A Remark on Torsion Euler Classes of Circle Bundles

Shigeaki MIYOSHI
Komazawa University
(Communicated by K. Kobayasi)

Abstract

We show that any torsion class $e \in H^{2}(M ; \mathbf{Z})$ of any closed manifold M is realized as the Euler class of a smoothly foliated orientable circle bundle over M. In the case where M is a 3-manifold, we construct the homomorphism $\pi_{1}(M) \rightarrow S O(2) \subset$ Diff $_{+}^{\infty}\left(S^{1}\right)$ explicitly whose Euler class is the given torsion class.

1. Introduction and statement of the result.

Let M be a closed orientable manifold and $\xi=\{E \rightarrow M\}$ an orientable circle bundle over M. We denote by $e(\xi)$ the Euler class of ξ. As is well known, orientable circle bundles are classified by their Euler classes. On the other hand, foliated orientable circle bundles are classified by their total holonomy homomorphisms. Namely, there is a natural bijection between the set of all smoothly (C^{∞}) foliated orientable circle bundles over M modulo leaf preserving bundle isomorphism and the set of all homomorphisms $\pi_{1}(M) \rightarrow \operatorname{Diff}_{+}^{\infty}\left(S^{1}\right)$ modulo conjugacy (cf. [HH]). Here, Diff ${ }_{+}^{\infty}\left(S^{1}\right)$ denotes the group of all orientation preserving diffeomorphisms of the circle. We consider a homomorphism $\pi_{1}(M) \rightarrow \operatorname{Diff}_{+}^{\infty}\left(S^{1}\right)$ as an equivalent of a smoothly foliated orientable circle bundle over M.

In [My] we studied the problem of the existence of a codimension-one foliation transverse to the fibers of a given circle bundle $E \rightarrow M$, that is, the question when is a circle bundle foliated, in the case where the base space M is a 3-manifold. In case the base space is a surface $M=\Sigma$, the necessary and sufficient condition for the existence of a transverse foliation was obtained by J. Milnor and J. W. Wood in [M] and [W]. Assume Σ is connected. Denote by $\chi(\xi)$ the Euler number of the circle bundle ξ and set $\chi_{-}(\Sigma)=\max \{0,-\chi(\Sigma)\}$, where $\chi(\Sigma)$ denotes the Euler characteristic of Σ. Then, there exists a transverse foliation if and only if $|\chi(\xi)| \leq \chi_{-}(\Sigma)$. Here, Σ is a closed orientable surface and we omit the non-orientable case for simplicity. We call this inequality Milnor-Wood inequality. In higher dimensions, Milnor-Wood inequality induces a necessary condition for the existence as follows (cf. [M], [W], [My]): If there exists a transverse foliation on the total space E, then the following condition is satisfied:
(MW): $|\langle e(\xi), z\rangle| \leq x(z)$ for any $z \in H_{2}(M ; \mathbf{Z})$.

Here, (,) denotes Kronecker product and x is Thurston norm, that is, the pseudonorm on $H_{2}(M ; \mathbf{Z})$ defined as follows: for any $z \in H_{2}(M ; \mathbf{Z}), x(z)$ is defined to be the minimum $\chi_{-}(\Sigma)$ of all surfaces Σ in M each of which represents the given homology class z (cf. [Th]). In case Σ is not connected, here, we set $\chi_{-}(\Sigma)=\sum_{i} \max \left\{0, \chi_{-}\left(\Sigma_{i}\right)\right\}$ with respect to the decomposition into connected components $\Sigma=\coprod_{i} \Sigma_{i}$.

We showed in [My] there exists a family of circle bundles each of which has a transverse foliation of class C^{0} but none of class C^{3}. Also we proved with some exceptions the condition (MW) is sufficient for the existence of a C^{∞} transverse foliation if the base space is a closed Seifert fibred manifold.

In this paper, we consider the case where the condition (MW) is trivial. In fact, we show the following:

Theorem. Suppose $\xi=\{E \rightarrow M\}$ is an orientable circle bundle over a closed manifold M. The dimension of the base space M is arbitrary. If the Euler class $e(\xi)$ is a torsion class in $H^{2}(M ; \mathbf{Z})$, then there exists a codimension-one C^{∞} foliation on E which is transverse to the fibres. In fact, we can construct the transverse foliation whose total holonomy group is contained in $\mathrm{SO}(2)$.

