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1. Introduction.

This note is the second part of the preceding paper [NT] which we refer as Part I in the
following. We recall that in Part I the finite maximal Galois coverings over a complex affine
plane A? with branch locus By :={(v,w) € A2|w? = v9) with q odd were studied in some
detail, and further, the existence of maximal Galois coverings over a complex projective plane
P? with branch locus E; Ul was discussed, where E is the projective closure of B, and /oo
is the infinite line. ‘

In this note, we study the finite maximal Galois coverings over A2 (resp. P?) with branch
locus B, (resp. B_q U loo) with even q, which remained untouched in Part I.

Our main results are: (i) the maximal Galois covering of A2 with branch locus By exists
and is isomorphic to A? if the corresponding maximal Galois group is finite (Theorem 4)
and (ii) a criterion for the existence of maximal Galois coverings over P2 with branch locus
E; U lso (Theorem 7).

We note that the finite maximal Galois coverings of P? thus obtained are all rational
so that they will hopefully be good examples of rational normal projective surfaces which
are finite maximal Galois coverings over P? with simple branch loci and also with explicitly
calculated Galois groups.

Our main results mentioned above are easy consequences of the explicit calculations of
the maximal Galois groups with some simple presentation. We thus spent many pages on
elementary combinatorial group-theoretic computation, which may be boring. The reason
for our doing this is twofold: (i) these explicit descriptions of the maximal Galois groups
are essentially used in our main results (ii) it will be convenient for the readers who are not
accustomed to combinatorial group.theory.

In order to calculate the order of finite groups with given presentation, we used Cay-
ley/Magma system, which performs the Todd-Coxeter process on computers.
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2. Maximal Galois coverings over A’ with branch locus By.

We recall that the maximal Galois group G(M, D) of the pair (M, D), where M is a
complex manifold and D = ZLI e;D; (e; > 0, D;: irreducible component) is an effective
divisor on M, is defined as follows:

G(M’ D) = nl(M_Supp(D)$ PO)/N(y]el’ tte 1}/ses>a

where 1 (M — Supp(D), Py) is the fundamental group of the complement of support of D
in M with respect to a base point Py, y; is the homotopy class of a closed path which starts
from Py, goes around D; once, and returns to Py, and N (y;', - - - , y5*) is the smallest normal
subgroup which contains {y;",--- , y5°}.

We note that G(M, D) is a Galois group which controls the branched coverings over M
with branch locus at most at D. See [NT, Section 1] or [Na, Chapter 1] for the details on the
theory of branched coverings.

Now we specialize to the situation where M = AZ2. As the branch locus D, we consider
B = {(v, w) € A? |w? = 19}, where q = 2r > O is a positive even integer. Decompose B,
as B; = B‘} U Bg, where B; = {(v, w) € AZ|w = v}, Bg = {(v,w) € A2|w = —v"}.
Thus B, has two nonsingular branches which contact at the origin r-times if » > 2. In this
section, we will first calculate the finite maximal Galois groups G (A2, e; B} +e; B2) explicitly.
In the following, we set G(ey, e2; q) := G (A2, elBt} + eng) for short.

PROPOSITION 1. G(ey, e2; q) has a following presentation:
. Gle1,e2;,9) = (a,b|a® =b°2 =1, (ab)” = (ba)").
PROOF. See [NT, Proposition 2.1]. O

PROPOSITION 2. Let e,e2 > 2, q =2r > 0 be integers. Then G(ey,e3;q) is a
finite group if and only if (e1, ez, q) = (m1, m2,2), (2,2, 2ny1), (2,n2,4), (2,3,6), (3, 3, 4),
(2,3,8),(2,4,6), (3,4,4), (2,3,10), (2, 5, 6), (3, 5, 4), up to permutation in (e, e2). Here
m;, n; > 2 are arbitrary integers.

PROOF. We show only if part first. Assume g > 4. We recall that the polyhedral
group P(x,y, z) is defined as P(x, y,z) := (c,d|c* = dY = (cd)? = 1) (x,y,z = 2).
Since P(x, y, z) is a homomorphic image of G(ei, e2; q), the only if part follows from the
well-known finiteness condition for P(x, y, z): P(x, y, z) is finite if and only if (x, y,z) =
(2,2, z) where z > 2, (2, 3, 3), (2, 3,4), (2, 3, 5) up to permutation.

The if part follows from calculating orders of these groups explicitly by the Todd-Coxeter
process. O

In the following proposition, we use the notations below.
NOTATION.
(1) Dap:= (x,y|x" = y?> =1, y"!xy = x~1): the dihedral group of order 2n.

(2) Qg:=(x,y|x? =y x* =1,y lxy = x~1): the quaternion group of order 8.
(3) SL(2, Z,) := the special linear group of degree 2 with coefficients in Z,, = Z/nZ.
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(4) Given two groups H, N.with a homomorphism « : H — Aut(N), we denote by
H><N the semi-direct product of H with N. The product is defined as (h1, n1)(h2, n2) =
o

(h1ha, n"?ny), where h; € H, n; € N and n? = a(hy)(ny).

PROPOSITION 3. Suppose that G(e1, e2; q) is a finite group. Then we have the fol-
lowing isomorphisms. The description of the isomorphisms ¢; and the actions aj, By is given
in the proof.

