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Abstract. We shall show that any symmetric, forward and backward invariant lamination under z — 24 is

gap invariant in the sense of W. P. Thurston. As a corollary, we have the gap invariance of a quadratic invariant
lamination.

1. Introduction.

Let D (resp. D) be the closed (resp. open) unit disk in the complex plane C. For each
subset A of D, denote the convex hull of A by co A, and let —A = {z € D| — z € A}. We
call a subset S of D a chord if S = co{¢, n} for some ¢ and 7 in 3D (we often write S = n
if £ # n), and S a degenerate chord if { = n. When § = zn, let exS = {¢, n}. Following
Thurston ([4] and [1]), a lamination £ is a family of chords (an element of L is called a leaf)
such that UL is closed in C, and £ is non-crossing i.e. no two distinct leaves intersect in D. A
gap of L is the closure of a component of D \ (UL).

For each positive integer d with d > 2, define a mapping py : 9D — 9D by py(¢) = ce.
For a non-degenerate chord S, define P;S = co pg(exS). A lamination L is said to be forward
invariant under p, if for any S € L, P;S € L or P;S is degenerate. Furthermore L is said
to be backward invariant if for any S = pg € L, there is a collection of d disjoint chords in
L, each joining an inverse image of p to an inverse image of ¢q. Finally L is said to be gap
invariant if co ps(G N dD) is a gap of L, a leaf, or degenerate for any gap G of L.

Consider the case d = 2. Write h = p;. In this case, for a forward invariant lamination
L, its backward invariance is equivalent to the following property: for each nondegenerate leaf
S, —S € L and there is R € L such that AR = S. Indeed suppose L is backward invariant. It
suffices to show that —S € L for each non-degenerate S € £. When S is a diameter, it is clear.
Suppose S is not a diameter. Since A4S is non-degenerate, 1S € L by the forward invariance.
By the backward invariance, —S € L. The converse is clear.

C. Bandt and K. Keller constructed a forward and backward invariant lamination under h
and states, in Theorem 5.2 ([1]), that it is gap invariant. In this paper, we shall give the proof
of the gap invariance theorem for symmetric and (forward and backward) invariant lamination

Received August 30, 1999
Revised November 5, 1999



2 MASAMICHI YOSHIDA

under py where d > 2 (see Section 3), and indicate some systematic approach to study gaps
of a lamination. To end the introduction, we mention that a result of K. M. Pilgrim ([2, p.
1324]) states that there is a lamination which fails to be gap invariant under .

2. Boundary chords of a gap and 1-sided families.

Foreachx € Cand e > 0, denote B.(x) = {y € C||y—x| < ¢&}. For each subset A of C,
denote by cl A (resp. int A) the closure (resp. interior) of A in C and for each B C A, denote
by int4 B (resp. 34 B) the relative interior (resp. relative boundary) of B in A (notice that the
relative closure of B in A is ANcl B). Since D is closed in C, we have ¢! B = int; BUdpB =
B U 0B for each B C D. For each B C 8D, we write intB = intapB and 9B = JdspB.
Similarly since 9D is closed in C, we have cl B = intBU 3B = B U 3B for each B C aD.
Denote S = {S c D|S isachord} and S; = {S € S| S is non-degenerate}. For § € Sy,
denote S° = S \ ex S, and for each connected subset V of D \ S, the connected component of
D\ S containing V by Dy (S), in particular when V = {x}, write D, (S) = Dy (S). We often
use the following fact. Suppose that [ C D is a non-degenerate line segment (for example,
I = co{z, w) for some z, w € Dwithz # w). Let ACD.IfINA#@and!\ A # 0, then
I N 3pA # @ (indeed notice that / is connected).

We also use the following general lemmas (see Appendix). Let X be a topological space.

LEMMA 1. Let D be a connected and open subset of X and E is a non-empty subset of
D.IfoE C dD, then E = D.

LEMMA 2. Let E C X. Then3E D dcl E. Furthermore OE C 0cl E if and only if
E DintclE.

For each E C X, denote by Comp(E) the family of connected components of E. X is
said to be locally connected if for any open subset U of X and any C € Comp(U), C is open
in X. Hence D and 3D is locally connected with respect to their relative topology.

LEMMA 3. Suppose that X is locally connected. Let F be a closed subset of X. Then
for any C € Comp(X \ F), dC C F. Furthermore 3F = cl(Ucecompx\F) 9C)-

For a subfamily M of S, define M4 = M NS4, M° = {§°|S € M;}and ex M =
aD N (UM). Then (UM) ND = UM and ex M = {x € 0D |x € S for some S € M_}.

