Gap Invariance of a Symmetric Invariant Lamination

Masamichi YOSHIDA

Osaka City University
(Communicated by Y. Ito)

Abstract. We shall show that any symmetric, forward and backward invariant lamination under $z \mapsto z^d$ is gap invariant in the sense of W. P. Thurston. As a corollary, we have the gap invariance of a quadratic invariant lamination.

1. Introduction.

Let $\bar{\mathbf{D}}$ (resp. \mathbf{D}) be the closed (resp. open) unit disk in the complex plane \mathbf{C} . For each subset A of $\bar{\mathbf{D}}$, denote the convex hull of A by $co\ A$, and let $-A = \{z \in \bar{\mathbf{D}} \mid -z \in A\}$. We call a subset S of $\bar{\mathbf{D}}$ a chord if $S = co\{\zeta, \eta\}$ for some ζ and η in $\partial \mathbf{D}$ (we often write $S = \overline{\zeta\eta}$ if $\zeta \neq \eta$), and S a degenerate chord if $\zeta = \eta$. When $S = \overline{\zeta\eta}$, let $exS = \{\zeta, \eta\}$. Following Thurston ([4] and [1]), a lamination \mathcal{L} is a family of chords (an element of \mathcal{L} is called a leaf) such that $\cup \mathcal{L}$ is closed in \mathbf{C} , and \mathcal{L} is non-crossing i.e. no two distinct leaves intersect in \mathbf{D} . A gap of \mathcal{L} is the closure of a component of $\bar{\mathbf{D}} \setminus (\cup \mathcal{L})$.

For each positive integer d with $d \geq 2$, define a mapping $p_d : \partial \mathbf{D} \to \partial \mathbf{D}$ by $p_d(\zeta) = \zeta^d$. For a non-degenerate chord S, define $P_dS = co\ p_d(exS)$. A lamination \mathcal{L} is said to be forward invariant under p_d if for any $S \in \mathcal{L}$, $P_dS \in \mathcal{L}$ or P_dS is degenerate. Furthermore \mathcal{L} is said to be backward invariant if for any $S = \overline{pq} \in \mathcal{L}$, there is a collection of d disjoint chords in \mathcal{L} , each joining an inverse image of p to an inverse image of q. Finally \mathcal{L} is said to be gap invariant if $co\ p_d(G \cap \partial \mathbf{D})$ is a gap of \mathcal{L} , a leaf, or degenerate for any gap G of \mathcal{L} .

Consider the case d=2. Write $h=p_2$. In this case, for a forward invariant lamination \mathcal{L} , its backward invariance is equivalent to the following property: for each nondegenerate leaf $S, -S \in \mathcal{L}$ and there is $R \in \mathcal{L}$ such that hR = S. Indeed suppose \mathcal{L} is backward invariant. It suffices to show that $-S \in \mathcal{L}$ for each non-degenerate $S \in \mathcal{L}$. When S is a diameter, it is clear. Suppose S is not a diameter. Since S is non-degenerate, S is non-degenerate, S is the forward invariance. By the backward invariance, S is clear.

C. Bandt and K. Keller constructed a forward and backward invariant lamination under h and states, in Theorem 5.2 ([1]), that it is gap invariant. In this paper, we shall give the proof of the gap invariance theorem for *symmetric* and (forward and backward) invariant lamination

under p_d where $d \ge 2$ (see Section 3), and indicate some systematic approach to study gaps of a lamination. To end the introduction, we mention that a result of K. M. Pilgrim ([2, p. 1324]) states that there is a lamination which fails to be gap invariant under h.

2. Boundary chords of a gap and 1-sided families.

For each $x \in \mathbf{C}$ and $\varepsilon > 0$, denote $B_{\varepsilon}(x) = \{y \in \mathbf{C} \mid |y-x| < \varepsilon\}$. For each subset A of \mathbf{C} , denote by $cl\ A$ (resp. $int\ A$) the closure (resp. interior) of A in \mathbf{C} and for each $B \subset A$, denote by $int_A\ B$ (resp. $\partial_A\ B$) the relative interior (resp. relative boundary) of B in A (notice that the relative closure of B in A is $A \cap cl\ B$). Since $\bar{\mathbf{D}}$ is closed in \mathbf{C} , we have $cl\ B = int_{\bar{\mathbf{D}}}B \cup \partial_{\bar{\mathbf{D}}}B = B \cup \partial_{\bar{\mathbf{D}}}B$ for each $B \subset \bar{\mathbf{D}}$. For each $B \subset \partial \mathbf{D}$, we write $int\ B = int_{\partial \mathbf{D}}B$ and $\tilde{\partial}\ B = \partial_{\partial \mathbf{D}}B$. Similarly since $\partial \mathbf{D}$ is closed in \mathbf{C} , we have $cl\ B = int\ B \cup \tilde{\partial}\ B = B \cup \tilde{\partial}\ B$ for each $B \subset \partial \mathbf{D}$. Denote $S = \{S \subset \bar{\mathbf{D}} \mid S \text{ is a chord}\}$ and $S_+ = \{S \in S \mid S \text{ is non-degenerate}\}$. For $S \in S_+$, denote $S^{\circ} = S \setminus exS$, and for each connected subset V of $\bar{\mathbf{D}} \setminus S$, the connected component of $\bar{\mathbf{D}} \setminus S$ containing V by $D_V \langle S \rangle$, in particular when $V = \{x\}$, write $D_x \langle S \rangle = D_V \langle S \rangle$. We often use the following fact. Suppose that $I \subset \bar{\mathbf{D}}$ is a non-degenerate line segment (for example, $I = co\{z, w\}$ for some $I \in S$ with $I \in S$ with $I \in S$. Let $I \in S$ if $I \cap I \cap I$ and $I \cap I \cap I$ decomposed notice that $I \cap I$ is connected).

We also use the following general lemmas (see Appendix). Let X be a topological space.

LEMMA 1. Let D be a connected and open subset of X and E is a non-empty subset of D. If $\partial E \subset \partial D$, then E = D.

LEMMA 2. Let $E \subset X$. Then $\partial E \supset \partial cl E$. Furthermore $\partial E \subset \partial cl E$ if and only if $E \supset int cl E$.

For each $E \subset X$, denote by Comp(E) the family of connected components of E. X is said to be locally connected if for any open subset U of X and any $C \in Comp(U)$, C is open in X. Hence $\bar{\mathbf{D}}$ and $\partial \mathbf{D}$ is locally connected with respect to their relative topology.

LEMMA 3. Suppose that X is locally connected. Let F be a closed subset of X. Then for any $C \in Comp(X \setminus F)$, $\partial C \subset F$. Furthermore $\partial F = cl(\bigcup_{C \in Comp(X \setminus F)} \partial C)$.

For a subfamily \mathcal{M} of \mathcal{S} , define $\mathcal{M}_+ = \mathcal{M} \cap \mathcal{S}_+$, $\mathcal{M}^\circ = \{S^\circ \mid S \in \mathcal{M}_+\}$ and $ex\mathcal{M} = \partial \mathbf{D} \cap (\cup \mathcal{M}_+)$. Then $(\cup \mathcal{M}) \cap \mathbf{D} = \cup \mathcal{M}^\circ$ and $ex\mathcal{M} = \{x \in \partial \mathbf{D} \mid x \in S \text{ for some } S \in \mathcal{M}_+\}$.

DEFINITION 1 (Non-crossing family of chords and Lamination). Suppose a subfamily \mathcal{L} of \mathcal{S} satisfies that $\mathcal{L}_+ \neq \emptyset$ and $\bar{\mathbf{D}} \setminus cl(\cup \mathcal{L}) \neq \emptyset$ (hence $\mathbf{D} \setminus \cup \mathcal{L} \neq \emptyset$). We say \mathcal{L} is non-crossing if for any $R, S \in \mathcal{L}_+, R = S$ or $S^\circ \cap R = \emptyset$, or equivalently if for any (or some) $x \in \mathbf{D} \setminus \cup \mathcal{L}$ and any $R \neq S \in \mathcal{L}_+, S^\circ \subset D_x \setminus R$ or $S^\circ \cap cl D_x \setminus R$ = \emptyset . Let \mathcal{L} be non-crossing. For each $V \in Comp(\bar{\mathbf{D}} \setminus \cup \mathcal{L})$, define $\mathcal{L}_V = \{S \in \mathcal{S}_+ \mid S \subset \partial_{\bar{\mathbf{D}}} V\}$. We say \mathcal{L} is a lamination if \mathcal{L} is non-crossing and $\cup \mathcal{L}$ is closed in \mathbf{C} .

REMARK 1. Let \mathcal{L} be a lamination and $V \in Comp(\bar{\mathbf{D}} \setminus \cup \mathcal{L})$. Then V is relatively open in $\bar{\mathbf{D}}$, $\partial_{\bar{\mathbf{D}}} V \subset \cup \mathcal{L}$, $\mathbf{D} \cap \partial_{\bar{\mathbf{D}}} V = \cup \mathcal{L}_{V}^{\circ}$, and furthermore $\sharp \mathcal{L}_{V} \geq 1$.