(0)
ey
(2)

3)
)
()
(6)
(N
©))
)
(10)

@O :
@1 -
:GR2,ny4) = Z2132<(Zn2 X ZLp,).

:GQR2,3;6) = Z21§<(Z3><Q8).
3 a3 )
:G(3,3;4) = (Zs x Z3)p><Qs.
a4

©2
@3
¥4

s :
:G2,4;,6) = Z2%<(Z4|><SL(2, 7).
6 @6
:G@3,4;4) = Z1,0<SL(2, Z3).
a7
: G(2,3; 10) = Zg><SL(2, Zs).
ag

Y6
©7

- P8
@9 :

PROOF.

where (1, 0) means (1 modm,0modm3) € Zy,, X Zy,,. The isomorphism ¢, is given by

Gmi,ma;2) =Ly, X Liy,.

G(2,2;2n1) = Dy, .

G(2,3;8) = Z><(Z3><SL(2, Z3)).
Bs as

G(2,5;6) = Zi1o><SL(12, Zs).
ag
10 : GB3,5;4) = Z5<SL(2, Zs).
aio

In this proof, we write G := G (e, e3; q) for short.
(0), (1) These follow immediately from the presentation given in Proposition 1. The
isomorphism ¢ is given by

po(a) = (1,0),

pi(a) =y,

o) = (0,1),

p1(b) =y Ix.

(2) We first form a semi-direct product Zy><(Z,, x Zp,), where the action a; : Z; —
5]
Aut(Z,, x Z,,) is defined by

0 (1)((1,0) := (1, =1),

¢2(a) := (1, (0,0)),

az(1)((0, 1)) := (0, -1).
Define amap ¢ : G — Zo><(Zp, X Zy,) by
o2

@2(b) := (0, (1,0)).

A direct calculation shows that ord(1, (0,0)) = 2, ord(0, (1,0)) =
(0, (1, 0))? so that the map ¢» is a well-defined group homomorphism. Since a set {(1, (0, 0)),
(0. 0. 1)), 0. (1, =1)} = {p2(a), ¢2(b), ¢2(a™"ba)) generates Zo><(Zn, X Zny), ¢ is sur-

jective.

n, and (1, (0, 0))2

In order to show ¢ is an isomorphism, it is enough to show ord(G) = 2n§.
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We calculate ord(G) after [J, Chapter 9]. Consider the following exact sequence

1—>G’—>G—f>G“b—>l,

where G’ is the commutator subgroup of G, G?? the abelianization of G and f the natural
surjection. Since Gab =~ Z) x Z,,, we may identify f with f : G — Zy xZ,,, f(a) = (1,0),
f®)=(@©1).
We take a Schreier transversal U of G’ in G as follows:
U:={1,bb% ..., 0" 3 b2 p™~1 g, ab,ab?, --- ,ab™73 ab™72, ab™7 1},

Then the B R-table and B$-table are given as follows:

BR-TABLE
a b a? b2 ababa—1p=1a=1p-1
1 1 1 a? b2 ababa= b= 1a=1p~1
b bab~1a~1 1 ba2p~! b2 bababa=1b~1a~1p—2
b2 b2ab=2q! 1 b2a2b—2 ™2 b2ababa=1b=1a=1p—3
bn2—3 bn2—3ab—n2+3a—l 1 bn2—3a2b—n2+3 b"2 bn2—3ababa—1b—la—lb—n2+2
bn2—2 bn2—2ab—n2+2a—l 1 bn2—2a2b—n2+2 p"2 bn2—2ababa—lb—la—1b—-n2+l
bn2—l bnz—lab—n2+la—] 2 bn2—1a2b—n2+l pn2 b"Z_lababaflb'"la_lb_'Q
a a? 1 a? ab"2q™! a2bababa='b~1a"1p~1g~!
ab abab™! 1 aba?b~1a™1 ab™2a~1 abababa~'b~1a~1p=24~1
ab? abZab—2 1 ab2a2b=25"! ab"24~1 ablababa=1b~1a=1p=35~1
ab™23 ab™"23gp—m2+3 1 a2 3a2p~ 2351 G241 gp"2-3gbaba— b~ la—1p—"2125~1
ab™2—2 ab"2~2gpn2+2 1 ab"2=2g2p~"2+25=1  gpn2g=1  ap"22gpaba~ b~ la~1p"2+1g~]
ab™2~1 ab™2"1gp—n2+l ab™a~1 | ap"2—1g2p—m2+1g—1  gpn2,4-1 ab"2"lababa=b~1a=1p="24~1
BS-TABLE
—1 -1
— —_ Cn2 C2n2 c"2+1cn2+2cl
-1 —1
1 - €1Cny+1 C2ny €1Cny+2€,, 43
2 - €2Cny+2 C2ny 620n2+3‘—';2+4c3_1
-1 -1
Cny—3 - Cny—3€2ny-3 C2ny Cny—3C2ny—2€y, —lcnz -2
—f 1 —
Cny—2 - Cny—~2€2npy -2 €2ny €ny—2€2ny—12nyny czn2+]cn2_1
Cny—1 C2ny €ny—1€2ny—1 C2ny Cn2—102n2+lcn20,,_2+1¢‘2_,,12
Cny — Cny C2nq+1 cy cz_1 .. +1
—f -1
Cnpy+1 - Cny+1€1 C2ny+1 Cny+1€2¢3 Cp 412
—1
Cny+2 - Cny+2€2 C2ny+1 Cny+2€3C, ",,2+3
-1 -1
C2ny-3 - C2ny—3Cny—3  C2ny+1 02,,2_3(:"2_26"2_102"2_2
-1 -1
C2ny—2 - C2ny—2€ny—-2  C2ny+1 02n2—26n2—lc2n2+l‘:2n262"2_[
11,21
Cng—1  C2ny+1 | ©2np~1Cny—1  C2ny+1 C2ny—1€2n5 ¢ lcnz “2ny+1
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Therefore we have
G’ = (c;(1 < i < ny) |6n,relations in the B S-table)
= (cr]c]? =1)
=y
Hence ord(G) = ord(G")ord(G?) = 2n3 as desired.
(3) Consider a group Z21>ﬂ3<(Z3 lza< Qsg), where the actions B3, o3 are defined as follows:
The action a3 : Z3z — Aut(Qg) is defined by }
a3(D(x) := yx*,  a3(D() 1= yx
and the action 83 : Z3 — Aut(Z3|>a3< Qg) is defined by

