A Representation of Spin(4) on the Eigenspinors of the Dirac Operator on S^3

Yasushi HOMMA

Waseda University

Abstract. We construct the eigenspinors of the Dirac Operator D_3 on S^3 from a representation theoretical point of view and give a representation of Spin(4) on them explicitly. These eigenspinors are extended to zero mode spinors of the Dirac operator D_4^{\pm} on upper or lower hemisphere of S^4 .

0. Introduction.

In this paper we construct the eigenspinors of the Dirac operator D_3 on the 3-dimensional sphere S^3 from a representation theoretical point of view and show that each eigenspace gives a highest weight representation of Spin(4). Moreover, because we represent the eigenspinors by using matrix components of irreducible representations of SU(2), we can calculate the actions of Spin(4) and D_3 on the eigenspinors explicitly. When we think of S^3 as the equator of the 4-dimensional sphere S^4 , D_3 is the tangential part of the Dirac operator D_4^{\pm} on S^4 , where the (total) Dirac operator D_4 splits as $D_4 = \begin{pmatrix} 0 & D_4^{-} \\ D_4^{+} & 0 \end{pmatrix}$. It follows that we extend our eigenspinors of D_3 to zero mode spinors of D_4^{\pm} on upper or lower hemisphere of S^4 . This extension is important in (1+3)-dimensional quantum field theory (see [11]) and the Dirac boundary value problem (see [4]).

In the case of the eigenvalue problem on S^1 , the Dirac operator is $-i(d/d\theta)$ on $L^2(S^1, \mathbb{C})$ and the eigenspinors are $\{e^{im\theta}\}_{m\in\mathbb{Z}}$. Here, each eigenspace gives an irreducible representation of U(1). Furthermore, $L^2(S^1, \mathbb{C})$ splits as the direct sum of the spaces of the positive and the negative spinors, that is, $L^2(S^1, \mathbb{C}) = H_+ \oplus H_-$, where $H_+ = \bigoplus_{m\geq 0} \mathbb{C}(e^{im\theta})$ and $H_- = \bigoplus_{m>0} \mathbb{C}(e^{-im\theta})$. The positive eigenspinors $\{e^{im\theta}\}_{m\geq 0}$ are extended to holomorphic functions (zero mode spinors) $\{z^m\}_{m\geq 0}$ on $\mathbb{C}^1 \subset P^1(\mathbb{C})$. The negative spinors are extended to $\{w^m\}_{m>0}$, where w=1/z. Our results give analogues of these facts for the higher dimensional case.

Section 1 and 2 are preliminary. In section 1 we explain the spin bundle and the spinor bundle over S^n as homogeneous bundles. To decompose the space of spinors as a representation space of Spin(n + 1), we employ Frobenius reciprocity. In particular, we construct the spinor bundle on S^3 and give its trivializations. By Frobenius reciprocity, we obtain an

irreducible decomposition of the space of spinors on S^3 with respect to Spin(4). In section 2, we give a formula of the Dirac operator D_n on S^n as a homogeneous differential operator. Under the trivializations given in section 1, we obtain an explicit formula of D_3 on S^3 , which is represented by using right invariant vector fields on $SU(2) = S^3$. In section 3 we solve the eigenvalue problem of the Dirac operator D_3 and show that each eigenspace gives an irreducible representation of Spin(4). Moreover, we construct the eigenspinors explicitly and calculate the action of Spin(4) on them. As a result we obtain the main theorem 3.5. Some results in section 1–3 are known ([3], [7] and [9]). But we describe them from a new point of view based on representation theory or the theory of homogeneous vector bundles. In the last section we extend our eigenspinors to zero mode spinors of D_4^{\pm} on $\mathbb{R}^4 \subset S^4$. We consider the following embedding of S^3 into S^4 as the equator:

$$S^{3} = SU(2) \times SU(2) / \text{diag } SU(2) \ni [(p,q)] \mapsto [(p,q)] \in P^{1}(\mathbf{H}) = S^{4}, \tag{0.1}$$

where we use $SU(2) = Sp(1) \subset \mathbf{H}$. This embedding is related to the trivializations of the spin bundle on S^3 given in section 1. We have a local trivialization of the spinor bundle on S^4 and a local formula of the Dirac operator D_4 . In this situation we give a polar decomposition of D_4^{\pm} such that its tangential part is D_3 . It follows that the positive (resp. negative) spinors of D_3 can be extended to zero mode spinors of D_4^+ on upper (resp. lower) hemisphere of S^4 .

1. Spinor bundles over S^n as homogeneous vector bundles.

Let G be the spin group Spin(n + 1). The action of G on \mathbb{R}^{n+1} is defined by $Ad(g)x = g \cdot x \cdot g^{-1}$ for x in \mathbb{R}^{n+1} and g in G, where the multiplications are the Clifford multiplication. Then the orbit of base point $e = (0, \dots, 0, 1)$ is the n-dimensional sphere S^n in \mathbb{R}^{n+1} and its isotropy subgroup is Spin(n). We denote this subgroup Spin(n) by H. Thus we have the Riemannian symmetric space $S^n = G/H$. We also have the principal H-bundle G on S^n . This principal bundle gives a spin structure for S^n as follows: by the linear isotropy representation $Ad: H \to SO(T_e(S^n))$, we obtain the orthonormal frame bundle of S^n , $G \times_{Ad} SO(n)$. Since the representation Ad gives a double covering of SO(n), the following bundle double covering gives a spin structure for S^n :

$$G \ni g \mapsto [g, id] \in G \times_{Ad} SO(n)$$
. (1.1)

Since S^n admits only one spin structure for $n \ge 2$, we denote this principal spin bundle G by $Spin(S^n)$.

Now, we consider the complex (unitary) spinor representation,

$$\Delta_n: Spin(n) \to U(W_n)$$
. (1.2)

The representation space W_n is $2^{\lfloor n/2 \rfloor}$ -dimensional complex vector space with an Hermitian metric and a Clifford module structure. The spinor representation Δ_n induces the spinor bundle on S^n as a homogeneous vector bundle, that is,

$$\mathbf{S}(S^n) := G \times_{\Delta_n} W_n \,. \tag{1.3}$$

For n=2m, the representation (Δ_n, W_n) decomposes as the direct sum of two inequivalent irreducible representations, (Δ_n^+, W_n^+) and (Δ_n^-, W_n^-) , with each dimension $2^{[n/2]-1}$. Hence the spinor bundle $S(S^n)$ also splits as the direct sum of $S^+(S^n)$ and $S^-(S^n)$, where $S^{\pm}(S^n)$ is $G \times_{\Delta_n^{\pm}} W_n^{\pm}$.

The spinor sections are given by the H-equivariant functions from G to W_n ,

$$C^{\infty}(G; \Delta_n) := \{ \Psi : G \to W_n \mid \Psi(gh) = \Delta_n(h^{-1})\Psi(g), \text{ for any } h \in H \}.$$
 (1.4)

If we define an action of G on these spinor sections by $(\Theta(g_0)\Psi)(g) = \Psi(g_0^{-1}g)$ for g_0 in G, then the representation Θ becomes a unitary representation of G on $L^2(G; \Delta_n)$, where $L^2(G; \Delta_n)$ is the L^2 -completion of $C^\infty(G; \Delta_n)$. We shall use Frobenius reciprocity to obtain an irreducible decomposition of $(\Theta, L^2(G; \Delta_n))$. So we prepare some objects of representation theory. First, let \hat{G} be the set of all equivalent classes of irreducible unitary representations of G. For γ in \hat{G} , (π_γ, V_γ) denotes a representative of γ . Secondly, let $\operatorname{Hom}_H(V_\gamma, W_n)$ be the vector space of all H-module homomorphisms from V_γ to W_n . If A is in $\operatorname{Hom}_H(V_\gamma, W_n)$, then the following diagram is commutative for any h in H:

$$V_{\gamma} \xrightarrow{A} W_{n}$$

$$\pi_{\gamma|H}(h) \downarrow \qquad \qquad \downarrow \Delta_{n}(h)$$

$$V_{\gamma} \xrightarrow{A} W_{n}$$

$$(1.5)$$

where $\pi_{\gamma}|_{H}$ is the restriction of π_{γ} to H. We put $E_{\gamma} := V_{\gamma} \otimes \operatorname{Hom}_{H}(V_{\gamma}, W_{n})$ and define an action Π of G on E_{γ} by $\Pi(g_{0})(v \otimes A) := \pi_{\gamma}(g_{0})v \otimes A$ for $v \otimes A$ in E_{γ} and g_{0} in G. Then the direct sum of E_{γ} for every γ in G gives an irreducible decomposition of $(\Theta, L^{2}(G; \Delta_{n}))$.

THEOREM 1.1 (Frobenius reciprocity). Let $(\Theta, L^2(G; \Delta_n))$ and $(\Pi, \overline{\bigoplus_{\gamma \in \hat{G}} E_{\gamma}})$ be representations of G as above. Then $(\Theta, L^2(G; \Delta_n))$ is unitarily equivalent to $(\Pi, \overline{\bigoplus_{\gamma \in \hat{G}} E_{\gamma}})$ by the mapping χ

$$\chi: \overline{\bigoplus_{\gamma \in \hat{G}} E_{\gamma}} \ni v \otimes A \mapsto A\pi_{\gamma}(g^{-1})v \in L^{2}(G; \Delta_{n}), \qquad (1.6)$$

where $v \otimes A$ is in E_{γ} . In particular, $\chi(E_{\gamma})$ consists of smooth sections and the multiplicity of γ in $L^2(G; \Delta_n)$ coincides with the dimension of $\operatorname{Hom}_H(V_{\gamma}, W_n)$.

It is easy to see that $A\pi_{\gamma}(g^{-1})v$ is a *H*-equivariant function from *G* to W_n and that $\Theta(g_0)\chi=\chi\Pi(g_0)$. For a proof of this theorem see [13].

