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Abstract. It is shown that the set of finite regular Borel measures with natural spectra for a compact abelian
group $\emptyset$ is closed under addition if and only if $\emptyset$ is discrete. If $G$ is a non-discrete locally compact abelian group,
then there exists a finite regular Borel measure with natural spectrum such that the corresponding multiplication
operator on $L^{1}(G)$ is not decomposable.

Let $G$ be a locally compact abelian group and $\hat{G}$ the dual group of $G$ . We denote by
$M(G)$ the measure algebra of all bounded regular Borel measures on $G$ . The subalgebra
$M_{0}(G)$ consists of measures $\mu\in M(G)$ whose Fourier-Stieltjes transforms $\hat{\mu}$ vanishes at
infinity on $\hat{G}$ . We say that $\mu\in M(G)$ has a natural spectrum if the spectrum $sp(\mu)$ coincides
with the closure $\hat{\mu}(G)$ of range of $\hat{\mu}$ . The set of $\mu\in M(G)$ with a natural spectrum is
denoted by $NS(G)$ . Williamson [12] proved that $NS(G)$ is a proper subset of $M(G)$ if $G$

is non-discrete. Rudin [9] and Valopoulos [11] proved that $NS(G)\cap M_{0}(G)$ is a proper
subset of $M_{0}(G)$ for $G=R$ and an arbitrary non-discrete $G$ , respectively. Let $ M\alpha$) $(G)$ be
the radical of $L^{1}(G)$ , that is, $ M\alpha$) $(G)$ consists of those $\mu\in M(G)$ whose Gelfand transfrom
vanishes on $\Phi_{M(G)}\backslash \hat{G}$ , where $\Phi_{M(G)}$ denotes the maximal ideal space of $M(G)$ . Thus
we see that $M_{00}(G)\subset NS(G)\cap M_{0}(G)$ . Let $M_{d}(G)$ be the subalgebra of $M(G)$ which
consists of disdrete measures in $M(G)$ . Let $DM(G)$ be the set of all $\mu\in M(G)$ such that
the corresponding multiplier $T_{\mu}$ defined on $L^{1}(G)$ by $ T_{\mu}f=f*\mu$ is decomposable. Given
a Banach space $X$ , a bounded linear operator $T$ on $X$ is called decomposable if for every
open covering $\{U, V\}$ of the complex plane $C$ , there exist T-invariant closed linear subspaces
$X_{U}$ and $X_{V}$ of $X$ such that $\sigma(T|X_{U})\subset U,$ $\sigma(T|X_{V})\subset V$ and $X_{U}+X_{V}=X$ , where
$\sigma(\cdot)$ denotes the spectrum of an operator. Albrecht [1, Theorem 3.1] proved that $DM(G)$ is
a closed subalgebra of $M(G)$ which contains $ M\alpha$) $(G)$ and $M_{d}(G)$ (cf. [7, Theorem 2.5]).

Zafran [13, Example 3.2] showed that on an I-group $G$ there exist measures $\mu,$ $v\in NS(G)$

such that $\mu+v\in M(G)\backslash NS(G)$ . We call $G$ an I-group if every neighborhood of $0$ contains
an element of infinite order. Thus we see that $NS(G)$ is not closed under addition if $G$ is an
I-group. As is pointed out by Albrecht [1], at least one of $T_{\mu}$ and $T_{v}$ is not decomposable.
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On the other hand, Laursen and Neumann [7, Theorem 4.5] proved, as a generalization of th $($

results in [1] and [13] that

$NS(\otimes)\cap M_{0}(\otimes)=M\alpha)(\otimes)=DM(6)\cap M_{0}(\otimes)$

if $\emptyset$ is a compact abelian group. Thus $NS(\otimes)\cap M_{0}(\emptyset)$ is closed under addition. In particula]
decomposability of corresponding multiplier on $L^{1}(6)$ characterizes measures in $M_{0}(\otimes)$ wit]

natural spectra. In [4] we proved that if $G$ is a non-compact locally compact abelian group
then

$NS(G)+L^{1}(G)=M(G)$

and
$NS(G)\cap M_{0}(G)+L^{1}(G)=M_{0}(G)$ ,

so that $NS(G)$ and $NS(G)\cap M_{0}(G)$ are not closed under addition if $G$ is non-discrete and non
compact. It follows that there exists a measure $\mu\in NS(G)\cap M_{0}(G)$ of which correspondin)
multiplier $T_{\mu}$ is not decomposable, which is not the case for compact abelian groups.