Bs(D((1, 1) :=(1,y), BD0,x) = (0,x%), B0, y) = (0, yx?).
Now define amap ¢3 : G — Z2>ﬂ<(Z3l><Qg) by
3 a3

@3(a) :=(1,(0,€)), ¢3(b):=(0,(1,¢)),

where e € Qg is the identity element. We note that, since ord((1, (0, e))) = 2, ord((0, (1, e)))
=3, {(1, (0, ) - (0, (1, &)} = {0, (1,e))- (1, (O, en)? by a direct calculation, ¢3 is a well-
defined group homomorphism.
The map ¢3 is surjective since a set {(1, (0, e)), (0, (1, e)), (0, (0, y)), (0, (0, yx))} =
{p3(a), p3(b), p3(b~'a"'ba), p3(b~2a~'bab)} generates Z2%<(Z353< 0s).
3

On the other hand, we have ord(G) = 48 by the Todd-Coxeter process performed with
Cayly/Magma system. Since ord(Z2|;<(Z31>< Q03g)) = 48, we conclude 3 is an isomorphism.
3 as

Since the proofs of (4)—(10) below are similar to that of (3), we only indicate explicitly
the isomorphism ¢; and the actions «j, Bx, omitting the details.
(4) The isomorphism ¢4 : G = (Z3 x Z3)><Qg by
ag
pa(a) :=((1,0),e), @a(b) :=((0,1),xy).
The action a4 : Z3 x Z3 — Aut(Qsg) is given by
a3((1,0)(x) :=yx, a3(0,1)(x):=y, o3((1,00)¥):=x, a3(0, 1))(y):=yx.

1
, Y i= 2 g € SL(2, Z3).

1
5) SetX:=
2 0 1

The isomorphism ¢4 : G = Z2[>ﬂ<(Z3 ><SL(2, Z3)) is given by
5 as

ps(a) := (1,0, 1)), os5(b) :=(0,(1, 1)),

where I, € SL(2, Z3) is the identity matrix.
The action a5 : Z3 — Aut(SL(2, Z3)) is given by

as(D(X) =Y, as()(Y):= XY~ !,
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The action Bs : Z3 — Aut(Z3><SL(2, Z3)) is given by
as

Bs()((1, ) == (1,Y), Bs(((0, X)) :=(0, X", Bs(1)((0,Y)):=(0, ¥ "),

1], _[20

(6) SetX := [2 ] Y: € SL(2, Z5).

2 0" T |1 2
"The isomorphism ¢¢ : G = Z2[>ﬂ<(Z4l><SL(2, Z3)) is given by
6 ag

pe(a) :=(1,(0, 1)), ¢sb):=(0,(1, ).
The action ag : Z4 — Aut(SL(2, Z3)) is given by
as()(X) :=Y~!, as(1)(¥Y):=YX.
The action B¢ : Z3 — Aut(Z3 %6<SL(2, Z3)) is given by

Bs(D((1, B)) := (1Y), Bs(1)((0, X)) := (0, X™"), Bs(1)((0, 1)) :=(0, Y1),

2 0 01
7) SetX := , Y = € SL(2, Z3).
(7) Se 1 2 2 0 (2,Z3)

The isomorphism @7 : G = Z1,D<SL(2, Z3) is given by
o7

1 1 '
@1(a) := (4, Y—‘XY*‘)=<4,[ 0 1]) @7(b) := (9, Ip) .

The action a7 : Z4 — Aut(SL(2, Z3)) is given by
ar(1)(X) = (XY)™!, a()(¥) =Y.

4 2 4 0
8) SetX = ,Y = e SL(2, Z5).
) Se [0 4 > 4 2,Zs)

The isomorphism ¢g : G = Zg><SL(2, Zs) is given by
ag

e8(@):=(3, ), ¢s(b) =@, Y X2r % = (4’ [ ‘11 g ]> .