Now, we shall investigate the case n=3, where G=Spin(4) and H=Spin(3). It is well-known that Spin(4) and Spin(3) are isomorphic to $SU(2)\times SU(2)$ and SU(2) respectively. To obtain the action of Spin(4) on S^3 explicitly, we realize S^3 as SU(2):

$$S^{3} \ni x = (x_{1}, x_{2}, x_{3}, x_{4}) \mapsto h = \begin{pmatrix} x_{4} + ix_{1} & x_{2} + ix_{3} \\ -x_{2} + ix_{3} & x_{4} - ix_{1} \end{pmatrix} \in SU(2),$$
 (1.7)

where we remark that the base point e = (0, 0, 0, 1) corresponds to the identity matrix I. Then we know that the action of Spin(4) can be written by the following matrix multiplication: for

(p,q) in $SU(2) \times SU(2) = Spin(4)$,

$$Spin(4) \times S^3 \ni ((p,q),h) \mapsto phq^{-1} \in S^3$$
. (1.8)

Here, it is clear that the isotropy subgroup Spin(3) is diag SU(2) in $SU(2) \times SU(2)$, where the map 'diag' is

$$\operatorname{diag}: SU(2) \ni h \mapsto (h, h) \in SU(2) \times SU(2). \tag{1.9}$$

Thus S^3 is the homogeneous space $(SU(2) \times SU(2))/\text{diag }SU(2)$ and the bundle projection of $Spin(S^3)$ is given by

$$Spin(S^{3}) = Spin(4) \ni (p, q) \mapsto pq^{-1} \in S^{3}.$$
 (1.10)

Since the spinor representation (Δ_3, W_3) is the natural representation of SU(2) denoted by (ρ_1, V_1) , the spinor bundle $S(S^3)$ is $Spin(4) \times_{\rho_1} V_1$.

We can trivialize the bundle $\mathbf{Spin}(S^3)$ and $\mathbf{S}(S^3)$. In fact, we have two natural trivializations,

$$\Phi_+ : \mathbf{Spin}(S^3) = Spin(4) \ni (p, q) \mapsto (pq^{-1}, p) \in S^3 \times Spin(3),$$
 (1.11)

$$\Phi_{-}: \mathbf{Spin}(S^3) = Spin(4) \ni (p,q) \mapsto (pq^{-1},q) \in S^3 \times Spin(3)$$
. (1.12)

The maps Φ_+ and Φ_- induce trivializations of the associated bundles, that is, the Clifford bundle, the spinor bundle, and so on. Then we trivialize $S(S^3)$ as follows:

$$\phi_+: \mathbf{S}(S^3) = Spin(4) \times_{\rho_1} V_1 \ni [(p,q), v] \mapsto (pq^{-1}, pv) \in S^3 \times \mathbb{C}^2,$$
 (1.13)

$$\phi_{-}: \mathbf{S}(S^{3}) = Spin(4) \times_{\rho_{1}} V_{1} \ni [(p, q), v] \mapsto (pq^{-1}, qv) \in S^{3} \times \mathbb{C}^{2}.$$
 (1.14)

We call the first trivialization (1.13) ' Δ^+ -trivialization' and the second one (1.14) ' Δ^- -trivialization'. We shall explain why we call them so, for this fact is related to the extension problem in section 4. We consider the 4-dimensional sphere S^4 including S^3 as the equator. Although $\mathbf{Spin}(S^4)$ is not a trivial bundle, if we restrict $\mathbf{Spin}(S^4)$ to $\mathbf{R}^4 = S^4 \setminus \{\text{north pole}\}$, then we can trivialize it, that is, $\mathbf{Spin}(S^4)|_{\mathbf{R}^4} = \mathbf{R}^4 \times Spin(4)$ and have the following inclusion from $\mathbf{Spin}(S^3)$ into $\mathbf{R}^4 \times Spin(4)$ as a spin bundle:

$$Spin(S^{3}) = Spin(4) \ni (p, q) \mapsto (pq^{-1}, (p, q)) \in \mathbb{R}^{4} \times Spin(4). \tag{1.15}$$

Here we realize \mathbb{R}^4 by

$$x = \begin{pmatrix} x_4 + ix_1 & x_2 + ix_3 \\ -x_2 + ix_3 & x_4 - ix_1 \end{pmatrix} \in \mathbf{R}^4.$$
 (1.16)

The spinor representation Δ_4 is given by $\Delta_4(p,q) = \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix}$ on \mathbb{C}^4 and decomposes as the direct sum of $\Delta_4^+(p,q) = p$ on \mathbb{C}^2 and $\Delta_4^-(p,q) = q$ on \mathbb{C}^2 . Then we get the spinor bundles $\mathbb{R}^4 \times (Spin(4) \times_{\Delta_4^{\pm}} \mathbb{C}^4)$ and their trivializations:

$$\mathbf{R}^4 \times (Spin(4) \times_{\Delta^+} \mathbf{C}^2) \ni (x, [(p, q), v]) \mapsto (x, pv) \in \mathbf{R}^4 \times \mathbf{C}^2, \tag{1.17}$$

$$R4 \times (Spin(4) \times_{\Delta_4^-} C2) \ni (x, [(p, q), v]) \mapsto (x, qv) \in R4 \times C2.$$
(1.18)

These trivializations correspond to (1.13) and (1.14) respectively. So we call the trivialization (1.13) Δ^+ -trivialization and (1.14) Δ^- -trivialization.

We shall see how spinor sections are expressed under Δ^{\pm} -trivialization. If Ψ is in $C^{\infty}(Spin(4); \Delta_4)$, that is, Ψ is a Spin(3)-equivariant function from Spin(4) to V_1 , then we get a \mathbb{C}^2 -valued (V_1 -valued) function on S^3 for Δ^+ -trivialization;

$$\phi_{+}([(p,q), \Psi(p,q)]) = (pq^{-1}, p\Psi(p,q))$$

$$= (pq^{-1}, \Psi((p,q)p^{-1}))$$

$$= (pq^{-1}, \Psi(I, qp^{-1})).$$

So we define a \mathbb{C}^2 -valued function ψ^+ associated to Ψ by

$$\psi^+: S^3 \ni h \mapsto \Psi(I, h^{-1}) \in \mathbb{C}^2.$$
(1.19)

We also have $\psi^-(h) := \Psi(h, I)$ for Δ^- -trivialization and obtain a relation between ψ^+ and ψ^- ,

$$\psi^{+}(h) = \Psi(I, h^{-1}) = h\Psi(h, I) = h\psi^{-}(h). \tag{1.20}$$

In other words, the multiplication h in (1.20) gives a bundle automorphism for $S(S^3)$.

Now, to describe Theorem 1.1 for G = Spin(4) and H = Spin(3), we need all the equivalent classes of irreducible unitary representations of Spin(4). As Spin(4) is a product Lie group $SU(2) \times SU(2)$, we need $\widehat{SU(2)}$ first. It is well-known that $\widehat{SU(2)}$ are given by $\{(\rho_m, V_m)\}_{m \geq 0}$, where V_m is the (m+1)-dimensional vector space of all complex polynomials of degree $\leq m$ in z and the action ρ_m is defined by $\rho_m(h)z^k = (bz+d)^{m-k}(az+c)^k$ for $h = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in SU(2). Furthermore, if we introduce an inner product on V_m by

$$\left(\frac{z^k}{\sqrt{k!(m-k)!}}, \frac{z^l}{\sqrt{l!(m-l)!}}\right) = \delta_{kl}, \qquad (1.21)$$

then (ρ_m, V_m) induces a unitary representation. All the irreducible unitary representations of $SU(2) \times SU(2)$ are given by $(\rho_m \hat{\otimes} \rho_n, V_m \hat{\otimes} V_n)$ for $m, n \geq 0$, that is,

$$\widehat{Spin(4)} = \{ (\rho_m \hat{\otimes} \rho_n, V_m \hat{\otimes} V_n) \mid m, n \ge 0 \}. \tag{1.22}$$

Here $V_m \hat{\otimes} V_n$ is the (m+1)(n+1)-dimensional vector space whose basis is $\{z_1^k z_2^l \mid 0 \le k \le m, 0 \le l \le n\}$ and the inner product is

$$\left(\frac{z_1^k z_2^l}{\sqrt{k!(m-k)!l!(n-l)!}}, \frac{z_1^{k'} z_2^{l'}}{\sqrt{k'!(m-k')!l'!(n-l')!}}\right) = \delta_{kk'} \delta_{ll'}.$$
 (1.23)

We shall investigate $\operatorname{Hom}_{SU(2)}(V_{\gamma}, W_3)$ for any γ in Spin(4). We have known that the spinor representation (Δ_3, W_3) is the natural representation (ρ_1, V_1) of SU(2) and $(\pi_{\gamma}, V_{\gamma})$ is given by $(\rho_m \hat{\otimes} \rho_n, V_m \hat{\otimes} V_n)$. So we shall consider $\operatorname{Hom}_{SU(2)}(V_m \hat{\otimes} V_n, V_1)$ for any $m, n \geq 0$. If A is in $\operatorname{Hom}_{SU(2)}(V_m \hat{\otimes} V_n, V_1)$, then the following diagram is commutative for any h in SU(2):

$$V_{m} \hat{\otimes} V_{n} \xrightarrow{A} V_{1}$$

$$\rho_{m} \hat{\otimes} \rho_{n}|_{SU(2)}(h) \downarrow \qquad \qquad \downarrow \rho_{1}(h)$$

$$V_{m} \hat{\otimes} V_{n} \xrightarrow{A} V_{1}$$

$$(1.24)$$

Because $\rho_m \hat{\otimes} \rho_n|_{SU(2)}$ is the usual tensor representation $\rho_m \otimes \rho_n$, we use Clebsch-Gordan formula, $\rho_m \otimes \rho_n \simeq \rho_{m+n} \oplus \cdots \oplus \rho_{|m-n|}$. For |m-n|=1, that is, for $n=m\pm 1$, only the last part $\rho_{|m-n|}$ is (ρ_1, V_1) . By Schur's lemma, A is a scalar on $V_{|m-n|} = V_1$ and zero on other parts. It follows that dim $\operatorname{Hom}_{SU(2)}(V_m \hat{\otimes} V_{m\pm 1}, V_1) = 1$. On the other hand, for $|m-n| \neq 1$, ρ_1 does not appear in $\rho_{m+n} \oplus \cdots \oplus \rho_{|m-n|}$ and A is zero on $V_m \hat{\otimes} V_n$. Hence dim $\operatorname{Hom}_{SU(2)}(V_m \hat{\otimes} V_n, V_1) = 0$.