PROOF. By Lemma 3, V is relatively open in $\bar{\mathbf{D}}$ and $\partial_{\bar{\mathbf{D}}}V \subset \cup \mathcal{L}$ because $\bar{\mathbf{D}}$ is locally connected and $\cup \mathcal{L}$ is relatively closed in $\bar{\mathbf{D}}$. Hence $\mathbf{D} \cap \partial_{\bar{\mathbf{D}}}V = \cup \mathcal{L}_V^{\circ}$. (Indeed $\cup \mathcal{L}_V^{\circ} = \mathbf{D} \cap (\cup \mathcal{L}_V) \subset \mathbf{D} \cap \partial_{\bar{\mathbf{D}}}V$. Conversely let $x \in \mathbf{D} \cap \partial_{\bar{\mathbf{D}}}V$. Since $x \in \mathbf{D} \cap (\cup \mathcal{L})$, there is $S \in \mathcal{L}$ such that $x \in S^{\circ}$. Assume $S \notin \mathcal{L}_V$. Let $y \in S \setminus \partial_{\bar{\mathbf{D}}}V$. So $y \notin V \cup \partial_{\bar{\mathbf{D}}}V = cl\ V$. Pick a point $z \in V$ (maybe $z \in \partial \mathbf{D}$). Then $l = (co\{y, z\}) \setminus \{y, z\} \subset \mathbf{D} \cap D_z \langle S \rangle$. Since $y \notin cl\ V$, $l \setminus V \neq \emptyset$. Since V is relatively open in $\bar{\mathbf{D}}$, $l \cap V \neq \emptyset$. Hence there is $w \in l \cap \partial_{\bar{\mathbf{D}}}V$. Since $w \in \mathbf{D} \cap (\cup \mathcal{L})$, there is $R \in \mathcal{L}$ such that $w \in R^{\circ}$. Since $v \in D_z \langle S \rangle$ and $v \in S^{\circ} \cap cl\ V \subset S^{\circ} \cap cl\ D_z \langle R \rangle = \emptyset$, contradicting the fact that $v \in S^{\circ} \cap cl\ V$.)

Notice that $V \cap \mathbf{D}$ is relatively open, that is, $int_{\bar{\mathbf{D}}}(V \cap \mathbf{D}) = V \cap \mathbf{D}$. So $\partial_{\bar{\mathbf{D}}}(V \cap \mathbf{D}) = cl(V \cap \mathbf{D}) \setminus (V \cap \mathbf{D}) \subset (cl\ V \setminus V) \cup (cl\ V \setminus \mathbf{D}) \subset \partial_{\bar{\mathbf{D}}}V \cup \partial \mathbf{D}$. Assume $\mathcal{L}_V = \emptyset$. Then $\partial_{\bar{\mathbf{D}}}V \subset \partial \mathbf{D}$, hence $\partial_{\bar{\mathbf{D}}}(V \cap \mathbf{D}) \subset \partial \mathbf{D} = \partial_{\bar{\mathbf{D}}}\mathbf{D}$. By Lemma 1, we have $V \cap \mathbf{D} = \mathbf{D}$, contradicting the assumption $\mathcal{L}_+ \neq \emptyset$.

Let \mathcal{L} be a lamination. A subset G of $\bar{\mathbf{D}}$ is called a gap of \mathcal{L} if $G = cl\ V$ for some $V \in Comp(\bar{\mathbf{D}} \setminus \cup \mathcal{L})$. We shall consider a representation for $G = cl\ V$ via a family \mathcal{L}_V . At first notice that $\mathcal{L}_V \subset \mathcal{L}_+$ and since V is relatively open in $\bar{\mathbf{D}}$,

$$V \subset int_{\bar{\mathbf{D}}} \left(\bigcap_{S \in \mathcal{L}_V} D_V \langle S \rangle \right).$$

Furthermore if $\sharp \mathcal{L}_V \geq 2$, then \mathcal{L}_V is 1-sided in the following sense.

DEFINITION 2 (1-sided family of chords). Let \mathcal{N} be a non-crossing subfamily of \mathcal{S}_+ with $\sharp \mathcal{N} \geq 2$. We say that \mathcal{N} is 1-sided if $\cup \mathcal{N} \subset cl\ D_{R^{\circ}}\langle S \rangle$ for any two distinct chords R and S in \mathcal{N} .

In order to get representation for gaps of a lamination, we shall study the property of a 1-sided family. Let \mathcal{N} be 1-sided. Then for each $S \in \mathcal{N}$, the set $D_{R^{\circ}}\langle S \rangle$ is independent of the choice of $R \in \mathcal{N} \setminus \{S\}$ and so denote it by $D_{\mathcal{N}}(S)$. Furthermore the cardinality of \mathcal{N} is at most countable. Indeed the first statement holds by the definition of 1-sidedness. For each $S, R \in \mathcal{N}$ with $S \neq R$, we have that $(\bar{\mathbf{D}} \setminus cl \ D_{\mathcal{N}}(S)) \cap (\bar{\mathbf{D}} \setminus cl \ D_{\mathcal{N}}(R)) = \emptyset$. For each $S \in \mathcal{N}$, $\bar{\mathbf{D}} \setminus cl \ D_{\mathcal{N}}(S)$ is relatively open in $\bar{\mathbf{D}}$. Since $\bar{\mathbf{D}}$ is separable, the second statement holds. We define the center of a 1-sided family \mathcal{N} .

DEFINITION 3 (Center of a 1-sided family). Let \mathcal{N} be a 1-sided subfamily of \mathcal{S}_+ . Define $C_{\mathcal{N}} = int_{\bar{\mathbf{D}}}(\bigcap_{S \in \mathcal{N}} D_{\mathcal{N}}(S))$.

If \mathcal{L} is a lamination, then $V \subset C_{\mathcal{L}_V}$ for each $V \in Comp(\bar{\mathbf{D}} \setminus \cup \mathcal{L})$ with $\sharp \mathcal{L}_V \geq 2$, and $D_{\mathcal{L}_V}(S) = D_V \langle S \rangle$ for any $S \in \mathcal{L}_V$. At the end of this section, we shall show that $G = cl \ V = cl \ C_{\mathcal{L}_V}$ (Lemma 5) and that if $\partial \mathbf{D} = cl \ ex \mathcal{L}$, then $\sharp \mathcal{L}_V \geq 2$ for each $V \in Comp(\bar{\mathbf{D}} \setminus \cup \mathcal{L})$ (Corollary 1).

REMARK 2. Let \mathcal{N} be 1-sided. Then $C_{\mathcal{N}} \neq \emptyset$ and $cl(\cup \mathcal{N}) \subset cl C_{\mathcal{N}} \subset \bigcap_{S \in \mathcal{N}} cl D_{\mathcal{N}}(S)$.

PROOF. Let S_1 , S_2 be distinct chords in \mathcal{N} . Since \mathcal{N} is 1-sided, $(int co(S_1 \cup S_2)) \cap (\cup \mathcal{N}) = \emptyset$. Furthermore $int co(S_1 \cup S_2) \subset \bigcap_{S \in \mathcal{N}} D_{\mathcal{N}}(S)$. Hence $\emptyset \neq int co(S_1 \cup S_2) \subset C_{\mathcal{N}}$ and $S_1 \cup S_2 \subset cl C_{\mathcal{N}}$.

Denote $\mathcal{F} = \{F \mid F \text{ is a closed disconnected subset of } \partial \mathbf{D} \text{ with } \sharp F \geq 3\}$ and $\Gamma = \{\mathcal{N} \mid \mathcal{N} \text{ is a 1-sided family}\}$. We can construct a 1 to 1 correspondence between Γ and \mathcal{F} . Indeed if $F \in \mathcal{F}$, then the family

$$\mathcal{N}_F = \{ co \, \tilde{\partial} \gamma \, | \, \gamma \in Comp(\partial \mathbf{D} \setminus F) \},\,$$

is 1-sided (notice that γ is an open arc for each $\gamma \in Comp(\partial \mathbf{D} \setminus F)$). Conversely suppose \mathcal{N} is 1-sided. Define

$$F_{\mathcal{N}} = \bigcap_{S \in \mathcal{N}} (\partial \mathbf{D} \cap cl \ D_{\mathcal{N}}(S)) .$$

Then $Comp(\partial \mathbf{D} \setminus F_{\mathcal{N}}) = \{\partial \mathbf{D} \setminus cl \ D_{\mathcal{N}}(S)\}_{S \in \mathcal{N}}$ because $(\bar{\mathbf{D}} \setminus cl \ D_{\mathcal{N}}(S)) \cap (\bar{\mathbf{D}} \setminus cl \ D_{\mathcal{N}}(R))$ = \emptyset for each $S, R \in \mathcal{N}$ with $S \neq R$. So $F_{\mathcal{N}}$ is closed disconnected with $\sharp F_{\mathcal{N}} \geq 3$. Since $\tilde{\partial}(\partial \mathbf{D} \cap cl \ D_{\mathcal{N}}(S)) = exS$, we have $ex\mathcal{N} \subset F_{\mathcal{N}}$, and

if
$$F = F_N$$
, then $\mathcal{N} = \mathcal{N}_F$.

Notice that $\tilde{\partial} F_{\mathcal{N}} = cl \ ex \mathcal{N}$ by the local connectivity of $\partial \mathbf{D}$ and Lemma 3. Conversely let $F \in \mathcal{F}$. We have that

if
$$\mathcal{N} = \mathcal{N}_F$$
, then $F = F_{\mathcal{N}}$

because $\partial \mathbf{D} \setminus F = \bigcup_{S \in \mathcal{N}} \partial \mathbf{D} \setminus cl \ D_{\mathcal{N}}(S) = \cup Comp(\partial \mathbf{D} \setminus F_{\mathcal{N}})$. Thus we have a 1 to 1 correspondence $\mathcal{N} \leftrightarrow F_{\mathcal{N}}$. We shall show that if $\partial \mathbf{D} = cl \ ex \mathcal{L}$, then $\mathcal{L}_V = \mathcal{N}_{\partial \mathbf{D} \cap cl \ V}$ for each $V \in Comp(\bar{\mathbf{D}} \setminus \cup \mathcal{L})$ (Corollary 1). So we can reconstruct the family \mathcal{L}_V from $\partial \mathbf{D} \cap cl \ V$ by the above method. This equality $\mathcal{L}_V = \mathcal{N}_{\partial \mathbf{D} \cap cl \ V}$ is the key to prove gap invariance theorem (Section 3).

