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Abstract. We consider a differentiable map f from an open interval to a real Banach space of all bounded
continuous real-valued functions on a topological space. We show that f can be approximated by the solution to the
differential equation x’(t) = Ax(z), if || f'(t) — Af () |loo < & holds

1. Introduction.

In this paper, I denotes an open interval of R, the real number field. We consider not
only bounded intervals but also unbounded one. That is,

I =(@,b), —o0o<a<b=<o.

The letters € and A stand non-negative real number and non-zero real number, respectively.
We define J = {e™™ : ¢t € I}.

DEFINITION 1.1. Let A be a Banach space, f a map from I to A. We say that f is
differentiable, if for every t € I there exists an f'(t) € A such that

. t — f(t
llm f( +S) f()_f/(t) =0,
s—>0 S A
where || - || o denotes the norm on A. We call the map f’ : I — A the derivative of f.

By definition, f is differentiable if and only if f is Fréchet differentiable at each point of
I. While Fréchet derivative and our one differ from each other at first glance, we can identify
them since L,(1) = f'(¢) holds, where L, denotes the Fréchet derivative for f at ¢.

Alsina and Ger [1] proved the following results in case where A = 1. In a way similar to
the proofs in [1], we obtain the following Propositions and the proofs are omitted.

PROPOSITION 1.1. Let f be a real-valued differentiable function on 1. Then the fol-
lowing conditions are equivalent.

@ |f'@®) —Af()| < & holds for every t € I.

(ii) There exists a real-valued differentiable function 6 on J such that

0< A <2 wel),
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f() = §+9<e*“)e“ tel.

NOTE 1.1. By the mean value theorem, the function 6 in the condition (ii) is a 2¢ /|A|-
lipschitz function. That is,

2e
0(u) —0(v)| < mlu -

holds for every u, v € J.
Here and after lim,\ s denotes the right limit.
PROPOSITION 1.2. Let f be a real-valued differentiable function on 1. If the inequal-
ity
If'®) —Af(®)l <e

holds for every t € I, then lim,~ inf 7 0 (1) exists and
3e
< —

3 At
}f(t) B {ulfmmuo(“)}e =

holds for every t € I, where 0 is the function given in Proposition 1.1.

Proposition 1.2 states that f can be approximated by the solution ce to the differential
equation x’(t) = Ax(¢), if | f'(#) — Af ()| < € holds for every ¢ € I. According to [1], we
call the stability in the sense of Proposition 1.2 the Hyers-Ulam stability.

In this paper, X denotes a topological space. Let C be the complex number field and
F € {R, C}. We write C(X, F) for the Banach space of all bounded continuous F-valued
functions on X and Co(X, F) for the Banach space of all functions of C(X, F) which vanish
at infinity, in the following sense:

f vanishes at infinity if and only if for every § > O there exists a compact
subset K in X such that | f(x)| < & holds forevery x € X \ K.

We consider a differentiable map f from I to C(X, R) (resp. Co(X, R)) with the in-
equality || f'(t) — Af (t)looc < &, where || - ||co denotes the supremum norm on X. Then we
show that the Hyers-Ulam stability holds for f. That is, f can be approximated by the solu-
tion e* g to the differential equation x’(¢) = Ax(¢) for some g € C(X, R) (resp. Co(X, R)).
As a corollary, we obtain the Hyers-Ulam stability of a certain differentiable map from / to
CcX,O).

To prove the Hyers-Ulam stability of the map f from I to C(X, R) with the inequality
N f' (@) — Af(®)]loo < &, let us consider for every x € X the function f; from 7 to R defined
by

@) =f@O)x) @el).

Then f; is a real-valued differentiable function on I with the equality

fi@) = f'(Hx)

for each x € X and each ¢ € I. Therefore, we have the inequality

If1(®) —rfr) <e (xeX,tel).
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Thus by Proposition 1.1, for every x € X there exists a real-valued differentiable function 6y
on J such that

€
0<—A0,(w) <2 (el), ﬂm=;+®@*mw tel.
By Proposition 1.2 the function
= li 6
g(x) o x (1)

is well-defined and the inequality

3¢
@ —eMgl < 7 e D)
holds for every x € X. The function g obtained above plays an important role in this paper.

