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0. Introduction.

Let K /k be a finite extension of global fields. Let J(K) be the idele group of K and
Nk /k the norm map from K to k. We say that Hasse norm principle holds for K /k if k* N
Ng/kJ(K) = Nk i K*.

In number field case, several authors have studied the validity of Hasse norm principle
for abelian extensions. It is very closely tied up with central extensions. In [Ge2], Gerth gave
necessary and sufficient conditions for Hasse norm principle to hold for cyclotomic fields. In
[K], Kagawa gave conditions for Hasse norm principle to hold for maximal real subfields of
cyclotomic fields. Central extensions are also useful in studying ideal class groups ([CoRo],
[Fr], [Fu3)).

Let k = F4(T) be the rational function field over finite field F,, where g = pf,p=
char(k) and A = F,[T]. For any monic polynomial m € A, let k(Ap) be the m-th cyclotomic
function field and k(Ay,) T its maximal real subfield.

In this paper, we define central class fields of Galois extensions of function fields, give
necessary and sufficient conditions for Hasse norm principle to hold for k(Ay,) and k(Am)T,
and find lower bounds for the £-rank of ideal class groups of k(Ap) and k(Am)™.

1. Central class field and Genus field.

Let k be a global function field over a finite field F,. Let co be a place of degree 1 of k
and Oy, the ring of regular elements outside oo of k. Let Ex be the unit group of Ok, which is
just ;. We write koo to be the completion of  at co. We fix a sing function sgn : k5, — Fp
and choose a uniformizer 7 of koo With sgn(r) = 1. Denote by C the field koo ( 9 /).
In the following we mean by an extension of k, a separable extension of k for which any
embeddings into k% lies in C viewing as a subfield of k2¢.
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Let K be a finite Galois extension of k and So.(K) the set of places of K lying above oc.
Let Ok be the integral closure of Oy in K. For each v € So(K), the completion K, of K at
v is a finite Galois extension of ks in C. Let N, be the norm map from K, to k. Define a
sign map

sgny : K§ — Fy

by sgny(x) = sgn(Ny(x)).

Let J(K) be the idele group of K and

UK) = {(xyp) € J(K) : xy isunitin K,,, o ¢ Seo(K)},

Ur(K) = {(xy) € U(K) : sgny(xy) =1, v € So(K)}.
Let Hg and H,'}' be the Hilbert class field and narrow Hilbert class field of Ok, respectively.
Then by class field theory, Hg corresponds to K*U (K) and H,'('" to K*U,+(K),i.e.

Gal(Hk /K) ~ J(K)/K*U(K)

Gal(HE /K) ~ J(K)/K*U+(K).

Let Cl(Ok) and Cl4(Ok) be the ideal class group and narrow ideal class group of Ok
respectively. Then we also have

Cl(Ok) ~ Gal(Hg /K)
Cl4(Ok) ~ Gal(H{ /K) .

We define the genus field G(K / k) to be the maximal extension of k in Hx which is the
composite of K and some abelian extension of k. Similary we can define the narrow genus
field G + (K / k) replacing Hk by H .

An extension L/K is called central extension of K /k if it is Galois extension over k
and Gal(L/K) is contained in the center of Gal(L/k). We write Z(K /k) and Z (K /k) for
the maximal central extension of K /k inside Hx and H,'(*', respectively. We call Z(K /k) the
central class field and Z (K /k) the narrow central class field of K [k, respectively. Then
one can follow Furuta ([Ful], [Fu2]) to get the following two lemmas.

LEMMA 1.1. Let K/k be a finite Galois extension and denote G = G(K/k) and
G+ =G4+ (K/k).

