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1. Introduction.

A foliation is viewed as a generalization of a nonsingular flow, and it is natural to expect
that various notions and results in the theory of dynamical systems might also be valid for
foliations. In fact, several important results have been obtained from this viewpoint: e.g., the
Poincar\’e-Bendixson theory for $C^{2}$ foliations (by Cantwell-Conlon, Hector etc.), the theory
of transverse invariant measures and foliation cycles (by Plante, Sullivan etc.). One of the
recent works on these lines was done by Ghys, Langevin and Walczak $[7, 12]$ , who defined
an entropy for a foliation and showed that the notion is effective to measure the qualitative
complexity of foliations (see also [9] and [13]). In [10] we considered the expansivity for
foliations and obtained a characterization of an expansive codimension-one foliation in terms
of local minimal sets (see also [11, Section $D]$ ).

In this paper we introduce a notion called the pseudoleaf tracing property (PLTP for
short) for foliations. As is well known, the pseudo-orbit tracing property (POTP) plays an
important role in topological dynamics to prove stability results. Our PLTP is its natural ana-
logue in foliation theory. We give a few examples of foliations with the PLTP, and generalize
a fundamental stability theorem for dynamical systems to foliations:

THEOREM A. Let $M$ be a closed Riemannian manifold and $\mathcal{F}$ a smooth foliation on
M If $\mathcal{F}$ is expansive and has the PLTP, then $\mathcal{F}$ is semistable.

In dynamical systems, the corresponding results are obtained by Walters [17] for home-
omorphisms and by Thomas [14] for flows.

We also prove that the PLTP, the expansivity and the semistability are preserved under
the suspension procedure:

THEOREM B. Let $\Phi$ : $\Gamma\rightarrow Diff(X)$ be a smooth action ofafinitely presented group
$\Gamma$ on a compact Riemannian manifold $X$, and let $\mathcal{F}_{\Phi}$ be a suspension foliation of $\Phi$ . Then,

(1) $\Phi hasthePOTPifandonly\iota f\mathcal{F}_{\Phi}$ has the PLTP.
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(2) $\Phi$ is semistable ifand only $\iota f\mathcal{F}_{\Phi}$ is semistable.
(3) $\Phi$ is expansive ifand only if $\mathcal{F}_{\Phi}$ is expansive.

In dynamical systems, the corresponding results to Theorem $B(1),$ $B(2)$ and $B(3)$ are
obtained by Thomas [14, Theorem 2], Thomas [15, Theorems 2 and 3] and Bowen-Walters
[3, Theorem 6] respectively.

Throughout this paper we work in the smooth category. The author does not know how
to define the PLTP in a purely topological setting as is usually done in dynamical systems.

We note that very recently Bi\’{s} and Walczak [1] and Walczak [16] have found new appli-
cations of the notion of pseudoleaves.

Several parts of this paper were improved through conversations with P. Walczak during
the author’s short stay in $L\text{\’{o}} d\acute{z}$ . In particular, the idea of using the notion of the center of mass
in the proof of Theorem $B(1)$ was suggested by him. The author would like to thank him for
all of these and also for his hospitality during the stay. The author would also be grateful tc
S. Matsumoto for indicating the PLTP of Anosov foliations.

2. Notations.

Notations introduced in this section will be used throughout this paper:
Let $(M, g)$ be a closed Riemannian manifold and $\mathcal{F}$ a foliation on $M$ . We denote by

$F_{X}$ the leaf of $\mathcal{F}$ passing through a point $x\in M$ and by $d_{M}$ (respectively, $d_{\mathcal{F}}$) the distance
function on $M$ (respectively, on each leaf of $\mathcal{F}$) induced from $g$ (respectively, $g|T\mathcal{F}$). $Fo1$

$r\geq 0$ we put $D_{M}(x, r)=\{y\in M|d_{M}(x, y)\leq r\},$ $ D_{\mathcal{F}}(x, r)=\{y\in F_{X}|d_{\mathcal{F}}(x, y)\leq$

$r\},$ $ P_{\mathcal{F}}(x, r)=\{\gamma$ : $[0,1]\rightarrow F_{X}|\gamma$ is a piecewise smooth curve with length $\leq r$ and
$\gamma(0)=x\},$ $P_{\mathcal{F}}(x)=\bigcup_{r\geq 0}P_{\mathcal{F}}(x, r),$ $(T_{X}^{\perp}\mathcal{F})(r)=\{v\in T_{X}^{\perp}\mathcal{F}|\Vert v\Vert\leq r\}$ and $D\perp(x, r)=$

$\exp(T_{X}^{\perp}\mathcal{F})(r)$ , where $T_{X}^{\perp}\mathcal{F}$ is the orthogonal complement of $T_{X}\mathcal{F}$ in $T_{X}M$ .
Given a foliation $\mathcal{F}$ on $M$ , we fix once and for all a constant $\kappa>0$ which is small

enough to satisfy the following: for every $x\in M$ , exp $|(T_{X}^{\perp}\mathcal{F})(\kappa)$ is transverse to $\mathcal{F}$ and
exp : $\cup\{(T_{u}^{\perp}\mathcal{F})(\kappa)|u\in D_{\mathcal{F}}(x, \kappa)\}\rightarrow M$ is an embedding. Then, for every $x\in M$ , we
can define the local orthogonal projection $p$ $:\cup\{D_{1}(u, \kappa)|u\in D_{\mathcal{F}}(x, \kappa)\}\rightarrow D_{\mathcal{F}}(x, \kappa)b\}$

$p(y)=u$ for $y\in D\perp(u, \kappa)$ (see [12, p. 555]).

Let $x\in M$ and $y\in D\perp(x, \kappa)$ . The local orthogonal projection gives us a $one- to- on\epsilon$

correspondence between the local curves in $F_{X}$ at $x$ and those in $F_{y}$ at $y$ . For $\gamma\in P_{\mathcal{F}}(x)$

we can determine a piecewise smooth curve $\overline{\gamma}$ in $F_{y}$ of origin $y$ by requiring $\overline{\gamma}(t)\in F_{y}\ulcorner$

$D_{1}(\gamma(t), \kappa)$ (that is, $p(\overline{\gamma}(t))=\gamma(t)$ ), as long as $\overline{\gamma}(t)$ stays on $D\perp(\gamma(t), \kappa)$ . If $\overline{\gamma}(t)$ is definec
for all $0\leq t\leq 1$ , we say that $\gamma$ can be lifted to $\overline{\gamma}\in P_{\mathcal{F}}(y)$ . Conversely, we can begin with $\overline{\gamma}$

and project it to obtain $\gamma$ .
We also fix a constant $\kappa^{\prime}>0$ sufficiently small relative to $\kappa$ that the following holds: if $x$

and $y$ are points of $M$ such that $d_{M}(x, y)<\kappa^{\prime}$ , then the leaf through $y$ of the restricted folia.
tion $\mathcal{F}|\cup\{D\perp(u, \kappa)|u\in D_{\mathcal{F}}(x, \kappa)\}$ intersects $D\perp(x, \kappa)$ at exactly one point, and, moreover
the intersection point depends on $x$ and $y$ smoothly. We denote the point by $w(x, y)$ .
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For two nontrivial subspaces $W_{1},$ $W_{2}$ of $T_{X}M$ we put

$\rho(W_{1}, W_{2})=\max\{\min\{\Vert w_{1}-w_{2}\Vert|w_{2}\in W_{2}, \Vert w_{2}\Vert=1\}|w_{1}\in W_{1}, \Vert w_{1}\Vert=1\}$ .