The natural question occurs: for a non-discrete compact abelian group $\emptyset$ , is the set N $ S(\emptyset$

closed under addition?
First of all we claim that $NS(\emptyset)+L^{1}(\otimes)$ is a proper subset of $M(\otimes)$ for non-discret

compact abelian groups $\emptyset$ . Suppose that $NS(\mathfrak{G})+L^{1}(\otimes)=M(\otimes)$ . Let $\mu$ be an independen
power Hermitian probability measure in $M(\otimes)$ . Such a measure exists by [10, Theorem
5.2.6, 5.3.2]. Then by a theorem ofBailey, Broun and Moran [2, Theorem 1] we have $sp(\mu)=$

$\{z\in C : |z|\leq 1\}$ (cf [14, Lemma 1.4]). Then there exist $v\in NS(\emptyset)$ and $f\in L^{1}(\otimes)$ sucl

that $v=\mu+f$ . Since $\emptyset\wedge$ is discrete, a closed set $\overline{\hat{f}(\hat{\otimes})}$ is at most countable, where eac
point except $0$ is isolated, and $\hat{\mu}(\otimes)\wedge\subset R$, we see that the imarginary part $ 2\hat{v}(\emptyset)\wedge$ is at mos
countable. Let $\Phi_{M(e)}$ be a maximal ideal space of $M(\otimes)$ and $\check{\sigma}$ denote the Gelfand transforr
of $\sigma\in M(\otimes)$ . Since $sp(\mu)=\check{\mu}(\Phi_{M(\emptyset)})$ and $\hat{6}\subset\Phi_{M(\emptyset)}$ , we have

$\{z\in C : |z|\leq 1,2z\neq 0\}\subset\hat{\mu}(\Phi_{M(\otimes)\backslash \hat{\otimes})}$ .
We also have $\check{f}(\Phi_{M(\otimes)}\backslash \otimes)\wedge=\{0\}$ . Therefore every real number $x$ with $0<|x|\leq 1i$

contained in $ 2\hat{v}(\Phi_{M(\otimes)}\backslash \emptyset)\wedge$ , which is a contradiction sinse $v\in NS(G)$ and $ 2\hat{v}(\emptyset)\wedge$ is at $mof$

countable. Thus we see that $NS(\mathfrak{G})+L^{1}(6)$ is a proper subset of $M(\mathfrak{G})$ .
Next we show that the equaliy

$NS(\otimes)+NS(6)+M_{d}(\emptyset)=M(\otimes)$

for every compact abelian group $\emptyset$ . It follows by this equation and a theorem of Williamso
that $NS(\otimes)$ is not closed under addition for every non-discrete compact abelian group $\emptyset$ .

THEOREM 1. Let $\emptyset$ be a compact abelian group. Then we have $M(\otimes)=NS(\otimes)-$

$NS(\otimes)+M_{d}(\otimes)$ .
PROOF. Suppose that $\emptyset$ is discrete. Then $M(\otimes)=L^{1}(\otimes)$ , so $M(\otimes)=NS(\otimes)$ and th

conclusion holds. We shall give a proof for non-discrete $\emptyset$ .
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We denote by $\otimes_{d}$ the group 6 with the discrete topology. Then the dual group $\overline{\mathfrak{G}_{d}}$ is the
Bohr compactification of $\emptyset\wedge$ Let

$\beta$ : $\emptyset\wedge\rightarrow\overline{\otimes_{d}}$

be defined by
$\beta(\gamma)(x)=\gamma(x)$ , $\gamma\in\emptyset\wedge$ $x\in 6_{d}$ .