We use the following simple fact. Let $\varepsilon > 0$, $x \in \partial \mathbf{D}$ and $S \in \mathcal{S}_+$. If $S \cap co(\partial \mathbf{D} \cap B_{\varepsilon}(x)) \neq \emptyset$, then $exS \cap (\partial \mathbf{D} \cap B_{\varepsilon}(x)) \neq \emptyset$ (indeed if $exS \subset \partial \mathbf{D} \setminus B_{\varepsilon}(x)$, then $S = co \, exS \subset co(\partial \mathbf{D} \setminus B_{\varepsilon}(x)) \subset \bar{\mathbf{D}} \setminus co(\partial \mathbf{D} \cap B_{\varepsilon}(x))$). We also use Caratheodory's theorem (Theorem 17.1 in [3]): For any $A \subset \mathbf{C}$ and any $x \in co \, A$, $x \in co\{x_1, x_2, x_3\}$ for some $x_1, x_2.x_3 \in A$. We show that $F_{\mathcal{N}} = \partial \mathbf{D} \cap cl \, C_{\mathcal{N}}$, $\widehat{int} \, F_{\mathcal{N}} = \partial \mathbf{D} \cap C_{\mathcal{N}}$, $\widehat{\partial} \, F_{\mathcal{N}} = \partial \mathbf{D} \cap \partial_{\bar{\mathbf{D}}} \, C_{\mathcal{N}}$ and $cl \, C_{\mathcal{N}} = co \, F_{\mathcal{N}}$. More precisely,

LEMMA 4. Let N be 1-sided. Then

- a) $F_{\mathcal{N}} = \partial \mathbf{D} \cap cl \ C_{\mathcal{N}}$.
- b) int $F_{\mathcal{N}} = \partial \mathbf{D} \cap C_{\mathcal{N}}$.
- c) $cl C_{\mathcal{N}} = co F_{\mathcal{N}}$.
- d) $\partial_{\bar{\mathbf{D}}} C_{\mathcal{N}} = \tilde{\partial} F_{\mathcal{N}} \cup (\cup \mathcal{N}^{\circ}).$
- e) $C_{\mathcal{N}} = int_{\bar{\mathbf{D}}} cl C_{\mathcal{N}}$ (or equivalently, $\partial_{\bar{\mathbf{D}}} C_{\mathcal{N}} = \partial_{\bar{\mathbf{D}}} cl C_{\mathcal{N}}$).
- f) $C_{\mathcal{N}} \in Comp(\bar{\mathbf{D}} \setminus cl(\cup \mathcal{N})).$

PROOF. Firstly we show the statements a) and b). By Remark 2, $F_{\mathcal{N}} \supset \partial \mathbf{D} \cap cl \ C_{\mathcal{N}}$. Since $\cup \mathcal{N} \subset cl \ C_{\mathcal{N}}$ (by Remark 2), we have $\tilde{\partial} F_{\mathcal{N}} = cl \ ex \mathcal{N} \subset \partial \mathbf{D} \cap cl \ C_{\mathcal{N}}$. We show

 $\widetilde{int} F_{\mathcal{N}} = \partial \mathbf{D} \cap C_{\mathcal{N}}$ (then $F_{\mathcal{N}} = \partial \mathbf{D} \cap cl C_{\mathcal{N}}$). If $x \in \partial \mathbf{D} \cap C_{\mathcal{N}}$, then $B_{\varepsilon_0}(x) \cap \partial \mathbf{D} \subset (\bigcap_{S \in \mathcal{N}} D_{\mathcal{N}}(S)) \cap \partial \mathbf{D} \subset F_{\mathcal{N}}$ for some $\varepsilon_0 > 0$, hence $x \in \widetilde{int} F_{\mathcal{N}}$. Conversely let $x \in \widetilde{int} F_{\mathcal{N}}$. Then $\partial \mathbf{D} \cap B_{\varepsilon}(x) \subset \partial \mathbf{D} \setminus ex \mathcal{N}$ for some $\varepsilon > 0$. Assume there is $S \in \mathcal{N}$ with $S \cap co(\partial \mathbf{D} \cap B_{\varepsilon}(x)) \neq \emptyset$. Then $ex S \cap (\partial \mathbf{D} \cap B_{\varepsilon}(x)) \neq \emptyset$ contradicting the choice of ε . Hence $co(\partial \mathbf{D} \cap B_{\varepsilon}(x)) \subset \overline{\mathbf{D}} \setminus \cup \mathcal{N}$. Since $x \in F_{\mathcal{N}} \subset \bigcap_{S \in \mathcal{N}} cl D_{\mathcal{N}}(S)$ and $co(\partial \mathbf{D} \cap B_{\varepsilon}(x))$ is connected and relatively open in $\overline{\mathbf{D}}$, we have $co(\partial \mathbf{D} \cap B_{\varepsilon}(x)) \subset C_{\mathcal{N}}$.

c) We show the equality

$$\bigcap_{S \in \mathcal{N}} cl \ D_{\mathcal{N}}(S) = co \ F_{\mathcal{N}} = cl \ C_{\mathcal{N}}. \tag{1}$$

By Remark 2, it suffices to show $\bigcap_{S\in\mathcal{N}} cl\ D_{\mathcal{N}}(S) \subset co\ F_{\mathcal{N}} \subset cl\ C_{\mathcal{N}}$. Let $x\in\bigcap_{S\in\mathcal{N}} cl\ D_{\mathcal{N}}(S)$. If $x\in\partial\mathbf{D}$, then $x\in F_{\mathcal{N}}$. If $x\in\cup\mathcal{N}$, then $x\in S=co\ ex\ S$ for some $S\in\mathcal{N}$, hence $x\in co\ F_{\mathcal{N}}$ since $ex\mathcal{N}\subset F_{\mathcal{N}}$. Suppose $x\in\mathbf{D}\setminus\cup\mathcal{N}$. Let $\overline{ab}\in\mathcal{N}$ (note $\{a,b\}\subset F_{\mathcal{N}}$), $\overline{aa'}$ be the chord passing through x, $\overline{bb'}$ the chord passing through x and [a',b'] the closed arc between a' and b' containing neither a nor b. If $[a',b']\cap F_{\mathcal{N}}\neq\emptyset$, then $x\in\Delta aby\subset co\ F_{\mathcal{N}}$ where $y\in[a',b']\cap F_{\mathcal{N}}$. If $[a',b']\subset\partial\mathbf{D}\setminus F_{\mathcal{N}}$, then $[a',b']\subset\gamma$ for some $\gamma\in Comp(\partial\mathbf{D}\setminus F_{\mathcal{N}})$. Note that γ is an open arc and $\tilde{\partial}\gamma=\{a_0,b_0\}\subset F_{\mathcal{N}}$. Since $x\in\bigcap_{S\in\mathcal{N}} cl\ D_{\mathcal{N}}(S)$ and $\gamma\subset\partial\mathbf{D}\setminus F_{\mathcal{N}}$, we have that the points a,a_0,b_0,b are distinct and $x\in co\{a,a_0,b_0,b\}\subset co\ F_{\mathcal{N}}$. Next we show $co\ F_{\mathcal{N}}\subset cl\ C_{\mathcal{N}}$. It suffices, by the theorem of Caratheodory, to show for any (closed) triangle Δ whose vertices belong to $F_{\mathcal{N}}$, $int\ \Delta\subset C_{\mathcal{N}}$. Let Δ be such a triangle and $S\in\mathcal{N}$. If $int\ \Delta\setminus D_{\mathcal{N}}(S)\neq\emptyset$, then some vertex of Δ does not belong to $\partial\mathbf{D}\cap cl\ D_{\mathcal{N}}(S)(\supset F_{\mathcal{N}})$ contradicting the choice of Δ . Thus $int\ \Delta\subset\bigcap_{S\in\mathcal{N}} D_{\mathcal{N}}(S)$.

d) At first we show the equality

$$\tilde{\partial} F_{\mathcal{N}} = \partial \mathbf{D} \cap cl(\cup \mathcal{N}). \tag{2}$$

Since $\tilde{\partial} F_{\mathcal{N}} = cl \ ex \mathcal{N}$, $\tilde{\partial} F_{\mathcal{N}} \subset \partial \mathbf{D} \cap cl(\cup \mathcal{N})$. Conversely let $x \in \partial \mathbf{D} \cap cl(\cup \mathcal{N})$. Since $co(\partial \mathbf{D} \cap B_{\varepsilon}(x))$ is relatively open in $\bar{\mathbf{D}}$, we see that for any $\varepsilon > 0$, $S \cap co(\partial \mathbf{D} \cap B_{\varepsilon}(x)) \neq \emptyset$ for some $S \in \mathcal{N}$. So $B_{\varepsilon}(x) \cap ex S \neq \emptyset$, that is, $x \in cl \ ex \mathcal{N} = \tilde{\partial} F_{\mathcal{N}}$. We show the equality

$$\tilde{\partial} F_{\mathcal{N}} \cup (\cup \mathcal{N}^{\circ}) = \partial_{\tilde{\mathbf{D}}} C_{\mathcal{N}} = cl(\cup \mathcal{N}). \tag{3}$$