(i) The genus group Gal(G/K) of K /k is given as

Gal(G/K) = NgkJ(K)/(NkkJ (K) N (K* Nk 1U(K)))
and its order, called the genus number of K / k, is given by
h&) [1, ev

[Ko : KI[Ek : Ex N Nk /xU(K)]
where Ky is the maximal abelian extension of k contained in K, e, is the ramification index

of a place v of k in Ko, and h(k) is the ideal class number of O.
(ii) The narrow genus group Gal(G4+/K) of K /k is given as

Gal(G+/K) = Nk J (K)/(Nk /& J (K) N (K*Nk kU4 (K)))

9K /k =
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and its order, called the narrow genus number of K / k, is given by
gt = hy (k) [Ty 00 €v
K/k [Ko : k]
where h (k) is the narrow ideal class number of Oy.

LEMMA 1.2. Let K/k be a finite Galois extension. Denote Z = Z(K/k), Zy =
Z, (K /k). Then the Galois groups Gal(Z/K) and Gal(Z4 /K) are given as;

Nk /kJ(K)
Ng/kK*NgrU(K) '

Gal(Z/K) ~

Nk /xJ(K)
Ng/kK*Ng kU (K)

Gal(Z4+/K) ~

Denote
A(K /k) = (k* N Nk/xJ(K))/Nk /i K*

and

B(K/k) = (k* " (Nk/xU(K)Nk/kK*))/Nk kK™
= Ex N Ng/kJ(K)/Ex N NK/kK* .

Then it is easy to show that Gal(Z/G) is isomorphic to A(K/k)/B(K /k). Similarly one can
get

Gal(Z+/G4) =~ A(K/kK),

since Ex N Ng/xU4(K) is trivial. In the number field case it is only true when the base field
k is the field of rational numbers.
Following Frolich [Fr] we have

PROPOSITION 1.3. i) The exponents of Gal(Z/G) and Gal(Z,/Gy) divide
[K : k]

i) If CI(Oy) is trivial, then the exponents of Gal(Z/K) and Gal(Z,/K) divide
[K : k]

iii) Suppose that K = G(K/k) (resp. K = G4+(K/k)), or that Cl(Oy) is trivial. If
[K : k] is a power of a prime number £, then K = Z(K /k) (resp. K = Z,(K/k)) if and
only if the £-part of Cl1(Ok) (resp. Cl+(Ok)) is trivial.

2. Hasse Norm Principle.

We say Hasse Norm Principle (HNP, for short) holds for K/ k if every local norm in k is
a global norm, that is, A(K / k) is trivial. Thus HNP holds for K /k if and only if Z, (K /k) =
G, (K/k). When K/ is finite abelian, then there is a nice criterion for HNP to holds.

PROPOSITION 2.1 ([R, Theorem 2]). Let K /k be a finite abelian extension. Then HNP
holds for K / k if and only if HNP holds for every maximal subextensions of prime exponent.
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Now let K /k be a finite abelian extension of exponent £, where £ is a prime number. Let
G = Gal(K /k) and X be the group of characters of G. If [K : k] = €", we may view G and
/\2G as F¢-vector space of dimension r and (;), respectively. Let {x1, x2--- , xr} be a basis
of X¢ over Fy. Let S be the set of all finite primes of k which ramify on K. For each prime
peS,let{gi, g2, 9s} be abasis of the decomposition group G, over Fe. Let [8;4,08]p be
the matrix over Fy with s(s — 1)/2 rows and r(r — 1) /2 columns whose entry 8;, og in the tu
row and o column is defined by the relation;

Stua
(Xa A x8)(8: A Bu) = g’ p ,

where ¢, is a fixed primitive £-th root of unity and A is the exterior product. Let A(K/k) be
the matrix over F; whose rows consist of all the rows of the matrices [8;4,08]p as p runs over
all elements of S.

PROPOSITION 2.2 ([Gel, Theorem 3]). Let K/k be a finite abelian extension of expo-
nent £. Then the followings are equivalent,
(i) HNP holds for K / k.
(ii) A(K/k) has trivial £-rank.
(iii) A(K/k) has rank r(r — 1)/2, where r is the £-rank of Gal(K / k) .