Then $\beta$ is a continuous isomorphism and $\beta(\emptyset)\wedge$ is dense in $\overline{\otimes_{d}}$ [ $10$, Section 1.8]. The Fourier
$transformofg\in L^{1}(\otimes_{d})isdenotedby\tilde{g}$ . $Forg\in L^{1}(\otimes_{d})$ anda Borel set E, put

$\mu_{g}(E)=\int\chi_{E}(x)g(x)dx$ ,

where $dx$ denotes the normalized Harr measure on $\otimes_{d}$ . Then we have $\mu_{g}(E)=\sum_{x\in E}g(x)$ ,

and $\mu_{g}\in M_{d}(\otimes)$ . Hence we have that

$\overline{\mu_{g}}(\gamma)=\sum_{x\in\emptyset}\gamma(-x)g(x)$

for every $\gamma\in\hat{6}$ . We also have that

$\tilde{g}(\beta(\gamma))=\int\beta(\gamma)(-x)g(x)dx=\sum\beta(\gamma)(-x)g(x)$ ,

henceforce
$\overline{\mu_{g}}(\gamma)=\tilde{g}(\beta(\gamma))$

for every $\gamma\in\emptyset\wedge$ Let $U_{0}$ and $U_{1}$ be a pair of non-empty open sets with disjoint closures of $\overline{\emptyset_{d}}$ .
Since $L^{1}(\otimes_{d})$ is a regular Banach algebra and since $\otimes_{d}$ is compact, there exists $f\in L^{1}(\emptyset_{d})$

such that

$f_{(\rho)=}\left\{\begin{array}{ll}0, & \rho\in\overline{U_{0}}\\1, & \rho\in\overline{U_{1}}.\end{array}\right.$

Since 6 is non-discrete, $\otimes_{d}$ is infinite, hence $\overline{\otimes_{d}}$ is non-discrete. By [5, Theorem 41.5,

Theorem 41.13] there exists a Helson set $K_{0}\subset U_{0}$ (resp. $K_{1}\subset U_{1}$ ) which is homeomorphic
with Cantor’s temary set $H$ . Let $\pi_{0}$ (resp. $\pi_{1}$ ) be a homeomorphism from $K_{0}$ (resp. $K_{1}$ )

onto $H$ . Let $c$ be the restriction to $H$ of Cantor’s function defined on the unit interval $I$ .
Then $c(H)=I$ . Let $p$ be a continuous function defined on $I$ onto the closed unit disk
$\Delta=\{z\in C : |z|\leq 1\}$ . Then $p\circ c\circ\pi_{0}$ (resp. $poco\pi_{1}$ ) is a continuous function on
$K_{0}$ (resp. $K_{1}$ ). Since $K_{0}$ (resp. $K_{1}$ ) is a Helson set and since $L^{1}(6_{d})$ is regular, there exists
$g_{0}\in L^{1}(\otimes_{d})$ (resp. $g_{1}\in L^{1}(\otimes_{d}\underline{))}$such that $\tilde{g}_{0}(K_{0})=\Delta$ (resp. $\tilde{g}_{1}(K_{1})=\Delta$ ) and $\tilde{g}_{0}=0$

(resp. $\tilde{g}_{1}=0$) on $\mathfrak{G}_{d}\backslash U_{0}$ (resp. $\mathfrak{G}_{d}\backslash U_{1}$ ).

Let $\mu\in M(\mathfrak{G})$ . Put $\mu_{0}=\mu*\mu f$ and $\mu_{1}=\mu-\mu_{0}$ . We denote the spectral radius of $\mu_{0}$

(resp. $\mu_{1}$ ) by $r_{0}$ (resp. $r_{1}$ ). Put $v_{0}=\mu_{0}+r_{0}\mu_{g_{0}},$ $v_{1}=\mu_{1}+r_{1}\mu_{g_{1}}$ and $v_{2}=-r_{0}\mu_{g_{0}}-r_{1}\mu_{g_{1}}$ .
Then we have a decomposition of $\mu$ : $\mu=v_{0}+v_{1}+v_{2}$ and $v_{2}\in M_{d}(\otimes)$ . We show that
$v_{0}\in NS(\emptyset)$ . In the same way we see that $v_{1}\in NS(\mathfrak{G})$ .
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Since $\beta(\beta^{-1}(\overline{U_{0}}))$ is dense in $\overline{U_{0}}$ and $\tilde{g}_{0}$ is continuous on $\overline{\otimes_{d}}$ , we see that

$\{z\in C:|z|\leq r_{0}\}=r_{0}\tilde{g}_{0}(K_{0})$

$\subset r_{0}\tilde{g}_{0}(\overline{U_{0}})\subset r_{0}\tilde{g}_{0}(\beta(\beta^{-1^{\wedge}}(\overline{U_{0}})))\subset r_{0}\overline{\mu_{g0}}(\emptyset)$ .