DEFINITION 1 (Non-crossing family of chords and Lamination). Suppose a subfamily
L of S satisfies that £ # @ and D \ cI(UL) # @ (hence D \ UL # @). We say L is non-
crossing if for any R, S € L1, R = S or §° N R = @, or equivalently if for any (or some)
x eD\ULandany R # S € L4, S° C D, (R) or S°Ncl Dy(R) = @. Let L be non-crossing.
For each V € Comp(D \ UL), define Ly = {S € S, |S C dpV}. We say L is a lamination if
L is non-crossing and UL is closed in C.

REMARK 1. Let L be a lamination and V € Comp(D\UL). Then V is relatively open
inD, 35V C UL, DNojV = UL, and furthermore §Ly > 1.
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PROOF. By Lemma 3, V is relatively open in D and 85V C UL because D is locally
connected and UL is relatively closed in D. Hence D N 93V = ULS,. (Indeed UL]
DN (ULy) Cc DN3J;V. Conversely let x € DN V. Since x € DN (UL), thereis S € L
such that x € S°. Assume S ¢ Ly. Lety € S\ 9pV. Soy ¢ VUV =clV. Picka
point z € V (maybe z € dD). Thenl = (co{y, z}) \ {y, 2z} C DN D,(S). Since y ¢ cl V,
I\ V # @. Since V is relatively open in D, I N V # @. Hence there is w € I N 33 V. Since
w € DN (UL), there is R € L such that w € R°. Since w € D, (S) and L is non-crossing,
we have S° Ncl V C S° Ncl D,(R) = @, contradicting the fact thatx € S°Ncl V.)

Notice that V N D is relatively open, that is, int5(V N D) = V ND. So 35(V ND) =
cd(VND)\(VND) C (cIV\V)U(clV\D) C 35V U3D. Assume Ly = @. Then
33V C 0D, hence 35(V ND) C 9D = d5D. By Lemma 1, we have VND = D, contradicting
the assumption L4 # @. O

Let £ be a lamination. A subset G of D is called a gap of £ if G = ¢l V for some
V € Comp(D \ UL). We shall consider a representation for G = ¢!/ V via a family Ly. At
first notice that Ly C L and since V is relatively open in D,

14 Cint]-)( N Dv(S))-

Sely
Furthermore if £y > 2, then Ly is 1-sided in the following sense.

DEFINITION 2 (1-sided family of chords). Let N be a non-crossing subfamily of S,
with f > 2. We say that N is 1-sided if UN" C cI Dg-(S) for any two distinct chords R and
SinN.

In order to get representation for gaps of a lamination, we shall study the property of a
1-sided family. Let A/ be 1-sided. Then for each S € N/, the set Dg-(S) is independent of
the choice of R € N \ {S} and so denote it by Ds(S). Furthermore the cardinality of N is
at most countable. Indeed the first statement holds by the definition of 1-sidedness. For each
S, R € N with S # R, we have that (D \ ¢l Dar(S)) N (D \ ¢l Dar(R)) = @. Foreach S € N,
D \ ¢l Dpr(S) is relatively open in D. Since D is separable, the second statement holds. We
define the center of a 1-sided family .

DEFINITION 3 (Center of a 1-sided family). Let A be a 1-sided subfamily of S. De-
fine Cpr = inty(Nsenr DA (S)).

If £ is a lamination, then V C C¢, foreach V € Comp(D \ UL) with £y > 2, and
Dg, (S) = Dy(S) forany S € Ly. At the end of this section, we shall show that G = cl V =
¢l Cc, (Lemma 5) and that if 3D = clexL, then Ly > 2 for each V € Comp(D \ UL)
(Corollary 1).

REMARK 2. Let N be 1-sided. Then Cn # @ and cl(UN) CclCa C
Nsen €t Dar(S).
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PROOF. Let S), S be distinct chords in A. Since N is 1-sided, (intco(S; U S3)) N
(UN) = @. Furthermore int co(S; U S2) C (\senr DA(S). Hence @ # intco(S1 U S2) C Car
and S; U S, CclCyy. O

Denote F = {F | F is a closed disconnected subset of 3D with#f F > 3}and I" = {N | N
is a 1-sided family}. We can construct a 1 to 1 correspondence between I and F. Indeed if
F € F, then the family

NF = {cody |y € Comp(3D \ F)},

is 1-sided (notice that y is an open arc for each y € Comp(dD \ F)). Conversely suppose N
is 1-sided. Define
Far= ) @D Necl DA(S)).
SeN
Then Comp(3D \ Far) = {3D \ cl Dar(S)}sen because (D \ ¢l Dar(S)) N (D \ ¢l Dar(R))
= @ for each S, R € N with S # R. So F) is closed disconnected with §Far > 3. Since
(@D N cl DAr(S)) = exS, we have exN' C Fjr, and

if F = Fpr, then N =NF.

