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Abstract. Let X be a Lévy process with negative drift starting from x > 0, and let T and 75 be the first
passage times to (—oo, 0] and (s, oo), respectively. Under appropriate exponential moment conditions of X, we
show that, for every A € F;, the conditional laws Px(X € A|t > s) and Px(X € A|t > T15) converge to different
distributions as s — oo. Both of them can be regarded as the laws of X conditioned to stay positive. We characterize
these limit laws in terms of A-transforms, by the renewal functions, of some Lévy processes killed at the entrance
time into (—oo, 0].

1. Introduction.

Let X = (X;,t > 0) be a Lévy process with negative drift starting from x > 0, and let
T be the first passage time to (—oo, 0]. One of our main aims in this paper is to investigate
properties of the process when a conditioning event tends to the event (t = 00), which has
probability zero. We make conditioning of X on (r = oo) by approximating this event in
two ways. One natural definition for the conditional law of X given (T = 00) is

lim P,(Xe€ At > s), ¢))
S—>00
where A € F;. Another natural way is to consider
Iim PA(Xe€eA|Tt > T15), ()
S—>00

where 7, is the first passage time to (s, 00). We are interested in studying the limit distribu-
tions in these approximations.

To clarify our purpose, we give typical examples obtained by Martinez-San Martin [16].
Suppose X; = B; —at where B is a one-dimensional Brownian motion and ¢ > 0. According
to [16], the first approximation yields

lim Pi(X €At >s) = 0la), 3)

where Q}c is the law of the 3-dimensional Bessel process, whose transition function is

q'(t, x,dy) = 2 P.(B; e dy, e8> 1),
X
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with 8 = inf{t > 0 : B, = 0}. On the other hand the second approximation implies
lim P(XeAlr>1)= Q%(A). @

Here Qi is the law of the diffusion process with generator (1/2)A + « coth(ax)(d/dx),
whose transition function is given by

— e 2y .
g%, x,dy) = l—ﬁpx(x;‘ edy, X >1),
where X} = B; + at and t¥" = inf{t > 0 : X* = 0}. A qualitative difference between two
limits Q! and Q2 is that the former does not rely on & > 0, and the latter does. However we
note that both of ¢! and g2 are expressed as h-transforms of some diffusions. More precisely,
q! (resp. g2) corresponds to the h-transform of B (resp. X*) killed at the entrance time into
(—0o0, 0] by the harmonic function k1 (y) = y (resp. h2(y) = 1 — e~2*”). Hence Q! and Q2
are thought of the laws of B and X* conditioned to stay positive.

It is anticipated from (3) and (4) that the two approximations give different limits for
a Lévy process X. Indeed we shall show that, under an appropriate exponential moment
condition of X, the first approximation leads to the law of a certain oscillating Lévy process
conditioned to stay positive, while the second leads to the law of a Lévy process drifting to
oo conditioned to stay positive.

Our motivation comes from plenty of limit theorems for random walks with nega-
tive drifts conditioned by events of the above types, investigated by a number of other au-
thors. Keener [15] obtained a result similar to (3) for integer-valued random walks. Bertoin-
Doney [2] gave a simple proof for his result, and showed that it also holds for non-lattice
random walks. Moreover they considered random walk analogue of (4). Some of the results
in [2] and [15] are expanded by the author [11]. In continuous time, (3) was extended to
diffusions by Collet-Martinez-San Martin [6].

This paper is organized as follows. In Section 2 we introduce notation and recall some
fundamental facts which we shall use later. Section 3 includes several limit theorems con-
cerned with the first approximation. In particular we get results which elucidate the limit
(1). The limit distribution in (2) is determined in Section 4. In Appendix we prove certain
asymptotic results which play crucial roles in Section 3.

2. Notation and auxiliary results.

Let (X;,t > 0, Py) be a Lévy process, which is a process with stationary independent
increments whose sample paths belong to the space of right continuous real-valued functions
on [0, co) with left limits on (0, 00). For x € R, Py stands for the law of X starting from x,
and set P = Py. Let 7; be the sigma field generated by (X;,s <t). Let M = (M,;,t > 0) be
the supremum process, i.e., My = supg<; <, Xs. We write Moo = sup,>o X;. The first passage
times to (—o0, 0] and to (x, oo) are denoted by t and t,, respectively, i.e.,