Thus we have obtained the following proposition.

PROPOSITION 1.2. Put

$$E_{-m} := (V_m \hat{\otimes} V_{m+1}) \otimes \text{Hom}_{SU(2)}(V_m \hat{\otimes} V_{m+1}, V_1), \qquad (1.25)$$

$$E_m := (V_{m+1} \hat{\otimes} V_m) \otimes \text{Hom}_{SU(2)}(V_{m+1} \hat{\otimes} V_m, V_1). \tag{1.26}$$

Then $L^2(Spin(4); \Delta_3)$ has the following decomposition as a representation space of Spin(4):

$$L^{2}(Spin(4); \Delta_{3}) = \overline{\bigoplus_{m \geq 0} E_{-m} \oplus E_{m}}, \qquad (1.27)$$

where each dimension of E_{-m} and E_m is (m+1)(m+2).

In section 3 we will show that the irreducible component $E_{\pm m}$ is an eigenspace of the Dirac operator. So the above decomposition is nothing but the eigenspace decomposition of the Dirac operator.

2. A formula for the Dirac operator.

The Dirac operator D_n on S^n is a first order differential operator acting on $S(S^n)$. We represent D_n as $\sum e_i \cdot \nabla_{e_i}$ locally, where ∇ is the spin connection induced by the Levi-Civita connection and $\{e_i\}$ is a local orthonormal frame of S^n . When we think of $S(S^n)$ as a homogeneous bundle, D_n is a homogeneous differential operator, that is, D_n commutes with the action of G.

We decompose the Lie algebra $\mathfrak g$ of G into the Lie algebra $\mathfrak h$ of H and its orthonormal complement $\mathfrak p$; $\mathfrak g = \mathfrak h \oplus \mathfrak p$. Since $\mathfrak p$ is isomorphic to $T_e(S^n)$, we can find a basis $\{X_i\}_{1 \le i \le n}$ of $\mathfrak p$ corresponding to an orthonormal basis $\{e_i\}_{1 \le i \le n}$ of $T_e(S^n)$. Then D_n is realized as a differential operator acting on $C^\infty(G; \Delta_n)$ and hence $L^2(G; \Delta_n)$ as follows:

THEOREM 2.1. For Ψ in $C^{\infty}(G; \Delta_n)$,

$$D_n[g, \Psi(g)]|_{g=g_0} = \left[g_0, \sum_{i=1}^n e_i \cdot X_i \big|_{g=g_0} \Psi \right], \qquad (2.1)$$

where $X_i|_{g=g_0}\Psi = \frac{d}{dt}(g_0 \exp t X_i)|_{t=0}$ and e_i is the Clifford multiplication by e_i .

It is easy to show that D_n is a homogeneous differential operator. Therefore, the vector space $E_{\gamma} = V_{\gamma} \otimes \operatorname{Hom}_{H}(V_{\gamma}, W_n)$ for any γ in \hat{G} is invariant subspace with respect to D_n . In facts, we see the action of D_n on E_{γ} .

COROLLARY 2.2. In the decomposition $L^2(G; \Delta_n) = \overline{\bigoplus_{\gamma \in \hat{G}} E_{\gamma}}$, the restriction of the Dirac operator D_n to $E_{\gamma} = V_{\gamma} \otimes \operatorname{Hom}_H(V_{\gamma}, W_n)$ is given by $id \otimes D_n^{\gamma}$, where

$$D_n^{\gamma}(A) := -\sum_{i=1}^n e_i \cdot A\pi_{\gamma^*}(X_i) \quad \text{for } A \in \operatorname{Hom}_H(V_{\gamma}, W_n),$$
 (2.2)

and π_{γ^*} is the infinitesimal representation of π_{γ} .

This corollary is important to calculate the eigenvalues of D_n . The above theorem and corollary follows from a general result provided in [3].

Now, we shall investigate the case n=3 and give an explicit formula of D_3 on S^3 . Since $\mathfrak{g}=\mathfrak{su}(2)\oplus\mathfrak{su}(2)$ and $\mathfrak{h}=\mathrm{diag}\,\mathfrak{su}(2)$, if we fix an orthonormal basis of $\mathfrak{su}(2)$ as

$$\frac{\sigma_1}{2} := \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \quad \frac{\sigma_2}{2} := \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad \frac{\sigma_3}{2} := \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \tag{2.3}$$

then we have orthonormal bases of g, h and p as follows:

basis of
$$g := \left\{ \left(\frac{\sigma_i}{2}, 0 \right), \left(0, \frac{\sigma_j}{2} \right) \right\}_{1 \le i, j \le 3},$$
 (2.4)

basis of
$$\mathfrak{h} := \left\{ \left(\frac{\sigma_i}{2}, \frac{\sigma_i}{2} \right) \right\}_{1 \le i \le 3},$$
 (2.5)

basis of
$$\mathfrak{p} := \{X_i\}_i = \left\{ \left(\frac{\sigma_i}{2}, -\frac{\sigma_i}{2}\right) \right\}_{1 \le i \le 3}.$$
 (2.6)

Since the standard basis $\{e_i\}$ of $T_e(S^3)$ is $\{\sigma_i\}$ under the realization (1.7) of S^3 , we see that the above $\{X_i\}$ corresponds to $\{e_i\}$ under $\mathfrak{p} \simeq T_e(S^3)$:

$$\frac{d}{dt}(\exp tX_i)e\Big|_{t=0} = \frac{d}{dt}\left(\exp t\frac{\sigma_i}{2}\right)I\left(\exp\left(-t\frac{\sigma_i}{2}\right)\right)^{-1}\Big|_{t=0}$$
$$= \frac{\sigma_i}{2} + \frac{\sigma_i}{2}$$
$$= \sigma_i = e_i \in T_e(S^3).$$

We shall show that the Clifford multiplication e_i is given by σ_i as a matrix multiplication. The (complex) spinor representation is obtained by restricting a complex irreducible Clifford representation to the spin group. We realize the complex Clifford algebra $Cl_3 \otimes \mathbb{C}$ as $\mathbb{C}(2) \oplus \mathbb{C}(2)$ by setting $e_i = (\sigma_i, -\sigma_i)$ for $1 \le i \le 3$, where $\mathbb{C}(k)$ is the set of $k \times k$ complex matrices. Then we have two inequivalent irreducible Clifford representations,

$$C(2) \oplus C(2) \ni (\alpha, \beta) \mapsto \alpha \in C(2),$$
 (2.7)

$$C(2) \oplus C(2) \ni (\alpha, \beta) \mapsto \beta \in C(2)$$
. (2.8)

If we restrict them to Spin(3), then we know that these representations are equivalent to each other because Spin(3) is diag SU(2) in $C(2) \oplus C(2)$. Thus we have the spinor representation (Δ_3, W_3) where the Clifford multiplication e_i is given by σ_i or $-\sigma_i$. So we choose σ_i as the Clifford multiplication e_i for $1 \le i \le 3$.

We are now in a position to obtain a formula of D_3 . We use Δ^+ -trivialization to represent D_3 explicitly, where D_3 is a differential operator acting on \mathbb{C}^2 -valued functions.

PROPOSITION 2.3. For Δ^+ -trivialization (1.13), the Dirac operator D_3 on $S(S^3)$ is given by

$$D_3 = \frac{3}{2}I + \sigma_1 Z_1 + \sigma_2 Z_2 + \sigma_3 Z_3. \tag{2.9}$$

Here Z_1 , Z_2 , and Z_3 are differential operators on S^3 defined by

$$Z_{1} = -x_{1} \frac{\partial}{\partial x_{4}} + x_{4} \frac{\partial}{\partial x_{1}} - x_{3} \frac{\partial}{\partial x_{2}} + x_{2} \frac{\partial}{\partial x_{3}},$$

$$Z_{2} = -x_{2} \frac{\partial}{\partial x_{4}} + x_{3} \frac{\partial}{\partial x_{1}} + x_{4} \frac{\partial}{\partial x_{2}} - x_{1} \frac{\partial}{\partial x_{3}},$$

$$Z_{3} = -x_{3} \frac{\partial}{\partial x_{4}} - x_{2} \frac{\partial}{\partial x_{1}} + x_{1} \frac{\partial}{\partial x_{2}} + x_{4} \frac{\partial}{\partial x_{3}}.$$

$$(2.10)$$

PROOF. Let $\psi^+(h) = \Psi(I, h^{-1})$ be a spinor section of $S(S^3)$ for Δ^+ -trivialization. We calculate $(\sigma_i X_i \Psi)(I, h^{-1})$ for $1 \le i \le 3$.

$$(X_{i}\Psi)(I, h^{-1}) = \frac{d}{dt}\Psi((I, h^{-1}) \exp tX_{i})\Big|_{t=0}$$

$$= \frac{d}{dt}\Psi\left(\exp\frac{\sigma_{i}}{2}t, h^{-1} \exp\left(-\frac{\sigma_{i}}{2}t\right)\right)\Big|_{t=0}$$

$$= \frac{d}{dt}\Psi\left((I, h^{-1} \exp(-\sigma_{i}t)) \exp\frac{\sigma_{i}}{2}t\right)\Big|_{t=0}$$

$$= \frac{d}{dt}\left(\exp\left(-\frac{\sigma_{i}}{2}t\right)\right)\Psi(I, h^{-1} \exp(-\sigma_{i}t))\Big|_{t=0}$$

$$= -\frac{\sigma_{i}}{2}\Psi(I, h^{-1}) + \frac{d}{dt}\Psi((I, h^{-1} \exp(-\sigma_{i}t))\Big|_{t=0}$$

$$= -\frac{\sigma_{i}}{2}\Psi(I, h^{-1}) + (Z_{i}\Psi)(I, h^{-1})$$

$$= -\frac{\sigma_{i}}{2}\Psi^{+} + Z_{i}\Psi^{+},$$

where Z_i is a right invariant vector field on $S^3 = SU(2)$ corresponding to σ_i , that is,

$$(Z_i f)(h) = \frac{d}{dt} f((\exp t\sigma_i)h) \bigg|_{t=0} \quad \text{for } f \in C^{\infty}(SU(2)).$$

Then we have $\sigma_i X_i = (1/2)I + \sigma_i Z_i$ and complete the proof.

