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Abstract. We study the higher spin Dirac operators on 3-dimensional manifolds and show that there exist
two Laplace type operators for each associated bundle. Furthermore, we give lower bound estimations for the first
eigenvalues of these Laplace type operators.

1. Introduction.

In this paper, we study the higher spin Dirac operator, which is a generalization of the
Dirac operator defined as follows (see [3], [4], and [6]). Let M be an n-dimensional spin man-
ifold and Spin(M) be the principal spin bundle on M. The irreducible unitary representation
(p, V,) of the structure group Spin(n) induces the associated (irreducible) bundle S, (M),

S,(M) := Spin(M) x, V,. (1.1)

For example, the adjoint representation (Ad, R”) of Spin(n) induces the cotangent bundle
T*(M). Here, the representation (Ad, R") is given by Ad(g)x = g - x - g ! for g in Spin(n)
and x in R” (see [9]). For each bundle, we have the covariant derivative V associated to the
Levi-Civita connection or the spin connection,

V : I'(S,(M)) > I'(S,(M) ® T*(M)) . (1.2)

We decompose the tensor bundle S,(M) ® T*(M) into irreducible bundles with respect to
Spin(n). Let m, , be the orthogonal projection onto the irreducible bundle S, (M) from
Sp(M) @ T*(M) ~ &,S,(M). Then we define the higher spin Dirac operator D, , to be
the composed mapping 7, , o V,
v TTp,v

D, : T (Sp(M)) = I'(S,(M) @ T*(M)) == I'(Sy(M)). (1.3)
In fact, the Dirac operator is given in this way. To construct the Dirac operator, we take
the spinor representation (A, V) and the associated bundle Sa (M). Then the tensor bundle
SA(M) ® T*(M) decomposes into the direct sum of only two irreducible bundles, Sa (M)
and S7(M). Then the differential operator D := Da a is the Dirac operator and Da r is the
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twistor operator (see [1] and [2]). On the other hand, we know another definition of the Dirac
operator by using the Clifford algebra, that is,

D=) e-V,,. (1.4)
i
From the relations
eiej +eje; = —24;j (1.5
we show that the Dirac operator satisfies the Bochner type identity
1
D?>=V*V + 7 (1.6)

where « is the scalar curvature of M.

The aim of this paper is to give the Bochner type identities for the higher spin Dirac op-
erators on 3-dimensional spin manifolds. As mentioned above, the relations (1.5) is necessary
to give the Bochner type identity for the Dirac operator. But the Clifford action does not exist
on the representation spaces of Spin(n) in general. So we consider linear mappings among
the representation spaces given as follows: for X in R” and v in V,,, we decompose v @ X as
>, (v ® X)V with respect to the irreducible decomposition V, ® R" = &, V,. Then we have
a homomorphism from V, to V,,,

PEX):V, 50> (W@ X) € V,. (1.7)

We call this homomorphism p{ (X) the Clifford homomorphism. This is a generalization of
the Clifford multiplication on the spinor space V. In general, it is difficult to give the explicit
decomposition of v ® X. But, in the 3-dimensional case, we use the Clebsch-Gordan formula
to give the Clifford homomorphisms explicitly because the structure group of Spin(M) is
Spin(3) = SU(2). This is the reason why we consider the 3-dimensional case. Then we
obtain local formulas of the higher spin Dirac operators such as (1.4) and the Bochner type
identities for them. Furthermore, the identities lead us to give lower bound estimations for the
first eigenvalues of these operators.

In section 2, we explain the Clebsch-Gordan formula for the Lie group SU(2). In sec-
tion 3, we define the Clifford homomorphisms on the representation spaces and obtain some
relations among these homomorphisms including the usual Clifford relations (1.5). In section
4, we have formulas of the higher spin Dirac operators by using the Clifford homomorphisms
and investigate the properties of these operators (ellipticity, the Bochner type identities, and
so on). The interesting fact is that we obtain two Laplace type operators for each associated
bundle. In section 5, we have lower bound estimations for the first eigenvalues of the Laplace
type operators. This estimation is a generalization of the one for the Dirac operator given in
[1] or the Laplace-Beltrami operator in [7] and [10]. In section 6, we consider the case of the
3-dimensional manifold of constant curvature and show that some operators commute each
other. In the last section, as an example, we calculate all the eigenvalues of the higher spin
Dirac operators on the symmetric space S°.
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2. The Clebsch-Gordan formula.

