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Abstract. We consider direct sum decompositions $\beta=\beta-+\beta+andL=L-+L+of$ two symplectic
Hilbert spaces by Lagrangian subspaces with dense embeddings $\beta-\rightarrow L-$ and $ L+\rightarrow\beta+\cdot$ We show that such
criss-cross embeddings induce a continuous mapping between the Fredholm Lagrangian Grassmannians $\mathcal{F}\mathcal{L}\rho_{-}(\beta)$

and $\mathcal{F}\mathcal{L}_{L-}(L)$ which preserves the Maslov index for curves. This gives a slight generalization and a new proof of
the Yoshida-Nicolaescu Spectral Flow Formula for families of Dirac operators over partitioned manifolds.

Introduction.

As conjectured in [1], the index, the $\eta$-invariant, the determinant, and other spectral
invariants of a Dirac operator over a closed partitioned manifold $M=M_{0}\bigcup_{\Sigma}M_{1}$ with $ M_{0}\cap$

$ M_{1}=\partial M_{0}=\partial M_{1}=\Sigma$ can be coded by the intersection geometry of the Cauchy data
spaces along the partitioning hypersurface $\Sigma$ . The Yoshida-Nicolaescu Formula belongs to
this program. It expresses the spectral flow of a family of Dirac operators with the same
principal symbol but continuously varying connections by the Maslov intersection index of the
Cauchy data spaces. The Yoshida-Nicolaescu Formula was first proved in [17] in dimension
3. Subsequently it was generalized in [12] and modified by several authors (see e.g. [2], [3],

[7], [8]).

The presently available spectral flow formulas differ in the underlying assumptions and
the claims made. First of all, the Cauchy data spaces are treated in slightly different ways.
On one side, the Cauchy data spaces are established as $L^{2}$ -closures of smooth sections over
the partitioning hypersurface $\Sigma$ , coming from the restriction to the boundary of all smooth
solutions over one of the parts $M_{j}$ of the partitioned manifold $M$ . In case of the Dirac op-
erator, this Cauchy data space can be represented as the range of the $L^{2}$ -extension of the
Calder\’on projection and established as a Lagrangian subspace of the symplectic Hilbert space
$L^{2}(-\Sigma)\dotplus L^{2}(\Sigma)$ .

On the other side, the Cauchy data spaces can be established as subspaces of the symplec-
tic Hilbert space $\beta$ $:=D_{\max}/D_{\min}$ of natural boundary values, i.e. the boundary values of sec-
tions belonging to the maximal domain $D_{\max}$ of the operator (so in [2], [3], see also [11]). One
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can embed $\beta$ as a non-closed subspace into the distribution space $H^{-1/2}(-\Sigma)\dotplus H^{-1/2}(\Sigma)$ .
This treatment of the Cauchy data spaces is independent of pseudo-differential analysis and
has several conceptual and technical advantages: the arguments work for any symmetric el-
liptic differential operator of first order which satisfies a weak unique continuation property
and admits an extension defining a self-adjoint Fredholm operator. Moreover, no product
structures are required near the boundary. Finally, the space $\beta$ is basic and most suitable for
a short and general proof of the closedness and the Lagrangian property of the Cauchy data
spaces and the continuity of the corresponding transformation from symmetric operators to
Lagrangian subspaces. As observed already in [14], establishing this continuity is the crucial
step in proving spectral flow formulas.

In [2] it was shown that the treatment of the Cauchy data spaces as subspaces of the
natural symplectic Hilbert space $\beta$ can be fully camied out, be based on standard functional
analysis, and it involves only elementary distribution theory. Most important, this approach
permits a wider applicability than the usual treatment of the Cauchy data spaces in the $L^{2_{-}}$

theory. One reason for the disadvantage of the $L^{2}$ -approach might be that it requires rather
deep means like the symbolic calculus and approximation theory which makes it less flexible.

The result of [2] was a rather general spectral flow formula for continuous curves of
symmetric elliptic differential operators, not only Dirac operators, without making some of
the technical assumptions required in $L^{2}$ -theory like product structures near the boundary,
regularity at the endpoints of the curve of operators, or its differentiability.

The present paper is a continuation of [2]. While a major result of that paper was that a
continuous family of symmetric operators induces a continuous family of Cauchy data spaces,
we show now, also by standard arguments, that an additional continuous transformation can be
obtained, at least when all metric structures are product near the separating (or non-separating)
hypersurface: we shall show that the Cauchy data spaces as subspaces of the natural symplec-
tic Hilbert space $\beta$ can be transformed continuously into the Cauchy data spaces of the ‘con-
ventional’ $L^{2}$-theory. This gives the afore-mentioned slight generalization and a new proof of
the $L^{2}$ -Yoshida-Nicolaescu Formula.

In Section 1 we address a fairly general situation in symplectic functional analysis and
prove a ‘criss-cross’ reduction theorem for the Maslov index. In Section 2 we give a con-
densed version of the General Spectral Flow Formula of [2]. In Section 3 we connect the two
preceding sections and give a new proof of the Yoshida-Nicolaescu Formula. In the Appendix
we correct an erroneous description in [2], \S \S 1.1-1.2, and add a lemma to be inserted at the
end of \S 1.2 in [2].

1. Criss-cross reduction of the Maslov index.

Let $\beta$ and $L$ be symplectic Hilbert spaces with symplectic forms $\omega\beta$ and $\omega_{L}$ , respectively.
Let

(1.1) $\beta=\beta-\dotplus\beta+$ and $L=L-\dotplus L+$
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be direct sum decompositions by transversal pairs of Lagrangian subspaces. We assume that
there exist continuous, injective mappings

(1.2) $i-:\beta_{-}\rightarrow L-$ and $i_{+}$ : $L+\rightarrow\beta+$

with dense images and which are compatible with the symplectic structures, i.e.

(1.3) $\omega_{L}(i_{-}(x), a)=\omega_{\beta}(x, i_{+}(a))$ for all $ a\in L+andx\in\beta-\cdot$

Let $\lambda_{0}$ be a fixed Lagrangian subspace of $\beta$ (i.e. a subspace which coincides with its
annihilator $(\lambda_{0})^{0}$ with respect to $\omega_{\beta}$ ). We consider the Fredholm Lagrangian Grassmannian
of $\lambda_{0}$

$\mathcal{F}\mathcal{L}_{\lambda_{0}}(\beta)$ $:=$ { $\mu\subset\beta|\mu$ Lagrangian subspace and $(\mu,$ $\lambda_{0})$ Fredholm pair}.