REMARK 2.1. For Δ^- -trivialization, D_3 is represented by using the left invariant vector fields. Our formula of the Dirac operator coincides with the one discussed in [7] and [9].

3. The eigenspinors on S^3 .

In this section we shall solve the eigenvalue problem of the Dirac operator D_3 and construct the eigenspinors. A way of solving the eigenvalue problem is to use Corollary 2.2.

So we shall investigate $\operatorname{Hom}_{SU(2)}(V_m \hat{\otimes} V_{m+1}, V_1)$ and $\operatorname{Hom}_{SU(2)}(V_{m+1} \hat{\otimes} V_m, V_1)$ more precisely. As a first step we need the following lemma.

LEMMA 3.1. Let $\{z_1^k\}_{0 \le k \le m}$ be a basis of V_m and $\{z_2^k\}_{0 \le k \le m+n}$ a basis of V_{m+n} .

1. In the irreducible decomposition of $V_m \otimes V_{m+n}$, the basis of the irreducible component V_n is given by

$$\{z_2^{n+1-i}(z_2-z_1)^m\}_{1\leq i\leq n+1}. (3.1)$$

In particular, for n = 1, we have the following unitary basis of V_1 in $V_m \otimes V_{m+1}$

$$\omega_1 = \frac{z_2(z_2 - z_1)^m}{m!\sqrt{(m+1)(m+2)/2}}$$
 and $\omega_2 = \frac{(z_2 - z_1)^m}{m!\sqrt{(m+1)(m+2)/2}}$, (3.2)

where the inner product is given by (1.23).

2. The same result holds for $V_{m+n} \otimes V_m$ if we exchange z_1 and z_2 .

PROOF. We prove only the case n = 1. Let h be $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in SU(2). Then

$$((\rho_m \otimes \rho_{m+1})(h))(z_2 - z_1)^m = (bz_1 + d)^m (bz_2 + d)^{m+1} \left(\frac{az_2 + c}{bz_2 + d} - \frac{az_1 + c}{bz_1 + d}\right)^m$$

$$= (bz_2 + d)\{(az_2 + c)(bz_1 + d) - (az_1 + c)(bz_2 + d)\}^m$$

$$= (bz_2 + d)(z_2 - z_1)^m.$$

Similarly we have $((\rho_m \otimes \rho_{m+1})(h))z_2(z_2-z_1)^m=(az_2+c)(z_2-z_1)^m$. Thus we get the natural representation (ρ_1, V_1) in $V_m \otimes V_{m+1}$:

$$((\rho_m \otimes \rho_{m+1})(h))(\omega_1, \omega_2) = (\omega_1, \omega_2) \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \rho_1(h)(\omega_1, \omega_2).$$

The unitarity is clear and we have proved the lemma.

This lemma implies that there is a SU(2)-module homomorphism A from $V_m \hat{\otimes} V_{m+1}$ to V_1 such that, under the decomposition $V_m \otimes V_{m+1} \simeq V_{2m+1} \oplus \cdots \oplus V_1$,

$$A|_{V_{2m+1}\oplus\cdots\oplus V_3} = 0$$
 and $A|_{V_1}(\omega_i) = v_i$ $(i = 1, 2),$ (3.3)

where $v_1 = (1, 0)^t$ and $v_2 = (0, 1)^t$ are in $\mathbb{C}^2 \simeq V_1$.

If we put n=3 and $(\pi_{\gamma}, V_{\gamma})=(\rho_{m}\hat{\otimes}\rho_{m+1}, V_{m}\hat{\otimes}V_{m+1})$ in Corollary 2.2, then we find a constant c_{γ} such that $D_{3}^{\gamma}(A)=c_{\gamma}A$ because of dim $\operatorname{Hom}_{SU(2)}(V_{\gamma},V_{1})=1$. We carry out a similar discussion for $\pi_{\gamma}=\rho_{m+1}\hat{\otimes}\rho_{m}$ and have the following lemma.

LEMMA 3.2. We consider the case n = 3 in Corollary 2.2. Then, for $\pi_{\gamma} = \rho_m \hat{\otimes} \rho_{m+1}$,

$$D_3^{\gamma} = -\left(\frac{3}{2} + m\right) id \quad on \quad \text{Hom}_{SU(2)}(V_m \hat{\otimes} V_{m+1}, V_1), \tag{3.4}$$

and, for $\pi_{\gamma} = \rho_{m+1} \hat{\otimes} \rho_m$,

$$D_3^{\gamma} = \left(\frac{3}{2} + m\right) id \quad on \quad \text{Hom}_{SU(2)}(V_{m+1} \hat{\otimes} V_m, V_1). \tag{3.5}$$

By virtue of this lemma we see how the Dirac operator D_3 acts on the irreducible component $E_{\pm m}$.

PROPOSITION 3.3. In the irreducible decomposition (1.27) of $L^2(Spin(4), \Delta_3)$, the irreducible component E_m (resp. E_{-m}) is the eigenspace with the eigenvalue m + 3/2 (resp. -(m + 3/2)) of D_3 . In particular, the multiplicity of the eigenvalue $\pm (m + 3/2)$ is (m + 1)(m + 2).

We call E_m (resp. E_{-m}) positive (resp. negative) eigenspace of spinors for any $m \geq 0$.

PROOF OF LEMMA 3.2. The infinitesimal representation (ρ_{m*}, V_m) of (ρ_m, V_m) is given as follows:

$$\rho_{m*} \left(\frac{\sigma_{1}}{2}\right) z^{k} = i \left(k - \frac{m}{2}\right) z^{k},
\rho_{m*} \left(\frac{\sigma_{2}}{2}\right) z^{k} = \frac{m - k}{2} z^{k+1} - \frac{k}{2} z^{k-1},
\rho_{m*} \left(\frac{\sigma_{3}}{2}\right) z^{k} = i \frac{m - k}{2} z^{k+1} + i \frac{k}{2} z^{k-1}.$$
(3.6)

Hence we have the following formula for $((\rho_m \hat{\otimes} \rho_{m+1})_*, V_m \hat{\otimes} V_{m+1})$:

$$(\rho_{m} \hat{\otimes} \rho_{m+1})_{*}(X_{1}) z_{1}^{k} z_{2}^{l} = i \left(k - l + \frac{1}{2} \right) z_{1}^{k} z_{2}^{l},$$

$$(\rho_{m} \hat{\otimes} \rho_{m+1})_{*}(X_{2} + i X_{3}) z_{1}^{k} z_{2}^{l} = -k z_{1}^{k-1} z_{2}^{l} + l z_{1}^{k} z_{2}^{l-1},$$

$$(\rho_{m} \hat{\otimes} \rho_{m+1})_{*}(X_{2} - i X_{3}) z_{1}^{k} z_{2}^{l} = (m - k) z_{1}^{k-1} z_{2}^{l} - (m + 1 - l) z_{1}^{k} z_{2}^{l-1},$$

$$(3.7)$$

where $\{X_i\}_{1\leq i\leq 3}$ is the basis of $\mathfrak p$ given by (2.6). In Corollary 2.2, let π_γ be $\rho_m\hat\otimes\rho_{m+1}$ and A be the SU(2)-module homomorphism from $V_m\hat\otimes V_{m+1}$ to V_1 satisfying (3.3). We shall look for the constant c_γ satisfying $D_3^\gamma(A) = -\sum_{i=1}^3 e_i \cdot A\pi_{\gamma*}(X_i) = c_\gamma A$. If we substitute ω_2 to this equation, then we obtain $D_3^\gamma(A)(\omega_2) = c_\gamma A(\omega_2) = c_\gamma v_2$. We calculate $D_3^\gamma(A)(\omega_2)$.