In this section we shall explain the representations of SU(2) and the Clebsch-Gordan
formula. Let V,, be the (m + 1)-dimensional complex vector space of polynomials of degree
< m in z,,. The inner product on V,, is set by

Wk, vhy =6u, 2.1)
where .
k Zm

= m 2.2

Um = o = ! 2.2)

We define a representation p,, on V,, by o, (h)zfn = (bzm +d)™ *(azm + c)* for h = (‘; Z
in SU(2). Then (om, V) is a finite dimensional irreducible unitary representation of SU(2)
called the spin-7 representation and all such representations are given in this way.

We denote the infinitesimal representation of (om, Vin) by the same symbol (0, Vin).
The Lie algebra su(2) of SU(2) has the following basis, that is, the Pauli matrices:

o1 = ((l) i)l) , Op .= (_?1 (1)) , 03 .= (? 6) . (2.3)

Then we show that

e (2= (o)
Pm (22% + i%) k= —kz571, (2.4
Om (% — i—02—3) f,, = (m -—k)z’,;+1 .

EXAMPLE 2.1. The spin-% representation (o1, V1) is the spinor representation on C?,
where we identify Spin(3) with SU(2).

EXAMPLE 2.2. The spin-1 representation (o2, V2) is the adjoint representation on
su(2) ® C of SU(2), or the adjoint representation on R3 ® C of Spin(3). Here, the cor-
respondence of the bases is given as follows:

o io io oy —io
z‘2’<-> ——2—_;——-3- ey +ties, z% <~ Tl ey, z% <~ ——2—-5——3 e —iez, (2.5

where z) is in V3, 0; in su(2), and ¢; in R3.

Now, we consider the unitary representation (0, ® on, Vin®Vy). Then we can decompose
om ® pyn into its irreducible components,
om @ Pn = Pm+n ® Pm+n—2D -+ - D Pim—n| - (2.6)

This formula is called Clebsch-Gordan formula. We need the orthogonal projection to each
irreducible component from V,, ® V,, in the next section.
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3. The Clifford homomorphisms.

In this section we shall define the Clifford homomorphism, which is a generalization of
the Clifford action. Let Cl3 be the complex Clifford algebra associated to R3 and {eihi<i<3
be the standard basis of R3. We realize Cl; as matrix algebra C(2) @ C(2) by the mapping

Cl3 3¢ — (0;,—0;) € C2)d C(2). 3.1

Then the Clifford action of e; on the spinor space Vi ~ C2 is given by ¢; - v = o;v.
Since we would like to generalize this Clifford action on other representation spaces, we use
another definition of the Clifford action as follows: we recall the irreducible decomposition

(o1, V1) ® (p2, V2) = (p3, V3) & (01, V1) 3.2)
and the isomorphism
(02, V2) =~ (ad, 5u(2) ® C) ~ (ad,R* ® C).. ' (3.3)

For v in V; and ¢; in R3, we project v ® e¢; onto V; along V3 orthogonally. By calculating the
Clebsch-Gordan coefficients, we show that pr(v @ ¢;) = o;v = ¢; - v.

Now, we consider the representation space Vp,. In this case, we use the irreducible
decomposition

(Pms Vin) @ (02, V2) = (Pm+2, Vim+2) @ (Pm»> Vin) ® (Pm—2, Vin-2) . 3.4)
For v in V,, and X in R3, we decompose v ® X as
1R X=00X)T+WweX)°’+@we®X)". (3.5)

Here, (v ® X)° is in V,, and (v ® X)* in V,,+,. Thus, we have linear mappings from V,, to
Vin or Vju4o for any X in R3:

vm(m +2)

P2 (X)v := — > W ®X)° € Vn,

F(m +2
pF (X = — v m \/)5(”’ ) (v ® X)* € Vi, (3.6)
Pm (X)) :=Li/r’i—§ﬂ(v ® X)” € Vip—2,

where we multiply each mapping by a constant to let the calculations easier. We call these
linear mappings the Clifford homomorphisms.

Calculating the Clebsch-Gordan coefficients in the decomposition (3.4), we deduce ex-
plicit formulas of the Clifford homomorphisms.