By a) and Remark 2, $F_{\mathcal{N}} \cup cl(\cup \mathcal{N}) \subset cl \ C_{\mathcal{N}}$. It suffices to show $cl \ C_{\mathcal{N}} \setminus (\tilde{\partial} F_{\mathcal{N}} \cup (\cup \mathcal{N}^{\circ})) = C_{\mathcal{N}} = cl \ C_{\mathcal{N}} \setminus cl(\cup \mathcal{N})$. We show that $x \in C_{\mathcal{N}}$ for each $x \in cl \ C_{\mathcal{N}} \setminus (\tilde{\partial} F_{\mathcal{N}} \cup (\cup \mathcal{N}^{\circ}))$. If $x \in \partial \mathbf{D}$, then $x \in \inf F_{\mathcal{N}} \subset C_{\mathcal{N}}$ by a). Suppose $x \in \mathbf{D}$. By (1), $x \in \bigcap_{S \in \mathcal{N}} cl \ D_{\mathcal{N}}(S)$. Assume that $B_{\varepsilon}(x) \cap (\cup \mathcal{N}) \neq \emptyset$ for any $\varepsilon > 0$ with $B_{\varepsilon}(x) \subset \mathbf{D}$. Then since $x \notin \cup \mathcal{N}^{\circ}$, $\sharp\{S \in \mathcal{N} \mid B_{\varepsilon}(x) \cap S \neq \emptyset\} = \infty$. In particular $B_{\varepsilon}(x) \cap S_i \neq \emptyset$ for some $S_1, S_2, S_3 \in \mathcal{N}$ with $S_i^{\circ} \cap S_j^{\circ} = \emptyset$ ($i \neq j$). We can suppose $S_3 \subset (cl \ D_{S_2^{\circ}}(S_1)) \cap (cl \ D_{S_1^{\circ}}(S_2))$. Hence $D_{S_1^{\circ}}(S_3) \cap D_{S_2^{\circ}}(S_3) = \emptyset$, contradicting the 1-sidedness of \mathcal{N} . So $B_{\varepsilon_0}(x) \subset \mathbf{D} \setminus \cup \mathcal{N}$ for some $\varepsilon_0 > 0$. Since $B_{\varepsilon_0}(x)$ is connected and $x \in \bigcap_{S \in \mathcal{N}} cl \ D_{\mathcal{N}}(S)$, we have $B_{\varepsilon_0}(x) \subset \bigcap_{S \in \mathcal{N}} D_{\mathcal{N}}(S)$, in particular $x \in C_{\mathcal{N}}$.

Next we show $C_{\mathcal{N}} \subset cl \ C_{\mathcal{N}} \setminus cl(\cup \mathcal{N})$, that is, $C_{\mathcal{N}} \cap cl(\cup \mathcal{N}) = \emptyset$. If $x \in C_{\mathcal{N}} \cap \partial \mathbf{D}$, then $x \in \widetilde{int} \ F_N$ by b). Since $x \in \partial \mathbf{D}$, $x \notin cl(\cup \mathcal{N})$ by (2). When $x \in C_{\mathcal{N}} \cap \mathbf{D}$ we have $B_{\varepsilon_0}(x) \subset \bigcap_{S \in \mathcal{N}} D_{\mathcal{N}}(S)$ for some $\varepsilon_0 > 0$, so $B_{\varepsilon_0}(x) \cap (\cup \mathcal{N}) = \emptyset$ i.e. $x \notin cl(\cup \mathcal{N})$.

Finally by (2), we have $cl C_{\mathcal{N}} \setminus cl(\cup \mathcal{N}) \subset cl C_{\mathcal{N}} \setminus (\tilde{\partial} F_{\mathcal{N}} \cup (\cup \mathcal{N}))$.

- e) It is clear that $C_{\mathcal{N}} \subset int_{\bar{\mathbf{D}}} \, cl \, C_{\mathcal{N}}$. By Lemma 2, it suffices to show $\partial_{\bar{\mathbf{D}}} C_{\mathcal{N}} \subset \partial_{\bar{\mathbf{D}}} \, cl \, C_{\mathcal{N}}$. Let $x \in \partial_{\bar{\mathbf{D}}} C_{\mathcal{N}}$. Then for any $\varepsilon > 0$, there is $R \in \mathcal{N}$ such that $(B_{\varepsilon}(x) \cap \bar{\mathbf{D}}) \setminus cl \, D_{\mathcal{N}}(R) \neq \emptyset$. (Indeed since $\partial_{\bar{\mathbf{D}}} C_{\mathcal{N}} = (\cup \mathcal{N}^{\circ}) \cup cl \, ex \mathcal{N}$ by d), we see that $x \in R^{\circ}$ for some $R \in \mathcal{N}$ or $x \in cl \, ex \mathcal{N}$. When $x \in cl \, ex \mathcal{N}$, there is $R \in \mathcal{N}$ such that $B_{\varepsilon}(x) \cap ex \, R \neq \emptyset$.) So by $(1), (B_{\varepsilon}(x) \cap \bar{\mathbf{D}}) \setminus cl \, C_{\mathcal{N}} = \bigcup_{S \in \mathcal{N}} (B_{\varepsilon}(x) \cap \bar{\mathbf{D}}) \setminus cl \, D_{\mathcal{N}}(S) \neq \emptyset$. Thus $x \in cl \, C_{\mathcal{N}} \setminus int_{\bar{\mathbf{D}}} \, cl \, C_{\mathcal{N}} = \partial_{\bar{\mathbf{D}}} \, cl \, C_{\mathcal{N}}$.
- f) By (1), $cl\ C_N$ is closed and convex in \mathbb{C} . Since $F_N \in \mathcal{F}$, we have that $D = int\ cl\ C_N$ is convex and $cl\ D = cl\ C_N$ by Theorems 6.2 and 6.3 in [3] (see also p. 44 in [3]). Therefore we see $D \subset int_{\bar{\mathbf{D}}}\ cl\ C_N = C_N \subset cl\ D$ by e). So C_N is connected. By (3), $C_N \in Comp(\bar{\mathbf{D}} \setminus cl(\cup N))$.

LEMMA 5. Let \mathcal{L} be a lamination and $V \in Comp(\bar{\mathbf{D}} \setminus \cup \mathcal{L})$ with $\sharp \mathcal{L}_V \geq 2$. Then

- a) $F_{\mathcal{L}_V} = \partial \mathbf{D} \cap cl \ V. \ (Hence \ \mathcal{L}_V = \mathcal{N}_{\partial \mathbf{D} \cap cl \ V}.)$
- b) For each $R \in \mathcal{L}_+$, there is $Q \in \mathcal{L}_V$ such that $D_V \langle Q \rangle \subset D_V \langle R \rangle$.
- c) $C_{\mathcal{L}_V} = int_{\bar{\mathbf{D}}}(\bigcap_{S \in \mathcal{L}_+} D_V \langle S \rangle).$
- d) $cl\ V = cl\ C_{\mathcal{L}_V}$.

PROOF. We prepare the following claim. Suppose $S \in \mathcal{S}_+$ satisfies the condition that $\mathcal{L} \cup \{S\}$ is non-crossing and $S^{\circ} \cap V = \emptyset$. (Notice that $S \cap V = \emptyset$ because V is relatively open in $\bar{\mathbf{D}}$ by Remark 1.) Then the following conditions are equivalent.

- 1) $S^{\circ} \cap cl \ V \neq \emptyset$.
- 2) $S^{\circ} \subset D_V \langle R \rangle$ for any $R \in \mathcal{L}_+ \setminus \{S\}$.
- 3) $S \in \mathcal{L}_V$.
- 4) $exS \subset cl V$.
- $egin{align*}
 egin{align*}
 egin{align*}
 egin{align*}
 egin*
 egin*$

Now we prove the lemma. Recall that $V \subset C_{\mathcal{L}_V}$ and $D_{\mathcal{L}_V}(R) = D_V(R)$ for any $R \in \mathcal{L}_V$.

a) We show $Comp(\partial \mathbf{D} \setminus F_{\mathcal{L}_V}) = Comp(\partial \mathbf{D} \setminus cl\ V)$ (hence $F_{\mathcal{L}_V} = \partial \mathbf{D} \cap cl\ V$).

Let $\gamma \in Comp(\partial \mathbf{D} \setminus F_{\mathcal{L}_V})$. By the definition of $F_{\mathcal{L}_V}$, $\gamma = \partial \mathbf{D} \setminus cl \ D_{\mathcal{L}_V}(R) = \partial \mathbf{D} \setminus cl \ D_{\mathcal{L}_V}(R)$ for some $R \in \mathcal{L}_V$. Since $\tilde{\partial} \gamma = exR \subset cl \ V$, we have $\gamma \in Comp(\partial \mathbf{D} \setminus cl \ V)$. Conversely let $\gamma \in Comp(\partial \mathbf{D} \setminus cl \ V)$ and $\tilde{\partial} \gamma = \{a_0, a_1\}$. We show $\gamma = \partial \mathbf{D} \setminus cl \ D_{\mathcal{L}_V}(R)$ for some $R \in \mathcal{L}_V$ i.e. $S = \overline{a_0a_1} \in \mathcal{L}_V$. Since $exS \subset cl \ V$, it suffices to show S satisfies the assumption in the above claim, that is, $\mathcal{L} \cup \{S\}$ is non-crossing and $S^{\circ} \cap V = \emptyset$. If there is $R \in \mathcal{L}_+$ with $R^{\circ} \cap S \neq \emptyset$, then $a_i \notin cl \ V$ for some $i \in \{0, 1\}$, contradicting the fact that

 $a_i \in cl\ V$. So the family $\mathcal{L} \cup \{S\}$ is non-crossing. Assume there is $x \in S^\circ \cap V$. Pick $y \in \gamma$. Since $y \in \partial \mathbf{D} \setminus cl\ V$, there is $z \in \mathbf{D} \cap co\{x, y\}$ with $z \in \partial_{\bar{\mathbf{D}}} V$. By Remark 1, $z \in R^\circ$ for some $R \in \mathcal{L}_V$. Since $\mathcal{L} \cup \{S\}$ is non-crossing, $R^\circ \subset co\ \gamma$. Hence $\gamma \cap ex\ R \neq \emptyset$, contradicting the fact that $\gamma \cap ex\ R \subset \gamma \cap cl\ V = \emptyset$. So $S^\circ \cap V = \emptyset$.