From now on, 8, denotes the real-valued differentiable function on J with
0<—-A0.(w) <2 Wel), f@Ox) = % + (e M) (el
for every x € X, if f is a differentiable map from 7 to C(X, R) with the inequality
If' @) —Af®lloc < &

for every t € 1. Moreover, g stands for the function defined by
= li X
g9(x) u\I:inJ Ox(u) (x € X)

which satisfies the inequality

3
|um—wwwsﬁ~aeu

2. Main results.

Before we turn to our main theorem, we consider a differential equation x’(#) = Ax(z)
for a differentiable map x from / to a Banach space. While the following proposition is
well-known, we give a proof.

PROPOSITION 2.1. Let A be a real (resp. complex) Banach space, f a differentiable
map fromIto A. If u € R\ {0} (resp. u € C\ {0}), the following conditions are equivalent.

GA) f'(®) = uf () holds for everyt € I.

(ii) There exists an h € A such that f(t) = e*' h (¢t € I).

PROOF. (ii) = (i) By definition, it is clear and a proof is omitted.
(i) = (i) We define h(t) = e * f(¢t) for every t € I. Then h is differentiable and the
equality
@) ={-uf®)+ f'@®Ol ™ =0
holds for every ¢ € I, by hypothesis. We show that 4 is a constant map. In fact, fix any zp € /
and put
ho(t) = h(t) —h(ty) (el).
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Let A* be the dual space of A. For every A € A* the composed function A o hg from I to C
is differentiable and the equality

(Ao ho) (1) = A(hg()) =0

holds for every ¢ € I, since A is bounded linear and since h()(t) = 0. Therefore, for every
A € A* there exists a cy € C such that A(ho(t)) = c4 holds for every t € I. We have
ca = A(ho(to)) = 0, since ho(tp) = 0. By the Hahn-Banach theorem, Ao(¢) = O holds for
every t € 1. Hence h is a constant map. If we write k() = h, we have f(t) = e*'h. This
completes the proof. O

NOTE 2.1. Let f be a differentiable map from 7 to C(X, R) (resp. Co(X, R)) with
If'@®) —Af®llec <& @el).

If we consider the case where ¢ = 0, then g coincides with the function 4 in Proposition 2.1
in case where A = C(X, R) (resp. Co(X, R)). In fact, suppose that the inequality above holds
for ¢ = 0. On one hand, there exists an A € C(X, R) (resp. Co(X, R)) such that f(¢) = erMh
for every t € I, by Proposition 2.1. On the other hand, we can write

F®) = O:(e™*)eM
for every ¢t € I and every x € X. Therefore, we have
h(x) =6c(e™) (xeX,tel.
By the definition of the function g,
= li =h
g(x) o 0x(u) = h(x)

holds for every x € X. Hence, g = h holds if £ = 0. In particular, g is an element of C(X, R)
(resp. Co(X, R)), ife = 0.
LEMMA 2.2. Let f be a differentiable map from I to C(X, R) with the inequality
If'®) —AfDllo <& (teD).
Then g is continuous on X.

PROOF. By Note 2.1, it is enough to consider the case where £ > 0. Suppose that g
is not continuous on X. Then there exist an xop € X and an nop > O such that for every open
neighbourhood V of xq there corresponds a z € V with

lg (x0) — g(2)| =no .-

Since g (xp) = limy\inf s Ox, (), there exists a up € J such that
no
|g (x0) — Oxo (W] < 7 (uel:u<ug).
Put o = inf J, and choose u1 € J with u; < min{ug, a + |A|no/8¢}. Then we have

1) 19 (x0) — B (u1)| < %9
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(2) Uy <a+

Since x > 6, (u1) is continuous function on X, there exists an open neighbourhood Wy of xg
such that

0
3 0x0 (1) = By )] < 2 (v € W0).
By hypothesis, there corresponds a z € Wy with |

€ |9 (x0) — g(2)| = no.