Now we use this criterion to test the HNP for the cyclotomic function fields and maximal
real subfields of cyclotomic function fields.

3. HNP for k(Am)/ k.

Let k be the rational function field F,(T') over finite field F,, g = pf , p = char(k) and
A = F4[T]. Let oo be the place of k corresponding to (1/7). Let m be a monic polynomial
with irreducible factorization

™ m=p{'py - pg,
and let d; = degp; for each i. For each prime number ¢, k(Am), denotes the maximal
extension of k of exponent £ contained in k(Apy) and we will write Ag(m) for A(k(Am)e/ k).
We assume that g is odd.

If z = 1in (*), then p; is the only finite prime of £ which ramify (in fact, totally) in
k(Am). So the decomposition group Gy, of p; is all of G and so HNP holds for k(Am)/ k.

If z > 4in (*), then z < z(z — 1)/2. Since 2-rank of Gal(k(Am)/k) is z, A2(m) has at
most z rows. So HNP does not hold for k(Aw)2/k and also for k(Awm)/k, by Proposition 2.1.

It remains to consider the cases: z = 2 and z = 3.

THEOREM 3.1. Letm = pi‘p;z. Then HNP holds for k(Aw)/k if and only if the
following conditions are satisfied,
(i) For each prime divisor £ of (q“'1 -1, qd2 -1

X% = p;modp;
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or
Xt = p2 mod p;

is not solvable.
(i) Ifey,ez >2,thenq = pandd; = 1, e; =2 for some i and

? =pjmodp; (j #i)
is not solvable.

PROOF. By Proposition 2.2, we need to consider the validity of HNP for k(Am)¢/k for
each prime number £.

For £ # p, if £ does not divide (g% — 1, g% — 1), then k(Am)¢/k is cyclic extension
and so HNP holds.

For a prime divisor £ of (g% — 1,¢q% — 1), G = Gal(k(Am)e/k) =~ (Z/€Z)?. Let x;
be a multiplicative character on the inertia group Tp; of order £, t; an element of Ty, dual

to x;, and o;; the Frobenius automorphism at the prime p; in the extension k(Ay,). Define
<e)
sl(e]) € Fo (i # j)as xi(oji) = ge , where ¢y is a fixed primitive £-th root of unity. We use

g, j for ei(? for simplicity where no confusion arises. Then the matrix A¢(m) is given as

€21
-e1,2)

by taking a basis {t;, 0i;} of Gp,. So A¢(m) has rank 1 if and only if &2,; # O or &12 # 0.
But ¢; ; # 0 is equivalent that X ¢ =p,; mod p; is not solvable.
Now we consider the case £ = p. If e; = 1 for some i, thenk(Am)p = k(Apg,- )p (G #1)

for which HNP holds. So we only need to consider the case that ey, e2 > 2. Frolm Theorem
3.3 in [Cl], we know that Gal(k(Apg,- )/ k) has p-rank r; as

‘ e — 1
r,=logpqxd,~x{e,-—1——|: > ]]

Let Ty, be the inertia group of p; in G = Gal(k(Am)p/k). Then G = Tp, Tp,, so p-rank of
G isr = ry +rp. Since Gy, / Ty, is a cyclic group, p-rank of Gy, is r; or r; + 1. Hence p-rank
of H3(Gyp,, Z) is (§) or ("+l) and

2
p-rank of A(k(Am)p/k) = ( ) Z( )

Hence HNP holds for k(Aw)p/k only if riry — (r1 + r2) < 0. The right hand side occurs if
~andonly if r{ =r; =2 orr; = 1 for some i.