- b) Let $R \in \mathcal{L}_+$. Since $\partial \mathbf{D} \setminus cl \ D_V \langle R \rangle \subset \partial \mathbf{D} \setminus cl \ V = \partial \mathbf{D} \setminus F_{\mathcal{L}_V}$, there is $\gamma \in Comp(\partial \mathbf{D} \setminus F_{\mathcal{L}_V})$ such that $\partial \mathbf{D} \setminus cl \ D_V \langle R \rangle \subset \gamma$. Letting $Q = co \ \tilde{\partial} \gamma$, we have $Q \in \mathcal{N}_{F_{\mathcal{L}_V}} = \mathcal{L}_V$ and $D_V \langle Q \rangle \subset D_V \langle R \rangle$.
- c) By b), $\bigcap_{S \in \mathcal{L}_V} D_{\mathcal{L}_V}(S) = \bigcap_{S \in \mathcal{L}_V} D_V \langle S \rangle = \bigcap_{S \in \mathcal{L}_+} D_V \langle S \rangle$. Hence $C_{\mathcal{L}_V} = int_{\bar{\mathbf{D}}}(\bigcap_{S \in \mathcal{L}_+} D_V \langle S \rangle)$.
- d) By Lemma 4-a), $cl\ C_{\mathcal{L}_V} = (\mathbf{D} \cap cl\ C_{\mathcal{L}_V}) \cup F_{\mathcal{L}_V}$. Since **D** is open in **C**, we see $\mathbf{D} \cap cl\ C_{\mathcal{L}_V} \subset cl(\mathbf{D} \cap C_{\mathcal{L}_V})$. Hence $cl\ C_{\mathcal{L}_V} = cl(\mathbf{D} \cap C_{\mathcal{L}_V}) \cup F_{\mathcal{L}_V}$. By a), we can show that $cl\ V = cl(\mathbf{D} \cap V) \cup F_{\mathcal{L}_V}$ in the same way as above. Therefore since $V \subset C_{\mathcal{L}_V}$, it suffices to show that $\mathbf{D} \cap C_{\mathcal{L}_V} \subset \mathbf{D} \cap V$. Let $x \in \mathbf{D} \cap C_{\mathcal{L}_V}$. By c), $B_{\varepsilon_0}(x) \subset \mathbf{D} \cap (\bigcap_{S \in \mathcal{L}_+} D_V \langle S \rangle)$ for some $\varepsilon_0 > 0$. In particular $B_{\varepsilon_0}(x) \subset \mathbf{D} \setminus \cup \mathcal{L}$. Since $B_{\varepsilon_0}(x)$ is connected, $B_{\varepsilon_0}(x) \subset V$.

COROLLARY 1. Suppose that a lamination \mathcal{L} satisfies the condition $\partial \mathbf{D} = cl \ ex \mathcal{L}$. Then for any $V \in Comp(\bar{\mathbf{D}} \setminus \cup \mathcal{L})$,

- 1) V is open in C and $\sharp \mathcal{L}_V \geq 2$. (Hence $\mathcal{L}_V = \mathcal{N}_{\partial \mathbf{D} \cap cl V}$.)
- 2) $int(\partial \mathbf{D} \cap cl \ V) = \emptyset$.
- 3) $V = C_{\mathcal{L}_V}$.

PROOF. 1) Since $\cup \mathcal{L}$ is closed in \mathbf{C} and $\partial \mathbf{D} = cl \, ex \, \mathcal{L}$, we have $\partial \mathbf{D} \subset \cup \mathcal{L}$. Hence $V \subset \mathbf{D}$ and furthermore V is open in \mathbf{C} . (Indeed since V is relatively open in $\bar{\mathbf{D}}$ and $V \subset \mathbf{D}$, we see that for each $x \in V$, there is $\varepsilon > 0$ with $B_{\varepsilon}(x) \subset V$.) We show $\sharp \mathcal{L}_{V} \geq 2$. Assume that $\mathcal{L}_{V} = \{S\}$ (recall Remark 1). Then $\mathbf{D} \cap D_{V}\langle S \rangle \subset V$. (Indeed assume there is $y \in \mathbf{D} \cap D_{V}\langle S \rangle \setminus V$. Let $x \in V$. Then there is $z \in co\{x, y\}$ such that $z \in \partial_{\bar{\mathbf{D}}}V$. Notice that $co\{x, y\} \subset \mathbf{D} \cap D_{V}\langle S \rangle$. Since $z \in \mathbf{D} \cap \partial_{\bar{\mathbf{D}}}V$, there is $R \in \mathcal{L}_{V}$ such that $z \in R^{\circ}$ by Remark 1. Since $z \in D_{V}\langle S \rangle$, $R \neq S$, contradicting the assumption that $\mathcal{L}_{V} = \{S\}$.) There is $T \in \mathcal{L}_{+}$ with $exT \cap \partial \mathbf{D} \cap D_{V}\langle S \rangle \neq \emptyset$ because $\partial \mathbf{D} = cl \, ex \, \mathcal{L}$ and $\partial \mathbf{D} \cap D_{V}\langle S \rangle$ is relatively open in $\partial \mathbf{D}$. Since \mathcal{L} is non-crossing, $T^{\circ} \subset \mathbf{D} \cap D_{V}\langle S \rangle \subset V$, contradicting the fact that $T \cap V = \emptyset$. By Lemma 5-a), $F_{\mathcal{L}_{V}} = \partial \mathbf{D} \cap cl \, V$ and $\mathcal{L}_{V} = \mathcal{N}_{\partial \mathbf{D} \cap cl \, V}$.

- 2) By 1), Lemma 4-b) and Lemma 5-c), we see that $\widetilde{int}(\partial \mathbf{D} \cap cl\ V) = \widetilde{int}\ F_{\mathcal{L}_V} \subset C_{\mathcal{L}_V} \subset \bigcap_{S \in \mathcal{L}_+} D_V \langle S \rangle$. Assume $\widetilde{int}(\partial \mathbf{D} \cap cl\ V) \neq \emptyset$. Since $\partial \mathbf{D} = cl\ ex\ \mathcal{L}$, there is $S \in \mathcal{L}_+$ with $ex\ S \cap \widetilde{int}(\partial \mathbf{D} \cap cl\ V) \neq \emptyset$, contradicting the fact that $\widetilde{int}(\partial \mathbf{D} \cap cl\ V) \subset D_V \langle S \rangle \subset \bar{\mathbf{D}} \setminus S$.
- 3) It suffices to show $C_{\mathcal{L}_V} \subset V$. By Lemma 5-c), $C_{\mathcal{L}_V} \cap (\cup \mathcal{L}_+) = \emptyset$. By 2) and Lemma 4-b), $C_{\mathcal{L}_V} \subset \mathbf{D}$. Hence $C_{\mathcal{L}_V} \subset \bar{\mathbf{D}} \setminus \cup \mathcal{L}$. Since $C_{\mathcal{L}_V}$ is connected (by Lemma 4-f)), $C_{\mathcal{L}_V} \subset V$.

3. Gap invariance theorem.

Let $d \in \mathbb{N}$ be $d \geq 2$. Define the mapping $p_d : \partial \mathbf{D} \to \partial \mathbf{D}$ by $p_d(z) = z^d$, and its iterated mappings, $p_d^n = p_d^{n-1} \circ p_d$ for each $n \in \mathbb{N}$ where p_d^0 is the identity mapping on

 $\partial \mathbf{D}$. For $z \in \partial \mathbf{D}$ and $n \geq 0$, define $p_d^{-n}(z) = \{w \in \partial \mathbf{D} \mid p_d^n(w) = z\}$. Note that for any $z \in \partial \mathbf{D}$, $\bigcup_{n \geq 0} p_d^{-n}(z)$ is dense in $\partial \mathbf{D}$. For each $S \in \mathcal{S}_+$, denote $P_d S = co \ p_d(exS)$. Let $\Omega_d = \{\exp(2\pi i \frac{k}{d}) \mid k = 0, 1, \dots, d-1\}$. For $S \in \mathcal{S}_+$ and $\omega \in \Omega_d$, let $\omega S = \{\omega z \mid z \in S\} \in \mathcal{S}_+$.

DEFINITION 4. Let \mathcal{L} be a lamination. We say that \mathcal{L} is a symmetric and invariant lamination under p_d (we say d-SIL briefly) if the following three conditions hold:

(Symmetry) For any $S \in \mathcal{L}_+$ and $\omega \in \Omega_d$, $\omega S \in \mathcal{L}$.

(Forward invariance) For any $S \in \mathcal{L}_+$, $P_dS \in \mathcal{L}_+$ or P_dS is degenerate.

(Backward invariance) For any $S \in \mathcal{L}_+$, there is $R \in \mathcal{L}$ such that $P_d R = S$.

Let $S \in \mathcal{S}$. Then $S = co\{\exp(2\pi i\alpha), \exp(2\pi i\beta)\}$ for some $\alpha, \beta \in [0, 1)$. Define $l(S) = \min\{|\alpha - \beta|, 1 - |\alpha - \beta|\}$ and we call l(S) the length of S. Then $0 \le l(S) \le 1/2$. Clearly l(S) = 0 if and only if S is degenerate, and l(S) = 1/2 if and only if S is a diameter.

REMARK 3. Let \mathcal{L} be a d-SIL. Then $\partial \mathbf{D} = cl \ ex \mathcal{L}$ and for each $S \in \mathcal{L}_+$, $l(S) \leq 1/d$.