The action ag : Zg — Aut(SL(2, Zs)) is given by
ag(DN(X) =X, ag(H(¥)=Y"".

2 4

4 0
9) SetX = , Y = e SL(2,Zs).
9 |:0 4 3 4 2,Zs)

The isomorphism ¢g : G = Z;9><SL(2, Zs) is given by
o9

po(a) := (5, 1), @io®) = (6, Y*X~*y ™4 = <6, I: z 3 :|> ;

The action a9 : Z19 — Aut(SL(2, Zs)) is given by
a(DX) =X, @) =v"!.
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4 0 1 3
10) SetX = , Y = € SL(2, Zs).
(10) Se 5 4 30 (2,Zs)

The isomorphism @0 : G = Z15><SL(2, Zs) is given by
a10

v10(a) = (10, Y2XY~'x?) = (10[ z ‘11 D . @10b) = (6, D).

The action a9 : Z19 — Aut(SL(2, Zs)) is given by

_ 1y 1 2  2u—lvy _ 4 3
ap(H)X) = XY X—-[3 2], ap(1)(Y) = XY X-—|:4 2]-

O

Now we are ready for deducing a geometric result from Proposition 3.

Let (M, D) be a pair of a complex manifold and an effective divisor on M. We recall
that a Galois covering over M which branches at D is called the maximal Galois covering of
(M, D) if it is universal among the branched coverings over M with branch locus at most at
D (cf. [NT, Definition 1.2]). Our first main result is the following:

THEOREM 4. For (e, e2, q) in Proposition 2, the maximal Galois covering of (A2,
el Bc} + eng) exists and is all isomorphic to AZ.

PROOF. The existence of the maximal Galois covering X follows from Proposition 3
and [NT, Corollary 1.5] by calculating explicitly the orders of a and b in G (e, e2; q).

We show X = AZ? in the case of (e1,e2,9) = (3,5,4). The other cases are checked
similarly. Let H C SL(2, C) be a binary icosahedral group, which is isomorphic to SL(2, Zs),
and f : A2 > A2/H = {(x,y,7) € C|x%? + y> 4+ z°> = 0} the quotient map. By [NT,
Proposition 2.3], we have a Zs-cyclic covering g : A2/H = {(uy, uz, v) € C|u} +2v% -
u3 = 0} — A2, (u1, u2, v) = (v, uj + v?). Then we get a composite covering go f : A? >
A? which branches at 3B + 5B7. |

Let 7 : X — A2 be the maximal Galois covering of (AZ, 3B(} + 533). Then, by
maximality, go f factors through 7. Since the covering degrees of go f and 7 are equal, we
conclude that go f = 7. O

REMARK. (1) InPart1 [NT, Remark 2.7], we showed that also for odd g the maximal
Galois covering of (A2, eB,) exists and is all isomorphic to A2 if the corresponding maximal
Galois group is finite.

(2) The finite maximal Galois groups in Proposition 3, when considered as subgroups
of GL(2, C), are all complex reflection groups (cf. [ST]). Indeed, by Theorem 4, we have
A2/G = A? where G := G(ey, e2; q). Since G is a finite group, we may assume G C
GL(2, C) by a polynomial change of coordinates (cf. [K]). Hence G is a complex reflection
group by [ST, 5.1].
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3. Maximal Galois coverings over P? with branch locus B_q Uleo.

In this section, we give a criterion for the existence of the maximal Galois coverings
over P2 with branch locus Bl U B2 Ulo, where Bj is the projective closure of B(‘; and /o, the
infinite line. We recall the following proposition in Part I.

PROPOSITION 5. Let q := 2r > 0 be an even positive integer. SetB_q = {(x0 : x1 :
x3) € P? ng = xlzxq—Z} = B_‘}U_B?, where B_‘} = {(x0 : x1 : x2) € P? | xq = xlxg_l},
B2 = {(x0: x1 : x2) € P2 |x} = —x1x57"} and loo == {(x0 : x1 : x2) € P?|x3 = O} the
infinite line. Then the presentation of the maximal Galois group G(P?, e; B + e2 B} + mio)
is given as follows:

G(P?, e1B] + e2B2 +mlo) = (a,b,c|a®t = b =c™ = 1, (ab)" = (ba)" =c}).

PROOF. See [NT, Section 3]. O

Unfortunately, we do not know precisely when G (P2, e1§qT + ezB—g + mlo) is finite. We
therefore restrict ourselves to the easiest cases where this group is clearly finite, namely, the
cases where G (P2, e1—1¥+ ezB_3+ mloo) is a quotient of the finite group G (A2, ) B} +e2B2)
in Proposition 3.