$$\begin{split} D_3^{\gamma}(A)(\omega_2) &= -\sum_{i=1}^3 e_i \cdot A\pi_{\gamma*}(X_i)(\omega_2) \\ &= -\sum_{i=1}^3 \sigma_i \{ (\pi_{\gamma*}(X_i)(\omega_2), \omega_1)v_1 + (\pi_{\gamma*}(X_i)(\omega_2), \omega_2)v_2 \} \\ &= -(\pi_{\gamma*}(X_1)(\omega_2), \omega_1)iv_1 + (\pi_{\gamma*}(X_1)(\omega_2), \omega_2)iv_2 - (\pi_{\gamma*}(X_2)(\omega_2), \omega_2)v_1 \\ &+ (\pi_{\gamma*}(X_2)(\omega_2), \omega_1)v_2 - (\pi_{\gamma*}(X_3)(\omega_2), \omega_2)iv_1 - (\pi_{\gamma*}(X_3)(\omega_2), \omega_1)iv_2 \\ &= \{ i(\pi_{\gamma*}(X_1)(\omega_2), \omega_2) + (\pi_{\gamma*}(X_2 - iX_3)(\omega_2), \omega_1) \} v_2 \,, \end{split}$$

where (,) denotes the inner product on $V_m \hat{\otimes} V_{m+1}$. We have

$$i(\pi_{\gamma*}(X_1)(\omega_2), \omega_2) = i\alpha_m^2(\pi_{\gamma*}(X_1)(z_2 - z_1)^m, (z_2 - z_1)^m)$$

$$= i\alpha_m^2 \left(\pi_{\gamma*}(X_1) \sum_{k=0}^m \binom{m}{k} (-1)^k z_1^k z_2^{m-k}, \sum_{l=0}^m \binom{m}{l} (-1)^l z_1^l z_2^{m-l}\right)$$

$$\begin{split} &= i\alpha_m^2 \sum_{k,l} \binom{m}{k} \binom{m}{l} (-1)^{k+l} \left(2k - m + \frac{1}{2} \right) i (z_1^k z_2^{m-k}, z_1^l z_2^{m-l}) \\ &= -\alpha_m^2 (m!)^2 \sum_k \left(2k - m + \frac{1}{2} \right) (k+1) \\ &= -\frac{2m+3}{6} \,, \end{split}$$

where $\alpha_m = (m!\sqrt{(m+1)(m+2)/2})^{-1}$. In the same way we have

$$(\pi_{\gamma*}(X_2-iX_3)(\omega_2),\omega_1)=-2\frac{2m+3}{6}.$$

Thus we conclude that $D_3^{\gamma}(A)(\omega_2) = -(m+3/2)v_2$ and hence $c_{\gamma} = -(m+3/2)$. We carry out a similar calculation for $\pi_{\gamma} = \rho_{m+1} \hat{\otimes} \rho_m$ and obtain $c_{\gamma} = m+3/2$. We have thus proved the lemma.

Now, we shall construct the eigenspinors. We know that the negative eigenspace E_{-m} has the following basis:

$$\{v_{kl} \otimes A\}_{kl} \in E_{-m} = (V_m \hat{\otimes} V_{m+1}) \otimes \text{Hom}_{SU(2)}(V_m \hat{\otimes} V_{m+1}, V_1),$$
 (3.8)

where $0 \le k \le m$, $0 \le l \le m + 1$ and

$$v_{kl} = \frac{z_1^k z_2^l}{\sqrt{k!(m-k)!l!(m+1-l)!}}.$$
(3.9)

So we get the eigenspinors with the eigenvalue -(m + 3/2) as SU(2)-equivariant V_1 -valued functions on Spin(4):

$$\Psi_{-m(k,l)}(p,q) := A\pi_{\gamma}(p^{-1}, q^{-1})v_{kl}. \tag{3.10}$$

We use Δ^+ -trivialization to represent the eigenspinors as \mathbb{C}^2 -valued (V_1 -valued) functions on S^3 .

$$\psi_{-m(k,l)}^{+}(h) := \Psi_{-m(k,l)}(I, h^{-1})
= A\pi_{\gamma}(I, h)v_{kl}
= (\pi_{\gamma}(I, h)v_{kl}, \omega_{1})v_{1} + (\pi_{\gamma}(I, h)v_{kl}, \omega_{2})v_{2}
= \begin{pmatrix} (\pi_{\gamma}(I, h)v_{kl}, \omega_{1}) \\ (\pi_{\gamma}(I, h)v_{kl}, \omega_{2}) \end{pmatrix} \in \mathbb{C}^{2}.$$
(3.11)

We calculate each entry $(\pi_{\gamma}(I, h)v_{kl}, \omega_1)$ and $(\pi_{\gamma}(I, h)v_{kl}, \omega_2)$:

$$(\pi_{\gamma}(I,h)v_{kl},\omega_{1}) = \alpha_{m} \left(\frac{z_{1}^{k}\rho_{m+1}(h)z_{2}^{l}}{\sqrt{k!(m-k)!l!(m+1-l)!}}, z_{2}(z_{2}-z_{1})^{m} \right)$$

$$= \frac{(-1)^{k}\sqrt{m+1-k}}{\sqrt{(m+1)(m+2)/2}} \left(\frac{\rho_{m+1}(h)z_{2}^{l}}{\sqrt{l!(m+1-l)!}}, \frac{z_{2}^{m+1-k}}{\sqrt{(m+1-k)!k!}} \right)$$

$$= \frac{(-1)^{k}\sqrt{m+1-k}}{\sqrt{(m+1)(m+2)/2}} v_{l,m+1-k}^{m+1}(h),$$
(3.12)

$$(\pi_{\gamma}(I,h)\nu_{kl},\omega_2) = \frac{(-1)^k \sqrt{k+1}}{\sqrt{(m+1)(m+2)/2}} \nu_{l,m-k}^{m+1}(h), \qquad (3.13)$$

where $v_{i,j}^m$ is a matrix component of the representation (ρ_m, V_m) of SU(2), that is,

$$\nu_{i,j}^{m}(h) := \left(\frac{\rho_{m}(h)z^{i}}{\sqrt{i!(m-i)!}}, \frac{z^{j}}{\sqrt{j!(m-j)!}}\right). \tag{3.14}$$

We carry out a similar calculation for the positive eigenspace E_m . Then we get the following eigenspinors for Δ^+ -trivialization:

$$\psi_{-m(k,l)}^{+}(h) = \begin{pmatrix} \sqrt{m+1-k} \nu_{l,m+1-k}^{m+1}(h) \\ \sqrt{k+1} \nu_{l,m-k}^{m+1}(h) \end{pmatrix} \quad (0 \le k \le m, \ 0 \le l \le m+1).$$
 (3.15)

$$\psi_{m(k,l)}^{+}(h) = \begin{pmatrix} -\sqrt{k}v_{l,m+1-k}^{m}(h) \\ \sqrt{m+1-k}v_{l,m-k}^{m}(h) \end{pmatrix} \quad (0 \le k \le m+1, \ 0 \le l \le m).$$
 (3.16)

In the same way we obtain the eigenspinors for Δ^- -trivialization:

$$\psi_{-m(k,l)}^{-}(h) = \begin{pmatrix} -\sqrt{l}v_{k,m-l+1}^{m}(h^{-1}) \\ \sqrt{m+1-l}v_{k,m-l}^{m}(h^{-1}) \end{pmatrix} \quad (0 \le k \le m, \ 0 \le l \le m+1), \quad (3.17)$$

$$\psi_{m(k,l)}^{-}(h) = \begin{pmatrix} \sqrt{m+1-l} \nu_{k,m+1-l}^{m+1}(h^{-1}) \\ \sqrt{l+1} \nu_{k,m-l}^{m+1}(h^{-1}) \end{pmatrix} \quad (0 \le k \le m+1, \ 0 \le l \le m). \quad (3.18)$$

REMARK 3.1. From the above formula, we have

$$\psi_{-m(k,l)}^-(h) = \psi_{m(l,k)}^+(h^{-1}) \quad \text{and} \quad \psi_{m(k,l)}^-(h) = \psi_{-m(l,k)}^+(h^{-1}).$$
 (3.19)

Moreover, we have known the relation (1.20) between Δ^+ - and Δ^- -trivialization. As a result we have

$$\psi_{-m(l,k)}^+(h) = h\psi_{m(k,l)}^+(h^{-1})$$
 and $\psi_{m(l,k)}^+(h) = h\psi_{-m(k,l)}^+(h^{-1})$. (3.20)

These relations are interesting because they are analogous to the following relations for the S^1 case. If we denote the eigenspinor on S^1 with the eigenvalue m by $\psi_m(\theta) = e^{im\theta}$, then we get relations among the eigenspinors, that is, $\psi_{-m}(\theta) = \psi_m(-\theta)$. Here $-\theta$ is the inverse element of θ in $S^1 = U(1)$. In our situation an extra term 'h' appears in (3.20), because the spinor bundles $S^+(S^4)$ and $S^-(S^4)$ are not trivial bundles and 'h' is used as a transition function for them.

We have the following proposition.

PROPOSITION 3.4. We have the following orthonormal basis of $L^2(S^3, \mathbf{S}(S^3)) = L^2(Spin(4); \Delta_3)$ for Δ^+ -trivialization.

1. The positive eigenspinors with the eigenvalue m + 3/2 for $m \ge 0$,

$$\psi_{m(k,l)}^+(h) \in E_m \quad \text{for } 0 \le k \le m+1, \ 0 \le l \le m.$$
 (3.21)

2. The negative eigenspinors with the eigenvalue -(m+3/2) for $m \ge 0$,

$$\psi_{-m(l,k)}^+(h) = h\psi_{m(k,l)}^+(h^{-1}) \in E_{-m} \quad \text{for } 0 \le k \le m+1, \ 0 \le l \le m.$$
 (3.22)

Let us check the orthonormality of our eigenspinors. Of course, the orthonormality is clear by Frobenius reciprocity, but we can verify it by Peter-Weyl theorem for SU(2). From

Peter-Weyl theorem we have the relations among $\{v_{i,j}^m\}$,

$$\int_{SU(2)} \nu_{i,j}^m(h) \overline{\nu_{k,l}^n(h)} dh = \frac{1}{m+1} \delta_{mn} \delta_{ik} \delta_{jl}.$$
 (3.23)

Then we can easily show that our eigenspinors compose an orthonormal basis of $L^2(S^3, \mathbf{S}(S^3))$. For example,

$$(\psi_{m(k,l)}^{+}, \psi_{m(k,l)}^{+})_{L^{2}} = \int_{S^{3}} (\psi_{m(k,l)}^{+}(h), \psi_{m(k,l)}^{+}(h)) dh$$

$$= \int_{SU(2)} \{k v_{l,m+1-k}^{m}(h) \overline{v_{l,m+1-k}^{m}(h)} + (m+1-k) v_{l,m-k}^{m}(h) \overline{v_{l,m-k}^{m}(h)} \} dh$$

$$= \frac{k}{m+1} + \frac{m+1-k}{m+1}$$

$$= 1.$$
(3.24)