Notice that § For = cl ex\ by the local connectivity of dD and Lemma 3. Conversely
let F € F. We have that

if N =N, then F = Fy

because D \ F = |Jgepar D \ ¢l DAr(S) = UComp(8D \ Fpr). Thus we have a 1 to 1
correspondence N <> Fr. We shall show that if 8D = ¢l exL, then Lv = Nypnc v for each
.V € Comp(D \ UL) (Corollary 1). So we can reconstruct the family Ly from 3D N ¢l V by
the above method. This equality Ly = Nypncrv is the key to prove gap invariance theorem
(Section 3). ‘

We use the following simple fact. Lete > 0, x € 0D and S € S;. If S N co(dD N
B:(x)) # @, then exS N (0D N B (x)) # @ (indeed if exS C 9D\ B.(x),then S = coexS C
co(dD\ B:(x)) C D\ co(3D N B.(x))). We also use Caratheodory’s theorem (Theorem 17.1
in [3]): Forany A C Cand any x € co A, x € co{xy, x3, x3} for some x1, x2.x3 € A. We
show that Fr = aDNcl CN,%FN = 3dDNCpr,"dFN = oDNoRCarand cl Car = co Fr.
More precisely,

LEMMA 4. Let N be 1-sided. Then

a) Fay=0DNclCy.

b) int Far = 3dD N Chr.

c) clCn =coFy.

d) 35Cn = dFp U (UN).

e) Cn = intjy cl Cpr (or equivalently, 35 Car = 9 cl Cxr).
f) Car € Comp(D \ cl(UN)).

PROOF. Firstly we show the statements a) and b). By Remark 2, Far D D Nl Cyr.
Since UN" C ¢l Cpr (by Remark 2), we have dFnr = clexN C 8D N cl Car. We show
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int FAr = 8D N Cpr (then Far = 3D N cl Cpr). If x € 3D N Cyy, then Bgy(x) N D C
(,OSGN Dar(S)) N oD C Fjs for some g9 > 0, hence x € %FN. Conversely let x €
int For. Then 9D N Bg(x) C dD \ exN for some ¢ > 0. Assume there is § € N with
S Nco(@D N B.(x)) # B. Then exS N (0D N Be(x)) # @ contradicting the choice of ¢.
Hence co(3D N B,(x)) C D\ UN. Since x € Fnr C (Ngepr ¢l DAr(S) and co(dD N Bg(x))
is connected and relatively open in D, we have co(@D N B.(x)) C Cyr.

c) We show the equality

() cl Da(S) =coFx =clCyr. (1)

SeN
By Remark 2, it suffices to show [\geporc! DAr(S) C coFnr C clCp. Let x €
Nsen cl DA (S). If x € D, thenx € Fjr. If x € UN, thenx € S = coexS for some
S € N, hence x € co Fys since exN' C Fjr. Suppose x € D\ UN. Letab € N (note
{a,b} C Fnr), aa’ be the chord passing through x, bb’ the chord passing through x and
[a’, '] the closed arc between a’ and b’ containing neither a nor b. If [a’, b'1N Far # @, then
x € Aaby C coFarwhere y € [a’,b'1N Fpr. If [@’,b'] C dD \ Fp/, then [a’, '] C y for
some y € Comp(dD \ Fpr). Note that y is an open arc and 3y = {ag, bo} C Fps. Since
x € (sen ¢l Dy (S) and y C 8D\ F)r, we have that the points a, ap, bo, b are distinct and
x € cofa, ag, by, b} C co Far. Next we show co Far C cl Cy. It suffices, by the theorem of
Caratheodory, to show for any (closed) triangle A whose vertices belong to Fr, int A C Cyr.
Let A be such a triangle and S € N. If int A \ Dar(S) # @, then some vertex of A does not
belong to dDNcl Dar(S)(D Fyr) contradicting the choice of A. Thus int A C (Vgepr DA (S).

d) At first we show the equality

dF)n = D N cl(UN). )

Since dFpns = clexN, 3Fn C 8D N cl(UN). Conversely let x € 8D N cl(UN). Since
co(dD N Bg(x)) is relatively open in D, we see that for any € > 0, S N co(3D N B.(x)) # @
for some S € N. So B.(x) NexS # @, thatis, x € cl exN = 5FN. We show the equality

dFpN U (UN®) = 35Cnr = cl(UN). (3)

By a) and Remark 2, Fr U cl(UN) C ¢l Cpr. It suffices to show cl Cpr \ (3 Fpr U (UN©)) =
Cnr = cl Cpr \ cl(UN). We show that x € Cs for each x € ¢l Cpr \ (8Fn U (UN®)). If
x € 9D, then x € ’i-thFN C Cn by a). Suppose x € D. By (1), x € [\gepr ¢! DA (S).
Assume that Bg(x) N (UN) # @ for any € > 0 with B.(x) C D. Then since x ¢ UN®,
#{S € N|B:(x) NS # @} = oo. In particular B.(x) N S; # @ for some S;, $2, 53 € N
with §7 N S;? =@ (i # j). We can suppose S3 C (c! Dsg(Sl_)) N (cl Ds;)(Sz)). Hence
Ds:(S3) N Ds3(S3) = @, contradicting the 1-sidedness of N. So Bg,(x) C D\ UN for
some g9 > 0. Since By, (x) is connected and x € (\gcar ¢l DAr(S), we have B (x) C
MNsenr DA(S), in particular x € Car.