t=inf{t >0: X, <0}, 1, =inf{t >0: X, > x}.
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The dual process of X is denoted by X; that is X = —X when the starting point is 0.
For the quantities introduced to X, the corresponding ones for X are denoted by bars, for
instance, M and 7. Let L be a local time process of M — X at 0. If O is regular for {0}, i.e.,
P(@nf{t > 0 : M; = X,;} = 0) = 1, then L is constructed as in Blumenthal-Getoor [5].
If O is not regular for {0}, then L is defined in the following manner as in Fristedt [9]. In
this case {t > 0 : M; = X,} is a.s. discrete. Let {£,},>1 be a sequence of independent,
identically and exponentially distributed random variables independent of X. We set L(t) =
SILC jiJ < #{s <t : My = X;}]. In both cases, L~ denotes the right continuous inverse
of L,ie, L71() = inf{r > 0 : L(t) > -}. The ladder height process H is given by
H; = M(L,—l) on L,‘1 < o0 and H; = oo on L,_1 = 00. Fristedt [9] showed that (L1, H)
is a bivariate subordinator and obtained a formula of the Laplace exponent x of (L7, H)
defined by E(e—¢Li ' —bHi) = ¢=tk@b) 4 p >0

- k(a,b) = kCXP[/OOO ai—t Ooo(e" —e by p(X, € dx)] ; ©)

where k depends on the normalization of L. Throughout this paper we take k = 1. The above
identity is connected with the Wiener-Hopf factorization identity, see for instance Bertoin
[1], Bingham [4] and Fristedt [9]. Among many relations we use the following. If z > 0 and
u,v=0,

wa e-—ZtE(e—uMz—U(Mr—Xt))dt —_ IC(Z, O) . E(Z, 0) . (6)
0 k(z,u) k(z,v)

The renewal function of the ladder height process H is defined by
e e}
V(x)=f P(H; <x)dt, x=>0.
0

The left limit of V is denoted by V(-—). Recall that, if limsup,_, ., X; = oo a.s., then
(V(X: —=)1(z>s), t = 0) is a Py martingale for every x > 0, see e.g. [1, p.184]. Thus

V(y-)
V(x—)

plt,x,dy) = P.(X; edy,t>1)
is a strict Markovian transition function on (0, 00). One may say that its law is the A-transform,
by the harmonic function V (-—), of the law of X killed at time t.

In this paper we classify Lévy processes into three types according to the form of the
characteristic exponent & of X defined by E (¢?Xt) = 6@ It is well known that £ is ex-
pressed as

d? . -
E@) =iab — 702 + A(e'ex — 1 —ifx1x<1)) A(dx),

where a € R, d > 0 and A is a measure on R—‘{O} with fR(l Ax?) A(dx) < co. We omit the
trivial case where d = 0 and A = 0. We say that X is in Class I if X satisfies the following:
Class 1. X1 has a non-lattice distribution, i.e., |E(e'9X1)] < 1 if6 #0.



294 KATSUHIRO HIRANO

By the form of &, we see that

XisinClassI <« REG) <0 if 6#0,
d2 [o)
& —0%+ (1 —cosOx)A(dx) >0 if 6 #0,

2 —o00

& d>0or AR—-rZ) >0 forvVr > 0.

If X is not in Class I, then, by the above argument, d = 0 and A is supported by {trn :
. n € N} with maximal span r > 0, so that §(8) = ib0 + 3_; .o(1 — €97y A({rj}) with some
b € R. Hence we define the following two classes.

Class 1L £ is expressed as £(0) = ib0 + 3 ;_o(1 — %7y A({rj}) where b # 0 and
r > 0 is the maximal span of A.

Class III. & is expressed as §(0) = Zﬁéo(l — "N A{ri)) where r > 0is the
maximal span of A.

3. Limit theorems related to the first approximation.
We introduce the Laplace exponent ¢ of X defined by
E®X) =e%®, t>0,0cR.

The Laplace exponent serves to state conditions for our results. Throughout this section we
assume that the following conditions are satisfied.

(A) There exists a > 0 such that ¢ < oo in a neighbourhood of a, and ¢'(@) =0

(B) X is in either Class 1 or Class I11.
Similar conditions have appeared as key hypotheses for the conditional limit theorems of
random walks in [2], [7], [14], [15] and many other papers. We point out that those limit
theorems of random walks do not deal with the random walks of which the one step distri-
bution is concentrated in non-centered lattice set of the form {a + ¢Z} with 0 < a < c. This
restriction is corresponding to removing Lévy processes in Class II from our limit theorems
in this section. Since ¢ is convex, (A) implies EX| < 0, so that X drifts to —o0 and M is
a.s. finite. If ¢(8) < oo, the exponential martingale transform P? of P is defined by

P = fXO-1¢0) . p on F.