In the following, we also assume g > 4 so that we exclude the case (0) in Propo-
sition 3, since we are mainly interested in non-abelian maximal Galois groups. We set
Glei, e2, m; q] :== G(P?, elB_‘}+ezB_g+mloo) for short. '

PROPOSITION 6. Suppose that G(ey, e2; q) (@ = 4) is a finite group (so that (ey, €2, q)
is one of the triples in Proposition 3 except the case (0)). Then the explicit structure of
Gley, ez, m; q] is given as follows:

Dy, if m : odd

G(2,2;2n1) if m:even

2. G[2,n2,m;4] = Zy><(Z; x Zp,) (I := GCD(m, ny))
[2 5]

1. G[2,2,m;2n] = [

. [ A4 ifm=1,3 (mod4)
3. G[2,3,m;6] = | Zzl;<(Z353<l(Zz xZy)) ifm=2 (mod 4)
31

| G2,3;6) ifm=0  (mod4)

[ A4 ifm=1,5 (mod6)

_ | sL@.zs) if m=2,4 (mod 6)

4. GB.3.mdal=1 7. Zy)o<(ZoxZp) ifm=3  (mod6)
41

| G3,3;4) ifm=0  (mod6)



G[2,3,m; 8] = 1

G[2,4,m; 6] = |

G[3,4,m; 4] = |

G(2,3,m; 10] =

G[2,5,m; 6] = |
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Sa
Z-,><SL(2,7Z3)

os]

Z,0<PSL(2,Zs)

ag)
Z3><PSL(2, Z5)
(73
Z,><SL(2, Z5)
g3

Ze x PSL(2, Zs)

| G@,3;10)
Al

Z,0<PSL(2, Zs)

9]

Z,><SL(2, Zs)
@92
Zs><PSL(2, Zs)

@93

Z,0 x PSL(2,Zs)

[ G(2,5;6)

ifm=1,5 (mod®6)
if m=2,4 (mod 6)

Lr><(Zad><Ay) ifm=3 (mod 6)
Bs2 as2
G(2,3;8) ifm=0 (mod 6)
S4 ifm=1,3,5,7 (mod 8)
(Zy x Zy)><Ay if m=2,6 (mod 8)
73]
Zoo<(Za<Ay) ifm=4 (mod 8)
Be2 62
| G(2,4;6) ifm=0 (mod 8)
[ S4 if m=1,5,7,11 (mod 12)
Zi><Ay ifm=2,10 (mod 12)
a7l
Ze>< Ay ifm=3,9 (mod 12)
a2
Zis><SL(2,Z3) if m=4,8 (mod 12)
73
ZipD<Ag ifm=6 (mod 12)
74
G(@3,4;4) ifm=0 (mod 12)
[ As ifm=1,5,7,11 (mod 12)

if m=2,10 (mod 12)
ifm=3,9 (mod 12)
ifm=4,8 (mod 12)
ifm=6 (mod 12)
ifm=0 (mod 12)

303

ifm=1,3,7,9,11, 13,17, 19 (mod 20)

if m=2,6,14, 18
if m=4,8,12,16

if m=5,15
if m =10
ifm=0

(mod 20)
(mod 20)
(mod 20)

(mod 20)
(mod 20)
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[ As ifm=1,7,11,13,17,19,23,29 (mod 30)
SL(2, Zs) if m=2,4,8,14,16,22,26,28 (mod 30)
Z3;><PSL(2,Zs) if m=3,9,21,27 (mod 30)

10,1
Zs><PSL(2,Zs) if m=5,25 (mod 30)

10. G[3,5,m;41={ 02 ,

Z3><SL(2,Zs) if m=6,12,18,24 (mod 30)

10,3
Zs><SL(2,Zs) if m = 10,20 (mod 30)

10,4
Zis x PSL(2,Zs) if m =15 (mod 30)
| G@3,54) fm=0 (mod 30)

PROOF. Since the proof of this proposition is similar to that of Proposition 3, we omit
the details of the proof. However, we give the explicit descriptions of isomorphisms and
actions so that we can calculate explicitly the orders of a, b, c in G[e;, e3, m; q] (see Theorem
7 below). In the following, we write G := Gle;, e3, m; q] for short.

(1) () Case where m is odd. The isomorphism G = D»,, is given by a — y,
b~ y_lx, cHe.

(ii) Case where m is even. The isomorphism G = Dy, is givenbya — y, b — y~ix,
¢ x",

(2) The isomorphism G = Z2[5<(Z1 x Zn,) is given by a — (1,(0,0)), b
O, (0, 1)), c— (0, (1, 0)). The action 012211 12y - Aut(Z;xZ,,) is given by a1 (1)((1, 0)) =
(1,0), a21(1)((0, 1)) = (1, —1).

(3) (i) Case where m = 1, 3 (mod4). The isomorphism G = A4 is given by a —
(12)(34), b — (234), c — (1).

(ii) Case where m = 2 (mod4). The isomorphism G = Z2%<(Z35<(Z2 x Z»))

31
is given by a — (1, (0,(0,0))), b — (0,(1,(0,0))), ¢ —» (1, (0, 211 1))). The action
a3) : Zz — Aut(Zy x Zy) is given by a31(1)((1,0)) = (0, 1), 31 (1)((0,1)) = (1, 1)
and the action 83 : Zy, — Aut(Z3|53<l(Z2 x Z3)) is given by B31(1)((1, (0, 0))) = (1, (0, 1)),
B31(1)((0, (1, 0))) = (0, (1, 0)), B31(1)((O, (0, 1))) = (O, (O, 1)).

(iii) Case where m = 0 (mod 4). The isomorphism G = Z2|>’33<(Z3li3<Q8) is given by
@3 in Proposition 3 since ord((ab)?) = 4in G(2, 3; 6).

