0.

PROOF OF LEMMA 3.2. The infinitesimal representation (omx, Vi) of (0m, Vi) is

given as follows:
pm*( )Z _l(k—T‘)Z ’

k_m—k . k A1
pm*(z)z =51 X (3.6)
o3\ k _ M=k ki1 ke
pm*(z)z i ) Z +122 .

Hence we have the following formula for ((op, &Pm+1)xs Vin®@Vim41):

A ) 1
(Pm®Pm+1)+(X1)2h2h = i (k -1+ 2)z'fz'2,

(pm®pm+l)*(X2 +1X3)2122 ka 1 z +lz'1‘z12 1, 3.7

(Pm®om1)s(X2 — iX3)2h2h = m — K)ZX~12h — (m +1 - DK,

where {X;}1<i<3 is the basis of p given by (2.6). In Corollary 2.2, let ,, be om ®pm+1 and A
be the SU (2)-module homomorphism from Vin® Vit to V) satisfying (3.3). We shall look
for the constant ¢, satisfying D;’ (A) =— Z,-Ll ei - Ay (X;) = cy A. If we substitute w, to
this equation, then we obtain D;’ (A)(@2) = cy A(w2) = cyv2. We calculate D;’ (A) (7).

3
D} (A)(w) = — Z ei - Aty (X;)(@2)

3
= =Y 0i{(Tyx(Xi)(@2), @)1 + (Tya(Xi) (@2), @2)v2)
i=1

= —(Tyx(X1)(@2), @1)iv) + 7Ty (X1)(@2), @2)ivz — (Tyx(X2)(@2), @2)v)
+ (T (X2)(@2), @1)V2 — (Ty s (X3)(@2), @2)ivy — (Tyx(X3)(@2), w1)iv2
= {i(mwy+(X1)(@2), @2) + (Tys (X2 — i X3)(w2), w1)}v2,

where ( , ) denotes the inner product on V;,® V1. We have

i (Ty s (X1)(@2), @2) = ia2 (T (X1)(z2 — 2™, (22 — 2D)™)

=ia? (er*(Xl) > ( ) (—Dky 3" (’;‘) (_1)12112'2"—1)

=0
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=iy (’Z) (’7) (= 1)kt <2k —m+ %) (25 k
k,l
= —a,z,,(m!)zz (2k m + ) k+1)

k
_ 2m + 3

- ’

6

where o, = (m!J(m + (m + 2)/2)_1. In the same way we have
. 2m +3
(Tryx (X2 — i X3)(@2), w1) = —2 e -

Thus we conclude that D:’; (A)(w2) = —(m + 3/2)v; and hence ¢, = —(m + 3/2). We carry
out a similar calculation for 7, = pm41 &®pm and obtain ¢y = m + 3/2. We have thus proved
the lemma. :

Now, we shall construct the eigenspinors. We know that the negative eigenspace E_,,
has the following basis:

(vt ® Alit € E—pp = (Vi ®Vin41) ® Homsy ) (Vie®@ Vi1, V1) s (3.8)

where0 <k <m,0<Il<m+1and

2z

VEm =BT m+1 =D
So we get the eigenspinors with the eigenvalue —(m + 3/2) as SU (2)-equivariant V;-valued
functions on Spin(4):

Vil = (3.9)

Yoy (Ps @) = Amty (p™', g Dvw . (3.10)
We use A*-trivialization to represent the eigenspinors as C2-valued (V;-valued) functions on
3.
Y ® = Yoman (LA™Y

= Am, (I, h)vy

= (wy (1, vk, w1)v1 + () (1, W) vy, w2)v2 (3.11)

_ ((ﬂy , h) vy, wl)) cC?.

(ry (1, h)vgs, w2)

We calculate each entry (7, (1, h)vp, w1) and (), (1, h)vg, w2):

k )
_ lem+1(h)z2 _ m
(ry 1, B)vgy, w1) = a'"(\/k!(m S TICES DI 22(z2 — z1) )
_ EDAmF Tk [ pma(WZ it 3.12)
N \/(m+1)(m+2)/2 JITm+1 =D J/im+1—k)k! )

¢(m+1)(m+2)/2 mt1-k )

CDVEHT
ST Dm + 22 bmk

(h), (3.13)

(n}’ (1’ h)vk19 602)
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where v{”j is a matrix component of the representation (op, Vin) of SU(2), that is,