Plainly, this relation also holds if the fixed time ¢ > O is replaced by an F;-stopping time.
Under P?, X is a Lévy process with Laplace exponent ¢(0) — ¢ (- + 0). To simplify the
notation we write P and y instead of P% and e?®), respectively. We note that an exponen-
tial martingale transform does not vary the class of Lévy process, see e.g.[18]. This fact is
frequently used in the arguments in this paper. Set

Ux) = foo P(H, < x)dt, U(x) = foo P(H, < x)dt.
0 0

Namely U is the left limit of the renewal function associated to the ladder height process of
the Lévy process with Laplace exponent ¢ (o) — ¢ (- + «), and U is its dual.
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In our proofs, we mainly deal with the case where X is in Class I since essentially the
same methods work for X in Class III. Our results in this section depend on the following
lemma.

LEMMA 1. Letx >0and6 > 0.
(@) IfXisinClass], then

lim £32E,(e7%%® ¢ > 1) =

C1
=00 V27 ¢ (@)
(d) If X is in Class 111, then

U(x) / > e U (2)dz.
0

lim 2B, (e X® ¢ > ) = —2 __ {J(x e—OGHE (1)
S = T )J-ezr:‘v <

Here ¢y = exp{[;°(e~*— 1)t~ P(X,; = 0)dt}andl(x) = x—rkif r(k—1) <x <rk,k e N.
In addition, we can replace t, X, U and U by their duals.

Since EX; = 0and 0 < E£|X;|? = ¢"(a) < 00, Lemma 1 follows from Lemma A in
Appendix. See Appendix for the proof. Note that /(x) = I(y) if x = y (mod r). This is a key
point of the proof for X in Class III. Using Lemma 1 we get

LEMMA 2. Letx,y > 0. Suppose that x = y (mod r) if X is in Class IIl. Then we

have, for s > 0,

. Py(r>t—y)
t—o00 P(t>1) Ux)

PROOF. Let @ > 0. From the definition of P and (a) of Lemma 1,

Ex(e—OX(t)’ > t) — yte(!xEA'x(e—(e'Hl)X(t)’ > t)
o0
~ y't732¢, e“xU(x)/ e~ @0y (2)dz, (N
0
as t — oo with a constant ¢c; > 0. Set & = 0. Then
Pr(z >1t) ~ y’t‘3/ZC3 e**U(x), ast— 00, €]

where c3 = ¢2 [~ e~**U (z)dz. This shows the lemma. O

The following proposition is a Lévy process analogue of [6, Theorem C] and [15, The-
orem 1.3].

PROPOSITION 1. Assume the conditions (A) and (B).
(@) IfXisinClass], then, forallx >0andy > 0,

y
/ e U (2)dz
0

Iim P.(X; <ylt>1t)=
t—>00

- i
/ e U (2)dz
0
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(b) If X isin Class I, then, forall x, y € rN,

—ayyy
lim Po(X, = y|r> 1) = —— 0
t—>00 Z e—aj U(])
jerN
PROOF. We prove only (a). Dividing (7) by (8), we have
o0 (oo}
lim Ex(e X7 > 1) = f ety (2)dz / / e~ **U(2)dz .
t—> 00 0 0

By the continuity theorem for Laplace transform, we get (a). O

REMARK. The convergence of Ex(e 9X®)|t > t) has been considered by Pechinkin
[17] if X has no negative jumps. However there is something unclear in his proof.

To state our results, we introduce time homogeneous Markov processes Y and Y on
(0, 0o) whose transition functions are given by the following g and g, respectively.

0 A
Q(t,x,d)’)= —(y)Px(XtEdy,T>t), x>09
Ux)

U 5 -
Gt x,dy) = 2 B.(X, edy, £ >1), x>0.
U((x)

As was mentioned in Section 2, g and g are strict Markovian transition function on (0, c0)
since X oscillates under P. In other words, Y and Y are conservative. The next theorem gives
the limit distribution of (1).

THEOREM 1. Assume the conditions (A) and (B), and let x > 0. Then, for A € F;,

lim PL,(Xe Alt>t)=P(Y € A).
t—00

PROOF. By the Markov property,

P t—
Px(XeA|r>t)=Ex( x)(T > s),t>s,X€A).
Pt >1t)

Using Fatou’s lemma and Lemma 2, we have

U(X
liminf P,(X € A|T >t) > Ey (y-S—_(—Qe“(Xs—”, T>s5,X€ A)
t—>00 U((x)

= EX(U_(XS),r >s5,Xe€ A) = P.(Y € A).
U(x)

Replacing A by A€, we have
limsupPr(X € Alt>t)=1—liminf P, (X € A°|T > 1)
t—00 f—00
<1—P(Y € A°) = P,(Y € A).
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The proof of the theorem is complete. O

Denote by D0, ¢] the set of real-valued functions on [0, ] which are right continuous
and have left limits on (0, t]. DIO, ] is endowed with Skorohod’s topology. The following
lemma is a direct consequence of the well known duality between X and X with respect to
the Lebesgue measure, see e.g. [1, p.46].