Next we show Car C ¢l Car \ cl(UN), that is, Car N cl(UN) = @. If x € Car N 3D,
then x € int Fy by b). Since x € dD, x ¢ cl(UN) by (2). When x € Cxr N D we have
By (x) C Nsepnr DA(S) for some gg > 0, 50 By (x) N (UN) =B ie. x ¢ cl(UN).



6 MASAMICHI YOSHIDA

Finally by (2), we have ¢l Car \ cl(UN) C ¢l Cpr \ (3Fpr U (UN)).

e) It is clear that Cnr C intycl Cpr. By Lemma 2, it suffices to show djCanr C
dpclCpr. Let x € 35Car. Then for any ¢ > 0, there is R € N such that (Bg(x) N D) \
cl Dar(R) # @. (Indeed since 35C A7 = (UN°) U cl exN by d), we see that x € R° for some
ReNorx € clexN. Whenx € clexN, thereis R € N such that B;(x)NexR # @.) So by
D), (Be(x)ﬂ]_))\cl Cn = USEN(Bg(x)ﬂl_))\cl Dpr(S) # 0. Thus x € cl Car\intjycl Cpr =
Opcl Cyr.

f) By (1), cl Cpr is closed and convex in C. Since Fnr € F, we have that D =
intcl Cpr is convex and ¢/ D = cl Car by Theorems 6.2 and 6.3 in [3] (see also p. 44 in
[3]). Therefore we see D C intjcl CAr = Cpar C ¢l D by €). So Cyr is connected. By (3),
Cnr € Comp(D \ cl(UN)). O

LEMMA 5. Let L be alaminationandV € Comp(]_) \ UL) with§Ly = 2. Then
a) Fg, =0DNclV. (Hence Lv = Napneiv-)

b) Foreach R € L, there is Q € Ly such that Dy (Q) C Dy(R).

c) Cgy, = int]_)(nSe[,+ Dy (S)).

d) cdV=clCg,.

PROOF. We prepare the following claim. Suppose S € S satisfies the condition that
L U {S} is non-crossing and S° NV = @. (Notice that SNV = @ because V is relatively open
in D by Remark 1.) Then the following conditions are equivalent.

1) S°NclV #4@.

2) S°C Dy(R)forany R € L4 \ {S}.

3) Sely.

4) exScCclV.
-2) = —1) Since £ U {8} is non-crossing, S° N ¢l Dy(R) = @ for some R € L, \ {S}.
Then S°NclV € S°Necl Dy(R) =@. 2) = 3) Pickx € S°andy € V (note y ¢ S and
x # y). Let A be the half-open segment (co{x, y}) \ {x}. So Dy (S) = Dy(S) = Da(S). Let
Re Li\{S}(note y ¢ R). Then RN A = @. (Indeed when R° Ncl Dy (S) = @, itis clear. If
R° C Dy(S), then, by 2), RNA = @.) Therefore since LU{S} is non-crossing, RNint A = @
where A = co(S U {y}). Hence int A C D \ UL. Furthermore since y € V N A and int A is
connected, we have intA C V. Hence S = ANS CclV\V = 0jV. 3) = 1) is trivial.
Thus 1), 2), 3) are equivalent. 3) = 4) is trivial. =2) = —4) Since S° N ¢l Dy (R) = @ for
some R € L4\ {S},weseeexS\clV DexS\clDy(R) #0.

Now we prove the lemma. Recallthat V C Cz, and Dz, (R) = Dy(R) forany R € Ly.

a) We show Comp(dD \ F,) = Comp(dD \ cl V) (hence Fp, =dDNclV).

Let y € Comp(3D \ Fg,). By the definition of F;,, y = 0D \ ¢l Dz, (R) = aD \
cl Dy (R) for some R € Ly. Since dy = exR C cl V, we have y € Comp(3D \ cl V).
Conversely let y € Comp(aD \ ¢l V) and 3y = {ao, a1}. We show y = 8D \ ¢l D.,(R)
for some R € Ly i.e. S = aga; € Ly. Since exS C cl V, it suffices to show S satisfies the
assumption in the above claim, that is, £ U {S} is non-crossing and S° NV = @. If there is
R e L, withR°NS # B, thena; ¢ clV for some i € {0, 1}, contradicting the fact that
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a; € cl V. So the family £ U {S} is non-crossing. Assume thereisx € S°NV. Pick y € y.
Since y € 3D\ ¢l V, there is z € DN co{x, y} with z € 95V . By Remark 1, z € R° for some
R € Ly. Since £ U {S} is non-crossing, R° C co y. Hence y NexR # ¥, contradicting the
factthat y NexRCy NclV =0.S05°NV =4.