We have $(\mu_{f}*\mu_{g_{0}})^{\wedge}(\gamma)=0$ for every $\gamma\in\emptyset\wedge$ since
$(\mu_{f}*\mu_{g0})^{\wedge}(\gamma)=f(\beta(\gamma))\tilde{g}_{0}(\beta(\gamma))$

and $\tilde{f}(\overline{U_{0}})=0$ and $\tilde{g}_{0}(U_{0}^{c})=0$ . Henceforce $\mu_{0}*\mu_{g_{0}}=0$ since $\mu_{0}=\mu*\mu f$ . We also se $($

that $\overline{\mu_{0}}=0$ on $\beta^{-1}(\overline{U_{0}})$ . Thus we have
$r_{0}\tilde{g}_{0}(\beta(\beta^{-1-1-1\wedge^{\wedge}}(\overline{U_{0}})))=r_{0}\overline{\mu_{g_{0}}}(\beta(\overline{U_{0}}))=v_{0}\wedge(\beta(\overline{U_{0}}))\subset v_{0}(\otimes)$ ,

so that
$0\in\overline{v_{0}\wedge^{\wedge}(\wedge_{\otimes})}$ .

Since $\mu_{0}*\mu_{g_{0}}=0$ we see that
$v_{0}\wedge^{\wedge\wedge\wedge}(\otimes)\subset\overline{\mu_{0}}(\otimes)\cup(r_{0}\overline{\mu_{g_{0}}}(\otimes))$ .

Since $r_{0}$ is the spectral radius of $\mu_{0}$ , we have
$\overline{\mu_{0}}(\emptyset)\subset\{z\in C :\wedge |z|\leq r_{0}\}$ .

Henceforce
$v_{0}\wedge^{\wedge}(\hat{\mathfrak{G}})\subset r_{0}\overline{\mu_{g0}}(\emptyset)$ .

Suppose that $\gamma\in\hat{6}$ . If $\overline{\mu_{g_{0}}}(\gamma)=0$, then $r_{0}\overline{\mu_{g_{0}}}(\gamma)=0\in\overline{v_{0}\wedge^{\wedge}(\wedge_{\otimes})}$. If $\overline{\mu_{g_{0}}}(\gamma)\neq 0,$ the]

$\overline{\mu_{0}}(\gamma)=0$ since $\mu_{0}*\mu_{g_{0}}=0$ . Thus $r_{0}\overline{\mu_{g_{0}}}(\gamma)=v_{0}\wedge(\gamma)$ , therefore we see that

$r_{0}\overline{\mu_{g_{0}}}(\otimes)\subset v_{0}\wedge(\wedge_{\emptyset})\wedge\overline{\wedge}$ .
It follows that

$\overline{v_{0}\wedge^{\wedge\overline{\wedge}}(\wedge_{\otimes})}=r_{0}\overline{\mu_{g_{0}}}(\wedge_{\otimes})$ .
Let $\Phi_{M(\emptyset)}$ be the maximal ideal space of $M(\otimes)$ . We denote the Gelfand transform of $vt$

$M(\mathfrak{G})$ by $\check{v}$ . We may suppose that $\emptyset\wedge$ is a subset of $\Phi_{M(\otimes)}$ and $\check{v}=\hat{v}$ on $\emptyset\wedge$ Since $\overline{v_{0}\wedge^{\wedge}(\wedge_{\otimes})}c$

$\check{v}_{0}(\Phi_{M(\otimes)})$ , we have $0\in\check{v}_{0}(\Phi_{M(\otimes)})$ . Since $\mu_{0}*\mu_{g_{0}}=0$, we have that $\check{\mu}_{0}(p)=00$

$r_{0}\mu_{\check{g}_{0}}(p)=0$ for every $p\in\Phi_{M(\emptyset)}$ , so
$\check{v}o(\Phi M(\emptyset))\subset\check{\mu}o(\Phi M(\emptyset))\cup(r0\mu_{g_{0}}^{\vee}(\Phi M(\emptyset)))$ .