LEMMA 3. Iff,g: R — [0,00) and H : D[O, t] — [0, 00), it holds that
fRdxf(X)Ex(H(X(t—s)—, s =Dg(X:)) = Adx 9 Ex(H(Xs, s <) f(Xy)).

The next theorem is an extention of Theorem 1.

THEOREM 2. Assume the conditions (A) and (B). Let F, G : D[0, s] — R be bounded
and measurable.
(@) IfX isinClass1and G is continuous, then, for x > 0,

Eo(F(Xu, t < )G Xos—t < )T > 1)
o0
> B (F(Ya,u<s) - f dze U () Ey(G (T, u < ))
| a

ast — oo, where c = [;° e™**U(z)dz.
(b) If X is in Class 11, then, for x € rN,
Ex(F(Xu,u < 5)GX—uy— u < )| T > 1)
— Ex(F(Y,,u<s) ¢ Y e YUGE(GTu,u <))
‘ JjerN
ast — 0o, where ¢ = EjerN e~ U ().

PROOF. We prove only (a) because the same argument is valid for (b). Without loss
of generality we may assume that 0 < F, G < 1. For ease of notation we write F(X) =
F(Xy,u < s)and g(y) = E)[G(X(s—u)—, 4 < 5), T > s]. Conditioning on F;_; and then

- on F;, we have by the Markov property
Ex(F(X)G(X(¢t-u)—,u <5),T > 1) = Ex(F(X)9(X;—5), T >t —5)
= Ex(F(X)Ex(s)[9(X1-25), T >t —25], T > 5)
= Ex(F(X)Px(s)(t >t —28)h;—25(Xs), T > 5),

where h;(y) = Ey(g(X:)| T > ). Thus
Pxy(t >t — 2s)
P.(t >1)

It is easy to see that the function g is bounded and left continuous. Therefore (a) of Proposition
1 shows that, if y > 0,

Ex(F(X)G(X(¢t-u)—u <5)|T >1) = Ex (F(X) hi—2s(Xs), T > S) .

o0
lim h,(y) = c‘lf e " g(2)U(2)dz.
t—>00 v 0
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Using the definitions of g, P and Lemma 3 in turn, we have
o0 oo
f gV (2)dz = f 26U (@) E(G(X(symr < $), T > 5)
0 0
o0
= ys/ dzUQRQE,(CG(X(s—uy—ru < s)e"“x‘, T>59)
0
o0
=y f 2= E,(G(Ruyu < )UK:), T > )
0

=y [ a2 U@EGE.
0

The last equality follows from the definition of Y. In view of Lemma 2 and the above, it
follows from Fatou’s lemma that

liminf Ex (F(X)G(X(t—uy—, u < 5)|T > 1)
t—00

7 y—s 00
> E, (F(X) y S — 7> s) g f e “*g(z2)U(2)dz
(]

w e
= Ex(F(Y))-c”! f dze *U(2)E(G(Y)). &)
0
Putting G = 1 and replacing F by 1 — F in (9), we see

limsup Ex(F(X)|t > t) < Ex(F(Y)).
t—> 00
Thus we have
tgq:oEx(F(X)lt >t) = Ex(F(Y)).

Replacing G by 1 — G in (9) and using the above, we have

limsup Ex(F(X)G(X(t—u)—, 4 < s)|T > 1) < Ex(F(Y)) -c'lf dze **U ) E(G(Y)).
0

t—>00
This combined with (9) concludes the proof of the theorem. O

Theorem 2 tells us that, for fixed s > 0, the conditional processes (X, u < 5|7 > t)
and (X(¢—u)—, < 5| T > t) are asymptotically independent as t — o0.

A limit theorem of this type for random walks has been obtained by the author [11].
It was applied to a certain problem of a random walk in a random medium. One of our
main aims of this investigation is to get Theorem 2. The application of Theorem 2 to a
similar problem for a diffusion process in a random Lévy environment will be discussed in
the forthcoming paper [12].

The finiteness of E(eMx) will be used. That is, we need the following.