Now, we investigate the action of Spin(4) on our eigenspinors. Let (p_0, q_0) be in Spin(4) and $\psi^+(h)$ be a section of $S(S^3)$ for Δ^+ -trivialization. Then the action of Spin(4) is given by

$$(\Theta(p_0, q_0)\psi^+)(h) = (\Theta(p_0, q_0)\Psi)(I, h^{-1})$$

$$= \Psi(p_0^{-1}, q_0^{-1}h^{-1})$$

$$= \Psi((I, q_0^{-1}h^{-1}p_0)p_0^{-1})$$

$$= p_0\Psi(I, (p_0^{-1}hq_0)^{-1})$$

$$= p_0\psi^+(p_0^{-1}hq_0).$$
(3.25)

It follows that the basis (2.3) of $\mathfrak{su}(2) \oplus \mathfrak{su}(2)$ corresponds to the set of differential operators on $C^{\infty}(S^3, \mathbf{S}(S^3))$:

$$\left(\frac{\sigma_i}{2}, 0\right) \mapsto \frac{\sigma_i}{2} - \frac{Z_i}{2} \quad 1 \le i \le 3, \tag{3.26}$$

$$\left(0, \frac{\sigma_i}{2}\right) \mapsto \frac{\tilde{Z}_i}{2} \quad 1 \le i \le 3,$$
 (3.27)

where Z_i is the right invariant vector field on S^3 as (2.10) and \tilde{Z}_i is the left invariant vector field corresponding to σ_i ;

$$\tilde{Z}_{1} = -x_{1} \frac{\partial}{\partial x_{4}} + x_{4} \frac{\partial}{\partial x_{1}} + x_{3} \frac{\partial}{\partial x_{2}} - x_{2} \frac{\partial}{\partial x_{3}},$$

$$\tilde{Z}_{2} = -x_{2} \frac{\partial}{\partial x_{4}} - x_{3} \frac{\partial}{\partial x_{1}} + x_{4} \frac{\partial}{\partial x_{2}} + x_{1} \frac{\partial}{\partial x_{3}},$$

$$\tilde{Z}_{3} = -x_{3} \frac{\partial}{\partial x_{4}} + x_{2} \frac{\partial}{\partial x_{1}} - x_{1} \frac{\partial}{\partial x_{2}} + x_{4} \frac{\partial}{\partial x_{3}},$$
(3.28)

Then we can calculate the action of Spin(4) on the eigenspinors explicitly. Now we can state our main theorem:

THEOREM 3.5. 1. The space of spinors on S^3 has an irreducible decomposition as a representation space of Spin(4):

$$L^{2}(S^{3}, \mathbf{S}(S^{3})) = \overline{\bigoplus_{m \geq 0} E_{-m} \oplus E_{m}}.$$
(3.29)

Here, the irreducible component $E_{\pm m}$ is the eigenspace of the Dirac operator with eigenvalue $\pm (m+3/2)$ and dim $E_{\pm m}=(m+1)(m+2)$.

2. (a) The positive eigenspace E_m gives the highest weight representation with highest weight vector $\psi_{m(m+1,m)}^+$, where the orthonormal basis of E_m is $\{\psi_{m(k,l)}^+(h) \mid 0 \le k \le m+1, \ 0 \le l \le m\}$ given in (3.16). The action of $\mathfrak{spin}(4)$ on E_m is given by

$$\left\{ \frac{\sigma_{1}}{2} - \frac{Z_{1}}{2} \right\} \psi_{m(k,l)}^{+} = i \left(k - \frac{m+1}{2} \right) \psi_{m(k,l)}^{+},
\left\{ \frac{\sigma_{2} + i \sigma_{3}}{2} - \frac{Z_{2} + i Z_{3}}{2} \right\} \psi_{m(k,l)}^{+} = \sqrt{k} \sqrt{m+1-(k-1)} \psi_{m(k-1,l)}^{+},
\left\{ \frac{\sigma_{2} - i \sigma_{3}}{2} - \frac{Z_{2} - i Z_{3}}{2} \right\} \psi_{m(k,l)}^{+} = -\sqrt{k+1} \sqrt{m+1-k} \psi_{m(k+1,l)}^{+},
\frac{\tilde{Z}_{1}}{2} \psi_{m(k,l)}^{+} = i \left(l - \frac{m}{2} \right) \psi_{m(k,l)}^{+},
\frac{\tilde{Z}_{2} + i \tilde{Z}_{3}}{2} \psi_{m(k,l)}^{+} = -\sqrt{l} \sqrt{m-l+1} \psi_{m(k,l-1)}^{+},
\frac{\tilde{Z}_{2} - i \tilde{Z}_{3}}{2} \psi_{m(k,l)}^{+} = \sqrt{l+1} \sqrt{m-l} \psi_{m(k,l+1)}^{+},$$
(3.30)

where the basis of $\mathfrak{spin}(4)$ corresponds to differential operators on S^3 given in (3.26) and (3.27).

(b) The negative eigenspace E_{-m} gives the highest weight representation with highest weight vector $\psi^+_{-m(m,m+1)}$, where the orthonormal basis of E_{-m} is $\{\psi^+_{-m(k,l)}(h) \mid 0 \le k \le m, 0 \le l \le m+1\}$ given in (3.15) and the action of $\mathfrak{spin}(4)$ on E_{-m} is given by

$$\left\{ \frac{\sigma_{1}}{2} - \frac{Z_{1}}{2} \right\} \psi_{-m(k,l)}^{+} = i \left(k - \frac{m}{2} \right) \psi_{-m(k,l)}^{+},
\left\{ \frac{\sigma_{2} + i \sigma_{3}}{2} - \frac{Z_{2} + i Z_{3}}{2} \right\} \psi_{-m(k,l)}^{+} = \sqrt{k} \sqrt{m - (k - 1)} \psi_{-m(k - 1, l)}^{+},
\left\{ \frac{\sigma_{2} - i \sigma_{3}}{2} - \frac{Z_{2} - i Z_{3}}{2} \right\} \psi_{-m(k,l)}^{+} = -\sqrt{k + 1} \sqrt{m - k} \psi_{-m(k + 1, l)}^{+},
\frac{\tilde{Z}_{1}}{2} \psi_{-m(k,l)}^{+} = i \left(l - \frac{m + 1}{2} \right) \psi_{-m(k,l)}^{+},
\frac{\tilde{Z}_{2} + i \tilde{Z}_{3}}{2} \psi_{-m(k,l)}^{+} = -\sqrt{l} \sqrt{(m + 1) - l + 1} \psi_{-m(k,l - 1)}^{+},
\frac{\tilde{Z}_{2} - i \tilde{Z}_{3}}{2} \psi_{-m(k,l)}^{+} = \sqrt{l + 1} \sqrt{(m + 1) - l} \psi_{-m(k,l + 1)}^{+}.$$
(3.31)

PROOF. It remains to calculate the action of $\mathfrak{spin}(4)$ on the eigenspinors. We have the following formulas from Peter-Weyl theorem for SU(2):

$$(Z_{1}\nu_{k,l}^{m})(h) = i(2l-m)\nu_{k,l}^{m}(h),$$

$$((Z_{2}+iZ_{3})\nu_{k,l}^{m})(h) = -2\sqrt{m-1}\sqrt{l+1}\nu_{k,l+1}^{m}(h),$$

$$((Z_{2}-iZ_{3})\nu_{k,l}^{m})(h) = 2\sqrt{m-l+1}\sqrt{l}\nu_{k,l-1}^{m}(h),$$

$$(\tilde{Z}_{1}\nu_{k,l}^{m})(h) = i(2k-m)\nu_{k,l}^{m}(h),$$

$$((\tilde{Z}_{2}+i\tilde{Z}_{3})\nu_{k,l}^{m})(h) = -2\sqrt{m-k+1}\sqrt{k}\nu_{k-1,l}^{m}(h),$$

$$((\tilde{Z}_{2}-i\tilde{Z}_{3})\nu_{k,l}^{m})(h) = 2\sqrt{m-k}\sqrt{k+1}\nu_{k+1,l}^{m}(h).$$

$$((\tilde{Z}_{2}-i\tilde{Z}_{3})\nu_{k,l}^{m})(h) = 2\sqrt{m-k}\sqrt{k+1}\nu_{k+1,l}^{m}(h).$$

By these formulas we prove the equation (3.30) and (3.31).

REMARK 3.2. We can calculate the action of D_3 on the eigenspinors by the above formula and show that $\psi_{\pm m(k,l)}$ is the eigenspinor with the eigenvalue $\pm (m+3/2)$.