When r; = rp = 2, let {x1,1, x1,2} be a basis of the dual group of Ty, over F, and
{x2.1, x2,2} basis of the dual group of Tp, over F,. Then with respect to the basis {x1,1 A

X1.2> X11IA X215 X1.1 A X2,25 X1,2 A X2.15 X1,2 A X2,2, X2,1 A X2,2}, by choosing suitable bases
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of Gyp,’s the matrix Ap,(m) is given by

1 0 0 0 0 0
0  [p1, x2,1] (b1, x2,2] 0 0 0
0 0 0 [p1, x2,1] p1, x22] O
0 0 0 0 0 11
0 —Ip2, x1,1] 0 —[p2, x1,2] 0 0
0 0 —[p2, x1,1] 0 —[p2, x1,2] O
where [p;, xjx] € F, (i # j) is defined by xjx(01;) = ¢P""* 5, is defined similarly as
before. Since the determinant
det(A ,(m))
= —[p1, x2,11[p1, x2,21p2, x1,11[P2, x1,2] + [P1, x2,21[P1, x2,11[P2, x1,1][P2, Xx1,2]
=0,

HNP does not hold for K (Am),/K.

When r; = 1 and r; > 1 arbitary, clearly we have ¢ = pandd; = 1,¢; = 2. In
this case, Ty, >~ Z/pZ and Tp; =~ (Z/pZ)’/. Let x; be a character modulo p? of order p
and {x2,1, x22°** Xz,r,-} be a basis of dual group of ij. With respect to the basis {1 A

X2,1 X1 A X227+ 5 XUA X2,rj5 X2,1 A X2,2° 5 X2,rj—y N X2,r;}, again by choosing suitable
bases for Gp,’s the matrix A ,(m) is given by
([Pi, x21l  [pis x221 -+ [pisx2r] O O .-+ 0O
0 0 0 1 0 --- 0
0 0 0 01 --- 0
0 0 0 00 1
—Ipj, x1} 0 0 00 0
0 —[pj, x1l 0 00 0
K 0 0 -+~ —[pj,x1] 0 O --- 0/

So we see that Ap,(m) has rank r(r — 1)/2, where r = rj + 1, if and only if [p;, x1] # O.
And this condition is equivalent to the fact that X? = p; mod piz is not solvable. [J

For a prime divisor £ of g — 1 and monic irreducible polynomial p, let (3)8 be the £-th
reciprocity symbol. For another monic irreducible polynomial q # p, define [q, p]¢ € F¢ as

)\ _ ,lapk
(P)e ‘e ’

where ¢ is a fixed primitive £-th root of unity. From the £-th reciprocity law

-1
9 (P) = (1) deaprdez@
(-1 ,

P/e\a/e
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we see that [q, ple = [p, ql¢, except the case that ¢ = 3 mod 4, £ = 2 and deg(p), deg(q) =1
mod 2. And in this exceptional case, we have [q, pl> = [p, ql> + 1.

THEOREM 3.2. Let m = pi'p3?p5’. Then HNP holds for k(Am)/k if and only if the
following conditions are satisfied,

i g=3
(i) [p1, p3l2lp2, p1l2lps, p2l2 # [p1, p212[p3, p1]2lp2, p3l2
(iii)  For any odd prime divisor £ of (qd1 -1, qd2 -1, qd3 — 1),

£2,163,261,3 F £1,263,182,3

where let x; denote a character of Ty, of order £ and €; j € ¥y (i # j) is defined as xi(pj) =
¢ ; “J and ¢ is a fixed primitive £-th root of unity.

(iv) For odd prime number £ dividing exactly two of g% — 1, q® —1, and g% — 1 (say
q% — 1 and g% — 1), then

Xt = pi modpj or xt= pj mod p;

is not solvable.

V) Ifei >2(=1,2,3),thend; =1,¢e; =2foralli.

(vi) Ifexactly two of ey, ez and e3 > 2 (say ej, ex = 2),thenqg =p,dj =1,e; =2
for some j and X? = py mod p% is not solvable.