LEMMA 4. If$(0) < O for some 6 > 0, then E(e?M>) < oo.
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PROOF. Denote by «g the Laplace exponent of the ladder process under P?.LetB =
—¢(0). Using (5), we see that, for any u > 0,

___Ke(ﬂ,9+u) = °°£]£ * ~t __ ,—uxy,—pt—0x pb
xo(1+ﬁ,9)—e"p[fo : /0_ (e —e e T PI(X, € dx)

= expl:foo dt /oo(e”' —e " MP(X; € dx)]
0 t Jo-

=0, u).

Recall that M, < 00 a.s. Setting v = 0 in (6) and then letting z — 0, we have

E(e—"Me) — €(0,0) c4

o0
— —(u+6)x
= - =c dVe(x),
k©,u)  xa(B.0 +u) 4fo ¢ o)

where Vo(x) = [;° E®(e—BL7' | H, < x)dt. This shows P(Moo € dx) = c4e~0* Vy(dx).
Hence we get E(e?M=) = c4x9(B, 0)~! < 00. The proof of the lemma is complete. O

By the condition (A) we can pick ¢ > O such that ¢(« + €) < 0. Thus Chebyshev’s
inequality combined with Lemma 4 shows the following.

LEMMA 5. Lety > 0. Then, for some e > 0,
e’ P(My > y) < const.e %,

We turn our attention to the conditional limit theorems related to P and the dual process
X. We identify P as the law of X conditioned to oscillate, i.e., we get

PROPOSITION 2. Assume the conditions (A) and (B). Then, for A € F;,

lim P(A|3u >t X, >0) = P(A).

t—>00
PROOF. Firstly we show the following. For fixed x € R (x € rZ if X is in Class III),
P@As > t, X5 > x) ~ y't7V2cse ** E(e*Me) /2n¢" (@))!/?  as t - o0, (10)

with some ¢s > 0. To see this we put M® = sup,, {Xs — X;} and h(y) = P(Mso > ).
Since M® is independent of X, and has the same law as Moo,

P@As >t Xs>x)=PM®D + X, > x)
= E(h(x — X;))
=y E@*®h(x — X))
= yf [E(e_“x’, X, > x)+ E(e*%h(x — X)), X; < x)] )

From Lemma 5, e *h(x — y) < const.e®” if y < x. Let X be in Class I. Use (a.3) in
Appendix and the Kolmogorov-Rogozin inequality, P(0 < X; < x) < const.(x + l)t‘l/ 2,
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see e.g. [10] or [18]. Then we get

1 o0 X
. —t,1/2 — ____ —ay “Yh(x — y)d
tl_1g1°y t'/“P@3s >t, X5 > x) TTAO)) [fx e %dy +/;°°e (x—y) y]
1 e—ax

= . E(e*M=),  (Fubini’s Theorem).

2" () a

That is, (10) holds with ¢s = a~!. If X is in Class III, similar calculation gives (10) with
cs = r/(e*" — 1). We deduce from the Markov property, Fatou’s lemma and (10) that

Px)(qu >t —s, X, > 0) A)
PAu>t,X,>0 '’
= ySE(e*X®), A) = P(A).

liminf P(A|Ju >, X, >0 > F ( lim
t—>00 t—>00

Replacing A by A€, we finish the proof of the proposition. O

The law of Y appears in the following conditional limit theorem for X which is similar
to Theorem 1.

PROPOSITION 3. Assume the conditions (A) and (B). Then, for x > 0 and A € F;,
lim P,(X € Aloo>T > 1) = P(Y € A).
t—>00

PROOF. As before we assume that X is in Class I. Let A(y) = P(Ms, > y). By the
Markov property
Pi(oo > T > 1) = Ex(h(X;), T > 1)
=y e ¥ E (X OnRy), T > 1) .

By Lemma 5, we have e“*h(z) < const.e”¢? if z > 0. Therefore (a) of Lemma 1 applied to
X shows '

oo
lim y 32 Py (00 > T > 1) = caU (x)e™** f e**h(2)U(z)dz .
0

t—>00

Therefore we have, forallx,y > 0ands > 0,

lim Py(oo >T>1t— S) — =S U(y)ea(x_y) )
t>00 P(00>T>1t) Ux)
If X is in Class III, then the above is valid for x = y (mod r). The proposition follows from

the above and arguments based on Fatou’s lemma and the Markov property similar to those
in Theorem1. O

4. Limit theorems by the second approximation.

Our aim of this section is to determine the limit distribution in (2) for suitable Lévy
processes. All the results in this section are a continuous time analogue of the corresponding
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results for random walks, see [2] and [13]. Here we are out of the conditions (A) and (B).
Throughout this section we assume the following condition.
(C) There exists w > 0 such that ¢ (w) = 0 and E(X1e%*1) < o0.
This condition is known as Cramér estimate in random walk theory. Since ¢ is convex,
(C) leads to (A). When (C) holds, we can introduce the new probability P* as in the previous
section. That is,
P*=¢*%'p on F.