In [M], Milnor showed that the Euler class of a flat $S O(m)$-bundle is a torsion element.
We will prove Theorem in §2. In §3, in connection with the results of the paper [My], we explicitly construct the homomorphism $\pi_{1}(M) \rightarrow S O(2) \subset$ Diff $_{+}^{\infty}\left(S^{1}\right)$ whose Euler class is the given torsion class if M is a 3-manifold.

2. Proof of Theorem.

In this section we prove Theorem. We identify the rotation group $S O$ (2) with $S^{1}=\mathbf{R} / \mathbf{Z}$. Suppose that M is a closed orientable manifold. Consider the short exact sequence:

$$
0 \rightarrow \mathbf{Z} \rightarrow \mathbf{R} \rightarrow S O(2) \rightarrow 0
$$

then we have the following exact sequence:

$$
\cdots \rightarrow H^{1}(M ; S O(2)) \xrightarrow{\beta} H^{2}(M ; \mathbf{Z}) \rightarrow H^{2}(M ; \mathbf{R}) \rightarrow H^{2}(M ; S O(2)) \rightarrow \cdots
$$

where β is the Bockstein cohomology homomorphism corresponding to the coefficient sequence above (cf. [S]). By the exactness of the sequence above, we have

$$
\begin{aligned}
\operatorname{Im}(\beta) & =\operatorname{Ker}\left(H^{2}(M ; \mathbf{Z}) \rightarrow H^{2}(M ; \mathbf{R})\right) \\
& =\operatorname{Tor}\left(H^{2}(M ; \mathbf{Z})\right),
\end{aligned}
$$

where Tor denotes the torsion subgroup. On the other hand, any homomorphism $\varphi: \pi_{1}(M) \rightarrow$ $S O(2)$ can be considered as a cohomology class of $H^{1}(M ; S O(2))$ by the universal coefficient theorem

$$
\begin{aligned}
\operatorname{Hom}\left(\pi_{1}(M), S O(2)\right) & \cong \operatorname{Hom}\left(H_{1}(M), S O(2)\right) \\
& \cong H^{1}(M ; S O(2))
\end{aligned}
$$

From now on, we identify these groups via these natural isomorphisms. Recall that a homomorphism $\pi_{1}(M) \rightarrow S O(2)$ is considered as an equivalent of a C^{∞} foliated orientable circle bundle over M whose total holonomy is contained in $S O(2)$. Now we claim the following:

Claim (cf. [M]). The Euler class of a homomorphism $\varphi: \pi_{1}(M) \rightarrow S O(2)$ is equal to $-\beta(\varphi) \in H^{2}(M ; \mathbf{Z})$.

Proof of Claim. First, note that a cochain $C_{1}(M) \rightarrow S O(2)$ is a cocycle if and only if its restriction to the boundaries $B_{1}(M)$ is zero. Suppose a homomorphism $\varphi: H_{1}(M ; \mathbf{Z}) \rightarrow$ $S O(2)$ is given. We will define a 1-cocycle which represents $\varphi \in \operatorname{Hom}\left(H_{1}(M ; \mathbf{Z}), S O(2)\right) \cong$ $H^{1}(M ; S O(2))$. Since the short exact sequence of 1-cycles, 1-chains and 0 -boundaries

$$
0 \rightarrow Z_{1}(M) \rightarrow C_{1}(M) \xrightarrow{\partial} B_{0}(M) \rightarrow 0
$$

is split, we have a direct sum decomposition $C_{1}(M)=Z_{1}(M) \oplus B$, where $B \subset C_{1}(M)$ is a subgroup isomorphic to $B_{0}(M)$. We define a cochain $c: C_{1}(M) \rightarrow S O(2)$ as $\varphi \cdot \pi$ on $Z_{1}(M)$ and 0 on B, where $\pi: Z_{1}(M) \rightarrow H_{1}(M ; \mathbf{Z})$ is the natural quotient homomorphism. Then c is a cocycle, that is, $\delta c=0$ and c represents the class $\varphi \in H^{1}(M ; S O(2))$. For, we have $\delta c=c \cdot \partial=\varphi \cdot \pi \cdot \partial=\varphi \cdot \pi \mid B_{1}(M)=0$ and also $c(\zeta)=\varphi \cdot \pi(\zeta)=\varphi[\zeta]$ for any $\zeta \in Z_{1}(M)$.