PROPOSITION 3.1. The Clifford homomorphisms associated to R3 are given as follows:
for the basis {zX Yo<k<m of Vm and {e;}1<i<3 in R,
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L 0%(): Vi = Vi,

€2 .€3 -
oo (—+l—)z,’§, = —kzk !,

2 2
o[€ _.e3 k+1
pm(2 12) = (m—Kk)z, .

2. P ) Vi > Vipyo,

2
o (-6-2-2- +i323) zx L2 s
(2 -12) 4 =2
3. P () Vi = Vi,
om () 2t = ikim — 2k
o (‘;—2+i52-3-)zf,, = k(k — 1)z572,
(2 —i2) 2k = n— b —k =12k _,.

583

3.7

3.8)

3.9

We remark that p,‘,), is the representation (o, , V;,) of su(2) under the isomorphism su(2)~

R3 and p? is the usual Clifford action on the spinor space V.
Now, we shall investigate some properties of the Clifford homomorphisms.

LEMMA 3.2. For X in R3 ~ su(2), we have
(o9 (XN* = —ph (X)),
PE(XN* = —pF (X)),
where we denote by A* the adjoint operator of A such that (Av, w) = (v, A*w).

(3.10)
(3.11)

PROOF. Because pm is the representation of su(2), the relation (3.10) is trivial. So we
shall prove that (o} (X))* = —Pp42(X). We take the complexification of (3.11) and may

prove (pH (X +iY))* = ~Ppmi2(X) +ip,  ,(Y). For example, we have

02 .03\ i k+2 I
(P,“; (? - 17) Zpms zm+2> —(Zpt 5 Tnga)
= —(k+2)!(m — k)!6k42,, foranyk,l.
On the other hands, '
k g2 | .93\ -2
(ks —pm (T +15) thuga) = 10 = Dizh 2
==l — Dk!(m — k)16, 1—2

= —(k+2)!(m — k)!8g42,1, foranyk,l.
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So we have (p,‘nF (o2 — io3))* = —p, (02) + ip, (03). Similarly we can prove the other
cases. O

LEMMA 3.3. For X in R? ~ su(2) and g in SU(2), we have

P9(gXg™") = pm(9)Pn X)pm(g™h, (3.12)

pE(gXg™") = pmx2(9) P (X)Pm(g™") - (3.13)

PROOF. The equation (3.12) is trivial. So we shall prove (3.13). For an orthonormal
basis {vfn 2tk of Vinyo, we denote the corresponding one of the irreducible component V>

inV,, ® V, by {wfn 42}k Since ,o,‘,,F is the orthogonal projection from V;, ® V2 to V42, the
homomorphism p; is represented as

P (X0 =) (v® X, whyy))Vpias (3.14)
k

where (-,-) is the inner product on V,, ® V,. If we use another orthonormal basis
{Pm+2(9)V% 12}k, then we have

PEX =Y (v @ X, (m ® £2)(9)Why 42)Pm42(9)Vp12 -
k

It follows that
phgXg Hv=> (w®gXg™", o) Vin
=) (v ® p2(9)X. W y2) V2
= ((om ® P2)(9)(Pm (g™ IV ® X), W12}V 12
= (om(g™HY ® X, (om ® p2)(9 ™k 12) Vs
=) (om(g 7 ® X, 0y 15) om+2(9) Vi
= pm+2(9)Pp (X)pm(g™Hv.
Thus we have proved the lemma. O
The infinitesimal version of this lemma is given as follows.
LEMMA 3.4. For X,Y in R? > su(2), it holds that
PO(LX, YD) = [pg(X), o (D)1, (3.15)
PEIX, YD) = p sy (X0 (¥) = 05 (V) op (XD, (3.16)
where [-, -] denotes the Lie bracket in su(2).
Now, we know that the usual Clifford actions {0;}; = {e;-}; satisfy the relations
oioj +0i0j =-28; (0=<i,j= 3). 3.17

We should find what relations the Clifford homomorphisms satisfy.
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LEMMA 3.5. The Clifford homomorphisms have the following relations: for X, Y in
R3 ~ su(2),

m+2

P2 K)o} (¥) = p(X)02(Y) = —Pm (X, YD), (3.18)

P2 XD (¥) = P (X0 (¥) = =20 (X, YD), (3.19)

o X)pp () + o} _o(X)py (V) = %’—p},’,([x, Y]) —m*(X,Y), (3.20)

P (X) P (Y) + pr o (XD 0 (V) = —mT”p,‘),ax, YD)~ (m+24X,Y),  (321)
where (-, -) is the inner product on R>.