Under P*, we have 0 < E*(X1) < 00. Set
- w -
U.(x) =/ P*(H; < x)dt.
0

The starting point is the following lemma obtained by Bertoin-Doney; see [1, p.153] and [3].
LEMMA 6. If X is notin Class 111, then

lim eP(My > y) = k; .

y—>00

If X is in Class 111, then
lim eV P(My > y) = k2,

y—>00
where k1 and k; are positive and finite.

As a result of Lemma 6, we have the following.
LEMMA 7. Letx,z € R. Assume that x = z (mod r) if X is in Class 1II. Then

lim Py(Moo > )/ P:(Moo > y) = e¢~9).
y—>00
We can think of P* as the law of X conditioned to drift to 0co. More precisely we have
PROPOSITION 4. Under the condition (C), we have, for any A € Fy,
lim P(A|Mx > y) = P*(A).
y—>00
PROOF. The equivalence (Mo > y) = (ty < 00) and the Markov property imply

P(A|Mx > y) = P(A,00 > 1) > 5)/P(Mso > )
—E Px (s)(Moo > )')’l_y >S,A).
P(Mso > y)

We deduce from Fatou’s lemma and Lemma 7 that

liminf P(A | Mo > y) > E(e®X®, A) = P*(A).
y—00

The limsup estimate follows from replacing A by A°. The proof is complete. O

REMARK. Proposition 4 has been originally demonstrated by Williams [20] in case of
Brownian motion with negative drift. His result was extended to the spectrally negative Lévy
processes, see for instance [1].
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LEMMA 8. Letx,z > 0. Suppose that x = z (mod r) if X is in Class IIl. Then we

have -
lim Py (T > 1y) _ U.(2) %)

y—>o00 Py(T > Ty) B 0*(x)

PROOE. Decomposition of the event (M > y) and the strong Markov property yield

Pi(My > y) = Pe(tT > Ty) + Px(00 > 79 > 7)
= Px(t > 7y) + Ex(Px@)(Moo > ), Ty > 7).
It is clear that Px(;)(Moo > y)/Px(Moo > ) is less than one and converges as y — 00 to
e?X(®=x) 3 5 by Lemma 7. Hence, by the dominated convergence theorem we have
y—>00
=1-P}(t < 0)
= P;(t =oo) = P*(Moo <x).
Recall that P*(Ms < x) = k3Ux(x) where k3 € (0, 00). Combining this identity and
Lemma 7 with the above equality, we get the lemma. O
The following theorem gives the limit distribution in (2).

THEOREM 3. Under the condition (C), we have, for any x > 0 and A € F;,

lim P(X € Alt > 1)) = Ry (A),
y—>00

where Ry is the law of the homogeneous Markov process with transition function

U
r(t,x,dy) = —:"‘—@P;(X, edy,t>1).

Uu(x)
PROOF. Applying the Markov property, we see

PA(XeAlt>ty) =P (X €A T>T1) > s)/Px(t > ty)

=F,| ———— .
x( Pz > 5) y(TyAT)>5,X€EA

Using Fatou’s lemma and Lemma 8, we get

liminf P, (X € AlT > 1)) > E; (i“i"-{’—)ew“@—x), t>s5,Xe€ A)
y—00 U.(x)

E;(U_"‘(XS)
Ui(x)

,t>s,X€A)ERx(A).

The limsup estimate is derived from replacing A by A¢. Our theorem is proved. 0O
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REMARK. If X is spectrally negative (i.e., has no positive jumps), Theorem 3 is well-

known and the transition function is expressed as
W(y)
t,x,dy) = ——P,(X; €dy, t),
r(t, x,dy) W) x(X: €dy, Tt >1)

where W is the scale function of X. It is easy to see that the two expressions of r (¢, x, dy)
are equivalent in that case because we can show W(x) = const.e®* U,(x), see for instance
[1, Chapter VII].

Appendix : Lemma A and its proof.

We use the same notation as in Section 2. We show the following.

LEMMA A. Suppose that EX; = 0 and 0 < o? := E|X1]?> < oo. Let x > 0 and
6 > 0.