PROOF. For each prime divisor £ of g — 1, let x; be the character defined by (p_,) ¢
With respect to the basis {x1 A x2, X1 A X3, X2 A x3}, the matrix Ag(m) is given by

[p2. p1le [p3, p1le 0
—[p1, p2le 0 [p3,p21¢ |
0 —[p1,p3le —[p2,p3le

and its determinant

det(Ag(m)) = [p2, p1lelp3, p2lelp1, P3le — [P1, P2lelp3, P1lelp2, p3le -

Note that ¢ = 3 is the only one such that ¢ = 3mod4 and 2 is the unique prime divisor.
Except the case that g = 3, £ = 2, det(A,(m)) = 0 hence HNP does not hold for k(Am)¢/k.
Thus we must have g = 3 and so we get (i) and (ii).

For (iii), we only replace the £-th reciprocity symbol (E) o by a character x; modulo p;
of order £ to get the condition. (iv) is just the case of (i) in Theorem 3.1.

Now we consider the case £ = p = 3. When at most one of e;, e and e3 is greater than
1 (say e;), then the decomposition group Gy, of p; is all of G = Gal(k(Am)p/k). So HNP
always holds for k(Am)p/k.

When exactly two of ej, ey and e3 are greater than 1, this is just the case of (ii) in
Theorem 3.1.

Now assume that ey, €3, e3 > 2. Let Ty, be the inertia group of p; in G = Gal(k(Am)p/
k). Then G = Ty, Ty, Ty, s0 p-rank of G is r = r1 + ry +r3. Since Gy, / Ty, is a cyclic group,
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p-rank of Gy, is r; or r; + 1. Hence p-rank of H=3(Gp,, Z) is (}) or ("3') and

3
p-rank of A(k(Am)p/k)) = (;) — Z (r,- ;- 1) = (rira +rir3s +rar3) — (ri +r2+r3).
i=1

Thus HNP holds for k(Am)p/k only if (rirp + rir3 + rar3) — (ry + ro + r3) < 0. The right
side occurs if and only if r} = rp =r3 =1 (i.e. d; = 1,e; = 2 for all i). In this case, any
element of (Fp[T]/p,.z)* can be written uniquely as co(1 + c¢1p;) mod p%, where co, ¢; € Fp,
and x; (co(1 + c1p; mod p?) = c; defines a character modulo p? of order p. With respect to
the basis {x1 A x2, X1 A X3, X2 A x3}, the matrix A3(m) is given by,

(p1—p2)7'  (p1—p3)7! 0
—(p2 — p1)~! 0 p2—p3)7 1 |,
0 —(p3—p)7! —(p3—p2)7!

and its determinant det(Az(m)) is

Pr—p) ' 2 =) s —p) T = (2 —p) T 1 — ) T (3 — ) !
which is not zero. Here we note that p; — p; is an element of F7, since p; and p; are monic
of degree 1. So we get (v). (vi) is just the case of (ii) in Theorem 3.1.

REMARK. From (ii) of the Theorem 3.2, we must have that at most one of deg p;’s is
even.

4. HNP for k(Am)*/k.

Letm = p$'p52 - - - pg? be as before. First we note that k(Am); = k(Am)e, for any prime
number £ { ¢ — 1. Thus it suffices to consider k(Am)] for €| g — 1; We will write Ag(m)™*
for A(k(Am)7 /). ‘

For ¢ |q — 1, we know ([A, Lemma 3.2]) that if d; = Omod ¢, then k(¥p;) C k(Ap,.)"'
and otherwise k(/—p;") C k(Ay,), where 1 < n; < £ — 1 and n;d; = 1 mod £. Hence if
d; = Omod £ for all i, then

k(Am)y = k(Am)e = k(/P1, /P2, -+ » /P2) -

LEMMA 4.1. Suppose that di, dy # Omod£. Then k(/p1™ p2—1"2) is the unique
cyclic extension of degree £ over k contained in k(Ap,p,)". (ﬁ v (5)2"2 defines a character

of Gal(k(v/p1"1p2€—Dn2) / k) of order ¢.

PROOF. By Lemma 3.2([A]), we see that k(v/p;”1p2¢—Dn2) is contained in k(Ap,p,).