4. The extension problem.

In this section we solve 'the extension problem', that is, the problem of extending a given spinor ψ on S^3 to a zero mode spinor of D_4^{\pm} on upper (or lower) hemisphere of S^4 , where S^3 is the boundary of the upper hemisphere. A spinor ψ on upper hemisphere is said to be zero mode spinor of D_4^+ if ψ satisfies that $D_4^+\psi=0$. Our method using a polar decomposition of D_4^+ follows Kori's paper [9]. We have constructed the spin bundle and the spinor bundles over S^4 in section 1, that is, $\mathbf{Spin}(S^4) = Spin(5) \to Spin(5)/Spin(4)$ and $\mathbf{S}^{\pm}(S^4) = Spin(5) \times_{\Delta_4^{\pm}} W_4^{\pm}$. The local trivializations of these bundles are given in the below. We realize S^4 by the patching of \mathbf{R}^4 and \mathbf{R}^4 , where \mathbf{R}^4 is $S^4 \setminus \{\text{north pole}\}$ and \mathbf{R}^4 is $S^4 \setminus \{\text{north pole}\}$ and \mathbf{R}^4 is $S^4 \setminus \{\text{north pole}\}$. Let x be a coordinate of \mathbf{R}^4 represented by

$$x = \begin{pmatrix} x_4 + ix_1 & x_2 + ix_3 \\ -x_2 + ix_3 & x_4 - ix_1 \end{pmatrix} \in \mathbf{R}^4, \tag{4.1}$$

and y a coordinate of $\widehat{\mathbf{R}}^4$ represented by

$$y = \begin{pmatrix} y_4 + iy_1 & y_2 + iy_3 \\ -y_2 + iy_3 & y_4 - iy_1 \end{pmatrix} \in \widehat{\mathbf{R}}^4.$$
 (4.2)

On this local coordinate system, the coordinate transformation is given by

$$y = \frac{x^*}{|x|^2}$$
 for $x \in \mathbb{R}_0^4$, (4.3)

where x^* denotes the transposed conjugate of x and \mathbb{R}_0^4 denotes $\mathbb{R}^4 \setminus \{x = 0\}$. We use the Clifford algebra Cl_4 to get a local trivialization of $Spin(S^4)$ (see [1]). We realize the Clifford

algebra $Cl_4 = Cl_4 \otimes C$ as C(4) by setting

$$e_{1} = \begin{pmatrix} 0 & -\sigma_{1} \\ -\sigma_{1} & 0 \end{pmatrix}, \quad e_{2} = \begin{pmatrix} 0 & -\sigma_{2} \\ -\sigma_{2} & 0 \end{pmatrix},$$

$$e_{3} = \begin{pmatrix} 0 & -\sigma_{3} \\ -\sigma_{3} & 0 \end{pmatrix}, \quad e_{4} = \begin{pmatrix} 0 & -id \\ id & 0 \end{pmatrix}.$$

$$(4.4)$$

Then we can decompose Cl_4 to the direct sum of the even part Cl_4^0 and the odd part Cl_4^1 :

$$\mathbf{C}l_4^0 = \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} \in \mathbf{C}l_4 \, \middle| \, \alpha, \beta \in \mathbf{C}(2) \right\},\tag{4.5}$$

$$\mathbf{C}l_4^1 = \left\{ \begin{pmatrix} 0 & \delta \\ \gamma & 0 \end{pmatrix} \in \mathbf{C}l_4 \,\middle|\, \delta, \gamma \in \mathbf{C}(2) \right\},\tag{4.6}$$

$$\mathbf{C}l_4 = \mathbf{C}l_4^0 \oplus \mathbf{C}l_4^1 = \left\{ \begin{pmatrix} \alpha & \delta \\ \gamma & \beta \end{pmatrix} \middle| \alpha, \beta, \delta, \gamma \in \mathbf{C}(2) \right\}. \tag{4.7}$$

Let Pin(4) be the pin group, that is, the double covering group of O(4). Pin(4) has two connected components, $Pin^0(4)$ and $Pin^1(4)$. We realize these groups in Cl_4 as follows:

$$Pin^{0}(4) = Spin(4) = \left\{ \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix} \in \mathbf{C}l_{4}^{0} \middle| p, q \in SU(2) \right\} \simeq SU(2) \times SU(2), \quad (4.8)$$

$$Pin^{1}(4) = \left\{ \begin{pmatrix} 0 & r \\ s & 0 \end{pmatrix} \in \mathbf{C}l_{4}^{1} \middle| r, s \in SU(2) \right\}. \tag{4.9}$$

In this situation we prove that the spin bundle $Spin(S^4)$ is isomorphic to the bundle given by the identification

$$\mathbf{R}_{0}^{4} \times Pin^{0}(4) \ni (x, g) \mapsto \left(\frac{x^{*}}{|x|^{2}}, \frac{1}{|x|} \sum x_{i} e_{i} \cdot g\right) \\
= \left(\frac{x^{*}}{|x|^{2}}, \begin{pmatrix} 0 & -\frac{x}{|x|} \\ \frac{x^{*}}{|x|} & 0 \end{pmatrix} g\right) \in \widehat{\mathbf{R}_{0}^{4}} \times Pin^{1}(4). \tag{4.10}$$

Now, we consider a Z_2 graded Cl_4 -module (ρ, M) , that is, a Cl_4 -module $M = M^0 \oplus M^1$ such that $\rho(Cl_4^i)M^j = M^{i+j \pmod{2}}$. If we have such a module, then we get a spinor bundle $Spin(S^4) \times_{\rho} M^0$ whose bundle patching is given by

$$\mathbf{R}_0^4 \times M^0 \ni (x, v) \mapsto \left(\frac{x^*}{|x|^2}, \ \rho\left(\frac{1}{|x|}\sum x_i e_i\right)v\right) \in \widehat{\mathbf{R}_0^4} \times M^1. \tag{4.11}$$

To get the spinor bundle $S^{\pm}(S^4)$, we choose the following Z_2 graded Cl_4 -modules (ρ_4^{\pm}, M) : we define the action of Cl_4^0 on $M^0 := C^2$ by

$$\rho_4^+ \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} = \alpha \quad \text{or} \quad \rho_4^- \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix} = \beta.$$
(4.12)

Then we have the Z_2 graded module $M := \mathbb{C}l_4 \bigotimes_{\mathbb{C}l_4^0} M^0$ with the action ρ_4^+ or ρ_4^- . Since the restriction of ρ_4^\pm to Spin(4) is Δ_4^\pm , we see that the spinor bundles $S^+(S^4)$ and $S^-(S^4)$ are isomorphic to the bundles given by the identifications

$$\mathbf{R}_0^4 \times \mathbf{C}^2 \ni (x, v) \mapsto \left(\frac{x^*}{|x|^2}, \frac{x^*}{|x|}v\right) \in \widehat{\mathbf{R}_0^4} \times \mathbf{C}^2, \tag{4.13}$$

$$\mathbf{R}_0^4 \times \mathbf{C}^2 \ni (x, v) \mapsto \left(\frac{x^*}{|x|^2}, -\frac{x}{|x|}v\right) \in \widehat{\mathbf{R}_0^4} \times \mathbf{C}^2, \tag{4.14}$$

respectively. Thus we have local trivializations of the spin bundle and the spinor bundles over S^4 .

REMARK 4.1. If we restrict $S^{\pm}(S^4)$ to $S^3 \subset \mathbb{R}^4$, then we get Δ^{\pm} -trivialization of $S(S^3)$ discussed in section 1.

Now, from [5], we have a local formula of the Dirac operator D_4 ,

$$D_{4} = \begin{pmatrix} 0 & D_{4}^{-} \\ D_{4}^{+} & 0 \end{pmatrix}$$

$$= \sum_{i=1}^{4} \left\{ (1+|x|^{2})e_{i} \frac{\partial}{\partial x_{i}} - 3x_{i}e_{i} \right\} \quad \text{on } \mathbb{R}^{4},$$
(4.15)

where D_4^{\pm} is a differential operator from $C^{\infty}(S^4, \mathbf{S}^{\pm}(S^4))$ to $C^{\infty}(S^4, \mathbf{S}^{\mp}(S^4))$. We rewrite the above formula by matrices σ_i instead of e_i :

$$D_4^+ = (1+|x|^2) \left(\frac{\partial}{\partial x_4} - \sigma_1 \frac{\partial}{\partial x_1} - \sigma_2 \frac{\partial}{\partial x_2} - \sigma_3 \frac{\partial}{\partial x_3} \right) - 3x^*, \tag{4.16}$$

$$D_4^- = -(1+|x|^2)\left(\frac{\partial}{\partial x_4} + \sigma_1 \frac{\partial}{\partial x_1} + \sigma_2 \frac{\partial}{\partial x_2} + \sigma_3 \frac{\partial}{\partial x_3}\right) + 3x. \tag{4.17}$$

The same formula holds on $\widehat{\mathbf{R}^4}$ if we replace x by y. From now on, we consider only D_4^+ . We shall find a polar decomposition of D_4^+ , that is, the decomposition of D_4^+ to a sum of normal derivative and tangential derivative. We can easily show that

$$-\frac{x}{r}D_4^+ = (1+r^2)\frac{\partial}{\partial r} - \frac{1+r^2}{r}(\sigma_1 Z_1 + \sigma_2 Z_2 + \sigma_3 Z_3) - 3r, \qquad (4.18)$$

where r = |x| is a coordinate of the normal direction. Then we have a polar decomposition of D_4^+ ,

$$D_4^+ = \frac{x^*}{r} \left\{ (1+r^2) \frac{\partial}{\partial r} - \frac{1+r^2}{r} (\sigma_1 Z_1 + \sigma_2 Z_2 + \sigma_3 Z_3) - 3r \right\}. \tag{4.19}$$

This polar decomposition is important because the extension problem is reduced to finding a scalar function $\phi(r)$ such that $D_4^+(\phi(r)\psi^+(h)) = 0$ for a given spinor $\psi^+(h)$ on S^3 . First, we shall extend the positive spinor $\psi^+_{m(k,l)}(h)$ with eigenvalue m+3/2. By using (2.9) we have

$$\sum \sigma_i Z_i \psi_{m(k,l)}^+(h) = m \psi_{m(k,l)}^+(h). \tag{4.20}$$

It follows that the equation $D_4^+(\phi(r)\psi_{m(k,l)}^+(h))=0$ reduces to the ordinary differential equation,

$$(1+r^2)\frac{d\phi(r)}{dr} - \frac{1+r^2}{r}m\phi(r) - 3r\phi(r) = 0, \qquad (4.21)$$

where we put $\phi(1) = 1$. We solve this equation and obtain the solution $\phi(r) = ((1+r^2)/2)^{3/2}r^m$. We denote this solution by $\phi_m(r)$. Next, for the negative spinor with the eigenvalue -(m+3/2), we have

$$\sum \sigma_i Z_i \psi_{-m(k,l)}^+(h) = (-m-3)\psi_{-m(k,l)}^+(h). \tag{4.22}$$

So we solve the equation

$$(1+r^2)\frac{d\phi(r)}{dr} - \frac{1+r^2}{r}(-m-3)\phi(r) - 3r\phi(r) = 0$$
 (4.23)

and get the solution $\phi_{-m}(r) := ((1+r^2)/2)^{3/2}r^{-m-3}$.