3. Expansivity.

DEFINITION 3.1 ([10], [11, Section $D]$ ). A foliation $\mathcal{F}$ is expansive if there exists a
constant $ 0<e_{\mathcal{F}}<\kappa$ with the property that for any $x\in M$ and any $y\in D\perp(x, e_{\mathcal{F}})-\{x\}$ ,

one can find a curve $\gamma\in P_{\mathcal{F}}(x)$ which is lifted to a curve $\overline{\gamma}\in P_{f^{-}}(y)$ such that $\overline{\gamma}(1)\not\in$

$D_{\perp}(\gamma(1), e\mathcal{F})$ . The constant $e\mathcal{F}$ is called an expansive constant for $\mathcal{F}$ .
Expansivity is independent of the Riemannian metric of $M$ since we are assuming that

$M$ is compact.

EXAMPLE 3.2. A l-dimensional foliation given by the orbits of an expansive flow
([3]) is expansive.

EXAMPLE 3.3 ([10]). A codimension 1 foliation $\mathcal{F}$ on $M$ is expansive if and only if
$\mathcal{F}$ has finitely many nontrivial open local minimal sets whose union is dense in $M$ .

EXAMPLE 3.4. An Anosov foliation (i.e., the weak stable foliation of an Anosov flow)
is expansive.

4. Pseudoleaf tracing property.

DEFINITION 4.1. Let $\delta>0$ . Let $L$ be a connected complete Riemannian manifold
such that dim $L=\dim \mathcal{F}$ and $\varphi$ : $L\rightarrow M$ an isometric immersion. We say that $\varphi(L)$ is a
$\delta$ -pseudoleafof $\mathcal{F}$ if for every $x\in L$ we have $\rho(T_{\varphi(x)}\mathcal{F}, \varphi_{*}(T_{X}L))<\delta$ .

Hereafter we will usually omit $\varphi$ and confuse $\varphi(L)$ with $L$ .
We fix aconstant $\delta_{0}>0$ sufficiently small that if $L$ is a $\delta_{0}$-pseudoleaf then exp $|(T_{X}^{\perp}\mathcal{F})(\kappa)$

is transverse to $L$ for all $x\in M$ .
DEFINITION 4.2. Let $0<\delta<\delta_{0}$ and $ 0<\epsilon<\kappa$ . A $\delta$ -pseudoleaf $L$ of $\mathcal{F}$ with base

point $x_{0}$ is $\epsilon$ -tmced by an $\mathcal{F}$-leaf $F$ with base point $\mathcal{Y}0$ if $x_{0}\in D\perp(y_{0}, \kappa)\cap L$ and if for every
$\gamma\in P_{\mathcal{F}}(y_{0})$ there exists a curve $\overline{\gamma}$ : $[0,1]\rightarrow L$ of origin $x_{0}$ such that il $(t)\in D\perp(\gamma(t), \epsilon)$ for
all $0\leq t\leq 1$ .

By the same reason as stated in \S 2, the lift $\overline{\gamma}$ is uniquely determined by $\gamma$ , and vice versa.
When we simply say that $L$ is $\epsilon$ -traced by $F$ , it means that we can choose points $x0\in L$

and $y_{0}\in F$ such that $(L, x_{0})$ is e-traced by $(F, y_{0})$ .
REMARK. If $(L, x_{0})$ is e-traced by $(F, y_{0})$ , we can define a covering map $\phi$ : $\tilde{F}\rightarrow L$

by $\phi([\gamma])=\overline{\gamma}(1)$ , where $\tilde{F}=P_{F}(y_{0})/$($homotopy$ relative to the endpoints) is the universal
covering space of $F$ .
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DEFINITION 4.3. A foliation $\mathcal{F}$ has the pseudoleaf tracing property (PLTP for short)

if for any $\epsilon>0$ there exists $\delta>0$ such that any $\delta$ -pseudoleaf of $\mathcal{F}$ is e-traced by some $\mathcal{F}$-leaf.

This definition is independent of the Riemannian metric of $M$ since we are assuming that
$M$ is compact.

EXAMPLE 4.4. The Reeb foliation $\mathcal{F}_{R}$ (see e.g. [8] for definition) of $S^{3}$ has the PLTP.

PROOF. Suppose $e>0$ is given. Replacing $\epsilon$ by a smaller one if necessary, we may
assume that $\epsilon<\kappa$ and that exp : $\bigcup_{x\in T}(T_{X}^{\perp}\mathcal{F})(\epsilon)\rightarrow S^{3}$ is an embedding, where $T$ is the
toral leaf of $\mathcal{F}_{R}$ . Then we have a well-defined orthogonal projection $p$ : $\bigcup_{x\in T}D\perp(x, e)\rightarrow T$

which maps each disk $D\perp(x, \epsilon)$ to a point $x$ . Let $N$ be a compact neighborhood of $T$ contained
in $\bigcup_{x\in T}D\perp(x, \epsilon/2)$ such that $\partial N$ is transverse both to $\mathcal{F}$ and to $D\perp(x, \epsilon/2)$ for all $x\in T$ .
Denote by $R_{1}$ and $R_{2}$ the two connected components of $S^{3}$ –Int $N$ . Then, by the choice of
$N,$ $\mathcal{F}|R_{i}(i=1,2)$ are product foliations by disks. Choose $\delta>0$ sufficiently small that the
following conditions are satisfied:

(1) $2\delta<\rho(T_{X}\partial N, T_{X}\mathcal{F})$ for all $x\in\partial N$ ,
(2) $2\delta<\rho(T_{y}D_{\mathcal{F}^{\perp}}(x, \epsilon),$ $T_{y}\mathcal{F}$) for all $x\in T$ and $y\in N\cap D_{\mathcal{F}^{\perp}}(x, e)$ , and
(3) if $L^{\prime}$ is an immersed complete 2-dimensional submanifold of $R_{i}$ with $\partial L^{\prime}\subset\partial R_{i}$

such that $\rho(T_{z}L^{\prime}, T_{Z}\mathcal{F})<\delta$ for all $z\in L^{\prime}$ , then $L^{\prime}$ is diffeomorphic to a disk.
Now let $L$ be any $\delta$ -pseudoleaf of $\mathcal{F}_{R}$ . If $L$ is entirely contained in $N$ , then clearly $T$