Next, we show that $-\beta(\varphi)=e(\varphi)$, where $\beta: H^{1}(M ; S O(2)) \rightarrow H^{2}(M ; \mathbf{Z})$ is the Bockstein homomorphism. Indeed, we will show that a representative cocycle of $-\beta(\varphi)$ also represents the primary obstruction class $e(\varphi)$ of the circle bundle defined by φ. First, the homomorphism β is defined through the snake diagram as follows:

$$
\begin{array}{cc}
0 \rightarrow \operatorname{Hom}\left(C_{1}(M), \mathbf{Z}\right) \rightarrow \operatorname{Hom}\left(C_{1}(M), \mathbf{R}\right) \rightarrow & \downarrow \operatorname{Hom}\left(C_{1}(M), S O(2)\right) \rightarrow 0 \\
\downarrow \partial^{*} & \downarrow \partial^{*} \\
0 \rightarrow \operatorname{Hom}\left(C_{2}(M), \mathbf{Z}\right) \rightarrow \operatorname{Hom}\left(C_{2}(M), \mathbf{R}\right) \rightarrow & \operatorname{Hom}\left(C_{2}(M), S O(2)\right) \rightarrow 0
\end{array}
$$

For any 1-cocycle $h \in \operatorname{Hom}\left(C_{1}(M), S O(2)\right)$, there is $\tilde{h} \in \operatorname{Hom}\left(C_{1}(M), \mathbf{R}\right)$ which maps to h. Since $\partial^{*} \tilde{h} \in \operatorname{Hom}\left(C_{2}(M), \mathbf{R}\right)$ goes to 0 in $\operatorname{Hom}\left(C_{2}(M), S O(2)\right), \partial^{*} \tilde{h}$, in fact, lies in $\operatorname{Hom}\left(C_{2}(M), \mathbf{Z}\right)$. Denote it by $g \in \operatorname{Hom}\left(C_{2}(M), \mathbf{Z}\right)$. This 2-cochain g is a cocycle and $\beta[h]$ is defined to be the cohomology class of g.

Let $f: C_{2}(M) \rightarrow \mathbf{Z}$ be the 2-cocycle defined by chasing the snake diagram from the 1 -cocycle $c \in \operatorname{Hom}\left(C_{1}(M), S O(2)\right)$, the representative cocycle of φ. Thus, f represents $\beta[c]=\beta(\varphi)$. Indeed, the 2-cocycle f is defined as follows: Fix a triangulation of M and suppose $\pi_{1}(M)=\langle G \mid R\rangle$ is the presentation associated with the triangulation of M. Namely, each element of G corresponds to an oriented edge which is not contained in a fixed maximal tree and each word of R corresponds to an oriented 2 -simplex. From now on we consider each generator $g \in G$ as an edge which is not contained in the maximal tree. Then, by the definition of c we have $c(g)=\varphi(g)$ for $g \in G$. Choose a lift $\widetilde{\varphi(g)} \in \mathbf{R}$ of $\varphi(g) \in S O(2)$ for each $g \in G$. We define a lift $\tilde{c}: C_{1}(M) \rightarrow \mathbf{R}$ of $c: C_{1}(M) \rightarrow S O(2)$ by setting $\tilde{c}(g)=\widetilde{\varphi(g)}$ for each $g \in G$. Note that for an edge contained in the maximal tree the value of \tilde{c} is defined to be zero. By definition, $f=\partial^{*} \tilde{c}$. Now, let Δ be any oriented 2 -simplex and
suppose its boundary $\partial \Delta$ corresponds to $h_{1}^{\varepsilon_{1}} h_{2}^{\varepsilon_{2}} h_{3}^{\varepsilon_{3}}\left(h_{i} \in G \cup\{1\}, \varepsilon_{i}= \pm 1\right)$. Then since $\partial \Delta$ determines a word consists of the letters of G which belongs to (the normal closure of) R, $\varepsilon_{1} \tilde{c}\left(h_{1}\right)+\varepsilon_{2} \tilde{c}\left(h_{2}\right)+\varepsilon_{3} \tilde{c}\left(h_{3}\right)=\varepsilon_{1} \widetilde{\varphi\left(h_{1}\right)}+\varepsilon_{2} \widetilde{\varphi\left(h_{2}\right)}+\varepsilon_{3} \widetilde{\varphi\left(h_{3}\right)}$ is an integer. Thus, we have