Recall that a Fredholm pair is a pair of closed subspaces with finite-dimensional intersection
and closed sum of finite codimension. The topology of $\mathcal{F}\mathcal{L}_{\lambda_{0}}(\beta)$ is defined by the operator
norm of the orthogonal projections onto the Lagrangian subspaces. As shown in [3], its fun-
damental group is $Z$ , and the mapping of the loops in $\mathcal{F}\mathcal{L}_{\lambda_{0}}(\beta)$ onto $Z$ is given by the Maslov
index

mas: $\pi_{1}(\mathcal{F}\mathcal{L}_{\lambda_{0}}(\beta))\rightarrow Z$ .
It is an intersection index of the loop with the Maslov cycle

$\mathcal{M}_{\lambda_{0}}(\beta)$ $:=\{\mu\in \mathcal{F}\mathcal{L}_{\lambda_{0}}(\beta)|\mu\cap\lambda_{0}\neq\{0\}\}$ .
Actually, the Maslov index can be defined for all continuous curves

$[0,1]\ni s-\succ\mu_{s}\in \mathcal{F}\mathcal{L}_{\lambda_{0}}(\beta)$

in the following way (see [2] and [3], inspired by [15]):

First we notice that any such $\mu_{s}$ can be obtained as the image of $\lambda_{0}^{1}$ under a suitable
unitary transformation

$\mu_{s}=U_{s}(\lambda_{0}^{\perp})$ .
Here we consider the real symplectic Hilbert space $\beta$ as a complex Hilbert space by the almost
complex structure $J$ with $\omega(x, y)=\langle Jx,$ $y$ ). Note that $U_{s}$ is not uniquely determined by $\mu_{s}$ .
Actually, from $\beta\cong\lambda_{0}\otimes C$ we obtain a complex conjugation so that we can define the
transpose by the following formula

$\tau_{U_{s}}=\overline{U_{s}^{*}}$

and obtain a unitary operator $W_{s}$ $:=U_{s}^{T}U_{s}$ which can be defined invariantly as the complex
generator of the Lagrangian space $\mu_{s}$ relative to $\lambda_{0}$ . The operator $Id+W_{s}$ is a Fredholm
operator because $(\mu_{s}, \lambda_{0})$ is a Fredholm pair (see Lemma A.2 in the Appendix). In particular,
we have

(1.4) $ker(Id+W_{s})=(\mu_{s}\cap\lambda_{0})\otimes C=(\mu_{s}\cap\lambda_{0})+J(\mu_{s}\cap\lambda_{0})$ .
To define the Maslov index $mas(\{\mu_{s}\}, \lambda_{0})$ , we count the change of the eigenvalues of

$W_{s}$ near-l little by little. For example, between $s=0$ and $s=s^{\prime}$ we plot the spectrum of
the complex generator $W_{s}$ close to $e^{i\pi}$ . In general, there will be no parametrization available
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of the spectrum near-l. For sufficiently small $s^{\prime}$ , however, we can find barriers $e^{i(\pi+\theta)}$ and
$e^{i(\pi-\theta)}$ such that no eigenvalues are lost through the bamiers on the interval $[0, s^{\prime}]$ . Then
we count the number of eigenvalues (with multiplicity) of $W_{s}$ between $e^{i\pi}$ and $e^{i(\pi+\theta)}$ at the
right and left end of the interval $[0, s^{\prime}]$ and subtract. Repeating this procedure over the length
of the whole s-interval $[0,1]$ gives the Maslov intersection index $mas(\{\mu_{s}\}, \lambda_{0})$ without any
assumptions about smoothness of the curve, ’normal crossings’ (in the sense of [16]), or non-
invertible endpoints.

REMARK 1.1. (a) The Maslov index for curves depends on the specified Maslov
cycle $\mathcal{M}_{\lambda_{0}}(\beta)$ . It is worth emphasizing that two equivalent Lagrangian subspaces $\lambda_{0}$ and $\hat{\lambda}_{0}$

(i.e., $\dim\lambda_{0}/(\lambda_{0}\cap\hat{\lambda}_{0})<+\infty$) always define the same Fredholm Lagrangian Grassmannian
$\mathcal{F}\mathcal{L}_{\lambda_{0}}(\beta)=\mathcal{F}\mathcal{L}_{\hat{\lambda}_{0}}(\beta)$ but may define different Maslov cycles $\mathcal{M}_{\lambda_{0}}(\beta)\neq \mathcal{M}_{\hat{\lambda}_{0}}(\beta)$ , and the
induced Maslov indices may become different

in general
(1.5) $mas(\{\mu_{s}\}_{s\in[0,1],0}\lambda)-mas(\{\mu_{s}\}\hat{\lambda})$ $\neq$ $0$

(see [3], Proposition 3.1 and Section 5). However, if the curve is a loop, the Maslov index in
infinite dimensions behaves like the Maslov index in finite dimensions and does not depend
on the choice of the Maslov cycle. From that property it follows that the difference in (1.5),

beyond the dependence on $\lambda_{0}$ and $\hat{\lambda}_{0}$ , depends only on the initial and end points of the path
$\{\mu_{s}\}$ and may be considered as the infinite-dimensional generalization $\sigma_{H\ddot{o}r}(\mu_{0}, \mu_{1} ; \lambda_{0},\hat{\lambda}_{0})$

of the H\"ormander index. It is the transition function of the universal covering of the Fredholm
Lagrangian Grassmannian.

(b) We refer to [6] for various aspects of the Maslov index and also to [9], [10] for a
cohomological treatment.

Our main result is the following

THEOREM 1.2. Under the assumptions (1.1), (1.2), and (1.3),
(a) we have a continuous mapping

$\tau$ : $\mathcal{F}\mathcal{L}_{\beta-}(\beta)\rightarrow \mathcal{F}\mathcal{L}_{L-}(L)$

(b) which maps the Maslov cycle $\mathcal{M}\rho_{-}(\beta)$ of $\beta$-into the Maslov cycle $\mathcal{M}_{L-}(L)$ of $L-$
and

(c) preserves the Maslov index

$mas(\{\mu_{s}\}_{S\in[0,1]}, \beta-)=mas(\{\tau(\mu_{S})\}_{S\in[0,1]}, L_{-})$

for any continuous curve $[0,1]\ni s\vdash\Rightarrow\mu_{s}\in \mathcal{F}\mathcal{L}_{\beta-}(\beta)$ .
We prove Theorem 1.2 in a series of small lemmata.

1.1. Definition of the mapping $\tau$ . We consider the direct sum

$\mathcal{D}:=\beta_{+}\oplus L-$ ,
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where $\beta$ and $L$ are identified with subspaces of $\mathcal{D}$ . Then we define the mapping $\tau$ simply by

(1.6) $\tau(\mu)$ $:=\mu\cap L$ for $\mu\in \mathcal{F}\mathcal{L}_{\beta-}(\beta)$ .
Clearly

(1.7) $\tau(\mu)=$ {$i_{-}(a)+x|a\in\beta-,$ $x\in L+such$ that $ i_{+}(x)+a\in\mu$ }.