$\epsilon$ -traces $L$ . So, assume that $L$ intersects $S^{3}-N$ . Then, by the condition (3) above, $L\cap R_{i}$

is a union of disks for each $i=1,2$ . In particular, $L\cap N$ is connected. Since, by (2),
$L\cap N$ is transverse to the orthogonal projection $p$ , we can extend $p|L\cap N$ to a covering map
$\hat{p}$ : $\hat{L}\rightarrow T$ by attaching copies of $ S^{1}\times[0, \infty$) to $L\cap N$ along all connected components of
$L\cap\partial N$ . Then $\hat{L}$ is noncompact and hence diffeomorphic to a cylinder or a plane. We see that
$L$ intersects only one of $R_{i}(i=1,2)$ . In fact, suppose $L$ intersected both. Then, a pair 01
loops, one chosen from $L\cap\partial R_{1}$ and the other from $L\cap\partial R_{2}$ , would be projected by $\hat{p}$ to form
a meridian-longitude system on $T$ , which is impossible. Without loss of generality we may
assume that $L$ only intersects $R_{1}$ . Next we see that $L\cap\partial R_{1}$ is a single circle. In fact, suppose
$L\cap\partial R_{1}$ consisted of more than one component. Consider a foliation $C$ on $\partial R_{1}$ by circles
such that every leaf meets each component of $L\cap\partial R_{1}$ transversely exactly once. Then, since
$L\cap N$ is transverse to $p$ , it follows from the connectedness of $L\cap N$ that there is a leaf $c$ of
$C$ such that $p^{-1}(p(c))\cap(L\cap N)$ is a smooth curve joining distinct components of $L\cap\partial R_{1}$ ,

But this contradicts the conditions (1) and (2). Consequently, $L$ is e-traced by some leaf in
one of the Reeb components of $\mathcal{F}_{R}$ . This proves the PLTP for $\mathcal{F}_{R}$ .

In this paper apseudo-orbit of a flow $\phi$ means a pseudoleaf of the l-dimensional foliation
by the orbits of $\phi$ . The following observation is essentially due to Matsumoto.

EXAMPLE 4.5. An Anosov foliation has the PLTP.

PROOF. Let $\mathcal{F}^{s}$ be an Anosov foliation, (i.e., the weakly stable foliation of a smooth
Anosov flow $\phi$) on a compact manifold $M$ . Let $\epsilon>0$ be given. Since it is well-known that an
Anosov flow has the $PO\Gamma P$, one can find $\eta>0$ so that every $\eta$-pseudo-orbit of $\phi$ is e-traced
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by some orbit of $\phi$ . We choose $\delta>0$ so small that if $L$ is a $\delta$ -pseudoleaf of $\mathcal{F}^{s}$ and if $\mathcal{F}^{u}$ is
the weakly unstable foliation of $\phi$ , then each connected component of the intersection of $L$

and a leaf of $\mathcal{F}^{u}$ is an $\eta$ -pseudo-orbit of $\phi$ .
Now let $L$ be a $\delta$ -pseudoleaf of $\mathcal{F}^{s}$ . The intersections of $L$ and leaves of $\mathcal{F}^{u}$ yield a one

dimensional oriented foliation, say $\mathcal{L}$ , on $L$ . Since each leaf $\ell$ in $\mathcal{L}$ is an $\eta$ -pseudo-orbit of
$\phi$ , there uniquely exists an orbit $0\ell$ of $\phi$ which $\epsilon$ -traces $\ell$ (the uniqueness follows from the
expansivity of $\phi$). We claim that there exists a leaf $F$ of $\mathcal{F}^{s}$ such that for every $\ell\in \mathcal{L}$ , the
orbit $0\ell$ lies in $F$ . In fact, suppose this claim were not true. Then one can choose a small local
cross section (i.e., a codimension one embedded open disk transverse to $\phi$ ) $D$ through a point
$x\in L$ satisfying the following property: there are points $x^{\prime},$

$y$ and $y^{\prime}$ on $D$ such that
(1) the point $y$ lies on $L$ ,
(2) the leaf $\ell(x)$ (respectively, $\ell(y)$ ) of $\mathcal{L}$ through $x$ (respectively, y) is e-traced by the

orbit, say $0\ell(x)$ (respectively, $0_{\ell(y)}$ ), of $\phi$ through $x^{\prime}$ (respectively, $y^{\prime}$ ), and
(3) the orbits $0\ell(x)$ and $0_{\ell(y)}$ are contained in distinct leaves of $\mathcal{F}^{s}$ .
Let $W^{s}(x)$ (respectively, $W^{u}(x)$ ) be the leaf of $\mathcal{F}^{s}$ (respectively, $\mathcal{F}^{u}$ ) through $x$ . If we go

forward along $0_{\ell(x)}$ , we of course remain on $W^{s}(x^{\prime})\cap W^{u}(x^{\prime})$ forever. On the other hand, ifwe
go forward along $0_{\ell(y)}$ , we go away from $W^{s}(x^{\prime})$ while coming nearer and nearer to $W^{u}(x^{\prime})$ .
Since $\ell(x)$ (respectively, $\ell(y)$ ) is $\epsilon$ -traced by $0_{f(X)}$ (respectively, $0_{\ell(y)}$ ), $\ell(x)$ (respectively,
$\ell(y))$ behaves similarly as $0\ell(x)$ (respectively, $0_{\ell(y)}$ ). Namely, if we go forward along $\ell(x)$ ,

we must remain near $W^{s}(x)\cap W^{u}(x)$ , while if we go forward along $\ell(y)$ , we must go away
from $W^{s}(x)$ with keeping near $W^{u}(x)$ . But, such a phenomenon cannot occur because $L$ is a
$\delta$ -pseudoleaf of $\mathcal{F}^{s}$ and $\ell(x)$ and $\ell(y)$ are contained in $L$ . Thus the claim is shown. The leaf
$F$ of $\mathcal{F}^{s}$ just found in the claim clearly e-traces $L$ , which proves the PLTP for $\mathcal{F}^{s}$ .

EXAMPLE 4.6. Given a transversely orientable codimension one foliation $\mathcal{F}$ on a
closed n-manifold $M(n\geq 4)$ satisfying the PLTP, by turbulizing $\mathcal{F}$ along a closed transver-
sal to $\mathcal{F}$ (see e.g. [8, p. 50]) one can produce another foliation $\mathcal{F}^{\prime}$ possessing the PLTP. Here
the turbulization must be done so that the resulting compact leaf has topologically hyperbolic
holonomy.

5. Semistability.

We denote by $Fo1_{q}(M)$ the set of all codimension $q$ smooth foliations on $M$ and define a
distance $\rho$ on $Fo1_{q}(M)$ by $\rho(\mathcal{F}, \mathcal{G})=\max_{x\in M}\rho(T_{X}\mathcal{F}, T_{X}\mathcal{G})$ .

DEFINITION 5.1. A foliation $\mathcal{F}$ is semistable if for every $e>0$ there exists $\delta>0$

such that for any $\mathcal{G}\in Fo1_{q}(M)$ with $\rho(\mathcal{F}, \mathcal{G})<\delta$ there exists a continuous map $f$ : $M\rightarrow M$

satisfying the following properties:
(1) every $\mathcal{G}$-leaf is mapped by $f$ onto some $\mathcal{F}$-leaf, and
(2) $d_{M}(f, id_{M})(=\max_{x\in M}d_{M}(f(x), x))<e$ .

Semistability is independent of the Riemannian metric of $M$ since we are assuming that
$M$ is compact.
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EXAMPLE 5.2 (folklore). The Reeb foliation $\mathcal{F}_{R}$ of $S^{3}$ is semistable. In fact, the only
nontrivial perturbation is to cut $S^{3}$ open along the toral leaf and then to insert there a foliated
interval bundle over $T^{2}$ .

EXAMPLE 5.3. Similarly to the case of the PLTP, given a transversely orientable codi-
mension one semistable foliation on a closed n-manifold $(n\geq 4)$ , by a turbulization one can
produce another semistable foliation.