Since p}’ pg"l)"z is monic and its degree satisfies n,d; + (£ — 1)nad; = Omod £,

k(y/p1mp2€Dm) C k(Ap,p,) 7T



CENTRAL EXTENSIONS AND HASSE NORM PRINCIPLE 101

From the Chinese remainder theorem ( ) (pz) ~2 is nontrivial and so has order £. Now it

suffices to show that (-& e v (& o) —"2 = 1 for any ¢ € F. But it follows from the formula

(s) oS degp
b/

for any monic irreducible polynomial p and c € Fz. [

Ifdi,dy, -+ ,d; ¥ Omod¥ and d; 41, -+ ,d; = Omod¥£, then by Lemma 4.1, we see

k(Am)Z' =k (f/plnlpz(f—l)nz Ly, ,e/plnlpi(l—l)ni s Pirt, «e/P_z) ,

so its Galois group‘ has £-rank z — 1.
Clearly as in k(Am), if z = 1, then HNP holds for k(Am)*/K. If z > 5, then

Gal (k(Am);' /k) has 2-rank at least z — 1 > 4. So HNP does not hold for k(Am)gL /k.
It remains to consider: z =2,z =3 and z = 4.

THEOREM 4.2. Let m = p}'p3>. Then HNP holds for k(Am)*/k if and only if the
following conditions are satisfied,

(i) For a prime number £ { g — 1, HNP holds for k(Am)e/k.

(i) For a prime number £ | qg—1,ifdy =d, =0 mod £, then

P2 P1
= 1 — 1.
(Pl)e ” o (bz)e *

PROOF. For £ | q — 1, if d; # Omod £ for some i, then k(Am) /k is cyclic extension
and so HNP holds. If dy =d; =0 mod ¢, k(Am)e = k(Am)e So we get (ii). O

THEOREM 4.3. Letm = p$'p5*p5>. Then HNP holds for k(Am)* /k if and only if the
Jollowing conditions are satisfied,

(i) For a prime number £ t q — 1, HNP holds for k(Awm)e¢/ k.

(i) For a prime number £ | q — 1, at most two of d1, d» and d3 are divisible by £ and

(1) ifd; #0mod¥ and dj = dr = Omod¥, then ( )e # 1.

(2) ifdi,d; # Omod £ and dy = Omod ¥, then (E;)e # lor (8), # 1.

(3) ifdi,d2,ds # O0mod ¥ then nyez,1 # n3es,1, n2€1,2 # N3€32 Or N1€1,3 # N2€23.
Here ¢; j is given as in Theorem 3.2.

that

PROOF. For a prime number ¢ | g — 1, if di, d; and d3 are all divisible by £, then
k(Am)Z' = k(Am)¢ for which HNP does not hold (Theorem 3.2).

Whend; % Omod{ andd; = d;y =0mod ¢, k(Am)2|~ =k(Am)e = k(.‘/pj, .‘/pk). Since
(B £)e = ( L),, we get the condition as (ii) in Theorem 3.1.

When d;, dj # Omod £ and dy = Omod £, k(Am)y = k(Jpi p; €D, ¥pr). Let xi,j
be the character defined by (3 A (E})e_nj and x be characters defined by (), With respect
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to Xi,j A Xk, Ay (m) is given by

Ek,i
—niik +njcjk
Since dy = O0mod ¥, ex,; = &ik, €j,k = &k,j and so A}'(m) has rank 1 if and only if ¢ ; # O
or g, j #0.
Whendy, dz, d3 #0 mod £, k(Am)] = k(ﬁ';‘pzw—mz , ‘7p'l"p3(‘—1)"3) . Let x;, j be
the character defined by (E)Zi(p—j)e—m' Then x2,3 = x1,3/x1,2. With respect to x1,2 A x1,3

and suitably chosen bases, the matrix A7 (m) is given by

ny€,1 — N3€3 1
—n1€1,2 + n3€32
nig1,3 — n2€23

So we get the condition. [

Similar, but more complicated, process will give the following Theorem, whose proof
we will omit.