b) LetR € L. Since dD\cl Dy (R) C aD\cl V = dD\ F,, thereis y € Comp(dD\
Fg,) such that D \ ¢l Dy(R) C y. Letting Q = cody, we have Q € NFLV = Ly and
Dy(Q) C Dy (R).

c) By b), mSeLv Dg,(S) = mSeEV Dy (S) = ﬂS€£+ Dy (S). Hence Cg, =
intf,(ﬂSe£+ Dy (S)).

d) By Lemma 4-a), cICg, = (D NclCg,) U Fg,. Since D is open in C, we see
DNeclCr, Ccd(DNCg,). Hencecl Cr, =cl(DNCr,) U Fr,. By a), we can show that
clV =cl(DNV)U Fg, in the same way as above. Therefore since V C C,, it suffices to
showthat DNCr, CDNV.Letx e DNCp,. Byc), Bey(x) C DN (ﬂS€£+ Dy (S)) for
some g > 0. In particular B, (x) C D \ UL. Since B, (x) is connected, Bg,(x) C V. O

COROLLARY 1. Suppose that a lamination L satisfies the condition 3D = clexL.
Then for any V € Comp(D \ UL),

1) VisopeninCand Ly > 2. (Hence Ly = Napnciv-)

2) int@DNclV)=0.

3) Vv=Cg.

PROOF. 1) Since UL is closed in C and 8D = cl exL, we have dD C UL. Hence
V C D and furthermore V is open in C. (Indeed since V is relatively open in Dand V C D,
we see that for each x € V, there is € > 0 with B.(x) C V.) We show §Ly > 2. Assume
that Ly = {S} (recall Remark 1). Then D N Dy (S) C V. (Indeed assume there is y €
DN Dy(S)\ V. Let x € V. Then there is z € co{x, y} such that z € 35V. Notice that
co{x,y} C DN Dy(S). Since z € DN 3V, there is R € Ly such that z € R° by Remark
1. Since z € Dy (S), R # S, contradicting the assumption that Ly = {S}.) Thereis T € L4
with exT N oD N Dy (S) # @ because 0D = cl exL and 3D N Dy (S) is relatively open in
oD. Since L is non-crossing, T7° C D N Dy (S) C V, contradicting the factthat T NV = @.
By Lemma 5-a), F, = oD NclV and Ly = Nsprciv-

2) By 1), Lemma 4-b) and Lemma 5-c), we see that ’z:;z-z:(aD NclV) = %ng C
Ccy C Nsec, Dv(S). Assume int(@D N cl V) # @. Since dD = clexL, thereis S € L4
with exS Nin?(dD N ¢l V) # @, contradicting the fact that in#2(3D N cl V) C Dy (S) C D\ S.

3) It suffices to show Cz, C V. By Lemma 5-c), Cz, N (UL4) = @. By 2) and
Lemma 4-b), Cz, C D. Hence Cg, C D \ UL. Since C Ly is connected (by Lemma 4-f)),
Cgy, CV. O

3. Gap invariance theorem.

Letd € N be d > 2. Define the mapping pg : 0D — 9D by py(z) = z4, and its

iterated mappings, p; = p('j'"1 o pg for each n € N where p2 is the identity mapping on
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oD. For z € dD and n > 0, define p;"(z) = {w € oD| pj(w) = z}. Note that for any
z € aD, Un_>_0 p‘;”(z) is dense in dD. For each S € S, denote Py;S = co pg(exS). Let
24 = {expQni%) |k =0,1,--- ,d—1}. For S e Sy and w € 24, let S = {wz|z € S} €
Sy.

DEFINITION 4. Let £ be a lamination. We say that £ is a symmetric and invariant
lamination under p; (we say d-SIL briefly) if the following three conditions hold:

(Symmetry) Forany S € £ and w € §24, wS € L.

(Forward invariance) Forany S € L4, PyS € L, or P;S is degenerate.

(Backward invariance) For any S € L4, there is R € £ such that PyR = S.

Let S € §. Then § = cof{exp(2wia), exp(2niB)} for some o, B8 € [0, 1). Define
I(S) = min{|a — B|, 1 — | — B|} and we call I/(S) the length of S. Then 0 < I(S) < 1/2.
Clearly /(S) = 0 if and only if S is degenerate, and /(S) = 1/2 if and only if S is a diameter.

REMARK 3. Let L be ad-SIL. Then dD = clexL and foreach S € L, 1(S) < 1/d.