(@ IfXisinClass]1, then

o0
lim £32E (e 0X® 1 > =21y x—)[ e %V (2)dz.
AR )= T YTy

(b) If X isin Class 11l, then

. - a\r ~ — ;
tli)rgot:;/zEX(e BX(t)’ T>1)= 1 V(x—) Z e 9(k+](X))V(k) .

ZJTU kerZ+

Here a; = exp{fooo(e" — Dt~ l1P(X; =0)dt}and j(x) =x —rkifrk <x <r(k+1),
k € Z+.

For the proof of Lemma A, we need a series of lemmas. The following one is close to
Lemma 2.2 in [14].

LEMMA 9. Lett > 0 and u:, n: : [0, 00)¢ — [0, 00) be right continuous and
non-decreasing functions. Suppose that, for fixed x € [0, 00)%, pu(x) = f0°° U (x)dt <
00, ur(x) = 0@ YHast > ooand n(x) := lims_ 00 v/ 9t (x) < 00. Then we have

t .
Hm V7 [ s * ne—s(x)ds = px n(x),
0

t—>00
where * denotes convolution in [0, 00)?.

PROOF. Fix x € [0, 00)? and € € (0, 1). By assumptions, there exists a = a(x) such
that 1, (x) < at~! and n;(x) < at~1/2. Using these estimates, we have
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t t
t”zf s * Np—s (x)ds = t”zf dS/ Ne—s(x — y)dps(y)
(1—&)t (1—e)t O<y=<x

t
< aztl/zf (t — s)~12s~1ds
(1-¢e)
t

<a?(1 - 8)_1t_1/2/ (t — s)"V2ds
(1—exn

=2a%(1 —e)~1el/2,

Ifs € [0,(1 —¢)t]and y < x, we have tl/zn,_s(x —y) < ae~1/2  Hence, by the dominated
convergence theorem, '

(1)t 00
lim ¢'/2 / fs * N—s(x)ds = f ds f n(x — y)dps(y)
=00 0 0 O<y<x

= f nx —y)du(y) = p*n(x),
O<y=<x :
which shows the lemma. O

For ease of notation, we set

uf(x’.y)= P(Mt <x9Mt_Xt 5.)’),
ne(x,y) = PO < X; < x)1(y20 + 1(x20 PO < X; < y).
Let F, ,(t) and G, ,(¢) denote their double Laplace transforms, i.e., for u, v > 0,
Fyu(t) =E(e7M—rM=X0),
Guv(t) =E(e %', X, > 0) + E(e"™, X; < 0).
The following results are immediate consequences of the formulae (5) and (6).

LEMMA 10. Letx >0andy > 0.

1) tp(x,y)= f(; Ks * Ne—s(x, y)ds, Vt=0.
Q@) fo mx, y)dt = aVx)V().

PROOF. Using (5), F,,» and G,,,, we rewrite (6) as

oo o e—Zt
zf e ¥ F, y(t)dt = exp[/ (Gu (@) — l)dt] .
0 0

t
Differentiating the above with respect to z, we have

oo o0 (o o]
f e UtF, ,(t)dt =f e'z’Fu,,,(t)dtf e 4G, ,(t)dt
0 0

0
o0
- e—zf( f Fuy(9)Gu.o(t — s)ds)dt.
0

t
0
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By the uniqueness theorem for Laplace transform we have

t
tF,(t) = f Fuv($)Gyy(t —s)ds, vVt >0, (a.1)
0

since both sides are right continuous in # > 0. Thus inverting the Laplace transform in the
variables (u, v) shows (1). Let z > 0. By (5), we have

00 ,—t _ o=t
k(z,0)k(z,0) = exp[f _t_(l + P(X; = O))dt:l
0

00 ,—t _ ,—zt
—z exp[ f € -°¢ t ¢ P, = O)dt] .
0

Thus we have
z—0

Dividing both sides in (6) by z and then letting z — 0, we have

/00 Fu(t)dt =
0

The second equality follows from the identity [5° e “*dV (x) = «(0, u)~'. Inverting the
Laplace transform in the variables (u, v), we get (2). O

e Ux—vy
(0, w)i (0, v) u)Ic(O v f f dV(x)dV(y). (a.2)

Henceforth we assume EX; = 0 and 0 < 62 < 0o. The next lemma is an analogue of
the well-known result of random walks. For this lemma, the reader had better refer to Bertoin
[1, Theorem 18, p. 173], Feller [8, Theorem 1, p. 612] and their proofs.

LEMMA 11. Ifx > 0andu > 0, then, ast — oo,
PM; <x)~aaV(x)t™ % and E(e™*Mt) ~ apc (0, u)~1t71/2,
where ay = (2/ma?)1/2EH,.