To prove that range $(\tau)\subset \mathcal{F}\mathcal{L}_{L_{-}}(L)$ and that $\tau$ is continuous, we introduce an altemative
description of $\tau(\mu)$ in terms of bounded operators associated to $\mu$ . For a given $\mu\in \mathcal{F}\mathcal{L}_{\beta-}(\beta)$ ,

we fix a direct sum decomposition
$\mu=(\mu\cap\beta_{-})\dotplus v$

with a suitable closed $v$ . Let $\pi_{+}$ : $\beta\rightarrow\beta+denote$ the projection along $\beta-\cdot$ Then to claim that
$(\mu, \beta_{-})$ is a Fredholm pair is equivalent to claiming that the projection $\pi_{\mu}$ $:=\pi_{+}|_{\mu}$ : $\mu\rightarrow\beta+$

is a Fredholm operator. So we deduce that $F_{\mu}$ $:=\pi_{+}(\mu)=\pi_{\mu}(v)$ is closed. For later use we
notice that

(1.8) $\dim\beta+/F_{\mu}=\dim(\beta+\dotplus\beta-)/(\mu+\beta-)=\dim\mu\cap\beta-<+\infty$ .
By the injectivity of $\pi_{+}|_{v}$ we can write $v$ as the graph of a uniquely determined bounded
operator

$f_{v}$ : $ F_{\mu}\rightarrow\beta-\cdot$

Then we rewrite

(1.9) $\tau(\mu)=i_{-}(\mu\cap\beta_{-})+graph(\varphi_{\mu})$ ,

where
$\varphi_{\mu}$ : $i_{+}^{-1}(F_{\mu})$ $\rightarrow$ $L_{-}$

$x$ $\vdash\rightarrow$ $i_{-}of_{v}oi_{+}(x)$

Since $\varphi_{\mu}$ is bounded and its domain is closed in $L$ , its graph is also closed in $L$ , and so
is $\tau(\mu)$ which differs from graph $(\varphi_{\mu})$ only by a space of finite dimension. More precisely, we
have:

LEMMA 1.3. For each $\mu\in \mathcal{F}\mathcal{L}_{\beta-}(\beta)$ , we have $\tau(\mu)\in \mathcal{F}\mathcal{L}_{L-}(L)$ .
PROOF. Regarding the exact sequence

$0\rightarrow F_{\mu}\rightarrow\beta+\rightarrow^{p}\beta+/F_{\mu}\rightarrow 0$

$\uparrow\iota_{+}$

$L+$

we know by the assumptions that the range of $i+is$ dense in $\beta+and\dim\beta+/F_{\mu}<+\infty$ . So,

the map $p\circ i+is$ surjective. We therefore have

(1.10) $\beta+=F_{\mu}+i_{+}(L_{+})$

and $ker(poi_{+})=i_{+}^{-1}(F_{\mu})$ . It follows that

(1.11) $L+/i_{+}^{-1}(F_{\mu})\cong(F_{\mu}+i_{+}(L_{+}))/F_{\mu}=\beta+/F_{\mu}$ .
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This implies that the closed subspace $\iota_{+}^{-1}(F_{\mu})$ of $L+is$ of finite codimension.
Now let $x,$ $y\in i_{+}^{-1}(F_{\mu})$ and set $a$ $:=;_{+}(x)$ and $b:=;_{+}(y)$ . Then

$\omega_{L}(x+\varphi_{\mu}(x), y+\varphi_{\mu}(y))=\omega_{L}(x, \varphi_{\mu}(y))+\omega_{L}(\varphi_{\mu}(x), y)$

$=\omega_{\beta}(a, f_{\nu}(b))+\omega_{\beta}(f_{v}(a), b)$

$=\omega_{\beta}(a+f_{v}(a), b+f_{v}(b))=0$

by the compatibility condition (1.3) and the isotropy of $v$ . So graph $\varphi_{\mu}$ is isotropic. Moreover,

we have
$\dim(graph(\varphi_{\mu})^{0}/graph(\varphi_{\mu}))=2\dim(L+/i_{+}^{-1}(F_{\mu}))=2\dim(\beta+/F_{\mu})$ .

Here graph $(\varphi_{\mu})^{0}$ denotes the annihilator of graph $(\varphi_{\mu})$ with respect to the symplectic form
$\omega L$ . Clearly,

$i_{-}(\mu\cap\beta_{-})\subset graph(\varphi_{\mu})^{0}$ and $i_{-}(\mu\cap\beta_{-})\cap graph(\varphi_{\mu})=\{0\}$ .
Further, we have

$\dim i_{-}(\mu\cap\beta_{-})=\dim(\mu\cap\beta-)=\dim(\beta+/F_{\mu})$ ,

since the Fredholm index of the Lagrangian pair $(\mu, \beta_{-})$ vanishes. From this dimension
examination we see that adding $i_{-}(\mu\cap\beta_{-})$ to graph $(\varphi_{\mu})$ makes $\tau(\mu)$ a Lagrangian subspace
of $L$ . It also follows that $\tau(\mu)\cap L-=i_{-}(\mu\cap\beta_{-})$ is of finite dimension and that $L-+\tau(\mu)=$

$L-+graph(\varphi_{\mu})$ is of finite codimension, hence $(\tau(\mu), L_{-})$ is a Fredholm pair in L. $\square $

REMARK 1.4. From equation (1.9) it particularly follows that

$\tau(\mathcal{M}_{\beta-}(\beta))\subset \mathcal{M}_{L_{-}}(L)$ .
1.2. The continuity of $\tau$ . We fix a closed $W\subset L$ -with $\dim L-/W<+\infty$ and

choose a Lagrangian subspace $\theta$ of $\beta$ with $\theta$ rh $\beta+tdW_{\beta}\subset\theta\subset W_{\beta}^{0}$ , where $W_{\beta}$
$:=i_{-}^{-1}(W)$ .

Here $rh$ ’ means that the two subspaces intersect transversally. We notice that
$W^{0}=L-\dotplus(L_{+}\cap W^{0})$

and, correspondingly,
$W_{\beta}^{0}=\beta-\dotplus(\beta_{+}\cap W_{\beta}^{0})$ .

Next we exploit that the injection $i-$ : $\beta-\rightarrow L$ -has a dense range. By regarding a similar
exact sequence as in the proof of Lemma 1.3

$0\rightarrow W\rightarrow L_{-}\rightarrow^{q}L-/W\rightarrow 0$

$\uparrow t_{-}$

$\beta-$

we deduce
$L-=W+i_{-}(\beta_{-})$ and $\dim(\beta-/W_{\beta})=\dim(L-/W)$ .