1
P .
Jilim =) /jlm — j)!
We carry out a similar calculation for the positive eigenspace Ep,. Then we get the following
eigenspinors for AT -trivialization:
m+1
me(k 1)(h) _ <~/m +1- k;:_,*_”{q-l-k
’ VEF DL ()

t o (h) = ~VEV 1)
m(k.D) VT =k, (k)

In the same way we obtain the eigenspinors for A~ -trivialization:

V@ = (L ® 0
—mEDT T \m T =T, (k7D

v (k) = vm+1-— lv,':jn'_l,_l_l(h‘l)
A W = ¥ A

REMARK 3.1. From the above formula, we have

Yoy ® = Vg @™ and Yo ) =¥F BT, (3.19)

Moreover, we have known the relation (1.20) between A™*- and A~ -trivialization. As a result
we have

Y maio® =h¥t (™ and Y, (h) = h . (3.20)

These relations are interesting because they are analogous to the following relations for the S!
case. If we denote the eigenspinor on S! with the eigenvalue m by ¥, (9) = €™ then we get
relations among the eigenspinors, that is, ¥_,, () = ¥,,(—6). Here —0 is the inverse element
of @ in S! = U(1). In our situation an extra term ‘h’ appears in (3.20), because the spinor
bundles ST(S4) and S~ (S%) are not trivial bundles and ‘A’ is used as a transition function for
them.

We have the following proposition.

PROPOSITION 3.4. We have the following orthonormal basis of L%(S3,8(5%) =
L%(Spin(4); As) for A* -trivialization.
1. The positive eigenspinors with the eigenvalue m + 3/2 for m > 0,

(3.14)

(h)) O<k=<m,0<l<m+1). (@3.15)

) O<k<m+1,0<l<m). (3.16)

) O<k=m,0<l=m+1), @G.17)

) O<k<m+1,0<l<m). (3.18)

V) €En for0<k<m+1,0<l<m. (3.21)
2. The negative eigenspinors with the eigenvalue —(m + 3/2) form > 0,
v ae® =h¥t (WY EE_, forO<ksm+4+1,0<l<m. (3.22)

Let us check the orthonormality of our eigenspinors. Of course, the orthonormality is
clear by Frobenius reciprocity, but we can verify it by Peter-Weyl theorem for SU (2). From
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Peter-Weyl theorem we have the relations among {v{"j },

—_— 1
vt (W (Wdh = ——8,n8i181 . 3.23
-/.-S‘U(Z) ,,J( ) k,l( ) m+ 1 n9ik9;jl ( )

Then we can easily show that our eigenspinors compose an orthonormal basis of L2(S3, S(S?)).
For example,

Wmtey» Vmeen)12 = /53 Wity 1 Vg y )R

= kvt (v (h)
[SU(Z){ I,m+1—k I, m+1—k

+(m+1- k)vl'f’m_k(h)vl’f‘m_k(h)}dh
k m+1-—k%
+
m+1 m-+1
=1.

(3.24)

Now, we investigate the action of Spin(4) on our eigenspinors. Let (po, go) be in Spin(4)
and Y1 (k) be a section of S(S3) for AT -trivialization. Then the action of Spin(4) is given by
(©(po, q0)¥)(h) = (@(po, q0)¥)I, h™Y)

=¥(py ' g5 b7

=¥ (L, g5 ' h " po)pg ") (3.25)
= po¥ (1, (py 'hgo)™)

= pov T (pg ' hqo) .

It follows that the basis (2.3) of su(2) @ su(2) corresponds to the set of differential operators
on C® (83, S(53)):

i oi Z; .
(_2,0)9_2 -5 1s=is3, (3.26)
o; Z; .

where Z; is the right invariant vector field on S> as (2.10) and Z; is the left invariant vector
field corresponding to o;;

5 . ) +x d +x ) ad
] — X N
! ! 8x4 4 8x1 3 3X2 2 8.7C3
~ ) ) ad ad
Z) = — — —, 3.28
2 2 0x4 3 0x] + X 0xp + dx3 ( )
5 0 + 0 a 4 x 0
= —X X — X -,
3 3 3x4 2 3x1 ! 3x2 4 3x3

Then we can calculate the action of Spin(4) on the eigenspinors explicitly. Now we can state
our main theorem:



466 YASUSHI HOMMA

THEOREM 3.5. 1. The space of spinors on S> has an irreducible decomposition as
a representation space of Spin(4).