The asymptotic behavior of #; is given by the following lemma.
LEMMA 12. (a) If X is in Class 1, then, forall x,y > 0,

lim V77e(x, y) = (x +y)/v2mo .
(b) If X isin Class I1I, then, forall x,y € rZ,,
_tl_i>rgo«/?nt(x, y)=x+y+r)/V2no.

We omit the proof of this lemma because we can show the following by applying the
techniques used in Shepp [19] to Lévy processes. If X is in Class [ and x < y, then

lim VtP(x < X; <y)=(y —x)/«/i;or. (a.3)

t—>00
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This comes from the non-lattice property of X;. If X is in Class Il and k € Z, then
lim V1P(X; =rk) =r/\ 270 . (a.4)
t—00

This corresponds to a local limit theorem of random walks. By these facts the lemma is
proved. Moreover, if X is in Class II with r = 1, we see

Qro?)?P(x < X, < y) = #[x — {bt}, y — {bt}] + o(1),

where {x} denotes the fractional part of x and #[x, y] is the number of integers in [x, y].
Since b # 0, the right hand side does not converge as ¢ — oo, and hence nor does N
This is a reason why we removed Lévy processes in Class II from Lemma A.

For the later convenience we give the following. The Kolmogorov-Rogozin inequality
PO < X; < x) < const.(x + 1)¢~1/2 see [10] or [18], combined with (a.3) and (a.4) shows
that foreachu > Oand v > O,

1 1
Jl_ (—+—>, if XisinClass1I,
lim ViGuo() = | VoK Y

t—>00 r

V2ro

In the proofs below we treat the case where X is in Class 1. The proofs for X in Class III are
similar. Collecting Lemmas 9 through 12, we get the following.

LEMMA 13. (a) IfX isin Class], then, forall x,y > 0,

(a.5)

1—ewr  er —1

1 1
( + ), if X is in Class III .

. 3/2 _ ai y _ x -
tl_1>n°1°t ue(x,y) = Jomo {V(x)_/O‘ V(s)ds +f0 V(s)ds - V(y)}. (a.6)

(d) If X isin Class 111, then, forallx,y € rZ,,

y/r x/r
. 3/2 — a\r = . IR, _ >
Mm% (x, y) Tiro {V(x) j‘é() V(rj)+ ,z=:o V(i) -V(y) V(x)V()’)} .

PROOF. Letx,y > 0be fixed. Recalling (1) of Lemma 10 and then using Lemmas 11
and 12 for the third inequality below, we have
t

tpe(x,y) < fo Nt—s(x, y)us(x, y)ds
t
< fo M—s(x, ) P(M; < x)ds
f’ ds
< const. ——— = const.
0

(t —s)s

According to (2) of Lemma 10, Lemma 12 and the above, u; and 7, satisfy the assumptions
in Lemma 9. Hence by Lemma 9

ay

V2o

X pry _
tim 20, = <2 7M1 - 2+ 0 - wiv@av ).
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Integration by parts applied to the right hand side shows the lemma. O

Now we are in a final part of the proof of Lemma A. We first remark the following. If
we use (a.1), (a.2) and (a.5) instead of Lemmas 10 and 12, calculations similar to the proof
of Lemma 13 show that, for u, v > 0,

1 1
lim 3/2F, ,(t) = “ (_ + ‘) . a.7
t—00 w.v () V270 k(0, w)e(0,v) \u v (a.7)

Let z > 0 and 6 > 0. Using duality in the second equality below, we see
E (e X® 1 > 1) = 2E(@%X®, inf X; > —2)
O<s<t

=e ZE@E XD M, — X, <2)

o0 rz—
=™ / / e 00 Vdpy(x, ) -
0 JO

Set u(x, y) = limy— 00 #3214 (x, y). Then, for k > 0,

k pz— k é—
lim t3/2// e'e"‘“y)dut(x,y)=// e 9 Ndu(x, y).
t—=>00 0 Jo 0Jo

IfA > Oand y < gz, then % < X272 and [P°fF7e 9"Mdu,(x, y) is less than
const.e—9%/2F, /2,1 (2). Taking this and (a.7) into account, we have

o0 pZ7—
lim sup lim supt3/2fk /0 e 0" Ndu,(x, y) =0.

k—>o0 t—00

Combining the three results above, we get

o0 prZ—
lim t3/2Ez(e—0X(t), T > t) = e—Gz/ / e—g(x_Y)d/L(X, y) .
t—>00 0 0

Putting the right hand side of (a.6) in the place of u(x, y) and then applying the integration
by parts, we establish Lemma A.
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