Moreover, we have

(1.12) $ i_{+}(W^{0}\cap L_{+})=W_{\beta}^{0}\cap\beta+\cdot$
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To show the inclusion $\subset$ , we consider any $ x\in W^{0}\cap L+\cdot$ Then $\omega_{L}(x, y)=0$ for all $y\in W$ ,

and hence also for $y=i_{-}(z)$ for any $z\in W_{\beta}=i_{-}^{-1}(W)$ . Now, by (1.3),

$0=\omega_{L}(x, i_{-}(z))=\omega_{\beta}(\oint_{+}(x), z)$ .

So,
$ i_{+}(x)\in W_{\beta}^{0}\cap\beta+\cdot$

We deduce the identity $=$ by the following dimension examination:

2 $\dim(W^{0}\cap L_{+})=\dim(W^{0}/W)=\dim(W_{\beta}^{0}/W_{\beta})=2\dim(W_{\beta}^{0}\cap\beta_{+})$ .
Equation (1.12) permits us to rewrite

$W_{\beta}^{0}=i_{+}(L_{+}\cap W^{0})\dotplus\beta-$

and to define
$i_{W}$ : $W_{\beta}^{0}$ $\rightarrow$

$W^{0}$

$\oint_{+}(x)+z$ $\vdash+$ $x+i_{-}(z)$

for $x\in L+\cap W^{0}$ and $ z\in\beta-\cdot$ We obtain a new splitting of the symplectic Hilbert spaces:

PROPOSITION 1.5. The space $\eta$ $:=i_{W}(\theta)+W$ is a Lagrangian subspace $ofL$ and the
mapping $i_{W}|_{\theta}$ : $\theta\rightarrow\eta$ has a dense image. Further, we have new direct sum decompositions

$\beta=\beta+\dotplus\theta$ and $L=L+\dotplus_{\eta}$

which are compatible with regard to the symplectic forms $\omega_{L}$ and $\omega\rho$ (similar to (1.3)).

PROOF. Clearly

$W\subset\eta=i_{W}(\theta)+W\subset W^{0}$ and $\dim W^{0}/W<+\infty$ ,

hence $\eta$ is also closed and isotropic. We notice that the mapping $qoi_{W}|_{\theta}$ is surjective with
$kerqoi_{W}|_{\theta}=W_{\beta}$ , where $q$ : $\eta\rightarrow\eta/W$ denotes the projection. So,

$W_{\beta}^{0}/W_{\beta}\supset\theta/W_{\beta}\cong\eta/W\subset W^{0}/W$ .
Then, from the dimension examination

$\dim(W_{\beta}^{0}/W_{\beta})=\dim(W^{0}/W)$ ,

it follows that $\eta$ is a Lagrangian subspace of $L$ .
To see that the range of $i_{W}|_{\theta}$ is dense in $\eta$ we recall that the mapping $i_{W}$ : $W_{\beta}^{0}\rightarrow W^{0}$

is an isomorphism $W_{\beta}^{0}\cap\beta+\cong W^{0}\cap L+on$ the first finite-dimensional component, and it is
equal to the dense embedding $i_{-}$ : $\beta-\rightarrow L_{-}$ on the second component, hence its restriction
to $\theta$ has a dense range in $\eta$ .

The new direct sum decompositions and the compatibility of the symplectic forms follow
at once. $\square $

The preceding proposition permits a further simplification of the graph representation of
$\tau(\mu)$ , obtained in (1.9):



120 BERNHELM BOOSS-BAVNBEK, KENRO FURUTANI AND NOBUKAZU OTSUKI

COROLLARY 1.6. $ Forany\mu\in \mathcal{F}\mathcal{L}_{\beta-}(\beta)with\mu$ rh $\theta$ , we have

$\tau(\mu)=graph(i_{W}of_{\mu}oi_{+})$ ,

where $f_{\mu}$ : $\beta+\rightarrow\theta$ such that graph $ f_{\mu}=\mu$ .
Now we can prove the continuity of $\tau$ and the invariance of the Maslov index under $\tau$ .

We set
$\mathcal{F}\mathcal{L}_{W_{\beta}}(\beta)^{(0)}$ $:=\{v\in \mathcal{F}\mathcal{L}_{W_{\beta}}(\beta)|v\cap W_{\beta}=\{0\}\}$ .

Then we have an open covering

$\bigcup_{w}\mathcal{F}\mathcal{L}_{W_{\beta}}(\beta)^{(0)}=\mathcal{F}\mathcal{L}_{\beta-}(\beta)$
,

where the union is taken over all closed subspaces $W\subset L-$ of finite codimension. It follows
that $\tau(\mathcal{F}\mathcal{L}_{W_{\beta}}(\beta)^{(0)})\subset \mathcal{F}\mathcal{L}_{W}(L)^{(0)}$ . Thus, we have established restrictions

$\tau_{W}$ : $\mathcal{F}\mathcal{L}_{W\rho}(\beta)^{(0)}\rightarrow \mathcal{F}\mathcal{L}_{W}(L)^{(0)}$

of $\tau$ for each $W$ .
We fix a $W$ . We denote the space of Lagrangian subspaces in a finite-dimensional sym-

plectic space by Lag $(\cdot)$ and define the reduction map

$\rho_{W\rho}$ : $\mathcal{F}\mathcal{L}_{W\rho}(\beta)^{(0)}$ $\rightarrow$ Lag $(W_{\beta}^{0}/W_{\beta})$

$\mu$ ト\rightarrow $(\mu\cap W_{\beta}^{0}+W_{\beta})/W_{\beta}$

Then, for each Lagrangian subspace $\theta$ in $\beta$ with $\theta\supset W\rho$ and $\theta$ rh $\beta+$ (as before), the set

$U(W\rho, \theta)$ $:=$ {A $\in Lag(W_{\beta}^{0}/W_{\beta})|\Lambda$ rh $\theta/W_{\beta}$ }

is open in Lag $(W_{\beta}^{0}/W_{\beta})$ and we have an open covering

$\cup\rho_{W\rho}^{-1}(U(W\rho, \theta))=\mathcal{F}\mathcal{L}_{W_{\beta}}(\beta)^{(0)}$ .
$\theta h\beta+$

By Corollary 1.6, the mapping $\tau$ is continuous on each $\rho_{W_{\beta}}^{-1}(U(W_{\beta}, \theta))$ , and so it is continuous
on the whole $\mathcal{F}\mathcal{L}_{\beta-}(\beta)$ . This concludes the proof of (a) of Theorem 1.2.