L%(5,5(5%) = (D E-m ® Em. (3.29)

m>0

Here, the irreducible component E 1, is the eigenspace of the Dirac operator with eigenvalue
+(m +3/2) anddim Exp, = (m + 1)(m + 2).

2. (a) The positive eigenspace E,, gives the highest weight representation with high-
est weight vector w,‘:(m +1m) where the orthonormal basis of E,, is {w,:(k,l)(h) |10 <k <
m + 1, 0 <1 < m} given in (3.16). The action of spin(4) on E,, is given by

o1 . m+1 +
2 }V’m(k n= (k - _2_) '/’m(k,l) ’
[02+i03 Zz+tZ3

2 2
oy —ioy Zr—ilZs
2

}‘/’;;r(k,t) = Vk/mFT=C=DVpg_1,

w,:t(k,,) = VE+IVm+T=k¥ 400
Vo) = (l ) Vm.y »
M Umoy = —VINm =T+ 1000 1y
u}‘ Umiety = VI IVM =T 140y s

(3.30)

where the basis of spin(4) corresponds to differential operators on S3 given in (3.26) and
(3.27).

(b) The negative eigenspace E_,, gives the highest weight representation with highest
weight vector ¥+ m(m,m+1)? where the orthonormal basis of E_p, is {¢* mk.D) M0 <k <
m, 0 <1 < m + 1} given in (3.15) and the action of spin(4) on E_,, is given by

o Zy +
[7 - }'//—m(k n— (k )'/f—m(k,l) ’

Z Z
Io’2 + 103 2 +l 3 }llf_m(k p = = Vkm — (k — 1)'/ffm(k-1,1) ’

2
oy —ioy Zy— lZ3
{ ) - ) }‘/’—m(k n=~—vV k+1vm — k‘/’fm(k+1,1) ’
5 +1 (3.31)
1 . m

w—m(k n= l(l )w—m(k D

Zz + lZ3
w—m(k n= "’\/7\/(’" +1)-1+ 11/ff,,,(k,,_1) s

Z 1Z3

Vhan = VI WD =924 1) -
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PROOF. It remains to calculate the action of spin(4) on the eigenspinors. We have the
following formulas from Peter-Weyl theorem for SU (2):
(ZyvP)(h) = i@l — m)vy (k) ,
(Z2 +iZ3)v (k) = =2d/m = TVT+ T (),
(Zz = iZ3)VP () = 24/m =T+ INVIV7,_ (),
(Z1vg)(h) = ik — m)v (),
(Za +iZ3)v")(h) = —2/m —k + IRV | ((h),
(Z2 —iZPph) = 2vm —kVE+ D (B).

(3.32)

By these formulas we prove the equation (3.30) and (3.31).

REMARK 3.2. We can calculate the action of D3 on the eigenspinors by the above
formula and show that ¥+, 1) is the eigenspinor with the eigenvalue &(m + 3/2).

4. The extension problem.

In this section we solve ‘the extension problem’, that is, the problem of extending a
given spinor ¥ on S> to a zero mode spinor of D;'f on upper (or lower) hemisphere of S*,
where $3 is the boundary of the upper hemisphere. A spinor v on upper hemisphere is said
to be zero mode spinor of D if ¥ satisfies that Dy = 0. Our method using a polar
decomposition of DI‘ follows Kori’s paper [9]. We have constructed the spin bundle and the
spinor bundles over S* in section 1; that is, Spin(S%) = Spin(5) — Spin(5)/Spin(4) and
SE(SH = Spin(5) x A% Wf. The local trivializations of these bundles are given in the below.

We realize S* by the patching of R* and R#, where R* is §*\ {north pole} and R# is $%\ {south
pole}. Let x be a coordinate of R* represented by

x:("“’”’.‘1 x2+’.x3) e R, @.1)
—X2 +1ix3 X4 —1iXx1

and y a coordinate of l/{Z represented by

ya+iyr y2+iys La
= . \ € R*. 4.2
Y (—)’2 +1iy3 y4-— lyl) 4.2

On this local coordinate system, the coordinate transformation is given by

x*

T x)?

y for x € Rg, | 4.3) |

where x* denotes the transposed conjugate of x and Rg denotes R* \ {x = 0}. We use the
Clifford algebra Cl4 to get a local trivialization of Spin(S4) (see [1]). We realize the Clifford
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algebra Cl4 = Cly ® C as C(4) by setting
_ 0 —0oq _ 0 -0
el_(—al O)’ 82—(_02 O)’
4.4)