PROOF. By direct calculations. O

We remark that, for m = 1, the relation (3.20) is the usual Clifford relation (3.17).

4. The higher spin bundles and the higher spin Dirac operators.

Let M be a 3-dimensional spin manifold without boundary and Spin(M) be a spin struc-
ture, which is a principal bundle on M with the structure group Spin(3) = SU(2). We remark
that, if M is a 3-dimensional closed oriented Riemannian manifold, then M is automatically
a spin manifold. Now, all the associated complex vector bundles are induced from the repre-
sentations of SU (2). For any m > 0, we define the spin-% bundie S,, by

Sm = Sm(M) := Spin(M) %, Vi . .1

The inner product on V,, induces the one on each fiber of S,, naturally, which we denote
by (-, -) on (S;;)x. For example, the spin-0 bundle Sy is the trivial rank 1 bundle M x C =~
AYM)RC, the spin—% bundle S is the spinor bundle, and the spin-1 bundle S; is T(M)QC ~
AlM) ® C.

The spinor bundle S; is known as a bundle of modules over the Clifford bundle CI(M)
and the action of 7(M) on S; is given by

T(M) x 81 3 (lp, &, [p, v]) > [p,ei - v] € Sy, “4.2)

where p is in Spin(M), ¢; in R3, and v in V;. In the same way, we define the Clifford
homomorphisms of T (M) on the higher spin bundle S,, as follows:

T(M) x Sm 3 (Ip, &, [p, v]) = [P, pp,(ei)v] € Sp, 4.3)
T(M) x Sm 3 ((p, &il, [p, v]) = [p, oy (€:)v] € Sz . (44)
We can easily check from Lemma 3.3 that these bundle homomorphisms are well-defined.

Before considering the higher spin Dirac operators on I"(M, S,,), we recall the definition
of the Dirac operator D on I"(M, S1). Let V be the covariant derivative associated to the spin
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connection. The Dirac operator D has the following (local) formula:

3
D= e Ve. (4.5)
i=1

On the other hand, we know another description of D as follows: the Dirac operator D is the
composed mapping pro V,

rM,Si) A rM,S;T*(M)) ~I'(M, S ® T(M)) LS rMm,S), (4.6)

where weuse S @ T(M) ~S; ®S; ~S3 @ S;.

We generalize this composed mapping to give the higher spin Dirac operator (see [3], [4]
and [6]). Since the tensor bundle S,, ® S, is isomorphic to S;,12 ® S;n ® Spm—2, we have three
composed mappings for each bundle:

0
DO : I'(M,Sy) > I'(M,Sp @ T*M) 25 I'(M, Sp), 4.7)
DE : I'(M,Sy) ~> I'(M, S, ® T*M) P (M, Sma2) - 4.8)

We call these first order differential operators the higher spin Dirac operators. In [6], Fegan
shows that these operators are conformally invariant first order differential operators and all
such operators are given in this way. The Clifford homomorphisms in section 3 lead us to
represent the higher spin Dirac operators by local formulas such as (4.5).

PROPOSITION 4.1. Let M be the 3-dimensional spin manifold, {e;}1<i<3 a local or-
thonormal frame of T (M), and V the covariant derivative associated to the spin connection
on S,,. Then we have the following conformally invariant first order differential operators:

DY = Y o9(e)Ve : I'(M,Sm) — I'(M,Sm), 4.9)
1<i<3

DE= Y pye)Ve : ['(M,Sn) — I'(M,Smi2). (4.10)
1<i<3

EXAMPLE 4.1. Some higher spin Dirac operators are well-known differential opera-
tors.

1. D{ is2d on I'(M,Sp) = I'(M, A°(M) ® O).

2. D? is the Dirac operator D and D?‘ is the twistor operator on I" (M, Sy).

3. Dg is2*d and D, is 2d*on I'(M,Sy) = I'(M, AY(M) ® C), where * is the Hodge
star operator from Al (M) to A%(M).

From the discussion in section 3, we can derive some properties of the higher spin Dirac
operators.