Moreover, we have

$\tau(\rho_{W_{\beta}}^{-1}(U(W_{\beta}, \theta)))\subset\rho_{W}^{-1}(U(W, \tau_{W}(\theta)))$ ,

where the reduction map $\rho_{W}$ : $\mathcal{F}\mathcal{L}_{W}(L)^{(0)}\rightarrow Lag(W^{0}/W)$ is defined corresponding to $\rho_{W_{\beta}}$ .
We denote by

$\overline{\tau_{W}}$ : Lag $(W_{\beta}^{0}/W_{\beta})\rightarrow Lag(W^{0}/W)$

the mapping naturally induced by $\tau_{W}$ . Then we have the following finite-dimensional sym-
plectic reduction:
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PROPOSITION 1.7. The diagram

$\mathcal{F}\mathcal{L}_{\beta_{-}}(\beta)\leftarrow^{\leftrightarrow}\mathcal{F}\mathcal{L}_{W_{\beta}}(\beta)^{(0)}\rightarrow^{\rho_{W_{\beta}}}Lag(W_{\beta}^{0}/W_{\beta})$

(1.13) $\tau\downarrow$ $\tau_{W}\downarrow$ $\downarrow\cong\overline{\tau_{W}}$

$\mathcal{F}\mathcal{L}_{L-}(L)\leftarrow^{\leftrightarrow}\mathcal{F}\mathcal{L}_{W}(L)^{(0)}\rightarrow^{\rho w}Lag(W^{0}/W)$

is commutative.

For any continuous curve $\{\mu_{s}\}_{s\in[0,1]}\in \mathcal{F}\mathcal{L}_{\beta-}(\beta)$ , we can find a closed subspace $ W\subset$

$L-$ of finite codimension such that the whole curve is contained in $\mathcal{F}\mathcal{L}_{W_{\beta}}(\beta)^{(0)}$ , respectively
$\{\tau(\mu_{s})\}_{S\in[0,1]}$ is contained in $\mathcal{F}\mathcal{L}_{W}(L)^{(0)}$ . By finite symplectic reduction we obtain at once:

COROLLARY 1.8. The Maslov index coincides under the transfomations $\tau,$ $\tau_{W}$ , and
$\overline{\tau_{W}}$for loops and also forpaths.

NOTE. For paths, the Maslov index depends on the choice of the Maslov cycle as
pointed out in Remark l.l.a. In Lag $(W^{0}/W)$ , the Maslov index is taken with respect to the
Maslov cycle $\mathcal{M}_{L-/W}(W^{0}/W)$ . Correspondingly, the Maslov index in Lag $(W_{\beta}^{0}/W_{\beta})$ is taken
with respect to the Maslov cycle $\mathcal{M}\rho_{-/W_{\beta}}(W_{\beta}^{0}/W_{\beta})$ . Note that the specified Maslov cycle in
Lag $(W_{\beta}^{0}/W_{\beta})$ is mapped onto the specified Maslov cycle in Lag$(W^{0}/W)$ by $\overline{\tau_{W}}$ .

Proposition 1.7 and Corollary 1.8 together with Remark 1.4 give the proof of (b) and (c)

of Theorem 1.2.

2. The general spectral flow formula.

Let $\mathcal{H}$ be a real separable Hilbert space and $A$ an (unbounded) closed symmetric operator
defined on the domain $D_{\min}$ which is supposed to be dense in $\mathcal{H}$ . Let $A^{*}$ denote its adjoint
operator with domain $D_{\max}$ . We have that $A^{*}|_{D_{\min}}=A$ and that $A^{*}$ is the maximal closed
extension of $A$ in $\mathcal{H}$ .

We form the space $\beta$ of boundary values with the natural trace map 7 in the following
way:

$D_{\max}$
$\rightarrow^{\gamma}$

$ D_{\max}/D_{\min}=:\beta$

$x$ $\vdash\rightarrow$ $\gamma(x)=[x]:=x+D_{\min}$ .
The space $\beta$ becomes a symplectic Hilbert space with the scalar product induced by the graph
norm

(2.1) $(x, y)_{G}$ $:=(x, y)+(A^{*}x, A^{*}y)$

and the symplectic form given by Green’s form

(2.2) $\omega([x], [y])$ $:=(A^{*}x, y)-(x, A^{*}y)$ for $[x],$ $[y]\in\beta$ .
We define the “Cauchy data space” $\Lambda$ $:=\gamma(kerA^{*})$ . It is a Lagrangian subspace

of $\beta$ under the assumption that $A$ admits at least one self-adjoint Fredholm extension $A_{D}$ .
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Actually, we shall assume that $A$ has a self-adjoint extension $A_{D}$ with compact resolvent.
Then $(\Lambda, \gamma(D))$ is a Fredholm pair of subspaces of $\beta$ , i.e. $\Lambda\in \mathcal{F}\mathcal{L}_{\gamma(D)}(\beta)$ .

We consider a continuous curve $\{C_{s}\}_{S\in[0,1]}$ in the space of bounded self-adjoint operators
on $\mathcal{H}$ . From [2] we recall general definition of the spectral flow of the family $\{A_{D}+C_{S}\}_{S\in I}$ .
First we apply the transformation

$\mathcal{R}$ : $C\hat{\mathcal{F}}$
$\rightarrow$

$\hat{\mathcal{F}}$

(2.3)
$A$ $\vdash+$

$\mathcal{R}(A):=A\sqrt{Id+A^{2}}^{-1}$ ,

where $C\hat{\mathcal{F}}$ denotes the space of (not necessarily bounded) self-adjoint Fredholm operators.
We define the convergence in $C\hat{\mathcal{F}}$ by the gap metric, i.e. the convergence of the orthogonal
projection operators onto the graphs of the operators. In [2], the continuity was established of
the composed map

$C\vdash+A_{D}+C\vdash+\mathcal{R}(A_{D}+C)$

from $\hat{\mathcal{B}}$ to $\hat{\mathcal{F}}$. Here $\hat{\mathcal{B}}$ denotes the space of bounded self-adjoint operators on $\mathcal{H}$ and $\hat{\mathcal{F}}$ denotes
the space of bounded self-adjoint Fredholm operators from $\mathcal{H}$ to $\mathcal{H}$ .

Next, exploiting [15], we define the spectralflow by

$sf(\{A_{D}+C_{s}\})=sf(\{\mathcal{R}(A_{D}+C_{s})\})=\sum_{j=1}^{N}k(s_{j}, \epsilon_{j})-k(s_{j-1}, \epsilon_{j})$

with
$k(t, \epsilon_{j})$

$:=\sum_{0\leq\theta<\epsilon_{j}}\dim ker(\mathcal{R}(A_{D}+C_{s})-\theta)$
for $s_{j-1}\leq s\leq s_{j}$ ,

where the horizontal and vertical spacings $(s_{0}, \cdots s_{N}),$ $(\epsilon_{1}, \cdots\epsilon_{N})$ are chosen such that

(2.4) $ker(\mathcal{R}(A_{D}+C_{s})-\epsilon_{j})=\{0\}$ and dimker$(\mathcal{R}(A_{D}+C_{s})-\theta)<\infty$

for $sj-1\leq s\leq s_{j}$ and $0\leq|\theta|<\epsilon_{j}$ .
It is possible to choose a vertical and horizontal spacing which satisfies (2.4).