(4) (1) Case where m = 1,5 (mod6). The isomorphism G = A4 is given by a —
(123), b — (234),c — (1).

(ii)) Case where m = 2,4 (mod6). The isomorphism G = SL(2, Z3) is given by

1 1 1
a—> ,b—> 0,co—>212.
0 1 1 1

(iii) Case where m = 3 (mod 6). The isomorphism G = (Z3 xZ3)D><(Zy X Z,) is given
(23]
by a — ((1,0), (0,0)), b — ((0, 1), (1, 1)), ¢ — ((1, 1), (0,0)). The action a4 is given
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by a41((1,0))((1,0)) = (1, 1), a41((0, 1))((1,0)) = (0, 1), aa1((1,0))((0, 1)) = (1,0),
a41((0, 1))((0, 1)) = (1, 1). :
(iv) Case where m = 0 (mod 6). The isomorphism G = (Z3 x Z3)>< (g is given by
g

@4 in Proposition 3 since ord((ab)?) = 6in G(3, 3; 4).
(5) (i) Case where m = 1,5 (mod6). The isomorphism G = S; is given by a —
(34),b — (123),c— (1).

1 1 1
(i1) Case where m = 2, 4 (mod 6). Set X = o 1/ Y = 1 . The isomorphism
G = Z,><SL(2,Z3) is given by a — (1, 1), b — (0,Y), c — (0, 21). The action ws; is

as]

given by a5 (1)(X) =Y, as;(1)(Y) = X.
(iii) Case where m = 3 (mod6). Set s = (234), t = (142) € S4. The isomorphism
G = Z2l;<(Z3l><A4) is given by a — (1, (0, (1))), b — (0, (1, (1))), c — (O, (2, t25)) =
52 as2

(0, (2, (123))). The action asy : Zz — Aut(A4) is given by as52(1)(s) = 2 = (124),
as2(1)(¢t) = st? = (134). The action Bs; : Zo — Aut(Z3><Ay) is given by Bs2(1)(1, (1)) =
52

(1, 1), Bs2(1)((0, 5)) = (0, s2) = (0, (243)), Bs2(1)((0, 1)) = (0, £2) = (0, (124)).
(iv) Case where m = 0 (mod6). The isomorphism G = Z2[>ﬂ<(Z3|><SL(2, Z3)) is
5 s

given by ¢s in Proposition 3 since ord((ab)*) = 6in G(2, 3; 8). ,
(6) (i) Case where m = 1,3,5,7 (mod8). The isomorphism G = S is given by
a— (34),b— (123),c — (1).
(ii) Case where m = 2,6 (mod8). Sets = (234), t = (12)(34) € S4. The iso-
morphism G = (Zj X Z2)5<A4 is given by a — ((1,0), (1)), b — ((O, 1), s%ts?) =
61

(0, 1), (143)), ¢ +— ((1,1),(1)). The action ag; : Zo x Zr — Aut(A4) is given by
a61((1,00)(s) = s2 = (243), a61((0, D)(s) = s2 = (243), 61 ((1, 0N (1) = s’ts =
(14)(23), w61 ((0, 1) () = s2ts = (14)(23).

(iii) Case where m = 4 (mod8). The isomorphism G = Z2|§<(Z4[><A4) is given
62 @62

by a — (1, (0, (1)), b — (O, (1, (1)), ¢ — (1,1, (st)?)) = (1, (1, (132))). The action

a2 : Zs — Aut(Ag) is given by aga(1)(s) = sts = (134), ag2(1)(2) = s*ts = (14)(23) and

the action Bgz : Za — Aut(Zs><Ag4) is given by Bs2(1)(1, (1)) = (1, s%t52) = (1, (143)),
62

Bs2(1)((0, 5)) = (0, s?) = (0, (243)), Be2(1((0, 1)) = (0, 1).
(iv) Case where m = 0 (mod 8). The isomorphism G = Z2%<(Z4><SL(2, Z3)) is
6 @6

given by ¢¢ in Proposition 3 since ord((ab)?®) = 8in G(2, 4; 6).

(7) (i) Case wherem = 1,5,7,11 (mod 12). The isomorphism G = S4 is given by
at— (123),b — (4321),c > (1). '

(ii) Case where m = 2, 10 (mod 12). Sets = (234),t = (142) € S4. The isomorphism
G = Z4><Ayis givenby a — (0,5), b — (1, (1)), c — (2, st) = (2, (12)(34)). The action

a7y

a7 : Zs — Aut(Ay) is given by a71(1)(s) = t2s = (123), a71 (1)(t) = s.
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(iii) Case where m = 3,9 (mod 12). Set s = (234), t = (12)(34) € S4. The iso-
morphism G = Zg><Ay is given by a — (4, st) = (4, (132)), b — (3, tst) = (3, (143)),

a7
¢ > (4,(1)). The action a7 : Zg — Aut(A4) is given by a72(1)(s) = s2 = (243),
a2 (D) (@) = s2ts = (14)(23).

1 1 1 0
(iv) Case where m = 4,8 (mod 12). Sex X = |:0 1], Y = |:1 1:| € SL(2, Z,).

The isomorphism G = Z4><SL(2, Z3) is givenbya +— (0, X), b — (1, I1),c — (2, (XY)3
a73

I

2
(2, [; 2]) The action «73 : Z4 — Aut(SL(2, Z3)) is given by a73(1)(X) = Xyx-!