PROOF. Firstly we claim that for any $n \geq 0$, $p_d^{-n}ex\mathcal{L} \subset ex\mathcal{L}$. It suffices to show $p_d^{-1}ex\mathcal{L} \subset ex\mathcal{L}$. Let $z \in exS$ where $S \in \mathcal{L}_+$. By the backward invariance of \mathcal{L} , $P_dR = S$ for some $R \in \mathcal{L}$, in particular $y \in exR$ for some $y \in p_d^{-1}(z)$. By the symmetry of \mathcal{L} , $p_d^{-1}(z) = \{\omega y \mid \omega \in \Omega_d\} \subset \bigcup_{\omega \in \Omega_d} ex(\omega R) \subset ex\mathcal{L}$. We show $\partial \mathbf{D} = cl ex\mathcal{L}$. Let $z \in ex\mathcal{L}$. Since $\bigcup_{n\geq 0} p_d^{-n}(z)$ is dense in $\partial \mathbf{D}$, we have for any $x \in \partial \mathbf{D}$ and $\varepsilon > 0$, there is $y \in \bigcup_{n\geq 0} p_d^{-n}(z) \cap B_{\varepsilon}(x)$. By the above claim, $y \in ex\mathcal{L}$. Next let $S \in \mathcal{L}_+$. By the noncrossing property and symmetry of \mathcal{L} , we see that the family $\{\omega S \mid \omega \in \Omega_d\}$ is non-crossing. Then $\sum_{\omega \in \Omega_d} l(\omega S) \leq 1$. Since $l(\omega S) = l(S)$, $l(S) \leq 1/d$.

Let \mathcal{L} be a d-SIL. Then for each $V \in Comp(\bar{\mathbf{D}} \setminus \cup \mathcal{L})$, $\mathcal{L}_V = \mathcal{N}_{\partial \mathbf{D} \cap cl \ V}$ by Remark 3 and Corollary 1-1). This is the key relation to prove gap invariance theorem. Define $P_d(cl \ V) = co \ p_d(\partial \mathbf{D} \cap cl \ V)$. Observe that

- 1) If $\sharp p_d(\partial \mathbf{D} \cap cl\ V) = 1$, then $P_d(cl\ V)$ is a degenerate chord, that is, $P_d(cl\ V) \in \mathcal{S} \setminus S_+$.
- 2) If $\sharp p_d(\partial \mathbf{D} \cap cl\ V) = 2$, then $P_d(cl\ V) \in \mathcal{L}_+$. Indeed let $p_d(\partial \mathbf{D} \cap cl\ V) = \{w_1, w_2\}$ where $w_1 \neq w_2$. Since $\sharp(\partial \mathbf{D} \cap cl\ V) < \infty$ and $\mathcal{L}_V = \mathcal{N}_{\partial \mathbf{D} \cap cl\ V}$, we see that each chord in \mathcal{L}_V has to join two consecutive points in $\partial \mathbf{D} \cap cl\ V$ (recall the definition of $\mathcal{N}_{\partial \mathbf{D} \cap cl\ V}$). Hence there is $S \in \mathcal{L}_V$ such that $exS \cap p_d^{-1}(w_k) \neq \emptyset$ for each k = 1, 2. So $P_d(cl\ V) = co\{w_1, w_2\} = co\ p_d(exS) = P_dS \in \mathcal{L}$ by the forward invariance of \mathcal{L} .

In order to show gap invariance theorem, we use the following technical lemmas and will show them later. Let $\mathbf{0}$ be the origin of \mathbf{C} . When $S \in \mathcal{S}_+$ is not a diameter (so $\mathbf{0} \notin S$), let γ_S the open arc subtended by S, that is, $\gamma_S = \partial \mathbf{D} \setminus cl \ D_0(S)$.

LEMMA 6. Let \mathcal{L} be a d-SIL. Then int $p_d(\partial \mathbf{D} \cap cl\ V) = \emptyset$ for each $V \in Comp(\bar{\mathbf{D}} \setminus \cup \mathcal{L})$.

LEMMA 7. Let \mathcal{L} be a d-SIL and $V \in Comp(\bar{\mathbf{D}} \setminus \cup \mathcal{L})$.

Suppose that $R \in \mathcal{S}_+$ satisfies the conditions: l(R) < 1/d, $p_d(exR) \subset p_d(\partial \mathbf{D} \cap cl\ V)$ and $\bigcup_{\omega \in \Omega_d} \gamma_{\omega R} \subset \partial \mathbf{D} \setminus cl\ V$. Then $P_dR \in P_d(\mathcal{L}_V)_+$.

GAP INVARIANCE THEOREM. Let \mathcal{L} be d-SIL and $V \in Comp(\bar{\mathbf{D}} \setminus \cup \mathcal{L})$. Then $P_d(cl\ V) \in \mathcal{S} \setminus S_+$ or $P_d(cl\ V) \in \mathcal{L}$, otherwise $P_d(cl\ V)$ is a gap of \mathcal{L} : more precisely, int $P_d(cl\ V) \in Comp(\bar{\mathbf{D}} \setminus \cup \mathcal{L})$ and $P_d(cl\ V) = cl$ int $P_d(cl\ V)$.

PROOF. It suffices to show that if $\sharp p_d(\partial \mathbf{D} \cap cl\ V) \geq 3$, then $int\ P_d(cl\ V) \in Comp(\bar{\mathbf{D}} \setminus \cup \mathcal{L})$ and $P_d(cl\ V) = cl\ int\ P_d(cl\ V)$. Suppose that $\sharp p_d(\partial \mathbf{D} \cap cl\ V) \geq 3$. By Lemma 6, $p_d(\partial \mathbf{D} \cap cl\ V)$ is disconnected. Hence we can define the 1-sided family $\mathcal{N} = \mathcal{N}_{p_d(\partial \mathbf{D} \cap cl\ V)}$. Notice that $F_{\mathcal{N}} = p_d(\partial \mathbf{D} \cap cl\ V)$. Since $P_d(cl\ V) = co\ F_{\mathcal{N}}$, we have by Lemma 4-c) and e),

$$\begin{split} P_d(cl\ V) &= cl\ C_{\mathcal{N}}\ ,\\ int_{\bar{\mathbf{D}}}\ P_d(cl\ V) &= C_{\mathcal{N}}\ ,\\ \partial_{\bar{\mathbf{D}}}P_d(cl\ V) &= \partial_{\bar{\mathbf{D}}}C_{\mathcal{N}}\ . \end{split}$$

At first we show that

$$\mathcal{N} = P_d(\mathcal{L}_V)_+ \,. \tag{4}$$

Let $S \in \mathcal{N}$. By the definition of \mathcal{N} , $S = co\ \tilde{\partial}\gamma$ for some $\gamma \in Comp(\partial \mathbf{D} \setminus F_{\mathcal{N}})$. Denote $R = co\ \tilde{\partial}\delta$ where $\delta \in Comp(p_d^{-1}(\gamma))$. Then $p_d(exR) = \tilde{\partial}\gamma \subset F_{\mathcal{N}}$ (so l(R) < 1/d). By the property of the mapping p_d , $\bigcup_{\omega \in \Omega_d} \gamma_{\omega R} = p_d^{-1}(\gamma) \subset p_d^{-1}(\partial \mathbf{D} \setminus F_{\mathcal{N}}) \subset \partial \mathbf{D} \setminus cl\ V$. By Lemma 7, $S = co\ \tilde{\partial}\gamma = P_d(R) \in P_d(\mathcal{L}_V)_+$. Conversely let $R \in \mathcal{L}_V$ satisfy that $P_dR \in \mathcal{S}_+$. We show $P_d(R) \in \mathcal{N}$. By Remark 3, l(R) < 1/d. Hence we see that $\omega_1 R \cap \omega_2 R = \emptyset$ if $\omega_1, \omega_2 \in \Omega_d$ with $\omega_1 \neq \omega_2$. By the symmetry of \mathcal{L} , $\omega_1 R \in \mathcal{L}_+$ for any $\omega \in \Omega_d$. Hence $V \subset C_R := (\bigcap_{\omega \in \Omega_d} D_0(\omega R))$ or $V \subset \overline{\mathbf{D}} \setminus cl\ D_0(\omega_0 R)$ for some $\omega_0 \in \Omega_d$. We have that $\partial \mathbf{D} \cap cl\ V \subset \partial \mathbf{D} \cap cl\ C_R$ or $\partial \mathbf{D} \cap cl\ V \subset cl\ \gamma_{\omega_0 R}$ for some $\omega_0 \in \Omega_d$. Here notice that $p_d(cl\ \gamma_{\omega R}) = p_d(cl\ \gamma_R) = cl\ p_d(\gamma_R)$ for each $\omega \in \Omega_d$ and $p_d(\partial \mathbf{D} \cap cl\ C_R) \cap p_d(\bigcup_{\omega \in \Omega_d} \gamma_{\omega R}) = \emptyset$ by the property of the mapping p_d . So $F_{\mathcal{N}} \cap p_d(\gamma_R) = \emptyset$ or $F_{\mathcal{N}} \subset cl\ p_d(\gamma_R)$. Since $\widetilde{\partial} p_d(\gamma_R) = p_d(\widetilde{\partial}\gamma_R) = p_d(exR) \subset F_{\mathcal{N}}$, we have that $p_d(\gamma_R) \in Comp(\partial \mathbf{D} \setminus F_{\mathcal{N}})$ or $\partial \mathbf{D} \setminus cl\ p_d(\gamma_R) \in Comp(\partial \mathbf{D} \setminus F_{\mathcal{N}})$. By the definition of \mathcal{N} , $P_d R = co\ \widetilde{\partial} p_d(\gamma_R) \in \mathcal{N}$.