First, we discuss the adjointness of the operators. On I"(M, S,,), we set the inner product
by

(1, ¢2) = /M ($1(x), p2(x))dx, (4.11)

where dx denotes the volume element of M.
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PROPOSITION 4.2. We denote the formal adjoint of a differential operator A by A*.
Then we have

(D%)* = DY, (4.12)
(DX =DF,,. (4.13)

In particular, D?n is formally self-adjoint.

PROOF. We can easily show that the Dirac operator is formally self-adjoint (for exam-
ple, see [9]). In the same way, we can prove (4.12) and (4.13) by using Lemma 3.2. O

Next, we shall discuss the commutativity among the operators. So we have to introduce
some curvature homomorphisms. For vector fields X and Y, the curvature R,, for S,, is given
by

Rn(X,Y) =VxVy — VyVx —Vix,y7 € I'(M,End(Sn)) (4.14)

1
= 7 >_ sgn(@)(R(X. Y)(es1)): €6))Pm (€5 3)) (4.15)
o€Ss3

where R(, -) is the curvature transformation for 7 (M) and {e;}1<i<3 is a local orthonormal
frame on 7' (M). Then we obtain the following curvature homomorphisms from S,, to S,, or
Smo:

R) = sgn(0)ph(esny)Rml€s2), €o3)) € I'(M, End(Sm)), (4.16)
o€ES3
+ . _ +
RE: =" sgn(0)pi(ec1) Rm(ea: €s3)) € I'(M, Hom(Spm, Sm2)) . (4.17)
o€S3

Here, we show that (R%)* = RY, and (RE)* = RT,. In particular, (RY), has real eigenval-
ues for each x in M.

EXAMPLE 4.2. Let Ric be the Ricci curvature and « the scalar curvature. Then we
have

1
R?:EK, R =4Ric, R)}=R; =R{ =0. (4.18)

The commutativity among the higher spin Dirac operators follows from Lemma 3.5. The
important fact is that we have two Laplace type operators on I" (M, Sp,) for each m > 1.
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THEOREM 4.3. Let V*V be the connection Laplacian on S,,. Then the higher spin
Dirac operators satisfy the following Bochner type identities:

DADY + DY Dy = m*V*V + %R,(,’, , (4.19)
DYDY, + D, . ,Dif = (m +2)*V*V — T-;L—ZRS, : (4.20)
Dp 12Dy — Dy D) = ﬁzizR;,t, 4.21)
D _,D; — D;DP = —%R; . 4.22)

PROOF. We shall prove (4.19). We fix x in M and choose an orthonormal frame {e; }
in a neighborhood of x such that (V. e;)x = O for all i, j. Hence, we have (V,, p,?, (ejiNx=0
for all i, j. Then it holds from Lemma 3.5 that

Dy D), + D, _,D;,
=D (0 () Vei P (€N Ve; + £33 () Ve o () Ve, )
iLj

= Z (/02; (e,-)p,(,), (e;) + p,-n'__2(€i)/0,; (ei)) Ve; Ve,

+ 3 (s% %)) + oy (e ome)) Ve, Ve,
i#j

m
=—m? ) VeVe+ 75 ) ppleie —ejei)(Ve,Ve; — Ve, Ve)
i i<j
=m?V*V + -rgR,(,),.
(]

EXAMPLE 4.3. 1. (the case of m = 0) The relation (4.20) means d*d = V*V and
the relation (4.21) does dd = 0.
2. (the case of m = 1) The relation (4.19) means

D* =V*V 4+ %x. (4.23)
3. (the case of m = 2) The relation (4.19) means
d*d + dd* = V*V + Ric, (4.24)
and (4.22) does dd = 0.
Now, we denote the Laplace type operators in (4.19) and (4.20) by
Am:=DSD? + D} _,D;,, (4.25)
Am:=DSDY + D, ,D}. (4.26)

m
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If M is compact, these Laplace type operators are non-negative operators and satisfy that

ker A,, = ker D Nker D, , 4.27)
ker A,, = ker D% Nker D}, (4.28)
ker V = ker A,, Nker A,, = ker D, Nker D, Nker D}} . (4.29)

The following corollary is the key to give lower bounds for the first eigenvalues of A,, and
Am-

COROLLARY 4.4. The Laplace type operators A,, and A, satisfy that
(m +2)2Ap —m?Ap =m@m + 1)(m +2)RY, . (4.30)

PROOF. We eliminate the connection Laplacian V*V from (4.19) and (4.20). O

Finally, we discuss the ellipticity of the operators. Of course, it is clear that A,, and Am
are elliptic. ‘

PROPOSITION 4.5. 1. The second order differential operator D, , Dt = (Df)* D}
is elliptic for each m.