PROOF. Firstly we claim that for any n > 0, p;"exL C exL. It suffices to show
leexLI C exL. Let z € exS where S € L. By the backward invariance of £, P4R = S
for some R € L, in particular y € exR for some y € p;'(z). By the symmetry of L,
p;l(z) = {wy|w € 24} C Uwegd ex(wR) C exL. We show 0D = clexL. Let z €
exL. Since | J,>op;"(2) is dense in 3D, we have for any x € 3D and &£ > O, there is
Y € Un>o Pz (2) N Be(x). By the above claim, y € exL. Nextlet S € £,. By the non-
crossing property and symmetry of L, we see that the family {wS | w € $24} is non-crossing.
Then ) ,cp, [(S) < 1. Since l(wS) = I(S5), I(S) < 1/d. O

Let £ be a d-SIL. Then for each V € Comp(D \ UL), Ly = Napneiv by Remark 3 and
Corollary 1-1). This is the key relation to prove gap invariance theorem. Define P;(cl V) =
co pa(dD N cl V). Observe that

1) Ifgpg(3D NclV) = 1, then Py(cl V) is a degenerate chord, that is, P;(cl V) €
S \ S+.

2) Ifgpa(dDNclV)=2,then Py(cl V) € L.

Indeed let pg(AD N cl V) = {w), wz} where w; # wj;. Since §(GD N cl V) < oo and
Ly = N3pnei v, we see that each chord in Ly has to join two consecutive points in 3D N ¢l V
(recall the definition of AM3pnev). Hence there is S € Ly such that exS N p;l (wg) # 0
foreachk = 1,2. So Py(cl V) = co{w;, w2} = co py(exS) = PzS € L by the forward
invariance of L.

In order to show gap invariance theorem, we use the following technical lemmas and will
show them later. Let 0 be the origin of C. When § € & is not a diameter (so 0 ¢ S5), let ys
the open arc subtended by S, that is, ys = 0D \ ¢l Dg(S).

LEMMA 6. Let L bead-SIL. Then'int pg(3DNcl V) = @ for each V € Comp(D\UL).
LEMMA 7. Let Lbead-SILandV € Comp(D \ UL).
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Suppose that R € S, satisfies the conditions: I(R) < 1/d, pg(exR) C pg(dD NclV)
and Je0, Yor C 3D\ cl V. Then P4R € Pa(Ly)+.

GAP INVARIANCE THEOREM. Let L be d-SIL and V € Comp(D \UL). Then
Pi(cl V) € S\ Sy or Py(cl V) € L, otherwise Py(cl V) is a gap of L: more precisely,
int Py(cl V) € Comp(D \ UL) and P;(cl V) = clint P4 (cl V).

PROOF. It suffices to show that if f pz(8D N ¢l V) > 3, then int P4(cl V) € Comp(D \
UL) and Py(cl V) = clint Py(cl V). Suppose that §ps(dD N cl V) > 3. By Lemma 6,
pa(dD N ¢l V) is disconnected. Hence we can define the 1-sided family N = N, pa(@DNI V).
Notice that Far = pg(dD N cl V). Since Py(cl V) = co Fyr, we have by Lemma 4-c) and e),

Pi(cl V) =clCyr,

intp Pa(cl V) = Cypr,

OpPa(cl V) = 05Cx .
At first we show that

N =Pi(Ly)+. 4)

Let S € N. By the definition of N, S = co 3y for some y € Comp(dD \ Fyr). Denote
R = co0 38 where § € Comp(p;'(y)). Then ps(exR) = 3y C Far (so I(R) < 1/d). By
the property of the mapping pg, Uwe.Qd YoR = pgl(y) C pgl(aD \ FaAr) Cc 9D\ cl V. By
Lemma 7, S = cody = Pz(R) € P;(Ly)4. Conversely let R € Ly satisfy that P;R € S.
We show P;(R) € N. By Remark 3, [(R) < 1/d. Hence we see that o);R N «2R = 0
if w1, wy € 24 with w; # wy. By the symmetry of £, wR € L, for any w € £24. Hence
V C Cr := (Nyeg, Do(@R)) or V C D\ ¢l Do{woR) for some wg € $24. We have that DN
cl V C dDNcl CrordDNcl V C cl yuyr for some wp € $24. Here notice that py(cl yur) =
pd(cl yr) = cl pa(yr) for each w € £24 and py (0D Ncl Cgr) N pd(UweQd Ywr) = O by the

property of the mapping pg. So Far N pa(yr) = @ or Fpr C cl pa(yr). Since dpa(yr) =
pa(dyr) = pa(exR) C Fyr, we have that py(ygr) € Comp(dD \ Fxr) or 8D \ ¢l pa(yr) €
Comp(dD \ Fjy). By the definition of A, P4R = co 3pa(yr) € N.

By the forward invariance of £ and equality (4), we see that N C L.

Next we show the following equalities

D NclChrNUL) = dF, 5)
DNclCarNUL) = UN®. (6)
By Remark 3, Lemma 4-a) and Lemma 6,
DNl CaN(UL)=38DNclCpy = Fyy=dFN .