$$
\begin{aligned}
f(\Delta) & =\partial^{*} \tilde{c}(\Delta) \\
& =\tilde{c}(\partial \Delta) \\
& =\varepsilon_{1} \tilde{c}\left(h_{1}\right)+\varepsilon_{2} \tilde{c}\left(h_{2}\right)+\varepsilon_{3} \tilde{c}\left(h_{3}\right) \\
& =\varepsilon_{1} \widehat{\varphi\left(h_{1}\right)}+\varepsilon_{2} \widehat{\varphi\left(h_{2}\right)}+\varepsilon_{3} \varphi\left(h_{3}\right) .
\end{aligned}
$$

This implies that $-f$ is the Euler cocycle of φ. Q.E.D. of Claim.
Recall that $\operatorname{Im}(\beta)$ is the torsion subgroup of $H^{2}(M ; \mathbf{Z})$. Thus, by this Claim the Euler class of a foliated circle bundle whose total holonomy $\pi_{1}(M) \rightarrow S O(2)$ is a torsion class and conversely any torsion class in $H^{2}(M ; \mathbf{Z})$ can be the Euler class of a total holonomy $\pi_{1}(M) \rightarrow S O(2)$. Now the proof is completed.

3. Explicit construction in dimension three.

In the case of dimension three we explicitly construct the homomorphism $\pi_{1}(M) \rightarrow$ Diff ${ }_{+}^{\infty}\left(S^{1}\right)$ which represents the given torsion class. In this section, every coefficient group of homology group is \mathbf{Z}.

First, we see how the Euler class of an orientable circle bundle describes the twist of the bundle. Suppose an orientable circle bundle $\xi=\{E \rightarrow M\}$ over a closed 3-manifold M is given. For simplicity we assume M is orientable. We choose an orientation on M and take an oriented embedded loop K in M which represents the Poincaré dual of $e(\xi)$. Denote by $\mathcal{E}_{M}(K)$ the exterior of K, that is, $\mathcal{E}_{M}(K)=M-\operatorname{int} N(K)$ where $N(K)$ denotes a small tubular neighbourhood of K in M. Since $e(\xi) \mid \mathcal{E}_{M}(K)=0$, the restriction $\xi \mid \mathcal{E}_{M}(K)$ is trivial. Fix trivializations $\mathcal{E}_{M}(K) \times S^{1} \cong E \mid \mathcal{E}_{M}(K)$ and $N(K) \times S^{1} \cong E \mid N(K)$. Then the gluing diffeomorphism $g: \partial\left(\mathcal{E}_{M}(K)\right) \times S^{1} \rightarrow \partial N(K) \times S^{1}$ is defined to be the map which makes the following diagram commutative:

$$
\begin{array}{cc}
\partial\left(E \mid \mathcal{E}_{M}(K)\right) & \cong \partial\left(\mathcal{E}_{M}(K)\right) \times S^{1} \\
\| & \downarrow g \\
\partial(E \mid N(K)) & \cong \partial N(K) \times S^{1} .
\end{array}
$$

Now fix a framing $S^{1} \times D^{2} \cong N(K)$ so that the gluing diffeomorphism g is represented as a diffeomorphism $S^{1} \times \partial D^{2} \times S^{1} \rightarrow S^{1} \times \partial D^{2} \times S^{1}$, which is expressed as follows:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
m & n & 1
\end{array}\right)
$$

Note that on the boundary tori, the framings are the same: $S^{1} \times \partial D^{2} \cong \partial N(K)=\partial\left(\mathcal{E}_{M}(K)\right)$. Here m is an ambiguity of the choices and we can assume $m=0$ by choosing another
trivialization over $N(K)$. If the Euler class $e(\xi)$ is a torsion element, then the integer n in the above expression is determined modulo the order of $e(\xi)$. Namely, suppose $p e(\xi)=$ $0(p \in \mathbf{Z}, p>0)$ and $q e(\xi) \neq 0$ if $0<q<p(q \in \mathbf{Z})$, then n changes into $n+l p$ $(l \in \mathbf{Z})$ by changing trivialization over $\mathcal{E}_{M}(K)$. Consequently, if the Euler class $e(\xi)$ is a torsion element, then the integer n modulo the order of $e(\xi)$ depends only on the Euler class $e(\xi)$. This representation of the gluing map g implies that the meridian loop of K on the cross section over $\mathcal{E}_{M}(K)$ winds up n times in the fibre direction.