By the forward invariance of \mathcal{L} and equality (4), we see that $\mathcal{N} \subset \mathcal{L}_+$.

Next we show the following equalities

$$\partial \mathbf{D} \cap cl \ C_{\mathcal{N}} \cap (\cup \mathcal{L}) = \tilde{\partial} F_{\mathcal{N}}, \tag{5}$$

$$\mathbf{D} \cap cl \ C_{\mathcal{N}} \cap (\cup \mathcal{L}) = \cup \mathcal{N}^{\circ} \ . \tag{6}$$

By Remark 3, Lemma 4-a) and Lemma 6,

$$\partial \mathbf{D} \cap cl \ C_{\mathcal{N}} \cap (\cup \mathcal{L}) = \partial \mathbf{D} \cap cl \ C_{\mathcal{N}} = F_{\mathcal{N}} = \tilde{\partial} F_{\mathcal{N}}.$$

To prove (6), we give some preparation.

Define $\mathcal{B} = \{ S \in \mathcal{L}_+ \mid S^\circ \cap cl \ C_\mathcal{N} \neq \emptyset \}$. Then

$$\cup \mathcal{B} \subset cl \ C_{\mathcal{N}}$$
 and $\mathbf{D} \cap cl \ C_{\mathcal{N}} \cap (\cup \mathcal{L}) = \cup \mathcal{B}^{\circ}$.

(Indeed let $S \in \mathcal{B}$. Assume that $S^{\circ} \setminus cl \ C_{\mathcal{N}} \neq \emptyset$. Then $S^{\circ} \cap \partial_{\bar{\mathbf{D}}}cl \ C_{\mathcal{N}} \neq \emptyset$. By Lemma 4-d) and e), $S^{\circ} \cap (\cup \mathcal{N}^{\circ}) \neq \emptyset$, contradicting the fact that $\mathcal{N} \subset \mathcal{L}_{+}$ and \mathcal{L} is non-crossing. Hence we have $S \subset cl \ C_{\mathcal{N}}$. Since $\mathbf{D} \cap (\cup \mathcal{L}) = \cup \mathcal{L}^{\circ}$, the second statement holds.) Thus to prove (6), it suffices to show $\mathcal{N} = \mathcal{B}$. By Lemma 4-d), $\cup \mathcal{N}^{\circ} \subset cl \ C_{\mathcal{N}}$. Since $\mathcal{N} \subset \mathcal{L}_{+}$, we have that $\mathcal{N} \subset \mathcal{B}$. Conversely let $S \in \mathcal{B}$. By the backward invariance of \mathcal{L} , $S = P_d R$ for some $R = \overline{xy} \in \mathcal{L}_{+}$. Then l(R) < 1/d and $p_d(exR) = exS \subset ex\mathcal{B} \subset \partial \mathbf{D} \cap cl \ C_{\mathcal{N}} = F_{\mathcal{N}} = p_d(\partial \mathbf{D} \cap cl \ V)$. Since $p_d^{-1}(p_d(x)) = \{\omega x \mid \omega \in \Omega_d\}$, we have that $\omega_0 x \in cl \ V$ for some $\omega_0 \in \Omega_d$. By the symmetry of \mathcal{L} , we can suppose $x \in cl \ V$. Furthermore by the symmetry of \mathcal{L} , we see that $V \subset C_R = (\bigcap_{\omega \in \Omega_d} D_0(\omega R))$ or $V \subset \bar{\mathbf{D}} \setminus cl \ D_0(R)$. Consider the case $cl \ V \subset cl \ C_R$. Then $\bigcup_{\omega \in \Omega_d} \gamma_{\omega R} \subset \partial \mathbf{D} \setminus cl \ V$. So by Lemma 7 and the equality (4), we have that $S = P_d R \in P_d(\mathcal{L}_V)_+ = \mathcal{N}$. Suppose that $cl \ V \subset \bar{\mathbf{D}} \setminus D_0(R)$. Then $\partial \mathbf{D} \cap cl \ V \subset cl \ \gamma_R$. Furthermore since $p_d(y) \in p_d(\partial \mathbf{D} \cap cl \ V)$ and l(R) < 1/d, we see that y has to belong to $cl \ V$. Then $\partial \mathbf{D} \setminus cl \ \gamma_R \in Comp(\partial \mathbf{D} \setminus cl \ V)$. Hence $R \in \mathcal{N}_{\partial \mathbf{D} \cap cl \ V} = \mathcal{L}_V$. By the equality (4), $S = P_d R \in P_d(\mathcal{L}_V)_+ = \mathcal{N}$.

By equalities (5), (6) and Lemma 4-d), we have

$$cl\ C_{\mathcal{N}}\cap (\cup \mathcal{L})=\tilde{\partial}F_{\mathcal{N}}\cup (\cup \mathcal{N}^{\circ})=\partial_{\bar{\mathbf{D}}}\mathcal{C}_{\mathcal{N}}\,.$$

Thus $C_{\mathcal{N}} \subset \bar{\mathbf{D}} \setminus \cup \mathcal{L}$. Note $cl(\cup \mathcal{N}) \subset \cup \mathcal{L}$ since $\mathcal{N} \subset \mathcal{L}_+$ and $\cup \mathcal{L}$ is closed. Hence $C_{\mathcal{N}} \in Comp(\bar{\mathbf{D}} \setminus \cup \mathcal{L})$ by Lemma 4-f). By Corollary 1-1), $C_{\mathcal{N}}$ is open in \mathbf{C} .

Therefore $C_{\mathcal{N}} = int C_{\mathcal{N}} = int(int_{\bar{\mathbf{D}}} P_d(cl V)) = int P_d(cl V)$, hence $int P_d(cl V) \in Comp(\bar{\mathbf{D}} \setminus \cup \mathcal{L})$ and furthermore we have $P_d(cl V) = cl C_{\mathcal{N}} = cl int P_d(cl V)$.

(PROOF OF LEMMA 6) Case 1. l(S) = 1/2 for some $S \in \mathcal{L}_V$.

By Remark 3, d=2. Notice that $p_2(\partial \mathbf{D} \cap cl\ V)=p_2(\partial \mathbf{D} \cap cl\ V \setminus exS) \cup p_2(exS)$, $\partial \mathbf{D} \cap cl\ V \setminus exS \subset \partial \mathbf{D} \cap D_V \langle S \rangle$ and p_2 is injective on $\partial \mathbf{D} \cap D_V \langle S \rangle$. By Corollary 1-2), $\widetilde{int}\ p_2(\partial \mathbf{D} \cap cl\ V \setminus exS)=\emptyset$. Hence $\widetilde{int}\ p_2(\partial \mathbf{D} \cap cl\ V)=\emptyset$.

Case 2. l(S) < 1/2 for some $S \in \mathcal{L}_V$.

Then $\mathbf{0} \notin \partial_{\bar{\mathbf{D}}} V$ by Remark 1. Thus $\mathbf{0} \notin cl\ V$ or $\mathbf{0} \in V$.

Suppose $\mathbf{0} \notin cl\ V$. Let $x \in V$. Then there is $y \in co\{\mathbf{0}, x\} \cap \partial_{\bar{\mathbf{D}}}V \setminus \{\mathbf{0}, x\}$. By Remark 1, $y \in R$ for some $R \in \mathcal{L}_V$. Since $\mathbf{0} \notin cl\ V$, we see that $\partial \mathbf{D} \cap cl\ V \setminus ex\ R \subset \gamma_R$. Since $l(R) \leq 1/d$ (by Remark 3), p_d is injective on γ_R . By Corollary 1-2), $\widetilde{int}\ p_d(\partial \mathbf{D} \cap cl\ V \setminus ex\ R) = \emptyset$. Hence $\widetilde{int}\ p_d(\partial \mathbf{D} \cap cl\ V) = \emptyset$.

Suppose $\mathbf{0} \in V$. Then $\omega R \in \mathcal{L}_V$ for any $R \in \mathcal{L}_V$ and $\omega \in \Omega_d$. (Indeed let $R \in \mathcal{L}_V$. Assume that $\omega R \notin \mathcal{L}_V$ for some $\omega \in \Omega_d$. By the symmetry of \mathcal{L} , $\omega R \in \mathcal{L}_+$. By Corollary 1-1) and Lemma 5-b), $(\omega R)^{\circ} \cap D_{\mathbf{0}}\langle Q \rangle = \emptyset$ for some $Q \in \mathcal{L}_V$. By the symmetry of \mathcal{L} , $\omega^{-1}Q \in \mathcal{L}_+$. Furthermore $R^{\circ} \cap D_{\mathbf{0}}\langle \omega^{-1}Q \rangle = \emptyset$, contradicting the fact that $R \in \mathcal{L}_V$.) So since $\mathcal{N}_{\partial \mathbf{D} \cap cl \ V} = \mathcal{L}_V$, we see that $\{\omega z \mid z \in \gamma\} \in Comp(\partial \mathbf{D} \setminus cl \ V)$ for each $\gamma \in Comp(\partial \mathbf{D} \setminus cl \ V)$ and $\omega \in \Omega_d$. Thus $\partial \mathbf{D} \cap cl \ V$ is invariant under the rotation of angle $2\pi/d$. Let $z \in cl \ V$ and $z_1 = z \exp(2\pi i/d)$. So $p_d(\partial \mathbf{D} \cap cl \ V) = p_d(\partial \mathbf{D} \cap cl \ V \cap \gamma_{\overline{zz_1}}) \cup \{p_d(z)\}$. Since p_d is injective on $\gamma_{\overline{zz_1}}$, $\widetilde{int} p_d(\partial \mathbf{D} \cap cl \ V) = \emptyset$ by Corollary 1-2).