2. If m is odd, then the first order differential operator D?n is elliptic. Hence DY is an
elliptic self adjoint operator.

PROOF. We investigate the ellipticity of D2 . The principal symbol of Df)n is

os(D2) = pd (&), (4.31)
where § = ) &;e; isin T} (M) =~ Tx(M). There exists g in SU(2) such that v
1
gEg = (2 + E2 +ED)2e. (4.32)

Then we have
detog (DY) = det pm(9) P9 &) pm(g ™"
= det pQ (g&g™ ")
= det o0 (&7 + 83 + ED)Zer) (4.33)
= (7 + 8 + 1" det o) (e1)

=@ +E+D T [[ick-m).
=0

It follows that, if m is odd, then det a;(Dg,) is not zero for & # 0. Hence Dg, is elliptic. In

the same way, we verify that D, D is elliptic. g

COROLLARY 4.6. We assume that the spin manifold M is compact. Then ker D;} and
ker Dg b1 are finite dimensional vector spaces for any m and p.
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5. Lower bounds for the first eigenvalues of the higher spin Dirac operators.

In this section, we assume that M is a 3-dimensional closed spin manifold . From Corol-
lary 4.4, we have

(m +2)*(Am¢, ¢) — m*(Apd, §) = m(m + 1)(m + 2)(R%(¢), ¢), (5.1)

where ¢ is a section of S,,, and

(R%(9), ) := fM (RO)x b (x), b (x))dx (5.2)

From the above equation (5.1), we can obtain lower bound estimations for the eigenvalues of
A, and A, depending on the curvature transformation R,?,.

First, we consider a lower bound for the first eigenvalue of the Dirac operator D = D?.
It follows from (5.1) that, for a spinor ¢ in I"(M, S;),

9IDglI> — (IDpI* + IIDF o 11%)
=8||D¢||*> — |ID o2 (5.3)
=6(RY(#), ¢) = 3(k¢d, p).

Because of || D} ¢|| > 0, we have

I|DolI* >

oo | W

k¢, ). (5.4)

If ¢; is an eigenspinor with the first eigenvalue A1 of D, then (A)? has a lower bound,

3(kp1,. 1) _ 3
A>T S T 5.5
072 Tgigr = 8" &)
where
K— := mink(x). (5.6)
xeM

If the equality holds in (5.5), then ¢, is in ker D7, thatis, ¢, is a twistor spinor. This inequality
coincides with the one given by Friedrich (see [2]).
Next, we investigate the case of the elliptic operator D Di” = (D{)* D7 . It holds that

(D; D ¢, ¢) = 8IID¢|I* — 3(x ¢, $)
> —3(ke, §). (5.7)

If we denote the first eigenvalue of D7 Dl+ by u1, then we have
M1 = —=3k4, (5.8)

where

Ky =maxk(x). (5.9
xeM :
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In general case (m > 2), we have the inequalities

1
(A, @) = ID2I2 + 105012 = D R0 4, 6, (5.10)
m+2

_(m+m+1)
m

(Am¢, ¢) = |D2oII> + I Dol = R (#), #). (5.11)

Then we give lower bounds for the first eigenvalues of A,, and A,,.
THEOREM 5.1. We assume that there exist constants rp,— and rpy 4 such that

rm-l$I* < (R, (#), $) < rm+ll¢1 (5.12)

forany ¢ in I"(M, Sp,).
1. Let Ay be the first eigenvalue of A,,. Then we have the inequality

m(m+1)
AM>———Frm—. 5.13
1= mt2 I'm ( )
If the equality holds in (5.13), the eigenvectors with the eigenvalue Ai are in

ker A,,.
2. Let 1 be the first eigenvalue of A,. Then we have the inequality

wi = —(’”+22,f’"+1)rm+. (5.14)

If the equality holds in (5.14), then the eigenvectors with the eigenvalue |11 are
inker A,,.