6. Expansivity with PLTP implies semistability.

The purpose of this section is to prove Theorem A stated in the introduction. The prool
goes parallel with that in [17].

Let $\mathcal{F}\in Fo1_{q}(M)$ be an expansive foliation with expansive constant $e\mathcal{F}(<\kappa)$ .
By replacing a smaller one if necessary, we assume that the constant $\kappa^{\prime}$ (see \S 2) is suffi.

ciently small relative to $e_{\mathcal{F}}$ and that the point $w(x, y)$ lies in $D_{1}(x, e_{\mathcal{F}})$ .
First we prove two preliminary lemmas.

LEMMA 6.1. Let $0<\epsilon<\kappa^{\prime}/2$ and suppose that a pseudoleaf $L$ of $\mathcal{F}$ is e-traced b)

some leafof $\mathcal{F}$. Then a leaf $Fof\mathcal{F}$ which e-traces $L$ is unique. Moreover, ifwefix a base poinj
$x_{0}\in L$ , then the corresponding base point $y_{0}\in F$ is uniquely detemined. Equivalently, $\iota j$

$\phi$ : $\tilde{F}\rightarrow L$ is the covering map given in the remark after 4.2, there uniquely exists a covering
map $\psi$ : $L\rightarrow F$ such that $\psi 0\phi=p$ , where $\tilde{F}=P\mathcal{F}(y0)/\simeq is$ the universal covering spac‘

of $F$ and $p:\tilde{F}\rightarrow F$ is given by $p([\gamma])=\gamma(1)$ .
PROOF. Fix a point $x_{0}$ of $L$ and suppose that there are two pairs $(F_{1}, y_{1}),$ $(F_{2}, y_{2})$ of

pointed $\mathcal{F}$-leaves such that $x0\in D_{\mathcal{F}^{\perp}}(y_{1}, e)\cap D_{\mathcal{F}^{\perp}}(y_{2}, \epsilon)$ and that both pairs e-trace $(L, x_{0})$

By the definition of e-tracing, any $\gamma\in P_{\mathcal{F}}(y_{1})$ can be lifted to a curve $\overline{\gamma}$ : $[0,1]\rightarrow L$ of
origin $x_{0}$ such that $\overline{\gamma}(t)\in D_{\mathcal{F}^{\perp}}(\gamma(t), e)$ for all $t$ . Since $(F_{2}, y_{2})$ also $\epsilon$-traces $(L, x_{0})$ , we car
project $\overline{\gamma}$ to $(F_{2}, y_{2})$ and obtain a curve $\overline{\overline{\gamma}}\in P_{\mathcal{F}}(y_{2})$ such that $\overline{\gamma}(t)\in D_{\mathcal{F}^{\perp}}(\overline{\overline{\gamma}}(t), e)$ for al
$t$ . Then we have $d_{M}(\gamma(t), \gamma^{=}(t))\leq d_{M}(\gamma(t),\overline{\gamma}(t))+d_{M}(\overline{\gamma}(t),\overline{\gamma}(t))<e+e=2e<\kappa^{\prime}$

From this and the choice of $\kappa^{\prime}$ we see that $\gamma$ is lifted to the curve $\tilde{\gamma}\in P_{\mathcal{F}}(w(y1, y_{2}))$ definec
by $\tilde{\gamma}(t)=w(\gamma(t),\overline{\overline{\gamma}}(t))$ , which satisfies that $\tilde{\gamma}(t)\in D_{\mathcal{F}^{\perp}}(\gamma(t), e_{\mathcal{F}})$ for all $0\leq t\leq 1$

The expansivity of $\mathcal{F}$ then implies that $(F_{1}, y_{1})=(F_{2}, w(y1, y_{2}))$ . This completes the proof
since it is obvious that under the condition $ D_{\mathcal{F}^{\perp}}(y_{1}, \epsilon)\cap D_{\mathcal{F}^{\perp}}(y_{2}, \epsilon)\neq\emptyset$ the equality $y_{1}=$

$w(y_{1}, y_{2})$ holds if and only if $y_{1}=y_{2}$ .
LEMMA 6.2. For every $v>0$ there exists $r>0$ satisfying the following property: $Le$

$x\in M$ and $y\in D_{\mathcal{F}^{\perp}}(x, e_{\mathcal{F}})$ . Suppose any $\gamma\in P_{\mathcal{F}}(x, r)$ is liftable to some curve $\overline{\gamma}\in P_{\mathcal{F}}(y_{P}^{\backslash }$

such that $\overline{\gamma}(t)\in D_{\mathcal{F}^{\perp}}(\gamma(t), eF)$ for all $0\leq t\leq 1$ . Then it holds that $y\in D_{\mathcal{F}^{\perp}}(x, v)$ .

PROOF. Take any $v>0$ . We may assume $v<e\mathcal{F}$ . Suppose by contradiction that there
does not exist such $r$ . Then there exist a sequence $\{r_{n}\}$ of positive numbers diverging to $\infty an\mathfrak{c}$

sequences $\{x_{n}\},$ $\{y_{n}\}$ of points of $M$ with $y_{n}\in D_{\mathcal{F}^{\perp}}(x_{n}, e_{\mathcal{F}})-D_{F^{\perp}}(x_{n}, v)$ which satisfy tht
following property: Every curve $\gamma\in P_{\mathcal{F}}(x_{n}, r_{n})$ is liftable to some curve $\overline{\gamma}\in P_{\mathcal{F}}(y_{n})$ sucl
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that $\overline{\gamma}(t)\in D_{\mathcal{F}^{\perp}}(\gamma(t), e_{\mathcal{F}})$ for all $0\leq t\leq 1$ . Since $M$ is compact, by taking subsequences
if necessary, we may assume that the sequences $\{x_{n}\}$ and $\{y_{n}\}$ converge to some points $x_{\infty}$

and $ y\infty$ of $M$ respectively. Then one can check that these two points satisfy the following
properties: firstly, $y\infty\in D_{\mathcal{F}^{\perp}}(x_{\infty}, e_{\mathcal{F}})$ –Int $D_{\mathcal{F}^{\perp}}(x_{\infty}, v)$ , and secondly every curve $\gamma\in$

$P_{\mathcal{F}}(x_{\infty})$ is liftable to some curve $\overline{\gamma}\in P_{\mathcal{F}}(y_{\infty})$ such that $\overline{\gamma}(t)\in D_{\mathcal{F}^{\perp}}(\gamma(t), e_{\mathcal{F}})$ for all
$0\leq t\leq 1$ . This contradicts the expansivity of $\mathcal{F}$, which completes the proof.