Now we assume that the operators $A^{*}+C_{s}-r$ have no ’inner solutions’, i.e. satisfy the
weak unique continuation property (UCP)

$ker(A^{*}+C_{s}-r)\cap D_{\min}=\{0\}$

for $s\in[0,1]$ and $|r|<\epsilon_{0}$ with $\epsilon_{0}>0$ .
Clearly, the domains $D_{\max}$ and $D_{\min}$ are unchanged by the perturbation $C_{s}$ for any $s$ .

So, $\beta$ does not depend on the parameter $s$ . Moreover, the symplectic form $\omega$ is invariantly
defined on $\beta$ and so also independent of $s$ . It follows (see [2], Theorem 3.9) that the curve
$\{\Lambda_{s} :=\gamma(ker(A^{*}+C_{s}))\}$ is continuous in $\mathcal{F}\mathcal{L}_{\gamma(D)}(\beta)$ .

Given this, the family $\{A_{D}+C_{S}\}$ can be considered at the same time in the spectral theory
of self-adjoint operators, defining a spectral flow, and in the symplectic category, defining a
Maslov index. Under the preceding assumptions, the main result obtainable at that level is the
following general spectral flow formula (proved in [2], Theorem 5.1):
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THEOREM 2.1. Let $A_{D}$ be a self-adjoint extension of $A$ with compact resolvent and
let $\{A_{D}+C_{S}\}$ be a family satisfying the $UCP$ assumption. Then

$sf\{A_{D}+C_{s}\}=mas(\{\Lambda_{s}\}, \gamma(D))$ .

3. A proof of the Yoshida-Nicolaescu formula.

Let $M$ be a closed connected smooth Riemannian manifold and let $\Sigma\subset M$ be a hyper-
surface. Let

$\{A_{s} :=A_{0}+C_{s} : C^{\infty}(M;S)\rightarrow C^{\infty}(M;S)\}_{0\leq s\leq 1}$

be a continuous family of symmetric elliptic differential operators of first order with the same
principal symbol, acting on sections of a real bundle $S$ over $M$ . The variation of the fixed
operator $A_{0}$ is given by a continuous family $\{C_{s}\}_{S\in[0,1]}$ of smooth symmetric bundle homo-
morphisms. We assume that the normal bundle of the hypersurface $\Sigma$ is orientable and that
all metric structures of $M$ and $S$ are product in a collar neighbourhood $\mathcal{N}=(-1,1)\times\Sigma$ of
$\Sigma$ . We have

(3.1) $A_{s}=\sigma(\frac{\partial}{\partial\tau}+B_{s})$ on $\mathcal{N}$ ,

where $\tau$ denotes the normal coordinate, $\sigma$ is orthogonal (assuming $\sigma^{2}=-Id$), $\sigma B_{s}=-B_{s}\sigma$ ,

and $B_{s}$ is a self-adjoint elliptic differential operator over $\Sigma$ , called the tangential operator.

Here the point of the product structure is that then $\sigma$ and $B_{s}$ do not depend on the normal
variable.

We cut the manifold at $\Sigma$ and attach a copy of $\Sigma$ to each side. So, we obtain a new
manifold $ M\#$ with boundary $\Sigma_{0}u\Sigma_{1}=(-\Sigma)u\Sigma$ . Then the $\beta$ -space of $M_{\beta}$ , being a
$C^{\infty}(\partial M\#)$ -module, splits according to the connected components of $\partial M_{Q}$ and we obtain two
symplectic Hilbert spaces

$\beta$
$:=\beta_{0}\dotplus\beta_{1}$ and $L$ $:=L_{0}\dotplus L_{1}$

with
$\gamma=\gamma_{0}\oplus\gamma_{1}$ : $D_{\max}(M_{\#})\rightarrow\beta_{0}\dotplus\beta_{1}$

and $L_{j}=L^{2}(\pm\Sigma;S|_{\Sigma})$ for $j=0,1$ . We note that $L_{0}$ and $L_{1}$ are naturally identified as
Hilbert spaces, but their symplectic forms have opposite signs. In $\beta$ we have a Lagrangian
subspace

(3.2) $\Delta\rho$ $:=$ { $(x,$ $x)\in\beta_{0}\dotplus\beta_{1}|\gamma_{0}(u)=x=\gamma_{1}(u)$ for $u\in H^{1}(M)$ } ,

where $H^{1}(M)$ denotes the first order Sobolev space. Since $M$ is closed, the operator $A_{s}$ on
$H^{1}(M)$ is a self-adjoint Fredholm operator. It can be identified with the operator $A_{s;D}^{\#}=$

$A_{0,D}^{\#}+C_{s}$ over the new manifold $ M\#$ with domain
$D$ $:=\{u\in D_{\max}(M\#)|\gamma_{0}(u)=\gamma_{1}(u)\}$ ,

i.e. it can be considered a global self-adjoint boundary problem with $\gamma(D)=\Delta\rho$ . (Actually,
$D$ coincides with $H^{1}(M))$ .
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We set $\beta_{-}$ $;=\Delta_{\beta}$ . In $L$ , we have a Lagrangian subspace

(3.3) $L_{-}$ $;=the$ diagonal of $L^{2}(-\Sigma;S|_{\Sigma})\dotplus L^{2}(\Sigma;S|_{\Sigma})$ .

Clearly, the embedding $\beta-\rightarrow L_{-}$ is bounded and dense.
To define suitable complementary Lagrangian subspaces $\beta+tdL+$ , we must fall back

on a spectral resolution $\{\varphi_{k}, \mu_{k}\}$ of $L^{2}(\Sigma)$ by eigensections of $B_{0}$ . (Here and in the following
we do not mention the bundle $S$). For simplicity, we assume $kerB_{0}=\{0\}$ . Otherwise we
must decompose the finite-dimensional symplectic vector space $kerB_{0}$ into two Lagrangian
subspaces and add these spaces to the half parts defined by the spectral cut at $0$ .