(PROOF OF LEMMA 7) Suppose that $R = \overline{yz} \in S_+$ satisfies the conditions: l(R) < 1/d, $p_d(exR) \subset p_d(\partial \mathbf{D} \cap cl\ V)$ and $\bigcup_{\omega \in \Omega_d} \gamma_{\omega R} \subset \partial \mathbf{D} \setminus cl\ V$. So $P_dR \in S_+$. We shall show that $P_dR \in P_d(\mathcal{L}_V)$. Note that $p_d^{-1}(p_d(z)) = \{\omega z \mid \omega \in \Omega_d\}$. Hence $\omega_0 z \in cl\ V$ for some $\omega_0 \in \Omega_d$ because $p_d(z) \in p_d(\partial \mathbf{D} \cap cl\ V)$. Since $P_dR = P_d(\omega_0 R)$, we can suppose $z \in cl\ V$ without loss of generality. Since $z \in cl\ V$ and $\gamma_R \subset \partial \mathbf{D} \setminus cl\ V$, we see that

there is $\gamma \in Comp(\partial \mathbf{D} \setminus cl\ V)$ such that $\gamma_R \subset \gamma$ and $z \in \tilde{\partial} \gamma$.

Let $\tilde{\partial} \gamma = \{x, z\}$. Hence $S = \overline{xz} \in \mathcal{N}_{\partial \mathbf{D} \cap cl} V = \mathcal{L}_V$ and $x \in cl V$. Notice that

if
$$l(S) < \frac{1}{2}$$
, then $\gamma = \gamma_S$ or $\gamma = \partial \mathbf{D} \setminus cl \gamma_S$.

Let $y_k = y \exp(2\pi i k/d)$ and $z_k = z \exp(2\pi i k/d)$ where $k \in \{1, d-1\}$.

Case 1. $x = z_k$ where $k \in \{1, d-1\}$ (or equivalently, l(S) = 1/d).

Suppose d=2. Then x=-z. Since l(R)<1/2, $y\in \gamma$. In particular $y\notin cl\ V$. Since $p_2(y)\in p_2(\partial\mathbf{D}\cap cl\ V)$, -y has to belong to $cl\ V$. Since $\gamma_{-R}\cap cl\ V=\emptyset$ and $ex(-R)\subset cl\ V$, we have $-R\in \mathcal{N}_{\partial\mathbf{D}\cap cl\ V}=\mathcal{L}_V$. Hence $P_2R=P_2(-R)\in P_2(\mathcal{L}_V)$.

Suppose $d \ge 3$. Then l(s) = 1/d < 1/2. Firstly we show $\gamma = \partial \mathbf{D} \setminus cl \gamma_s$.

Assume that $\gamma = \gamma_S$. Then $V \subset D_0(S)$. Furthermore

$$cl\ V = P$$
 where $P = co\ p_d^{-1}(p_d(z))$.

(Indeed by the symmetry of \mathcal{L} , we see that $\omega S \in \mathcal{L}$ for any $\omega \in \Omega_d$. Notice that ωS is a side of the polygon P. If there is $x \in (\cup \mathcal{L}) \cap int P$, then there is $R \in \mathcal{L}_+$ such that $x \in R^\circ$, but $R^\circ \cap (\bigcup_{\omega \in \Omega_d} \omega S) \neq \emptyset$, contradicting the non-crossing property of \mathcal{L} . So $int P \subset \overline{\mathbf{D}} \setminus \cup \mathcal{L}$. Since int P is connected and contained in $D_0(S)$, we have that int P = V.) So since $p_d(y) \in p_d(\partial \mathbf{D} \cap cl\ V)$, we see that $p_d^{-1}(p_d(y)) \cap p_d^{-1}(p_d(z)) = p_d^{-1}(p_d(y)) \cap \partial \mathbf{D} \cap cl\ V \neq \emptyset$. Hence $p_d(y) = p_d(z)$, contradicting the fact that $P_d R \in \mathcal{S}_+$.

Therefore $\partial \mathbf{D} \setminus cl \ \gamma_S = \gamma \subset \partial \mathbf{D} \setminus cl \ V$ i.e. $\partial \mathbf{D} \cap cl \ V \subset cl \ \gamma_S$. Since $\gamma_R \subset \partial \mathbf{D} \setminus cl \ \gamma_S$ and l(R) < l(S), we see that $y \notin cl \ \gamma_S$. Since $S = \overline{zz_k}$, there is unique $\omega \in \Omega_d$ such that $\omega y \in cl \ \gamma_S$. Hence $\omega y = y_k$ i.e. $\omega = \exp(2\pi i k/d)$. Furthermore y_k has to belong to $cl \ V$ because $p_d(y) \in p_d(\partial \mathbf{D} \cap cl \ V) \subset p_d(cl \ \gamma_S)$. Hence $ex(\omega R) = \{z_k, y_k\} = \{x, y_k\} \subset cl \ V$. Since $\gamma_{\omega R} \cap cl \ V = \emptyset$, we have $\omega R \in \mathcal{N}_{\partial \mathbf{D} \cap cl \ V} = \mathcal{L}_V$. Hence $P_d(x) \in P_d(\omega R) \in P_d(\mathcal{L}_V)$.

Case 2. $x \notin \{z_1, z_{d-1}\}.$

Then l(S) < 1/d by Remark 3. There is unique $k \in \{1, d-1\}$ with $x \in \gamma_{\overline{zz_k}}$, and there is unique $l \in \{1, d-1\}$ with $y \in \gamma_{\overline{zz_l}}$.

Suppose $k \neq l$. Then $x \in \gamma_{\overline{y_k z}} \cup \{y_k\}$ because $\bigcup_{\omega \in \Omega_d} \gamma_{\omega R} \subset \partial \mathbf{D} \setminus cl \ V$ and $x \in cl \ V \setminus \{z\}$. So $\gamma_R \cap cl \ \gamma_S = \emptyset$, and if $x \neq y_k$, then $p_d^{-1}(p_d(y)) \cap cl \ \gamma_S = \emptyset$. Since $\gamma_R \subset \gamma$, $\gamma = \partial \mathbf{D} \setminus cl \ \gamma_S$, that is, $\partial \mathbf{D} \cap cl \ V \subset cl \ \gamma_S$. Since $p_d(y) \in p_d(cl \ \gamma_S)$, $x = y_k$. So $P_d R = P_d S \in P_d(\mathcal{L}_V)$.

Suppose k = l. Assume that $R \neq S$. Then $y \in \gamma_S = \gamma$. (Indeed if $y \notin \gamma_S$, then since $x \neq y$, $x \in \gamma_R \cap cl\ V$, contradicting the assumption that $\gamma_R \cap cl\ V = \emptyset$. So $\gamma = \gamma_S$ since $y \in \gamma_S$ and $\gamma_R \subset \gamma$.) Therefore $\partial \mathbf{D} \cap cl\ V \subset \partial \mathbf{D} \setminus \gamma_S$ because $\gamma_S = \gamma$. Since $y \in \gamma_S$ and $p_d(y) \in p_d(\partial \mathbf{D} \cap cl\ V)$, we have that there is $\omega \in \Omega_d$ such that $\omega y \in cl\ V$ and $\omega \neq 1$. Since

4. Appendix.

(PROOF OF LEMMA 1) Since $\partial E \subset \partial D \subset X \setminus D$, $D \cap cl E = D \cap int E \subset int E \subset E \subset D \cap cl E$ and hence int E = E and furthermore $E = D \cap cl E$ i.e. E is a non-empty and relative clopen subset of D. Then E = D by the connectivity of D.

(PROOF OF LEMMA 2) Notice that $\partial E = (cl \ E) \setminus (int \ E)$ and $\partial cl \ E = (cl \ E) \setminus (int \ cl \ E)$.

(PROOF OF LEMMA 3) Since C is relatively closed in $X \setminus F$, $C = (cl\ C) \cap (X \setminus F)$. Since C is open in X, $\partial C = (cl\ C) \setminus C = (cl\ C) \cap F \subset F$.

For the second statement, it suffices to show that $\partial F \subset cl(\bigcup_{C \in Comp(X \setminus F)} \partial C)$. Let $x \in \partial F$ and U be an open subset of X with $x \in U$. Denote by D the component of U containing x. Then $D \setminus F \neq \emptyset$ since D is open in X and $x \in \partial F$. Hence there is $C_0 \in Comp(X \setminus F)$ such that $D \cap C_0 \neq \emptyset$. Here $x \in D \cap F \subset D \setminus C_0$. Thus $D \cap C_0 \neq \emptyset \neq D \setminus C_0$. Since D is connected, $U \cap (\bigcup_{C \in Comp(X \setminus F)} \partial C) \supset D \cap \partial C_0 \neq \emptyset$. Hence $x \in cl(\bigcup_{C \in Comp(X \setminus F)} \partial C)$. \square

References

- [1] C. BANDT and K. KELLER, Symbolic dynamics for angle-doubling on the circle, I, *Ergodic Theory and Related Topics III* (eds. U. KRENGEL, K. RICHTER and V. WARSTAT), Lecture Notes in Math. **1514** (1992), Springer, 1–23.
- [2] K. M. PILGRIM, Rational maps whose Fatou components are Jordan domains, Ergod. Th. and Dynam. Sys. 16 (1996), 1323-1343.
- [3] R. T. ROCKAFELLAR, Convex Analysis, Princeton Univ. Press.
- [4] W. P. THURSTON, On the geometry and dynamics of iterated rational maps, preprint.

Present Address:

DEPARTMENT OF MATHEMATICS, OSAKA CITY UNIVERSITY, SUGIMOTO, SUMIYOSHI-KU, OSAKA, 558-8585 JAPAN. *e-mail*: yoshida@sci.osaka-cu.ac.jp