COROLLARY 5.2 ([7]). We assume that there exists a constant ric_ such that

(Ric(¢), ¢) > ric_|lp|1° (5.15)
for any ¢ in (M, AY(M)). Let M| be the first eigenvalue of the Laplace-Beltrami operator
dd* + d*d on I'(M, A'(M)). Then we have

3
Al > Eric_ . (5.16)

If the equality holds in (5.16), the eigenforms with the eigenvalue A1 are in ker Ay = kerd N
ker D;’ .

6. On the 3-dimensional manifold of constant curvature.

In this section, we shall discuss the higher spin Dirac operators on the 3-dimensional
manifold of constant curvature.

LEMMA 6.1. On the 3-dimensional spin manifold M of constant curvature c, the cur-
vature homomorphism RY, is m(m + 2)c and RE is zero.

PROOF. Since M has constant curvature, it holds that, for vector fields X, Y, and Z,

R(X,Y)Z = c{{Y, Z)X — (X, Z)Y}.
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Then we have (R(e;, e)ex, e1) = c(8jkdit — 8ixd1)- Hence,
RS, = —cY_ pp(edpple) =mm+2c, Ry =0.
Here, we use that — " p9 (67) p3, (o) is the Casimir operator on V. O

PROPOSITION 6.2. On the 3-dimensional spin manifold of constant curvature c, it
holds that

2
2
D DL + Dt Dy =m*V*V + m—(’"§—+—)c, ©6.1)
2 2
DODY + D, D}t = (m+2)>V*V — M%—)c, (6.2)
D%.,D} - DYDY =0, (6.3)
D _,D, — D, DY =0. (6.4)
In particular, we have

AmD® = DOAn, AnDS = D)A,, (6.5)
Am(DF_,D;) = (D} _,Dp)Am,  An(Dy, ,D3) = Dy 2 Di)Am.  (6.6)

We conclude from this proposition that A, DY, and Djn'_zD,; are simultaneously diagonal-
jzable. As an example, we will calculate the eigenvalues of these operators on $3 in the next
section.

7. The spectra of the higher spin Dirac operators on s3.

In this section, we calculate all the eigenvalues of the higher spin Dirac operators on the
symmetric space S> with constant curvature 1. In [8], the author gives a method for calculating
of the eigenvalues and the eigenspinors for the Dirac operator on S3. We can use the same
method in our situation and calculate the eigenvalues. So we refer to the paper [8] for details.

First, we shall explain the 3-dimensional sphere $3 as the symmetric space Spin(4)/
Spin(3). It is well-known that Spin(4) and Spi n(3) are isomorphic to SU(2) x SU(2) and
SU (2), respectively. We realize S3 as SU(2),

x4 +ix; x2+ix3
—x2 +ix3 x4 —ix]

S35 x = (x1,x2, X3, X4) —> h = ( ) e SUQ). (7.1

Therefore, the action of SU(2) x SU(2) on S3 is represented by
(SUQ) x SUQ2)) x 835 (g, h) > phq~' € §, (7.2)

where g = (p, q) is in SU(2) x SU(2). Since the isotropy subgroup of e = (0,0, 0, 1) is the
subgroup SU(2) in SU(2) x SU(2), we have the symmetric space S3,

S3 = Spin(4)/Spin(3) = SU(2) x SU(2)/diagSU(2) . (7.3)
Here, the map ‘diag’ is given by
diag: SUQ2) > h+— (h,h) € SU2) x SU(2). (7.4)
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The principal spin bundle Spin(S?) is the Lie group Spin(4), whose projection from the total
space to the base space is

Spin(S3) = Spin(4) 3 g > pg~ ' e 83, (7.5)
This principal spin bundle induces the spin —— bundle S,, as a homogeneous vector bundle:
S 1= Spin(4) x5, Vi . (7.6)

Hence the space of sections L%*($3,8,)isa representation space of Spin(4).
Now, we trivialize the vector bundle S,, as follows:

Sm = Spin(4) x,, Vi 3 [9, V1> (pg™", pm(p)v) € §° x Vpy . (1.7)

So the sections of S,, are represented as the C™+!-valued or the V,,-valued functions on S3.
In this situation, we can present explicit formulas of the higher spin Dirac operators on S3,
where the operators act on the V,,,-valued functions.