Since
$\check{\mu}_{0}(\Phi_{M(\otimes)})\subset\{z\in C:|z|\leq r_{0}\}\subset r_{0}\overline{\mu_{g_{0}}}(\emptyset)\subset r_{0}\mu_{\check{g}0}(\Phi_{M(\otimes)})\wedge$

we see that
$\check{v}_{0}(\Phi_{M(\otimes)})\subset r_{0}\mu_{\check{g}0}(\Phi_{M(6)})$ .

Suppose that $p\in\Phi_{M(\emptyset)}$ . If $r_{0}\mu_{\check{g}0}(p)=0$, then $r_{0}\mu_{\check{g}_{0}}(p)=0\in\check{v}_{0}(\Phi_{M(\otimes)})$ . If $r_{0}\mu_{90}(p)p$

$0$, then $\check{\mu}_{0}(p)=0$ . Thus
$r_{0}\mu_{\check{g}_{0}}(p)=\check{v}_{0}(p)\in\check{v}_{0}(\Phi_{M(\emptyset)})$ .
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Therefore we have that
$\check{v}_{0}(\Phi_{M(\oplus)})=r_{0}\mu_{\check{g}_{0}}(\Phi_{M(\emptyset)})$ .

Since $\mu_{g0}\in M_{d}(\otimes)$ and $M_{d}(\otimes)\subset NS(\otimes)$ we see that

$ r_{0}\overline{\mu_{g0}}(\otimes)=r_{0}\mu_{\check{g}_{0}}(\Phi_{M(\emptyset)})\wedge$ .
It follows that

$\overline{v_{0}\wedge^{\wedge}(\wedge_{\otimes})}=\check{v}_{0}(\Phi_{M(\emptyset)})$ ,

that is, $v_{0}\in NS(\otimes)$ . $\square $

Note that a slight stronger version of Theorem 1 holds. Let $\emptyset s$ be a locally compact
abelian group induced by $\emptyset$ with a stronger topology than the original one. Then we may
suppose that $L^{1}(\otimes_{S})\subset M(\emptyset)$ and the dual group $\emptyset s$ is contained in the Bohr compactifi-
cation of $\emptyset\wedge$ (cf. [6, p. 84]). Then, in a way similar to the above, we have that $M(\otimes)=$

$NS(6)+NS(\emptyset)+L^{1}(\otimes_{S})$ . Theorem 1 corresponds to the case where $\emptyset s$ is the discrete
group.

COROLLARY 2. Let $G$ be a non-discrete locally compact abelian group. Then $NS(G)$

is not closed under addition.

PROOF. If $G$ is not compact, then by [4, Theorem 1] we see that

$NS(G)+NS(G)=M(G)$

since $L^{1}(G)\subset NS(G)$ . If $G$ is compact, then by Theorem 1 we see that

$NS(G)+NS(G)+NS(G)=M(G)$

since $M_{d}(G)\subset NS(G)$ . It follows by a theorem of Williamson that $NS(G)$ is not closed
under addition. $\square $

COROLLARY 3. Let $G$ be a non-discrete locally compact abelian group. Then there
exists a measure $\mu\in NS(G)$ such that the corresponding multiplier on $L^{1}(G)$ is not de-
composable. Furthermore, if $G$ is not compact, then we can choose such a measure $\mu$ in
$M_{0}(G)$ .

PROOF. $DM(G)$ is a subset of $NS(G)$ and is closed under addtion by a theorem of
Albrecht [1, Thorem 3.1]. It follows by Corollary 2 that $DM(G)$ is a proper subset of $NS(G)$ .
Unless $G$ is compact, then a set $NS(G)\cap M_{0}(G)$ is not closed under addition [4, Corollary
3], henceforce $DM(G)\cap M_{0}$ is a proper subset of $NS(G)\cap M_{0}(G)$ . $\square $

ADDED IN PROOF. After submitting the paper [LN] was published.
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