Now we construct the homomorphism. Denote by $\widetilde{S O(2)}$ the universal covering group of $S O(2)$. Recall that we identify $S O(2)$ with $S^{1}=\mathbf{R} / \mathbf{Z}$ and $\widetilde{S O(2)}$ with \mathbf{R}. It is sufficient for our task that we define a homomorphism from $\pi_{1}\left(\mathcal{E}_{M}(K)\right)$ into $\widehat{S O(2)}$ such that $[\mu]$ is forced to be mapped to the translation by n, where μ denotes the meridian loop of K. Then the homomorphism goes down to $\pi_{1}(M)=\pi_{1}\left(\mathcal{E}_{M}(K)\right) /\langle[\mu]\rangle \rightarrow S O(2)$ as desired.

Since $[K] \in H_{1}(M)$ is a torsion element, there is no $z \in H_{2}(M)$ such that the intersection number $[K] \cdot z \neq 0$. Therefore, $H_{2}(M) \rightarrow H_{2}\left(M, \mathcal{E}_{M}(K)\right)$ is the zero map so that $\partial: H_{2}\left(M, \mathcal{E}_{M}(K)\right) \rightarrow H_{1}\left(\mathcal{E}_{M}(K)\right)$ is injective. It is obvious that the meridian loop μ of K represents an element of infinite order of $H_{1}\left(\mathcal{E}_{M}(K)\right)$.

We will define a homomorphism $\widetilde{\psi}: \pi_{1}\left(\mathcal{E}_{M}(K)\right) \rightarrow \widetilde{S O(2)}$ via $H_{1}\left(\mathcal{E}_{M}(K)\right)$ by choosing a homomorphism $H_{1}\left(\mathcal{E}_{M}(K)\right) \rightarrow \widehat{S O(2)}$ such that $[\mu]$ is forced to be mapped to the translation by n. First, we choose a direct sum decomposition of $H_{1}\left(\mathcal{E}_{M}(K)\right)=F \oplus T$, where T is the torsion subgroup and F is a complementary free part. We assume that $[\mu] \in F$ and choose free basis $\alpha_{1}, \cdots, \alpha_{r}$ for the free part F. Then, changing signs of α_{i} 's if necessary, we have an expression $[\mu]=\sum_{i=1}^{r} a_{i} \alpha_{i}$ where $a_{i} \in \mathbf{Z}, a_{i} \geq 0$ and $\sum_{i=1}^{r} a_{i} \geq 1$. Note that $[\mu] \neq 0$. Define a homomorphism $\rho: H_{1}\left(\mathcal{E}_{M}(K)\right) \rightarrow \widetilde{S O(2)}$ by

$$
\begin{aligned}
\rho\left(\alpha_{i}\right) & =\operatorname{sh}\left(\frac{n}{\sum_{i=1}^{r} a_{i}}\right) \\
\rho \mid T & =\mathrm{id}
\end{aligned}
$$

where $\operatorname{sh}(t)$ denotes the translation by t. Composing ρ with the natural quotient homomorphism $\pi_{1}\left(\mathcal{E}_{M}(K)\right) \rightarrow H_{1}\left(\mathcal{E}_{M}(K)\right)$ we have the desired homomorphism. This completes our construction.

Acknowledgements. Thanks are due to the referee whose comments improve and simplify the presentation of the paper.

References

[HH] G. Hector and U. Hirsch, Introduction to the Geometry of Foliations, Part A,Vieweg (1981).
[M] J. Milnor, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 (1957-58), 215-223.
[My] S. Miyoshi, On foliated circle bundles over closed orientable 3-manifolds, Comment. Math. Helv. 72 (1997), 400-410.
[S] E. H. Spanier, Algebraic Topology, Springer (1995).
[Th] W. P. Thurston, A norm for the homology of three-manifolds, Mem. A.M.S. 59, No. 339 (1986).
[W] J. W. Wood, Bundles with totally disconnected structure group, Comment. Math. Helv. 46 (1971), 257-273.
Present address:
Department of Mathematics, Chuo University,
Kasuga, Bunkyo, Tokyo, 112-8551 Japan.
e-mail: miyoshi@math.chuo-u.ac.jp