Following [3], Proposition 7.15 (for related results see also [5] and [11]), we decompose
$\beta_{0}=\beta_{-}^{0}\dotplus\beta_{+}^{0}$ and $\beta_{1}=\beta_{-}^{1}\dotplus\beta_{+}^{1}$ ,

where
$\beta_{-}^{1}$

$:=\overline{[\{\varphi_{k}\}_{k<0}]}^{H2^{1}(\Sigma)}$

and $\beta_{+}^{1}$

$:=\overline{[\{\varphi_{k}\}_{k>0}]}^{H^{-\not\supset}(\Sigma)}1$

and
$\beta_{-}^{0}$

$:=\overline{[\{\varphi_{k}\}_{k<0}]}^{H^{-\Sigma}(\Sigma)}1$

and $\beta_{+}^{0}$

$:=\overline{[\{\varphi_{k}\}_{k>0}]}^{H^{1}(\Sigma)}z$

In a similar way, we decompose
$L_{0}=L_{-}^{0}\dotplus L_{+}^{0}$ and $L_{1}=L_{-}^{1}\dotplus L_{+}^{1}$

with
$L_{-}^{1}$

$:=\overline{[\{\varphi_{k}\}_{k<0}]}^{L^{2}(E)}$ and $L_{+}^{1}$
$:=\overline{[\{\varphi_{k}\}_{k>0}]}^{L^{2}(\Sigma)}$

and
$L_{-}^{0}:=\overline{[\{\varphi_{k})_{k<0}]}^{L^{2}(\Sigma)}$ and $L_{+}^{0}:=\overline{[\{\varphi_{k}\}_{k>0}]}^{L^{2}(\Sigma)}$

Rewriting

(3.4) $\beta=\beta_{0}\dotplus\beta_{1}=\beta_{-}^{0}\dotplus\beta_{+}^{0}\dotplus\beta_{-}^{1}\dotplus\beta_{+}^{1}$ ,

we obtain

$\beta-=\Delta_{\beta}=$ { $(a,$ $b,$ $a,$ $b)|(a,$ $b)=\gamma_{0}(u)=\gamma_{1}(u)$ with $u\in H^{1}(M)$ }.

Correspondingly, we define
$\beta+:=\{(x, 0,0, y)|x\in\beta_{-}^{0}, y\in\beta_{+}^{1}\}$

and
$L_{+}:=\{(w, 0,0, v)|w\in L_{-}^{0}, v\in L_{+}^{1}\}$ .

Clearly, we have $L=L-\dotplus L+$ , a dense bounded embedding $L+\rightarrow\beta+$ , and $\Delta_{\beta}\cap\beta+=$

$\{0\}$ . From the decomposition (3.4) we have also that $\Delta_{\beta}+\beta+=\beta$ . Then, as explained above
in Section 2, the $\beta$-theory gives the continuity of the family of Cauchy data spaces $\{\Lambda_{s}\}$ (of

the continuous operator family $\{A_{s}\}$ , considered over $M_{u}$ ). They are all Lagrangian subspaces
of $\beta$ and make Fredholm pairs with $\beta-=\Delta_{\beta}=\gamma(H^{1}(M))$ . From the General Spectral Flow
Formula (here Theorem 2.1) and by the criss-cross reduction of the Maslov index (Theorem

1.2), we obtain
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(3.5) $sf\{A_{0}+C_{s}\}=sf\{A_{0,D}^{\#}+C_{s}\}$

Th.2.1(3.6) $=$ $mas(\{\Lambda_{s}\}, \Delta_{\beta})$

(3.7) $Th12=mas(\{\Lambda_{s}\cap L\}, L_{-})$ .

Note that here

$\Lambda_{s}\cap L=$ { $u|_{(-E)u\Sigma}|u\in H^{1}2(M\#)$ and $A_{s}(u)=0$ in $ M\#\backslash \partial M\#$ },

i.e. it coincides with the $L^{2}$ -definition of the Cauchy data spaces.
In the particular case of a partitioned manifold

$M=M_{0}\cup\Sigma M_{1}$ with $\Sigma=\partial M_{0}=\partial M_{1}=M_{0}\cap M_{1}$ ,

not only $\beta$ and $L$ split but also the Cauchy data spaces split
$\Lambda_{s}=\Lambda_{s}^{0}\dotplus\Lambda_{s}^{1}$ ,

according to the splitting of $M$ into two parts. So, we obtain from (3.7) the Yoshida-Nicolaescu
Formula, though without any assumptions about the regularity at the endpoints or the differ-
entiability of the curve:

THEOREM 3.1.
$sf\{A_{0}+C_{s}\}=mas(\{\Lambda_{s}^{0}\cap L^{2}(-\Sigma)\dotplus\Lambda_{s}^{1}\cap L^{2}(\Sigma)\}, L-)$

$=:mas(\{\Lambda_{s}^{0}\cap L^{2}(-\Sigma)\}, \{\Lambda_{s}^{1}\cap L^{2}(\Sigma)\})$ ,

where the last expression is given by thefomula ofthe Maslov index ofFredholm pairs oftwo
curves.

REMARK 3.2. (a) We notice that the subspaces $\beta$-and $L$ -are defined indepen-
dently of a reference tangential operator, here $B_{0}$ , but the choice of any other reference oper-
ator $B_{s}$ would have given a different decomposition, though not a different result.

(b) In the literature on the Yoshida-Nicolaescu formula (see e.g. [7], [8], [12]) one
always assumes a product structure near $\Sigma$ , whereas the general spectral flow formulas, as
proved in [2] and expressed in [3] in $\beta\subset H^{-1/2}(\Sigma)$ , do not require product structures near $\Sigma$ .
However, we also need product structures near $\Sigma$ to apply our criss-cross reduction theorem
and to transform the general spectral flow formulas, expressed in distribution spaces, into $L^{2_{-}}$

formulas. Possibly, the criss-cross reduction theorem may provide one explanation for the
need of product structures for $L^{2}$ -formulas.

(c) We also want to point to a misprint in [3], p. 74 (after Equation (7.13)), where it
must read that ’ $\gamma(S)\cap L^{2}(\Sigma)\wedge$ is not closed in $ L^{2}(\Sigma)\wedge$ instead of ’ $\gamma(S)\cap L^{2}(\Sigma)$ is not closed
in $L^{2}(\Sigma)$ .

Appendix. Corrections and Addendum to [2].

In this Appendix we shall correct a statement which was made in [2] but is not valid in
general. We also shall explain why the main results of [2] remain valid.
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Let $\mathcal{L}$ denote the space of all Lagrangian subspaces of a real separable symplectic Hilbert
space $\mathcal{H}$ , and let $\mathcal{L}^{C}$ denote the space of all complex Lagrangian subspaces $(L^{\perp}=J\otimes Id(L))$

of $\mathcal{H}\otimes C$ . The full group $\mathcal{U}(\mathcal{H})$ of unitary operators of $\mathcal{H}$ acts on $\mathcal{L}$ but not on $\mathcal{F}\mathcal{L}_{\lambda_{0}}(\mathcal{H})$ ,

whereas the reduced group $\mathcal{U}_{c}(\mathcal{H})$ does. It consists of unitary operators of the form $Id+K$ ,

where $K$ is a compact operator. This is a very interesting and useful group. But it is too small
to generate the whole Fredholm Lagrangian Grassmannian $\mathcal{F}\mathcal{L}_{\lambda_{0}}(\mathcal{H})$ .