In a way similar to the inequality (1), we obtain

) l9(2) — 6, (u2)| < 1’42

for some up € J with uy < u;. By (1), (3), (4) and (5), we have

no < 19(z) — g(xo0)l
< 19(2) — 6, (u2)| + 10, (u2) — 6, (u1)|
+ 10, (u1) — Oxo (1)] + 165, (1) — g (x0)|
3

< 16 (u2) — 0 (u1)| + 270
That is, we obtain the inequality-
©6) 162 (u2) — 0, )| = T
By the mean value theorem, there exists a v € (42, #1) such that
0;(u2) — 6:(u1)

6, (v) =
Uz —uy
On one hand, we have
A A
—X@é(v) > — l ) > I [n0 ,
4(uz —u1)  4u —a)
by the inequality (6), whether A is positive or negative. On the other hand, the inequality
A
|A1n0 > 8e
Uiy — o

holds by (2). Therefore, we have the inequality
—A6,(v) > 2¢. |
This contradicts with 0 < —AGZ’(v) < 2¢. Thus we proved that g is continuous on X. .
We obtain the Hyers-Ulam stability of a differentiable map from I to C(X, R).
THEOREM 2.3. Let f be a differentiable map from I to C (X, R) with the inequality

M@ =AfOllo <e @el).



472 TAKESHI MIURA, SIN-EI TAKAHASI AND HISASHI CHODA

Then g is an element of C(X, R) with

3
1F () —eMglloo < |TS| tel).

PROOF. By Lemma 2.2, g is continuous. Therefore, it is enough to show that g is
bounded on X. In fact, fix any element ug € J. Since 6y is 2¢/|A|-lipschitz,

2¢
|0x (u) — Ox(uo)| < mlu — uo|

holds for every x € X and every u € J. Therefore, we have the inequality
1g(x) — Ox(uo)| = u\ljmrr}j 6x () — 6Ox (uo)|

2¢
< — X).
< IMuo x eX)

Put tp = -1 logug € I. Since f(f) is bounded on X, there exists an M > O such that
| f (20)(x)| < M holds for every x € X. By the definition of the function 6,,

00 = || Fa0)00) — £} e

£
<{M+ ——] e~ Mo
Eas

holds for every x € X. Therefore, we have

2
lg (0l < l—fluo + 165 (uo)|

3¢
<2 M] o
[ Al |
for every x € X. That is, g is bounded on X and this completes the proof. a

Next we consider a differentiable map from I to Co(X, R). The function g need not
vanish at infinity, but for a suitable constant ¢ we have g + ¢ € Co(X, R).

LEMMA 2.4. Let f be a differentiable map from I to Co(X, R) with the inequality
If @) —AfMDllo <& (€.
Then go = g + ae/A vanishes at infinity, where @ = inf J.

PROOF. By Note 2.1, it is enough to consider the case where € > 0. In this case,
assume to the contrary that go does not vanish at infinity. That is, there exists a 5o > 0 with
the following property:

For every compact subset K in X, there exists a y € X \ K such that [go(y)| = 8o -

Since a = inf J, we can choose a ug € J with

[Al80
@) ug < o + —.
8¢
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Letto = —A"!logug € I. Since f(to) € Co(X, R), there corresponds a compact subset Ko
in X such that

8o
|f () ()] < e
holds for every x € X \ Kp. Hence,

) |6x (uo) + -i—uol < 87? (x € X\ Ko).
By hypothesis, there exists a y € X \ Ko such that
9o = do .
That is,
© ’g(y)+-°—’;|zao.
By the definition of the function g, we have
(10) lg(¥) —6y(vo)| < §49

for some vg € J with vg < ug. By the inequalities (7), (8), (9) and (10), we have
ae
d < lg()’) + TI
< lg(y) — 6y(vo)| + 16y (vo) — 6y (uo)l

& &
+ |6y (o) + Zuo| + myler = wol

3
< |8y (vo) — 8y (uo)| + 280-
Therefore, we obtain the following inequality.
_ 50
1) 6 (v0) — By (uo)| > 7.