2 2
=1 0,0173(1)(Y)=X-

(v) Case where m = 6 (mod 12). Set s = (234), t = (12)(34) € S4. The isomorphism
G = Zjpb<Ayis given by a — (4,ts) = (4,(124)), b = (9,st) = (9, (132)), ¢
a4

(10, (1)). The action a74 : Z12 — Aut(Ay) is given by a74(1)(s) = 52 = (243), a74(1)(t) =
t.
(vi) Case where m = 0 (mod 12). The isomorphism G = Z,<SL(2, Z3) is given by
L%

@7 in Proposition 3 since ord((ab)?) = 12 in G(3, 4; 4).
(8) (1) Case wherem = 1,5,7, 11 (mod 12). The isomorphism G = Ajs is given by
ar— (12)(45), b — (134),c — (1).

0 1 0 1
(ii) Case where m = 2, 10 (mod 12). Set X = 4 1) Y = 4 4 € PSL(2, Zs).
The isomorphism G = Z;><PSL(2,Zs5) is given by a — (1,L), b —» (0,X), ¢ —
asgy
3 0 ; ..
Q2,YXYXY) = (2, o 2l The action ag; : Z; — Aut(PSL(2, Zs)) is given by
agi(D(X) =Y, agi1 (DY) = X.
(iii) Case where m = 3,9 (mod 12). Set X = 01 , Y = Ll ,Z = L2
4 0 3 4 4 4

PSL(2, Zs). The isomorphism G = Z3><PSL(2, Zs) is given by a — (0, X), b — (1, ),

ag2
1
c—> (1, ZXYZXYZXYZ) = | 1, i ol The action «gy : Z3 — Aut(PSL(2, Zs)) is
given by ag(1)(X) = Z, ag2(1)(Y) = X, ag2(1)(Z) =Y.

1 4
(iv) Case wherem = 4, 8 (mod 12). Set X = |:2 4}, Y = I:(l) 4:| € SL(2,Zs). The

isomorphism G = Z,><SL(2, Zs) is given by a — (1, 1), b +— (0, X),c — (1, (XY)X)
g3 .
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2 0
=11, o 3l The action g3 : Zo — Aut(SL(2,Zs)) is given by ag3(1)(X) =Y,
ag3(1)(Y) = X.

0

(v) Case when m = 6 (mod 12). Set X = |} )

:I, Y = [? i € PSL(2,Zs).

2 0
The isomorphism G = Z¢ x PSL(2, Zs) is given by a — (3, XY3X3Y) = (3’ [3 3:|>’

4 3
b (4,Y3X%) = |4, 3 0 ,c— (5, D).

(vi) Case where m = 0 (mod 12). The isomorphism G = Ze¢><SL(2, Z5) is given by
ag

@sg is Proposition 3 since ord((ab)’) = 12in G(2, 3; 10).
(9) (i) Casewherem =1,3,5,7,9, 11, 13, 17, 19 (mod 20). The isomorphism G =
As is given by a > (12)(45), b — (13542), c — (1).
1 0 0 4
(ii) Case where m = 2,6, 14,18 (mod20). Set X = L1l Y = 1 2

PSL(2, Zs). The isomorphism G = Z,><PSL(2, Zs) is given by a — (1, I2), b — (0, X),

9]

4 4 .
c— (1, XYX) = |1, 5 1' ) The action ag; : Zo — Aut(PSL(2, Zs)) is given by

ag1(D(X) =Y, ag1 ()(T) = X. :
1 0 1 4

(iii) Case where m = 4, 8,12,16 (mod20). Set X = L Y = o 1
SL(2, Zs). The isomorphism G = Z;><SL(2, Zs) is given by a — (1, I2), b — (0, X),
2247
c — (1,y(XYX)3) = {1, g ! . The action agy : Z, — Aut(SL(2,Zs)) is given by.
ag2()(X) =Y, aga(1)(Y) = X.
(iv) Case where 5, 15 (mod 20). Set X 1 01 Z L4 €
rem =D, . = s = , =
3 4 4 0 2 4

PSL(2, Zs). This isomorphism G = Zs><PSL(2, Zs) is given by a — (0, X), b — (1, D),

93

c 2,(XY2)* = (1, l:; ?:l) The action ag3 : Zs — Aut(PSL(2, Zs)) is given by

93(1)(X) = XYZY X = |:(3) ;:I agz(D(Y) = X, ag3(1)(Z) =Y.
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1

0

1 0
(v) Case where m = 10 (mod20). Set X = |:1 ljl’ Y = [

1:' € PSL(2,Zs).

0
The isomorphism G = Zo x PSL(2, Zs) is given by a — (5, Y2XYX?) = (5’ [3 2])’

4
b (6, X" lYy"1x)= {6, (1) ) ,c (7, Ip).

(vi) Case where m = 0 (mod 20). The isomorphism G = Zo><SL(2, Zs) is given by
g

@9 in Theorem 9 since ord((ab)?) = 20in G(2, 5; 6).
(10) (i) Case where m = 1,7,11, 13,17, 19, 23,29 (mod30). The isomorphism
G = Asis givenby a — (134), b > (12)(45), c — (1).