To prove (6), we give some preparation.
Define B={S € L4+ |S°Ncl Car # @}. Then

UBCclCy and DNclCaNUL)=UB°.
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(Indeed let S € B. Assume that $° \ ¢l Cpr # @. Then S§° N 3¢l Cpr # 0. By Lemma 4-d)
and e), S° N (UN°) # @, contradicting the fact that N C L, and L is non-crossing. Hence
we have S C ¢l Cpr. Since D N (UL) = UL®, the second statement holds.) Thus to prove
(6), it suffices to show N/ = B. By Lemma 4-d), UN° C cl Cpr. Since N' C L4, we have
that N C B. Conversely let S € B. By the backward invariance of £, S = P;R for some
R =Xy € L4. Thenl(R) < 1/d and ps(exR) = exS C exB C 0D NclCpr = Fpr =
pa(@D N cl V). Since pl;l(pd(x)) = {wx |w € $24}, we have that wox € ¢l V for some
wo € §24. By the symmetry of £, we can suppose x € cl V. Furthermore by the symmetry
of £, weseethat V C Cgp = (ﬂwe_mr Do{@wR)) or V. C D\ ¢l Dg(R). Consider the case
cl V C cl Cg. Then J,eq, Ywr C 3D\ cl V. So by Lemma 7 and the equality (4), we have
that S = P4R € Py(Ly)+ = N. Suppose that cI V c D\ Do(R). Then 3D NclV C cl yr.
Furthermore since py(y) € pa(3D Ncl V) and I[(R) < 1/d, we see that y has to belong to
cl V. Then aD \ ¢l yg € Comp(dD \ cl V). Hence R € Nypnciv = Lv. By the equality (4),
S=PsR e P;(Ly)+ =N.
By equalities (5), (6) and Lemma 4-d), we have

cl Car N (UL) = 3Fn U (UN®) = 35Cr -

Thus Car € D\ UL. Note cl(UN) C UL since N' C £, and UL is closed. Hence Cpr €
Comp(D \ UL) by Lemma 4-f). By Corollary 1-1), C s is open in C.

Therefore Cpr = intCpr = int(intp Pa(cl V)) = int Py(cl V), hence int Py(cl V) €
Comp(l_) \ UL) and furthermore we have P;(cl V) = cl Cnr = clint Py(cl V). O

(PROOF OF LEMMA 6) Casel. [(S)=1/2forsome S € Ly.

By Remark 3, d = 2. Notice that po(3D Ncl V) = pr(@DNclV \ exS) U pa(exS),
oaDNclV \ exS C dD N Dy(S) and p, is injective on 3D N Dy (S). By Corollary 1-2),
int p2(3D N cl V \ exS) = @. Hence int po(3D N cl V) = @.

Case2. I(S) <1/2forsome S € Ly.

Then 0 ¢ 35V by Remark 1. Thus0 ¢ clVor0 e V.

Suppose 0 ¢ cl V. Letx € V. Then there is y € co{0, x} N33V \ {0, x}. By Remark 1,
y € Rforsome R € Ly. Since 0 ¢ ¢l V, we see that 9DNcl V\exR C ygr. Sincel(R) < 1/d
(by Remark 3), py is injective on yg. By Corollary 1-2), int pa(@DNcl V\exR) = @. Hence
int pa(dD N cl V) = 9.

Suppose 0 € V. Then wR € Ly forany R € Ly and w € £24. (Indeed let R € Ly.
Assume that wR ¢ Ly for some w € £2;. By the symmetry of £, wR € L. By Corollary
1-1) and Lemma 5-b), (wR)° N Dp(Q) = @ for some Q € Ly. By the symmetry of L,
w~1Q € £, . Furthermore R°NDy{(w ! Q) = @, contradicting the fact that R € Ly.) So since
Nspneiv = Ly, we see that {wz |z € y} € Comp(dD \ ¢l V) for each y € Comp(dD \ cl V)
and w € £24. Thus D N ¢l V is invariant under the rotation of angle 27 /d. Let z € clV
and z; = zexp(2mwi/d). So pa(BD Ncl V) = pg(3D Ncl V Nyz) U{pa(z)}. Since py is
injective on y 77, int pd(@D N cl V) = @ by Corollary 1-2). O



SYMMETRIC INVARIANT LAMINATION 11

(PROOF OF LEMMA 7) Suppose that R = yZ € S, satisfies the conditions: I[(R) <
1/d, pa(exR) C pa(dDNcl V) and Uye, Yor C 8D\ cl V. So P4R € Sy. We shall show
that P;R € P;(Lvy). Note that p;l(pd(z)) = {wz|w € 24). Hence woz € cl V for some
wg € 24 because py(z) € pa(dD Ncl V). Since P;R = Py(woR), we can suppose z € cl V
without loss of generality. Since z € ¢/ V and yg C dD \ ¢l V, we see that

there is ¥ € Comp(dD \ ¢l V) suchthat yg C ¥ and z € 5)/ .