By the mean value theorem, there exists a w € (vg, ug) such that

0y (vo) — 6y (uo)
Vo — Uo '

o) (w) =

Then we have the following inequality
IMébo A4
4(vo —ug) = 4(uo —a)’
by (11), whether A is positive or negative. On the other hand, we have
210
up — o

—-AO; (w) > —

> 8¢,

by the inequality (7). Therefore, we obtain the inequality —)»6)’, (w) > 2e. We arrived at a
contradiction, since 0 < —A8; (w) < 2¢. We have proved that g¢ vanishes at infinity. O
THEOREM 2.5. Let f be a differentiable map from I to Co(X, R) with the inequality

1@ —AfMllc <& @el).
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Then go = g + ag/A is an element of Co(X, R) with

4
Lf @) — e golloo < ﬁ tel,

where @ = inf J.

PROOF. By Lemma 2.2 and Lemma 2.4, go is an element of Co(X, R). Since ¢ =
inf J < e~ holds for every t € I, we have

&
1£ () — e golloo < I1f(2) — ¥ glloo + —ae™

IA|
€
< —@3+ae)
Al
4
< l_sl tel.
This completes the proof. O

COROLLARY 2.6. Let f be a differentiable map from R to C(X, R) with the inequality
Nf'@® —AfMOllo <& (¢ €R).

Suppose that the inequality
I (&) — Rl <ke (t €R)

holds for some h € C(X, R) and some k > 0, then g = h holds. In particular, if f is a map
from R to Co(X, R) then g itself is an element of Co(X,R) and g = h holds, if h belongs to
C (X, R) which satisfies the inequality above.

PROOF. By Theorem 2.3, g belongs to C(X, R) and the inequality

M 3¢
1@ —Mglloo < = @ER)

holds. We show that g = A, if
Nf (@) —eMhlloc <ke (t€R).
In fact,
lg —hlloo < llg — ™™ fF@®lloo + lle™ f(&) — hlloo

< [-3— +k] ge™™ (teR).
A

Note that e=* — Qast — oo if A > 0,and e ™™ — Qast - —oo if A < 0. In any

case g = h holds. In particular, if f is a map from R to Co(X, R), then g is an element of

Co(X, R) since g + ae/A belongs to Co(X, R) and since a = 0, where & = inf J. In a way

similar to the above, we have g = h, if & is an element of C(X, R) with || f(z) — e*h|oo < ke

for some k > 0. This completes the proof. d
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Finally we consider a differentiable map f from I to C(X, C). Since f(¢) is an element
of C(X, C) forevery t € I, we can write
f(@®) =Re{f®)}+ilm{f(®)},
where Re{f(¢)} and Im{f(¢)} denote the real part of f(¢) and the imaginary part of f(z),
respectively. Let Re f and Im f be the maps from I to C(X, R) defined by

Re f)@®) =Re{f(®)}, Imf)@») =Im{f(@®)} ¢e€l).

If we apply Theorem 2.3, Theorem 2.5 and Corollary 2.6 to Re f and Im f, then we obtain the
following Corollaries.

COROLLARY 2.7. Let f be a differentiable map from I to C (X, C) with the inequality

I/ @) —AfOllc<e el).
Then there exists a g € C(X, C) such that

3 34/2¢
If ) = ¥Glloo < == (e D).
COROLLARY 2.8. Let f be a differentiable map from I to Co(X, C) with the inequal-
ity
If'@®) = AfOllc <& @eD.
Then there exists a gg € Co(X, C) such that

44/2
1£ () — e Golloo < Tgs

COROLLARY 2.9. Let f be adifferentiable map from R to C (X, C) with the inequality
If'®) —Af®Olleo <& (t €R).

Then there exists a unique function g € Co(X, C) such that

4./2
If@) —eMGlloo < —,{I—“’ (t €R).
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