Now, it is useful that we extend the functions $\{v_{ij}^m(h)\}$ on S^3 to the ones on \mathbb{R}^4 . We recall that, for the representation (ρ_m, V_m) ,

$$\rho_m(h)z^k = (bz+d)^{m-k}(az+c)^k \quad \text{for } h = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SU(2). \tag{4.24}$$

Then we put

$$\rho_{m}(x)z^{k} := (bz+d)^{m-k}(az+c)^{k}$$
for $x = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} x_{4} + ix_{1} & x_{2} + ix_{3} \\ -x_{2} + ix_{3} & x_{4} - ix_{1} \end{pmatrix} \in \mathbb{R}^{4}$, (4.25)

$$\nu_{i,j}^{m}(x) := \left(\frac{\rho_{m}(x)z^{i}}{\sqrt{i!(m-i)!}}, \frac{z^{j}}{\sqrt{j!(m-j)!}}\right), \tag{4.26}$$

where $v_{ij}^m(x)$ is homogeneous of order m in x, that is, $v_{ij}^m(x) = |x|^m v_{ij}^m(x/|x|)$. We define the spinor $\psi_{m(k,l)}^+(x)$ on \mathbb{R}^4 by

$$\psi_{m(k,l)}^{+}(x) := \begin{pmatrix} -\sqrt{k}\nu_{l,m+1-k}^{m}(x) \\ \sqrt{m+1-k}\nu_{l,m-k}^{m}(x) \end{pmatrix} \quad \text{for } x \in \mathbb{R}^{4}.$$
 (4.27)

The spinor $\psi_{-m(k,l)}^+(x)$ is defined similarly on \mathbb{R}^4 . Then the desired zero mode spinor corresponding to $\psi_{m(k,l)}^+(h)$ is

$$\phi_{m}(r)\psi_{m(k,l)}^{+}(h) = \left(\frac{1+|x|^{2}}{2}\right)^{3/2} |x|^{m}\psi_{m(k,l)}^{+}\left(\frac{x}{|x|}\right)$$

$$= \left(\frac{1+|x|^{2}}{2}\right)^{3/2} \psi_{m(k,l)}^{+}(x) \quad \text{for } x \in \mathbb{R},$$
(4.28)

where we remark that

$$\left(\frac{1+|x|^2}{2}\right)^{3/2} \psi_{m(k,l)}^+(x) \sim O(|x|^{m+3}) \quad \text{for } x \to \infty.$$
 (4.29)

On the other hand, the extension of negative spinor $\phi_{-m}(r)\psi^+_{-m(k,l)}(x/|x|)$ has a pole of order m+3 at x=0. So we use the coordinate y instead of x. Then

$$\begin{split} \phi_{-m}(r)\psi_{-m(k,l)}^{+}\left(\frac{x}{|x|}\right) &= (1+r^2)^{3/2}r^{-m-3}\psi_{-m(k,l)}^{+}\left(\frac{x}{|x|}\right) \\ &= (1+r^2)^{3/2}r^{-m-3}\frac{x}{|x|}\psi_{m(l,k)}^{+}\left(\left(\frac{x}{|x|}\right)^{-1}\right) \\ &= (1+|y|^{-2})^{3/2}|y|^{m+3}\frac{y^*}{|y|}\psi_{m(l,k)}^{+}\left(\frac{y}{|y|}\right) \\ &= (1+|y|^2)^{3/2}\frac{y^*}{|y|}\psi_{m(l,k)}^{+}(y) \,. \end{split}$$

As $y^*/|y|$ is the transition function of $\mathbf{S}^+(S^4)$, we should think of the above extended spinor as a smooth spinor on $\widehat{\mathbf{R}^4}$. Besides, we show that $D_4^+((1+|y|^2)^{3/2}\psi_{m(l,k)}^+(y))=0$ on $\widehat{\mathbf{R}^4}$ and the extended spinor $(1+|y|^2)^{3/2}\psi_{m(l,k)}^+(y)$ has a pole of order m+3 on $y=\infty$, that is, on x=0. Thus we have obtained the following proposition.

PROPOSITION 4.1. Let $\Psi_{m(k,l)}(x)$ be the \mathbb{C}^2 -valued function $((1+|x|^2)/2)^{3/2} \times \psi_{m(k,l)}^+(x)$ on \mathbb{R}^4 . Then,

- 1. $\Psi_{m(k,l)}(x)$ is a smooth spinor on \mathbb{R}^4 such that $D_4^+(\Psi_{m(k,l)}(x)) = 0$ and $\Psi_{m(k,l)}(x)|_{S^3}$ is the positive eigenspinor $\psi_{m(k,l)}^+(h)$ of D_3 on S^3 .
- 2. $\Psi_{m(k,l)}(y)$ is a smooth spinor on $\widehat{\mathbf{R}}^4$ such that $D_4^+(\Psi_{m(k,l)}(y)) = 0$ and $(y^*/|y|) \times \Psi_{m(k,l)}(y)|_{S^3}$ is the negative eigenspinor $\psi_{-m(l,k)}^+(h)$ of D_3 on S^3 .

In [9], Kori proved that the space of zero mode spinors on the lower (resp. upper) hemisphere of S^4 with a suitable metric is isomorphic to the space of positive (resp. negative) spinors on its boundary S^3 . We can prove that the same assertion holds in our situation where S^4 has the standard metric.

We set the lower hemisphere of S^4 by

$$B^4 := \{ x \in \mathbf{R}^4 \subset S^4 \mid |x| = r \le 1 \}. \tag{4.30}$$

where the Riemannian metric on B^4 is induced by the one on S^4 . Then we have the trace map b for s > 1/2,

$$b: H^{s}(B^{4}, \mathbf{S}^{+}(S^{4})|_{B^{4}}) \to H^{s-1/2}(S^{3}, \mathbf{S}^{+}(S^{4})|_{S^{3}}),$$
 (4.31)

where H^s is Sobolev s-space and S^3 is the boundary of B^4 . In the same way as given in [9], we have the following theorem.

THEOREM 4.2. If we restrict the domain of b to the space of zero mode spinors on B^4 , then b gives the isomorphism

$$b: \{\Psi \in H^{s}(B^{4}, \mathbf{S}^{+}(S^{4})|_{B^{4}}) \mid D_{4}^{+}\Psi = 0 \text{ on } B^{4} \setminus S^{3}\} \xrightarrow{\sim} \overline{\bigoplus_{m \geq 0} E_{m}}, \qquad (4.32)$$

where $\overline{\bigoplus_{m\geq 0} E_m}$ is the closure of $\bigoplus_{m\geq 0} E_m$ in $H^{s-1/2}(S^3, \mathbf{S}^+(S^4)|_{S^3})$.

REMARK 4.2. Proposition 4.1 implies that we have the inverse mapping of b in the above theorem.

ACKNOWLEDGEMENT. I would like to express my deep appreciation to Prof. T. Kori for his good advice and suggestions. He has been guiding me all through my study in this field; I also thank Prof. Y. Shimizu for discussions about representation theory and Prof. K. Fujii for his encouragement.

References

- [1] M. F. ATIYAH, R. BOTT and A. SHAPIRO, Clifford Modules, Topology 3 (1964), 3-38.
- [2] M. F. ATIYAH, V. K. PATODI and I. M. SINGER, Spectral asymmetry and Riemannian geometry: I, Math. Proc. Cambridge Philos. Soc. 77 (1975), 43-69.
- [3] C. BÄR, The Dirac operator on homogeneous spaces and its spectrum on 3-dimensional lens spaces, Arch. Math. **59** (1992), 65-79.
- [4] B. BOOSS-BAVNBEK and K-P. WOJCIECHOWSKI, Elliptic boundary problems for Dirac operators, Birkhäuser (1993).
- [5] J. E. GILBERT and M. A. M. MURRAY, Clifford algebras and Dirac operators in harmonic analysis, Cambridge Stud. Adv. Math. 26 (1991).
- [6] P. B. GILKEY, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem, Publish or Perish (1984), new revised edition: CRC Pr. (1995).
- [7] N. HITCHIN, Harmonic spinors, Adv. in Math. 14 (1974), 1-55.
- [8] T. Kori, Lie algebra of the infinitesimal automorphisms on S^3 and its central extension, J. Math. Kyoto Univ. 36 (1996), 45–60.
- [9] T. KORI, Index of the Dirac operator on S^4 and the infinite dimensional Grassmannian on S^3 , Japan. J. Math. **22** (1996), 1–36.
- [10] H. B. LAWSON and M. L. MICHELSOHN, Spin Geometry, Princeton Univ. Press (1989).
- [11] J. MICKELSSON, Current Algebras and Groups, Plenum Press (1989).
- [12] J. R. SCHMIDT, Chiral asymmetry and the Atiyah-Patodi-Singer index for the Dirac operator on a four-dimensional ball, Phys. Rev. D. 36 (1987), 2539–2544.
- [13] N. R. WALLACH, Harmonic analysis on homogeneous spaces, Marcel Dekker (1973).

Present Address:

DEPARTMENT OF MATHEMATICAL SCIENCES, WASEDA UNIVERSITY,

OKUBO, TOKYO 169-8555, JAPAN.

e-mail: homma@gm.math.waseda.ac.jp