PROOF OF THEOREM A. Suppose that $\mathcal{F}\in Fo1_{q}(M)$ is expansive with expansive
constant $e_{\mathcal{F}}$ and has the PLTP. Let $e<\kappa^{\prime}/3$ . Let $\delta>0$ be such that any $\delta$-pseudoleaf is e-
traced by some $\mathcal{F}$-leaf. Let $\mathcal{G}\in Fo1_{q}(M)$ be such that $\rho(\mathcal{F}, \mathcal{G})<\delta$ . Then since every leaf of
$\mathcal{G}$ is a $\delta$ -pseudoleaf of $\mathcal{F}$, by Lemma 6.1 for every $G\in \mathcal{G}$ there exists a unique $\mathcal{F}$-leaf $F_{G}$ such
that $F_{G}$ e-traces $G$ . More precisely, there uniquely exists a covering map $\psi_{G}$ : $G\rightarrow F_{G}$ such
that $y\in D_{\mathcal{F}^{\perp}}(\psi_{G}(y), \epsilon)$ for all $y\in G$ . Now define a map $f$ : $M\rightarrow M$ by $f(x)=\psi_{G_{X}}(x)$ ,
where $G_{x}$ is the leaf of $\mathcal{G}$ passing through $x$ . Then obviously $d_{M}(f, id_{M})<e$ and $f$ sends
each $\mathcal{G}$-leaf onto some $\mathcal{F}$-leaf.

So, the only thing we have to check is the continuity of $f$ . Let $\lambda>0$ be given. We will
prove that there exists $\mu>0$ such that $ d_{M}(x, y)<\mu$ implies $ d_{M}(f(x), f(y))<\lambda$ .

First, choose $v>0$ sufficiently small to satisfy the following property: For any $u,$ $v\in M$

with $d_{M}(u, v)<\kappa^{\prime}$ if $d_{M}(u, w(u, v))<v$ and $d_{M}(D_{\mathcal{F}^{\perp}}(u, e),$ $D_{\mathcal{F}^{\perp}}(v, e))<v$ , then
$ d_{M}(u, v)<\lambda$ . Next, for this $v$ , take $r>0$ as in Lemma 6.2. Put $R=\sup\{Length$ il $|x\in$

$M,$ $\gamma\in P_{f}(f(x), r),\overline{\gamma}\in P_{\mathcal{G}}(x),$ $ fo\overline{\gamma}=\gamma$ } $<\infty$ . Then, take $0<\mu<v$ suffi-
ciently small that if $ d_{M}(x, y)<\mu$ , then for any $\overline{\gamma}\in P_{\mathcal{G}}(x, R)$ there exists $\hat{\gamma}\in P_{\mathcal{G}}(y)$

such that $d_{M}(\tilde{\gamma}(t),\hat{\gamma}(t))<\kappa^{\prime}/3$ for all $0\leq t\leq 1$ . We will show that this $\mu$ is the de-
sired one. Let $x$ and $y$ be two points of $M$ with $ d_{M}(x, y)<\mu$ (Note that this implies that
$d_{M}(D_{F^{\perp}}(f(x), e),$ $ D_{F^{\perp}}(f(y), e))<\mu$ since $x\in D_{\mathcal{F}^{\perp}}(f(x), e)$ and $y\in D_{\mathcal{F}^{\perp}}(f(y), \epsilon))$ .
Take any $\gamma\in P_{f}(f(x), r)$ . Then by Lemma 6.1 and the definition of $f,$ $\gamma$ can be lifted to
$\overline{\gamma}\in P\mathcal{G}(x)$ such that $\overline{\gamma}(t)\in D_{\mathcal{F}^{\perp}}(\gamma(t), e)$ for all $0\leq t\leq 1$ . By the choice of $R$ . Length
$;\leq R$ . Hence by the choice of $\mu$ , there exists $\hat{\gamma}\in P_{\mathcal{G}}(y)$ such that $d_{M}(\overline{\gamma}(t),\hat{\gamma}(t))<\kappa^{\prime}/3$

for all $0\leq t\leq 1$ . Again by Lemma 6.1 and the definition of $f,\hat{\gamma}$ can be projected to
$\check{\gamma}\in P_{F}(f(y))$ such that $\hat{\gamma}(t)\in D_{F^{\perp}}(\check{\gamma}(t), e)$ for all $0\leq t\leq 1$ . We have

$d_{M}(\gamma(t),\check{\gamma}(t))\leq d_{M}(\gamma(t),\overline{\gamma}(t))+d_{M}(\overline{\gamma}(t),\hat{\gamma}(t))+d_{M}(\hat{\gamma}(t),\check{\gamma}(t))$

$<e+\kappa^{\prime}/3+e<\kappa^{\prime}$

for all $0\leq t\leq 1$ . This with the choice of $\kappa^{\prime}$ implies that $\gamma$ can be lifted to the curve $\tilde{\gamma}\in$

$P_{\mathcal{F}}(w(f(x), f(y)))$ defined by $\tilde{\gamma}(t)=w(\gamma(t),\check{\gamma}(t))$ . Since $\tilde{\gamma}$ satisfies il $\in D\perp(\gamma(t), e_{f})$

for all $0\leq t\leq 1$ (see the top of this section), by Lemma 6.2 we have $ w(f(x), f(y))\in$

$D\perp(f(x), v)$ . By the choice of $v$ , this with $d_{M}(x, y)<v$ implies that $ d_{M}(f(x), f(y))<\lambda$ ,
which shows the continuity of $f$ . The theorem is proven.
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7. Suspension and pseudoleaf tracing property.

The purpose of this section is to prove the part (1) of Theorem $B$ stated in the introduc $\cdot$

tion. We begin with the definition of the pseudo-orbit tracing property for a group action.
Let $X$ be a compact Riemannian manifold. We denote by Diff(X) the group of diffeo.

moIphisms of $X$ . Let $\Phi$ : $\Gamma\rightarrow Diff(X)$ be an action of a finitely presented group $\Gamma$ or
X. The pseudo-orbit tracing property (POTP) for $\Phi$ is defined as follows: Fix an arbitrar}
finite generating system $\{gl, g_{2}, \cdots , g_{r}\}$ of $\Gamma$ . Then, a family $\{x(g)\}_{g\in\Gamma}$ of points of $X$ is
a $\delta$ -pseudo-oribt of $\Phi$ if $ d(\Phi(g_{i})(x(g)), x(g_{i}g))<\delta$ for all $ g\in\Gamma$ and 1 $\leq i\leq r$ . $A$

$\delta$ -pseudo-orbit $\{x(g)\}_{g\in\Gamma}$ is $\epsilon$ -traced by the orbit $\{\Phi(g)(y)\}_{g\in\Gamma}$ of $\Phi$ passing through $y\in X$

if $ d(x(g), \Phi(g)(y))<\epsilon$ for all $ g\in\Gamma$ . Finally, an action $\Phi$ has the POTP if for any $e>$ $($

there exists $\delta>0$ such that any $\delta$ -pseudo-orbit is $\epsilon$ -traced by some orbit of $\Phi$ . As is easi13
seen, the POTP of an action does not depend on the choice of a generating system.