Let 5)/ = {x, z}. Hence § = XZ € Nypnciv = Ly and x € cl V. Notice that
1
if 1(S) < 5 then y = ys or y =D\ cl ys.

Let yx = yexp(2wik/d) and zx = zexp(2wik/d) where k € {1,d — 1}.

Case 1. x = zx where k € {1, d — 1} (or equivalently, I(S) = 1/d).

Suppose d = 2. Then x = —z. Since I(R) < 1/2, y € y. In particular y ¢ cl V. Since
p2(y) € p2(3DNcl V), —y has to belong to ¢l V. Since y_-gNcl V = @ and ex(—R)CclV,
we have —R € Nypnciv = Ly. Hence P,R = P(—R) € P2(Ly).

Suppose d > 3. Then I(s) = 1/d < 1/2. Firstly we show y = D \ cl ys.

Assume that y = ys. Then V C Dg(S). Furthermore

clV =P where P=co p(;l(pd(z)) .

(Indeed by the symmetry of £, we see that wS € L for any w € £2,4. Notice that S is a side
of the polygon P. If there is x € (UL) N int P, then there is R € L such that x € R®, but
R° N (Upen , @S) # 9, contradicting the non-crossing property of £. So int P C D\ UL.
Since int P is connected and contained in Dg(S), we have that int P = V.) So since ps(y) €
pa(dDNcl V), we see that p; ' (pa(»)) N p7 ' (pa(@) = p7' (pa(»))NIDNcl V # @. Hence
pa(¥) = pa(z), contradicting the fact that P4R € Si.

Therefore 8D \ clys =y Cc 3D\ clVie. dDNclV C clys. Since yg C dD\ cl ys
and I(R) < I(S), we see that y ¢ cl ys. Since S = Zzx, there is unique w € £24 such that
wy € clys. Hence wy = yi i.e. w = exp(2rwik/d). Furthermore y; has to belong to ¢/ V
because pg(y) € pa(d@D Nl V) C py(cl ys). Hence ex(wR) = {zk, Yk} = {x, } C clV.
Since y,r Ncl V = @, we have wR € Nypnciv = Lv. Hence P4R = Py(wR) € P4(Lvy).

Case2. x ¢ {z1,24-1}-

Then I(S) < 1/d by Remark 3. There is unique k € {1,d — 1} with x € yz, and there
isunique!l € {1,d — 1} withy € yz7.

Suppose k # 1. Then x € y 5zU{yx} because U, o, Yor C 3D\cl V and x € cl V\{z}.
So yrNcl ys = @, and if x # yi, then p;l(pd(y))ﬂcl ys = . Since ygr C v,y = dD\cl ys,
that is, 3D N cl V C cl ys. Since pg(y) € pa(cl vs), x = Yk. S0 P4R = P4S € Pa(Lv).

Suppose k = I. Assume that R # S. Then y € ys = y. (Indeed if y ¢ ys, then since
x # v, x € yr Ncl V, contradicting the assumption that yg Ncl V = @. So y = yg since
y € ys and ygr C y.) Therefore 3D Ncl V C 3D\ ys because ys = y. Since y € ys and
pa(¥) € pa(dD N cl V), we have that there is w € §24 such that wy € cl V and w # 1. Since
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wS € L4 (by the symmetry of £) and wy € y,s Ncl V,wehave 3D NclV C cl y,s. Since
w # 1 and l[(wS) < 1/d, we see z ¢ cl y,s, contradicting the assumptionthatz € c/ V. [

4. Appendix.

(PROOF OF LEMMA 1) Since dE C 3D Cc X\ D,DNclE=DnNintE C intE C
E C DNcl E and hence int E = E and furthermore E = D Ncl E i.e. E is a non-empty and

relative clopen subset of D. Then E = D by the connectivity of D. g
(PROOF OF LEMMA 2) Notice that 0E = (cl E) \ (intE) and dcl E = (cl E)\
(intcl E). O

(PROOF OF LEMMA 3) Since C is relatively closedin X \ F,C = (cIC)N (X \ F).
Since Cisopenin X,9C = (cIC)\C =(cIC)NF C F.

For the second statement, it suffices to show that 3F C cl(Ucecompx\F) 9C)- Let x €
dF and U be an open subset of X with x € U. Denote by D the component of U containing
x. Then D\ F # @ since D is openin X and x € dF. Hence there is Cog € Comp(X \ F)
suchthat DNCo #@. Herex e DNF C D\ Cp. Thus DN Co # @ # D \ Cp. Since D is
connected, U N (Ucecompx\Fy 9C) D DN 3Co # B. Hence x € cl(Ucecompx\r) 8C)- O
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