(0 —03 s = 0 -—-id
“#=\-os 0)> *#=\ia o )"

Then we can decompose Cl4 to the direct sum of the even part le,f and the odd part CI i:

clo = {(g g) €Cly|e,pe C(2)} , 4.5)
Cl = { (2 g) €Cly |8,y € C(Z)}, (4.6)

Cly=CR®CI! = [(;‘ 2)

Let Pin(4) be the pin group, that is, the double covering group of O(4). Pin(4) has two
connected components, Pin®(4) and Pin! (4). We realize these groups in Cl4 as follows:

Pin®(4) = Spin(4) = {(g 2) e Clf

Pin'(4) = [((s) (')) € CI}

In this situation we prove that the spin bundle Spin(S*) is isomorphic to the bundle given by
the identification '

i x* 1
Rg x Pin®(4) > (x, g9) — (W, m inei '!])
" 0 _Tfﬁ ~ » 4.10)
= W’ o* 0 g) € Ry x Pin"(4).

[x]

a, B8,y € C(2)} . @.7

pP,q € SU(Z)I ~SUR)xSU2), 4.8

r,s € SU(2)} . 4.9

Now, we consider a Z, graded Cl4-module (p, M), that is, a Cl4-module M = M° & M!
such that p(CI))M/ = Mi+/mod2)_If we have such a module, then we get a spinor bundle
Spin(S*) x 0 MO whose bundle patching is given by
4 0 x* 1 R4 1
xM s> x,v)— | —, — i€ € x M. 4.11
o v (|x|2 "(|xlzx‘e')”) o @

To get the spinor bundle S*(S4), we choose the following Z, graded Cis-modules (pf, M):
we define the action of CI2 on M° := C2 by

ot (‘5 g) =a or p; (g 2) =B. (4.12)

Then we have the Z, graded module M := Cl4 ®C12 MO with the action pi' or p, . Since

the restriction of o to Spin(4) is AL, we see that the spinor bundles S*(S*) and S~ (S*) are
isomorphic to the bundles given by the identifications
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4., 2 x* o xt 24 . 2
Ry xC 3 (x,v) — W’ l—ﬂv € Ry x C*, (4.13)
x* x =
R} x C? 5 (x,v) — (W —mv) e R} x C?, (4.14)

respectively. Thus we have local trivializations of the spin bundle and the spinor bundles over
s4.
REMARK 4.1. If we restrict ST(5%) to S? c R?, then we get A*-trivialization of

S(S3) discussed in section 1.

Now, from [5], we have a local formula of the Dirac operator Dy,
_(o D;
Dy = (D"' 0 )
4.15)
= Z {(1 + |xl )e,— — 3x,e,} on R*,

where DY is a differential operator from C® (8%, §%(5%)) to C®(5*, ST(5%)). We rewrite
the above formula by matrices o; instead of e;:

0 ] 0 0
— 2 — — — 03— ) —3x* 4.16
1+ |x| )(8x4 o1 %1 °2ax2 033x3) 3x™, ( )
d 0 ] d
D7 = —(1 2 3x. 4.17
4 1+ |x| )(8x4 +018x1 +<728x2 +033x3) + 3x 4.17)

The same formula holds on R? if we replace x by y. From now on, we consider only DI. We
shall find a polar decomposition of D}, that is, the decomposition of Dj to a sum of normal
derivative and tangential derivative. We can easily show that

X 0 1+r2
-_Dt=q 2y
ro4 ( +r)8r

(01Z1 + 0227y + 03Z3) — 3r, 4.18)

where » = |x| is a coordinate of the normal direction. Then we have a polar decomposition
+

of D/,

1+r2

0
+ r2y— —
D ———[(1 )ar

This polar decomposition is important because the extension problem is reduced to finding a
scalar function ¢ (r) such that D (¢ (r)¥*(k)) = O for a given spinor ¥*(h) on S>. First,
we shall extend the positive spinor 1,/f,‘n" (k.1 (R) with eigenvalue m + 3/2. By using (2.9) we
have

(0121 + 0227 +032Z3) — 3r] . “4.19)

D o Zir () = my ko (). (4.20)
It follows that the equation DZ’ ) (r)w,:(k’ 1)(h)) = 0 reduces to the ordinary differential
equation,

1 +r?) me(r) —3ré(r) =0, (4.21)

d¢(r) 1472
;
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where we put ¢(1) =1. We solve this equation and obtain the solution ¢(r) =
((1 + r2)/2)3/2r™ . We denote this solution by ¢, (r). Next, for the negative spinor with the
eigenvalue —(m + 3/2), we have