0 1
(i@) Case where m = 2,4,8, 14, 16, 22,26, 28 (mod 30). Set X = [4 4], Y =

1 0
I:l 1:| € SL(2,Zs). The isomorphism G = SL(2,Zs) is givenbya — X, b — Y,

c— 46,
1 0 0 4
(iii) Case where m = 3,9,21,27 (mod30). Set X = L1l Y = 1 2 €
PSL(2, Zs). The isomorphism G = Z; ><PSL(2, Zs) is givenby a — (1, ), b — (10, X),
10,1
c— (1, (XY)?). The action a10,1 : L3 — Aut(PSL(2, Zs)) is given by 0,1 (1)(X) =
1 4
xXyx-!= > a101(D(Y) = X.
0 1
. 1 1 1 1
(iv) Case where m = 5,25 (mod 30). Set X = 5 3l Y = 4 0 € PSL(2, Zs).
The isomorphism G =Zs><PSL(2,Zs) is given by a+— (0,X), b (1, D),
10,2
2 4

cH— 3, (X)YH = (3, |: ]) The action aj9,2 : Zs — Aut(PSL(2, Zs)) is given by

1 0
_1 31
a102(DX) =XYX™' = 3 3 »a102(D)(Y) = X.
1 0 |1 4
1 " Jo 1
SL(2, Zs). The isomorphism G = Z3><SL(2, Zs) is given by a — (1, ), b — (0, X),

@10,3

(v) Case where m = 6, 12, 18,24 (mod30). Set X =

0

35y —
c — (1, (XY)) = (1, [4

1
1]) The action 193 : Z3 — Aut(SL(2, Zs)) is given by

2 4
a103()(X) = XYx~! = [1 ol a103(D(Y) = X.
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. 0 1 0 4
(vi) Case where m = 10, 20 (mod 30). Set X = |:4 4l Y = 1 4 e SL(2,7Zs).

The isomorphism G = Zst><SL(2,Zs) is given by a+> (0,X), b (1, D),

QIO.4
cr (3, (XY)?) = (3, [? !

1:|> The action @194 : Zs — Aut(SL(2, Zs)) is given by

3 4
@104(1(X) = XYX~! = 3 1 » 210,4(1)(Y) = X.

11 0
The isomorphism G = Z;s x PSL(2, Zs) is given by a = (10, Y1 X~1y2X2y~2Xx~2) =

4 2 ol 0 4
(10,[2 Ojl),b!—)(6,X Y XY)—<6,|:1 3:|),cr—>(13,12).

(viii) Case where m = 0 (mod 30). The isomorphism G = Z;5><SL(2, Zs) is given
@10
by ¢10 in Proposition 3 since ord((ab)?) = 30in G(@3, 5; 4). O

1 1
(viil) Case where m = 15 (mod 30). Set X = [ 0:|, Y = [ i € PSL(2, Zs).

From Proposition 6, we get the following geometric result, which is our second main
result. ‘

THEOREM 7. (1) Letthetriple (e1, e2, q) be as in Proposition 6. Then the necessary
and sufficient condition for the existence of the maximal Galois covering of P2, elB_,}+e2—BTg+
mly) is as follows:

1. Inthe case (e1,e3,q9) = (2,2,2n1),m =1,2.
In the case (e1, ez, q) = (2, n2,4), m = any positive divisor of n3.
In the case (e1,e2,q9) = (2,3,6),m = 1,2,4.
In the case (e1,e2,q) = (3,3,4),m=1,2,3,6.
In the case (e1,e2,q) = (2,3,8),m=1,2,3,6.
In the case (e1,e2,q9) = (2,4,6),m=1,2,4,8.
In the case (e1,e2,q) = (3,4,4),m =1,2,3,4,6, 12.
In the case (ey,e2,q) = (2,3,10),m =1,2,3,4,6,12.
In the case (e1, e2,q9) = (2,5,6),m =1,2,4,5, 10, 20.

10. Inthe case (e1,e2,q) = (3,5,4),m=1,2,3,5,6, 10, 15, 30.

(2) The maximal Galois coverings in (1) are all normal projective rational surfaces.

(3) Assume m is the maximal value in each of the above 10 cases (for instance, m = 30
in the case 10). Then the corresponding maximal Galois covering contains A? as an open

WXk WD

dense subset.

PROOF. (1) We check the case 1, the other cases being treated similarly. Suppose m
is odd. Then we have ord(a) = ord(b) = 2, ord(c) = 1 by Proposition 6. Hence the maximal
Galois covering exists if and only if m = 1 by [NT, Corollary 1.5].
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Suppose m is even. Then we have ord(a) = ord(b) = 2, ord(c) = 2 and the maximal
Galois covering exists if and only if m = 2 similarly.

(2) From the general construction of maximal Galois coverings (cf. [Na, Theorem
1.3.8]), our maximal Galois covering X is a projectivization of a quotient of AZ by a fi-
nite group so that it is a unirational surface. Since X is rational (cf. [B, Corollaire V.5]), and
normal by definition, the assertion (2) is done.

(3) If m is maximal, then X is a projectiviazation of the quotient of A2 by the trivial
group. O
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