THEOREM 4.4. Let m = pi'p52p5°p5*. Then HNP holds for k(Am)™ /k if and only if
the following conditions are satisfied, ’
(i) Atleastoneofe;’sis 1.
(ii) Any common prime divisor of (q‘i1 -1, (qd2 -1, (qd3 —1and (g% —1)isa
divisor of ¢ — 1.
(iii) For each prime number £ | q — 1, at least two of dy, dy, d3 and d4 are not divisible
by L.
(1) Ifd;,dj #0mod¢ and dy, dym = Omod £, then

(Z—:) #1 and & r€jm # €imEjk -
4

(2) Ifd;, d;,dx # 0mod£ and dy, = O0mod £, then except the case that g =3 mod 4,
=2,

n;(€i,j€j,mEk,m) — Nk (i k€jmEk,m) — Ni(Ei, jEi,mEk,m) + Nk (&) kEi.mEk,m) # 0.
In the case that q = 3mod4, £ = 2,
EimEjm 0, EimEem FO0 or €jmekm #0.
(3) Ifd:, dz, d3,ds £ 0mod £, then except the case that g = 3mod4, £ =2,
(n1€1,2 — n3€1,3)(—n181,2 + n4g2,4)(—n1€1,3 + n4ag34)

+ (n181,2 — n3&2,3)(n2€1,2 — na€1,4)(—n161,3 + n4€3 4)
+ (n1€1,3 — n262,3)(n3€1,3 — nae1,4)(n1€1,2 — nag24) # 0.
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In the case that ¢ = 3mod4, £ = 2,

(61,4 +&24)(e12+ 623+ 1) — (61,4 +63,4)(62,3 +62,4) #0

(61,4 +824) (623 + €34+ 1) — (61,4 +€34)(e1,3 +623) #O0,
or
(623 +624)(623 + 634+ 1) — (612 + 62,3 + 1)(e1,3 +&2,3) #0.
(iv) For£+tq — 1, HNP holds for K(Ape,- o pek)g/K,for any {i, j, k} C {1,2,3,4}.
i ¥j Tk
COROLLARY 4.5. HNP holds for k(Am)™* /k but dose not hold for k(Aw)/k if and
only if HNP holds for every maximal subfield of k(Awm)™ / k whose Galois group over k expo-
nent £, £ 1 q — 1 and moreover, one of the following conditions is satisfied,
(i) m = p{'p3?; There exist a prime number £ |q — 1 such that d; # 0 mod £ for one
; (P2 — (P —
tand (§), = (8), = 1.
(i) m=p;p, Py
(1) When q # 3, HNP always dose not hold for k(Am)/k.
. 2) Whenq =3,andifdy = dy = d3 = 1mod2, (B2), = (8), = (8), dose not
old.
(3) Wheng =3, and ifd; = dj = 1mod2 and dy = Omod?2, (&), # (¥),.
(i) m = p'p3*p3’ps'; HNP always dose not hold for k(Aw)/k.

5. Ideal Class Groups.

Let £ be a prime. For a finite abelian £-extension K of k, we say that it is maximal if it
is the maximal £-extension of k in k(Ayn,), where m is the conductor of K. By the conductor
m of K, we mean the smallest monic polynomial m such that K is contained in k(Am).
From now on we assume that K is a maximal abelian £-extension of k with conductor m, say
m = p§'p5?---ps* and I' = Gal(K/k). Let K; be the maximal abelian £-extension of k in
k(A ). Then K is the composite of those K;. For each i, let 7; and I'; be the inertia group
and d'ecomposition group of p; in K, respectively. Clearly I' = []7;. If £ # char(k), m
must be square free with g9 = 1 mod £ and each inertia group 7; ~ Gal(K;/k) ~ Z /€%,
where a; is the maximal exponent of £ which divides g%8®) — 1. If £ = p = char (k), each
e; must be larger than 1 and the inertia group 7; is an abelian p-group with p-rank

e — 1
5i=f><deg(Pi)><(ei—1—[ - ])
where g = p7.