To fix the notation, let us briefly review about the suspension: A suspension $\mathcal{F}_{\Phi}$ of $\Phi$

is a foliation which is constructed in the following way: Let $B$ be a compact Riemanniar
manifold such that $\pi_{1}(B)$ is isomorphic to $\Gamma$ . We fix a base point $b_{0}\in B$ and identify $\Gamma$ with
$\pi_{1}(B, b_{0})$ . $\Gamma$ acts on the universal covering $\tilde{B}$ of $B$ as covering transformations. Define the
action of $\Gamma$ on $\tilde{B}\times X$ by $g\cdot(b, x)=(gb, \Phi(g)x)$ for $g\in\Gamma,$ $b\in\tilde{B}$ and $x\in X$ . This actioI
preserves the product foliation $\tilde{\mathcal{F}}=\{\tilde{B}\times\{x\}\}_{x\in X}$ and hence induces a foliation $\mathcal{F}_{\Phi}$ on tht
quotient manifold $ M_{\Phi}=(\tilde{B}\times X)/\Gamma$ . We denote by $q$ the quotient map $\tilde{B}\times X\rightarrow M_{\Phi}$ . We fi)

a base point $b(e)$ in $\tilde{B}$ such that $\pi(b(e))=b_{0}$ , where $\pi$ : $\tilde{B}\rightarrow B$ is the covering projection
and for $ g\in\Gamma$ we put $b(g)=gb(e)$ . We identify $p^{-1}(b_{0})$ with $X$ by $p_{2}o(q|\{b(e)\}\times X)^{-1}$

where $p_{i}(i=1,2)$ is the projection of $\tilde{B}\times X$ to the i-th factor and $p$ : $M_{\Phi}\rightarrow B$ is tht
bundle projection such that $poq=\pi opl$ . We fix on $M_{\Phi}$ a Riemannian metric such tha
its restriction to $p^{-1}(b_{0})$ coincides with that on $X$ and that $p^{-1}(b_{0})$ is orthogonal to $\mathcal{F}_{\Phi}$ . Wt
regard $\tilde{B}\times X$ as a Riemannian manifold by pulling back the metric on $M_{\Phi}$ by $q$ .

Throughout \S \S 7, 8 and 9 we use the above notations.
Now we show the following

THEOREM $B(1)$ . $\Phi$ has the POTP $\iota f$ and only $\iota f\mathcal{F}_{\Phi}$ has the PLTP.

PROOF. Put $V_{g}=$ { $b\in\tilde{B}|d_{\tilde{B}}(b,$ $b(g))\leq d_{\tilde{B}}(b,$ $b(h))$ for all $ h\in\Gamma$ }, where $d_{\tilde{B}}$ is th $($

distance on $\tilde{B}$ induced from the pull-back of the Riemannian metric of $B$ by $\pi$ . Take $\eta>$
$\langle$

and set $U_{g}$ to be an open $\eta$-neighborhood of $V_{g}$ . Then $\{U_{g}\}_{g\in\Gamma}$ is a locally finite open cove
of $\tilde{B}$ . Here we choose $\eta$ so small that $b_{e}\in U_{g}$ if and only if $g=e$ . Let $\{\lambda(g)\}_{g\in\Gamma}$ be $an^{1}$.
partition of unity subordinate to $\{U_{g}\}$ .

First we show the “if” part. So assume that $\mathcal{F}_{\Phi}$ has the PLTP. Let $\epsilon>0$ be given
Then there is $\delta^{\prime}>0$ such that any $\delta^{\prime}$-pseudoleaf of $\mathcal{F}_{\Phi}$ is $\epsilon$-traced by some real leaf $0$

$\mathcal{F}_{\Phi}$ . Choose $\delta>0$ sufficiently small (which will be adjusted later) and take a $\delta$ -pseudo-orbi
$\{x(g)\}_{g\in\Gamma}$ of $\Phi$ . We will construct a smooth section $s$ : $\tilde{B}\rightarrow\tilde{B}\times X$ as follows: Defin $($

a function $\mu$ : $\tilde{B}\times X\rightarrow R$ by $\mu(b, x)=\sum_{g\in\Gamma}\lambda(g^{-1})(b)\{d_{b}((b, x), (b, \Phi(g^{-1})x(g)))\}^{2}$

where $d_{b}$ is the distance on $\{b\}\times X$ induced from the Riemannian metric. If $\delta$ is small, fo
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each $b\in\tilde{B},$ $\mu(b, x)$ is strictly convex in $x$ , and attains a minimum at a unique point $s(b)$

(Such a point is called the center of mass of the points $\{(b, \Phi(g^{-1})x(g))\}_{g\in\Gamma}$ with respect
to the mass distribution $\{\lambda(g^{-1})(b)\}_{g\in\Gamma}$ [ $4$ , p. 131]). Moreover, $s(b)$ depends smoothly on
$b$ . By the construction, $s(\tilde{B})$ contains the points $(b(g^{-1}), \Phi(g^{-1})x(g))$ for all $ g\in\Gamma$ . By
replacing $\delta$ with a smaller one if necessary, we can further assume that the image $qs(\tilde{B})$ is
an immersed submanifold ofM and that if $\{x(g)\}$ isa $\delta$ -pseudo-orbit of $\Phi,$ $thenqs(\tilde{B})$ is a
$\delta^{\prime}$-pseudoleaf of $\mathcal{F}_{\Phi}$ . Now, by the PLTP of $\mathcal{F}_{\Phi}$ and the choice of $\delta^{\prime}$ , there is a leaf $F$ of $\mathcal{F}_{\Phi}$

which $\epsilon$ -traces $qs(\tilde{B})$ , and, it follows that the $\Phi$ -orbit $F\cap p^{-1}(b_{0})e$ -traces $qs(\tilde{B})\cap p^{-1}(b_{0})=$

$\{q(b(e), x(g))\}_{g\in\Gamma}=\{x(9)\}_{g\in\Gamma}$ , as desired. This proves the “if” part.
Next we show the only if” part. Suppose that $\Phi$ has the POTP and let $\epsilon$ be given. Choose

$0<\epsilon^{\prime}<e$ so small that the following property holds: For every $x,$ $y\in X$ with $d(x, y)<2\epsilon^{\prime}$

and for every $b\in U_{e}$ , the geodesic arc in $\tilde{B}\times X$ starting from $(b, x)$ , perpendicular to $U_{e}\times\{x\}$

at $(b, x)$ and arriving at a point of $\tilde{B}\times\{y\}$ has length less than $\epsilon/2$ . (We can find such $e^{\prime}$

because $X$ and $\overline{U_{e}}$ are compact.) By the POTP of $\Phi$ there is $\delta^{\prime}>0$ such that any $\delta^{\prime}$ -pseudo-
orbit of $\Phi$ is $\epsilon^{\prime}$ -traced by some real orbit of $\Phi$ . We can take $\delta>0$ sufficiently small so that it
satisfies the following properties:

(1) If $L$ is a $\delta$ -pseudoleaf of $\mathcal{F}_{\Phi}$ , then $L$ is transverse to the fibers of $p$ and $L\cap p^{-1}(b_{0})$

is a $\delta^{\prime}$-pseudo-orbit of $\Phi$ .
(2) Let $L$ be a $\delta$ -pseudoleaf and $\tilde{L}$ a connected component of $q^{-1}(L)$ . Then, for every

$x\in X$ with $d((b(e), x),$ $(\{b(e)\}\times X)\cap\tilde{L})<e^{\prime}$ and for every $b\in U_{e}$ , the geodesic arc starting
from $(b, x)$ , perpendicular to $U_{e}\times\{x\}$ at $(b, x)$ and arriving at a point of $\tilde{L}$ has length less
than $e$ .
In fact, the property (2) can be established from the choice of $e^{\prime}$ because $\tilde{L}\cap(U_{e}\times X)$ becomes
arbitrarily $C^{1}$ -close to $U_{e}\times\{w\}$ for some $w\in X$ as $\delta$ tends to $0$ .