Y oizivd, ) = (m =3y, B). (4.22)

So we solve the equation

d 1472
1+ r?) ‘Z(r) - +rr (—=m — 3)¢(r) — 3rd(r) =0 4.23)
r
and get the solution ¢_,, (r) := ((1 + r2)/2)3/2r—m—3,
Now, it is useful that we extend the functions {v]} (h)} on 53 to the ones on R*. We recall
that, for the representation (opm, Vi),

pm(h)zk = (bz +d)" *az + c)k for h = (‘; Z) eSUQ). (4.24)
Then we put
om(x)z% := (bz + d)"*(az + c)*
for x = a b _ [ xa +ix; x2+ix3 c R* (4.25)
“\c d —x3 +ix3 x4—ix; ’

m Pm(x)7* z/ )
" = , s 4.26
i) («/i!(m =Dl Jilm — ) (420

where vl."} (x) is homogeneous of order m in x, that is, v{;? x) = lxlmv{;f (x/)x|). We define the
spinor v;;(k' p(x) on R* by

vl (x):= —\/Evl’flm+l—k(x)
m(k,0) ‘/—m"fm-k )

The spinor ¥, .1 (¥) is defined similarly on R*. Then the desired zero mode spinor corre-
sponding to ¥+, , () is

+ 1+ 1x? 32 I x
Sm (MY nh) = 2 X Ymaen \ 77

x|

1+ x2)
=( 3 ) Yoan@® forx eR,

) for x € R*. 4.27)

(4.28)

where we remark that

1+ 2\
( 2 ) Yk en @) ~ O(x|™*?)  for x —> co. (4.29)



A REPRESENTATION OF Spin(4) ON THE EIGENSPINORS 471

On the other hand, the extension of negative spinor ¢_,, (r)wfm &) (x/|x|) has a pole of order
m + 3 at x = 0. So we use the coordinate y instead of x. Then

‘f’—m(")‘/’fm(k,l) (l_z—l) =1+ ,-2)3/2 —-m— 3w—m(k b (_x_)

x|

—213/2 3Y Yy
=1+ |y| )/l)’|m+ y l‘/fm(lk) (m)

=1+l )3/2| ,w o)

“As y*/|y| is the transition function of St(S4), we should think of the above extended  spinor
as a smooth spinor on R*. Besides, we show that D} ((1+ |y|**2y;,}, . (»)) = 0 on R* and

the extended spinor (1 + |}’l2)3/21/fm(, 1 () has a pole of order m + 3 on y = oo, that is, on
x = 0. Thus we have obtained the following proposition.

PROPOSITION 4.1. Let Wm.)(x) be the C?-valued function ((1+ |x|?)/2)3/?x
w;(k,l) (x) on R%. Then,

1. Y, (x) is a smooth spinor on R* such that DZ’(Wm(kJ)(x)) =0 and Y k,1)(x)| g3
is the positive eigenspinor ¥+ mk, l)(h) of D3 on S3.

2. Y, (y) is a smooth spinor on R4 such that D+(lI/m(k n(»)) =0and (y*/|yl)x
Wink,1)(¥)| 53 is the negative eigenspinor ‘/’—m Lo (h) of D3 on s3.

In [9], Kori proved that the space of zero mode spinors on the lower (resp. upper) hemi-
sphere of S* with a suitable metric is isomorphic to the space of positive (resp. negative)
spinors on its boundary S3. We can prove that the same assertion holds in our situation where
S* has the standard metric.

We set the lower hemisphere of S* by

={xeR*cCS*|Ix|=r=<1}. (4.30)

where the Riemannian metric on B* is induced by the one on §*. Then we have the trace map
bfors > 1/2,

b: H*(B* ST(5%)|p4) = HV2(S3, 8T (5YIg), (4.31)
where H* is Sobolev s-space and S3 is the boundary of B*. In the same way as given in [9],
we have the following theorem.

THEOREM 4.2. Ifwe restrict the domain of b to the space of zero mode spinors on B4,
then b gives the isomorphism

b:{W e H(B* ST (§%)5s) | DFW =00n B*\ $°} > @ En, (4.32)

m>0

where @,,-0 Em >0 Em is the closure of @, >0 Em in H*~ 17283, ST (5| g3)-
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REMARK 4.2. Proposition 4.1 implies that we have the inverse mapping of b in the
above theorem.
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