For any finite abelian group G, r¢(G) denotes the £-rank of G. Following [CoRo] we
have

PROPOSITION 5.1. Let K be as above. Then
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(i) £ # char(k);

re(Cl(Ok)) =

where g = 1if £ |q — 1 and otherwise £¢ = 0.
(ii)) £ = p = char(k);

re(CHOK)) = ) _8i8; — D 8.
i<j i
COROLLARY 5.2. Letm = pi'p5? - ps* and denote Om = Ok(a,,). For £ # char(k),
let tg be the number of p; such that g98®) =1 mod £. Then
(i) £ s# char(k);
te(tg — 3)
re(ClOw) = =D g,
where & is defined as in Proposition 5.1.
(ii) € = p = char(k);
re(Cl(Om)) = ) _8i8; — ) 8.
i<j i

Let K be a maximal abelian £-extension of k with conductor m. Let K+ = K Nk(Am)T.
It is the maximal abelian £-extension of k in k(Am)*. For the case that £ # char(k) and
£4q —1,0r€ = p = char(k), K¥ is equal to K. Thus we have the following;

PROPOSITION 5.3. Let m = pi'p>? - - - p5* and denote Of = Ok (a,.)+-

(i) € #char(k)andt{q —1;
rciof) = 1=

(i) € = p = char(k);
re(CLOR) = ) 88— ) 4.
i<j i
Now suppose that £ |gq — 1. Let £ be the £-rank of B(K*/k), i.e. the £-rank of Ex N
Nk, /kU(K*)/Ex N Ng+,x(K1)*. Then as in [CoRo] one can show that ¢ ¥ = 0.
PROPOSITION 5.4. Suppose that £|q — 1. Let K be the maximal abelian £-extension
of k with conductor m = p1py -+ -ps, and K*¥ = K Nk(Am)™.
(i) Ifdeg(p;) =0mod¥ foralli, then
s(s —3)

re(ClOg+)) 2 —5— -

(i) If deg(p;) # Omod £ for some i, then

s2—5s+2

re(Cl(Og+)) = >
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PROOF. In case (i), k(¥P1, -+, &Ps) C KT and in case (ii) K = KTk(J—p;™),
where n; degp; = 1 mod £, by Lemma 3 of [A]. Then the result follows as in the Theorem 2,
(1), (ii) of [CoRo].

COROLLARY 5.5. Suppose that£|q — 1 and m = p{'p3? - - - p§’.
(i) Ifdeg(p;) =O0mod{ foralli, then

-3
| recc1og) = L2
(i) Ifdeg(p;) # Omod £ for some i, then
2 - 2
r(ClO) = =212

Assume that £ # char (k) and £ { g—1. Let K be a maximal abelian £-extension of k with
conductor m = p1Ppy - - - ps. From the genus number formula (Lemma 1.1), K = G(K/k) and
since B(K /k) is trivial, we have

Gal(Z(K/k)/K) ~ A(K /k).
Let Ay(K /k) be the matrix defined in Section 2. Then we have

¢-rank of A(K/k) = (;) — rank of Ag(K/k).

Then we have

THEOREM 5.6. Suppose that £ # char (k) and £ 1 g — 1. Let K be the maximal abelian
£-extension with conductor m = p1ps - - - ps. Then the ideal class number h(Ok) of Ok is
prime to £ in exactly the following cases,

(i m=p.
(i) m = pip;and Xt = pymodyp; or Xt =p, mod p; is not solvable.

(iil) wm = p1p2p3 with

—€12 —€1,3 0
det &1 0 —&23 ) #0.
0 €31 €32

Moreover if s > 3, then £ | h(Ok).
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