Now, let $L$ be a $\delta$ -pseudoleaf of $\mathcal{F}_{\Phi}$ . Then, since $L$ is a covering space over $B$ by the
property (1) above, each point of $L\cap p^{-1}(b_{0})$ can naturally be written as $x(g)$ for some $ g\in\Gamma$

as soon as we take an arbitrary point of $L\cap p^{-1}(b_{0})$ as $x(e)$ . (That is, if $\gamma$ is a loop in $B$

based at $b_{0}$ representing $ g\in\Gamma$ and if $\tilde{\gamma}$ is a path in $L$ starting from $x(e)$ such that $ qo\tilde{\gamma}=\gamma$ ,

then we name the terminal point of $\tilde{\gamma}$ as $x(g).)$ Also, by the choice of $\delta^{\prime}$ we can find an orbit
$O=\{\Phi(g)x\}_{g\in\Gamma}$ of $\Phi$ such that $d(\Phi(g)x, x(g))<e^{\prime}$ for all $ g\in\Gamma$ . Let $F$ be the leaf of

$\mathcal{F}_{\Phi}$ corresponding with $O$ . Denote by $\tilde{L}$ the connected component of $q^{-1}(L)$ passing through
$(b(e), x(e))$ . By the property (2) and the fact that $(\{b(e)\}\times X)\cap g(\tilde{L})=(b(e), x(g))$ for each
$ g\in\Gamma$ , we see that, for every $ g\in\Gamma$ and $b\in U_{e}$ , the geodesic arc starting from $(b, \Phi(g)x)$ ,

perpendicular to $U_{e}\times\{\Phi(g)x\}$ at $(b, \Phi(g)x)$ and arriving at a point of $g(\tilde{L})$ has length less
than $\epsilon$ . Since the $\Gamma$ -action on $\tilde{B}\times X$ is isometric and $\{g^{-1}(U_{e}\times\{\Phi(g)x\})\}_{g\in\Gamma}$ is an open
cover of $\tilde{B}\times\{x\}$ , it follows that $L$ is e-traced by $F$ . This proves the “only if” part, and the
proof of the theorem is complete.

Let $PO^{+}(n, 1)$ be the group of orientation preserving M\"obius transformations of $S^{n-1}$ .
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COROLLARY 7.1. Let $\Gamma$ be a finitely generated torsionless discrete cocompact sub-
group of $PO^{+}(n, 1)$ and let $\Phi$ : $\Gamma\rightarrow Diff(S^{n-1})$ be the inclusion homomorphism. Then $\Phi$

has the POTP.

PROOF. Let $\Gamma$ and $\Phi$ be as in the hypothesis. Then, as is well-known, the geodesic flow
$\varphi$ of $ K\backslash PO^{+}(n, 1)/\Gamma$ is an Anosov flow on the unit tangent bundle $T_{1}(K\backslash PO^{+}(n, 1)/\Gamma)$

of $ K\backslash PO^{+}(n, 1)/\Gamma$ , where $K$ is a maximal compact subgroup of $PO^{+}(n, 1)$ . The weakly
stable foliation $\mathcal{F}_{\varphi}^{s}$ of $\varphi$ is smooth and transverse to the fibers of $T_{1}(K\backslash PO^{+}(n, 1)/\Gamma)$ and
is obtained from $\Phi$ by suspension. Since $\mathcal{F}_{\varphi}^{s}$ has the PLTP (Example 4.5), it follows from
Theorem $B(1)$ that $\Phi$ has the POTP, as desired.

8. Suspension and semistability.

In this section we prove the part (2) of Theorem B.
An action $\Phi$ : $\Gamma\rightarrow Diff(X)$ is semistable if for every $\epsilon>0$ there exist neighborhoods

$U_{i}$ of $\Phi(g_{i})$ for all 1 $\leq i\leq r$ with the property that for any action $\Psi$ : $\Gamma\rightarrow Diff(X)$

with $\Psi(g_{i})\in U_{i}$ for all 1 $\leq i\leq r$ there is a continuous map $h$ : $X\rightarrow X$ satisfying
$h\Psi(g)=\Phi(g)h$ for all $ g\in\Gamma$ and $ d_{X}(h, id_{X})<\epsilon$ .

For the definition of semistability of foliations, see \S 5.

LEMMA 8.1. Let $\Phi$ : $\Gamma\rightarrow Diff(X)$ be a smooth action. Then for any neighborhooc
$Vof\mathcal{F}_{\Phi}$ in $Fo1_{q}(M_{\Phi})$ there exist neighborhoods $U_{i}$ of $\Phi(g_{i})$ in Diff(X) for all $1\leq i\leq r$

with the property that for any action $\Psi$ : $\Gamma\rightarrow Diff(X)$ with $\Psi(g_{i})\in U_{i}$ for all $1\leq i\leq r$

there is afiber preserving diffeomorphism $\varphi$ : $M_{\Phi}\rightarrow M_{\Psi}$ such that $\varphi^{*}\mathcal{F}_{\Psi}\in V$ .
PROOF. It is well-known that Diff(X) is locally contractible. Hence there exists nc

obstruction in constructing a desired diffeomorphism if $\Psi$ is sufficiently close to $\Phi$ .
Now we will prove

THEOREM $B(2)$ . $\Phi$ is semistable $\iota f$and only $\iota f\mathcal{F}_{\Phi}$ is semistable.

PROOF. First we prove the “if” part. Suppose that $\Phi$ is semistable and consider ’

perturbation $\mathcal{G}$ of its suspension foliation $\mathcal{F}_{\Phi}$ . We may assume that $\mathcal{G}$ is transverse to the fibers
Thus $\mathcal{G}$ determines uniquely an action $\Psi$ of $\Gamma$ on $p^{-1}(b_{0})(=X)$ . Since $\Psi$ is close to $\Phi,$ $i$ )

follows from the semistability of $\Phi$ that there exists a semiconjugacy $h$ : $p^{-1}(b_{0})\rightarrow p^{-1}(b_{0})$

close to the identity such that $h\Psi(g)=\Phi(g)h$ for all $ g\in\Gamma$ . Now, for each $b\in B$ take t)
path $\gamma$ : $I\rightarrow B$ such that $\gamma(0)=b_{0}$ and $\gamma(1)=b$ . For each $z\in p^{-1}(b)$ lift $\gamma$ to a $\mathcal{G}$-curve
$\gamma_{1}$ with $Y1(1)=z$ and also to a $\mathcal{F}_{\Phi}$ -curve $\gamma_{2}$ with $\gamma_{2}(0)=h(\gamma_{1}(0))$ . Then define $Hb$}
$H(z)=\gamma_{2}(1)$ . One can easily check that $H$ becomes a well-defined continuous map frorr
$M_{\Phi}$ to itself close to the identity such that $H(\mathcal{G})=\mathcal{F}_{\Phi}$ . This proves the “if” part.