In [2], below on p. 5, we claimed that the reduced group acts transitively on $\mathcal{F}\mathcal{L}_{\lambda_{0}}(\mathcal{H})$ ,

i.e. the mapping
$\rho$ : $\mathcal{U}_{c}(\mathcal{H})$ $\rightarrow$ $\mathcal{F}\mathcal{L}_{\lambda_{0}}(\mathcal{H})$

$U$ $\vdash+$ $U(\lambda_{0}^{1})$

is $su\dot{q}ective$ . This claim is not correct in general, since the difference of the orthogonal pro-
jections onto a Fredholm pair of closed subspaces of $\mathcal{H}$ is generally not of the form $Id+K$ .
It can become an arbitrary Fredholm operator as proved in [3], Appendix.

If we replace $\mathcal{U}_{c}(\mathcal{H})$ by $\mathcal{U}(\mathcal{H}),$ $\mathcal{F}\mathcal{L}_{\lambda_{0}}(\mathcal{H})$ by $\mathcal{L},$ $\mathcal{U}_{c}(\mathcal{H}\otimes C)$ by $\mathcal{U}(\mathcal{H}\otimes C)$ , and
$\mathcal{F}\mathcal{L}_{\lambda_{0}\otimes C}^{C}(\mathcal{H}\otimes C)$ by $\mathcal{L}^{\mathbb{C}}$ , the remainder of [2], \S \S 1.1-1.2 remains valid. In the following, the
mappings and diagrams of \S \S 1.1-1.2 of [2] are corrected where necessary. A new Lemma
A.2 is added which is of independent interest.

The group $\mathcal{U}(\mathcal{H})$ (resp. $\mathcal{U}(\mathcal{H}\otimes C)$ ) acts transitively on $\mathcal{L}$ (resp. on $\mathcal{L}^{C}$ ). So let

$\rho$ : $\mathcal{U}(\mathcal{H})$ $\rightarrow$
$\mathcal{L}$

(A.1)
$U$ $\vdash*$ $U(\lambda_{0}^{1})$

and
$\rho^{C}$ : $\mathcal{U}(\mathcal{H}\otimes C)$ $\rightarrow$

$\mathcal{L}^{\mathbb{C}}$

(A.2)
$g$

$\vdash\rightarrow$ $g(\lambda_{0}^{\perp}\otimes C)$

denote the mappings defined by these actions. We obtain a commutative diagram

$\mathcal{U}(\mathcal{H})\rightarrow^{\tau\tilde}\mathcal{U}(\mathcal{H}\otimes C)$

(A.3)
$\downarrow\rho$ $\downarrow\rho^{C}$

$\mathcal{L}$
$\rightarrow^{\tau}$ $\mathcal{L}^{C}$

where $\tau$ and $\tilde{\tau}$ denote the complexification. Recall that the space $\mathcal{H}\otimes C$ splits into a direct
sum of the two eigenspaces $E_{-},$ $E+ofJ\otimes Id$ for the $eigenvalues\mp\sqrt{-1}$ .

Corresponding to [2], Proposition 1.3 we have

PROPOSITION A. 1. The mapping
$\rho^{\mathbb{C}}\circ\Phi$ : $\mathcal{U}(\mathcal{H})\rightarrow \mathcal{L}^{C}$

is a homeomorphism, where $\Phi$ is the mapping
$\Phi$ : $\mathcal{U}(\mathcal{H})$ $\rightarrow$ $\mathcal{U}(\mathcal{H}\otimes C)$

$U$ $\vdash\succ$ $\left(\begin{array}{ll}Id & 0\\0 & U\end{array}\right)$ .
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Here Id operates on E-and $U$ on $ E+\cdot$

Now we must add the following lemma to [2], following Definition 1.4:

LEMMA A.2. Let $\mu\in \mathcal{L}$ and $\mu=U(\lambda_{0}^{\perp})$ . Then we have that

$\mu\in \mathcal{F}\mathcal{L}_{\lambda_{0}}(\mathcal{H})\Leftrightarrow U\overline{U}^{-1}+Id$ is a Fredholm operator.

PROOF. By identifying $\mathcal{H}\cong\lambda_{0}\otimes C\cong\lambda_{0}\oplus\sqrt{-1}\lambda_{0}$ , we represent $U$ as
$U=X+\sqrt{-1}Y$

with $X,$ $Y$ : $\lambda_{0}\rightarrow\lambda_{0}$ . Since
$U\overline{U}^{-1}+\overline{U}\overline{U}^{-1}=(U+\overline{U})\overline{U}^{-1}=2X\overline{U}^{-1}$

we have that $U\overline{U}^{-1}+Id$ is a Fredholm operator, if and only if $X$ is a Fredholm operator.
(Notice that it is not sufficient to assume that $X=Id+K$ with $K$ compact operator).

First we assume $\mu\in \mathcal{F}\mathcal{L}_{\lambda_{0}}(\mathcal{H})$ . Then we know already by [2], Equation (1.1) that

(A.4) $kerX=\mu\cap\lambda_{0}$ ,

and we have also

(A.5) $\mu+\lambda_{0}=\{-Y(x)+\sqrt{-1}X(x)+y|x, y\in\lambda_{0}\}$ .

So

(A.6) $\mathcal{H}/(\mu+\lambda_{0})\cong\lambda_{0}/range(X)$ ,

hence range(X) is closed and of finite codimension in $\lambda_{0}$ .
Conversely, if $X$ is a Fredholm operator, then also by (A.4), (A.5), and (A.6) we have

$\mu\in \mathcal{F}\mathcal{L}_{\lambda_{0}}(\mathcal{H})$ . $\square $

In the preceding proof we split unitary operators on $\mathcal{H}$ into a real and an imaginary part,
regarding a fixed Lagrangian subspace $\lambda_{0}$ . Let us denote the subspace of unitary operators
which have a Fredholm operator as real part by $\mathcal{U}(\mathcal{H})^{Fred}$ . This is the total spaoe of a principal
fibre bundle over the Fredholm Lagrangian Grassmannian $\mathcal{F}\mathcal{L}_{\lambda_{0}}(\mathcal{H})$ as base space and with
the orthogonal group $\mathcal{O}(\mathcal{H})$ as structure group. The projection is given by the restriction of
the trivial bundle $\rho$ : $\mathcal{U}(\mathcal{H})\rightarrow \mathcal{L}$ of (A.3). The new bundle

$\mathcal{U}(\mathcal{H})^{Fred}\rightarrow^{\rho}\mathcal{F}\mathcal{L}_{\lambda_{0}}(\mathcal{H})$

is also trivial as a principal fibre bundle, but it may be considered as the infinite-dimensional
generalization of the well-studied bundle $U(n)\rightarrow Lag(R^{2n})$ for finite $n$ .
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