PROPOSITION 7.1. For the trivialization (1.7), the higher spin Dirac operators on S3
are the following:

g =D LS R enzi, (7.8)
=Y otz (1.9)

Here Z; is the right invariant vector field on $3 =SUQ) corresponding to o; in su(2), which
is given by

S R ST S
dxy 8x1 0xo 8x3

Zz——xz—?—+x3—a—+x4-£——xli (7.10)
0xq 0x1 0x) dx3

Z3 = —x3 2 — X2 0 + x1 ) +x4—a—
0x4 0x1 0x2 ax3

COROLLARY 7.2. The Laplace type operators A, and A, are realized as

2
2)(m —2
= -m?3 2} + m2DY - = on + 4)(’" ) (7.11)

2
Am=—m+2%> 22+ (m+2)°Df, - m(’"+2‘)1 m+d), (7.12)

Since the higher spin Dirac operators on S3 are homogeneous differential operators, the
eigenspaces are representation spaces of Spin(4). So we have to decompose L2(S3, S,,) into
its irreducible components. By the Frobenius reciprocity, we have the following lemma.

LEMMA 7.3. The representation space L*(S>,8,,) decomposes into its irreducible
components as follows:
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1. (thecaseofm =2p+1)
L*(S?,S2p41) €B Ei k425+1 ®© Exyos+1,k - (7.13)

O<s<p
k>p—s

2. (the case of m = 2p)

L2(5%,82p) = P Erks2s © Envask € Eici - (7.14)
5 =

Here Ey is the representation space for the outer tensor product representation ox®p; of
Spin(4) = SUQ2) x SUR)anddim Ex; = (k+ 1)( + 1).

We calculate the action of the higher spin Dirac operators on Ej ; by the method given
in [8]. Then we have the following propositions.

PROPOSITION 7.4. 1. The eigenvalues of the self adjoint operator D,(,), on S> are
given as follows:
(@) (thecaseofm =2p+1)

2s+1) (k + @) on Exyas+1,k »

(7.15)
~@s+ 1) (k+2£2)  on Erpsassi
In particular, ker Dgp 41 s zero for each p.
(b) (the case of m = 2p)
2stk+s+1)  on Egyosks
—2stk+s+1) onEgk4as, (7.16)

0 on E .
2. The eigenvalues of the second order operator D;n*' D onS 3 are given as follows:
(@) (thecaseofm =2p+1)
4(p—s)k+1—(p—s)(p+s+1Dk+p+s+2)
on Egyas+1,k o Eg k425+1 - (7.17)
(b) (the case of m = 2p)
4p—s)k+1—(p—sN(p+s)k+p+s+1)
on Exi2s.k or Ex k+42s - (7.18)

3. The eigenvalues of the second order elliptic operator D, +2D,J,j on S3 are given as
follows:
(a) (thecaseofm =2p+1)
4p—s+Dk—-—(p—sNp+s+2)k+p+s+3)
on Eyy25+1,k oF Ex k+25+1 - (7.19)
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(b) (the case of m = 2p)

dp—s+Dk—-(p—s))p+s+D)k+p+s+2)
on Exi25 k or E k+2s - (7.20)
In particular,
1
dimker D} = g(m + 1)(m +2)(m + 3). (7.21)
PROPOSITION 7.5. 1. The eigenvalues of the Laplace type operator Ay, are as fol-

lows:

(a) (thecaseofm =2p+1)

2
25 + 12 (k+ 2s—2+31) 4P =) k+1—(p—5))(P+s+DUk+p+s+2)

on Ex42s+1,k or Ex k+2s+1- (7.22)
(b) (the case of m = 2p)

sk +s+ D2 +a4(p—s)k+1—(p—s(p+s)k+p+s+1)
on Exyosk or Eg g+2s - (7.23)

In particular, ker A,, is zero.
2. The eigenvalues of the Laplace type operator A, are given as follows:
(@) (thecaseofm =2p+1)

2
(25 +1)? (k+ ) +4(p—s+ Dk —(p—sNp+s+2)(k+p+s+3)

2s +3
2
on Exyo541,k or Eg k42s5+1 - (7.24)

In particular, ker A, p+1 IS zero.
(b) (the case of m = 2p)

Qs k+s+ D2 +4(p—s+Dk—(p—sNP+s+Dk+p+s+2)
on Ey o5k or Eg k425 - (7.25)
In particular, dim ker Azp =(p+ 1>
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