Next we prove the “only if‘ part. Suppose that $\mathcal{F}_{\Phi}$ is semistable and consider a pertur.
bation $\Psi$ of $\Phi$ . By Lemma 8.1 there exists a fiber preserving diffeomorphism $\varphi$ : $M_{\Phi}\rightarrow M_{\Psi}$

such that $\varphi^{*}\mathcal{F}_{\Psi}$ is close to $\mathcal{F}_{\Phi}$ . It follows from the semistability of $\mathcal{F}_{\Phi}$ that there exists ’

continuous map $H$ : $M_{\Phi}\rightarrow M_{\Phi}$ close to the identity such that $H(\varphi^{*}\mathcal{F}_{\Psi})=\mathcal{F}_{\Phi}$ . Take ’
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neighborhood $U$ of $b_{0}$ so that $\varphi^{*}\mathcal{F}_{\Psi}|p^{-1}(U)$ and $\mathcal{F}_{\Phi}|p^{-1}(U)$ are product foliations and that
if $x\in p^{-1}(b_{0})(=X)$ then $H(x)\in p^{-1}(U)$ . Then for every $x\in p^{-1}(b_{0})$ there exists aunique
point, say $h(x)$ , in $p^{-1}(b_{0})$ such that $H(x)$ and $h(x)$ are on the same leaf of $\mathcal{F}_{\Phi}|p^{-1}(U)$ .
Now it is easy to check that the map $h$ thus defined is a desired semiconjugacy from $\Psi$ to $\Phi$ .
This proves the “only if” part, and the proof of the theorem is complete.

REMARK. By [5], the group Homeo(X) of homeomorphisms of $X$ is also locally con-
tractible. So, the topological version of Theorem $B(2)$ would also be true once the space of
all foliations could be topologized suitably in a purely topological manner.

9. Suspension and expansivity.

The purpose of this section is to prove the part (3) of Theorem B.
An action $\Phi$ : $\Gamma\rightarrow Diff(X)$ is said to be expansive of there exists a constant $e_{\Phi}>0$

with the property that for any two distinct points $x,$ $y\in X$ , there exists $ g\in\Gamma$ such that
$d(\Phi(g)(x), \Phi(g)(y))>e_{\Phi}$ .

THEOREM $B(3)$ . $\Phi$ is expansive $lf$and only $\iota f\mathcal{F}\Phi$ is expansive.

PROOF. First we show the “if” part. So assume that the suspension foliation $\mathcal{F}=\mathcal{F}_{\Phi}$

is expansive with expansive constant $e(<\kappa)$ . Let $x$ and $y$ be any two distinct points of
$X=p^{-1}(b_{0})$ . In suffices to consider the case where $d_{X}(x, y)\leq e$ . By the expansivity of
$\mathcal{F}$ there exists $\gamma\in P_{\mathcal{F}}(x)$ such that the lift $\overline{\gamma}\in P_{f}(y)$ of $\gamma$ satisfies $\overline{\gamma}(1)\not\in D_{\mathcal{F}}\perp(\gamma(1), e)$ .
Put $ T=\sup$ { $t_{0}|\overline{\gamma}(t)\in D_{F^{\perp}}(\gamma(t),$ $e)$ for a110 $\leq t\leq t_{0}$ }. Then0 $\leq T<1$ . Fix acompact
fundamental domain $F$ in $\tilde{B}$ for the action of $\Gamma$ such that $b(e)\in F$ and that the diameter of $F$

is not greater than the diameter of $B$ . We lift $\gamma$ to a curve $(\tilde{\gamma}, x)$ in $\tilde{B}\times X$ so that $\tilde{\gamma}(O)=b(e)$ .
The following is obvious from the compactness of $F$ .
LEMMA 9. 1. There exists a constant $\eta>0$ such that for any $g\in\Gamma,$ $x,$ $y\in X$ and

$b\in g(F)\iota f\tilde{B}\times\{y\}$ intersects $\partial D\perp((b, x),$ $e$), then $d_{\{b(g)\}\times X}((b(g), x),$ $(b(g), y))>\eta$ .

By this lemma if $\tilde{\gamma}(T)\in g(F)$ , then $d_{\{b(g)\}\times X}((b(g), x),$ $(b(g), y))>\eta$ . Since by
definition the action of $\Gamma$ on $\tilde{B}\times X$ is isometric, we have

$d_{\{b(e)\}\times X}((b(e), \Phi(g^{-1})(x)),$ $(b(e), \Phi(g^{-1})(y)))>\eta$ .
By the identification of $\{b_{e}\}\times X$ with $X$ this may be rewritten as

$d_{X}(\Phi(g)(x)),$ $\Phi(g)(y))>\eta$ .

This proves the expansivity of $\Phi$ with expansive constant $\eta$ .
Now we will prove the “only if” part. Assume that $\Phi$ is expansive with expansive con-

stant $e(<\kappa)$ . We will see that $\mathcal{F}_{\Phi}$ is expansive with the same expansive constant $e$ . Let $x$ and $y$

be any two distinct points of $M_{\Phi}$ such that $y\in D_{\mathcal{F}^{\perp}}(x, e)$ . Take an arbitrary path $\gamma\in P\mathcal{F}(x)$

such that 7 (1) $\in X=p^{-1}(b_{0})$ . If $\overline{\gamma}(t)\not\in D_{\mathcal{F}^{\perp}}(\gamma(t), e)$ for some $0\leq t\leq 1$ , where $\overline{\gamma}$ is the
lift of $\gamma$ to $P_{\mathcal{F}}(y)$ , then we are done. Otherwise, put $x^{\prime}=\gamma(1)\in X$ and $y^{\prime}=$ j7 (1) $\in X$ .
By the expansivity of $\Phi$ , there exists $ g\in\Gamma$ such that $d_{X}(\Phi(g)x^{\prime}, \Phi(g)y^{\prime})>e$ . Let $\tau_{g}$ be



322 TAKASHI INABA

a loop in $B$ based at $b_{0}$ representing $g$ and $\gamma_{g}\in P_{F}(x^{\prime})$ the curve such that $po\gamma_{g}=\tau_{g}$ .
Then $\gamma_{g}(1)=\Phi(g)x^{\prime}$ and $\overline{\gamma}_{g}(1)=\Phi(g)y^{\prime}$ where $\overline{\gamma}_{g}$ is the lift of $\gamma_{g}$ to $P_{\mathcal{F}}(y^{\prime})$ , thus it must
occur that $\overline{\gamma}_{g}(t)\not\in D_{\mathcal{F}^{\perp}}(\gamma_{g}(t), e)$ for some $0\leq t\leq 1$ . This means that the composite curve
$\gamma*\gamma_{g}\in P_{\mathcal{F}}(x)$ cannot be lifted to a curve in $P_{\mathcal{F}}(y)$ within the orthogonal distance $e$ , which
completes the proof of only if” part, and, hence, of Theorem $B(3)$ .

10. Open Problems.

PROBLEM 10.1 Does the semistability imply the PLTP?

This has been affirmatively solved for homeomorphisms and flows ([17, 14]) by using a
technique of local perturbation. But in the case of a foliation of leaf-dimension greater than
one, the answer is likely to be in the negative, because the nontriviality of the integrability
condition prevents us from making such a local modification.

PROBLEM 10.2. Consider an expansive foliation and denote by $g(r)$ the number of its
compact leaves of diameter not greater than $r$ . Is the exponential growth rate of $g(r)$ estimated
by the geometric entropy ([7]) from above?

For the corresponding results in dynamical systems, see [6], [2, Proposition 2.8] and [3,

Theorem 5].

PROBLEM 10.3. Define the PLTP for topological foliations.
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