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1. Introduction.

1.1. We consider the following n-th order linear ordinary differential equation contain-
ing a small parameter $\epsilon$

(1.1)

$\epsilon^{nh}y^{(n)}=\sum_{k=1}^{n}\epsilon^{(n-k)h}p_{k}\cdot(x^{m}-\epsilon^{l})^{k}y^{(n-k)}$ $(x, y\in C, |x|\leq x_{0},0<\epsilon\leq\epsilon_{0}^{\prime}:=d/dx)$ ,

where $h,$ $x_{0}$ and $\epsilon_{0}$ are positive constants, and $m$ and $l$ are positive integers. The characteristic
equation for (1.1) is defined by

(1.2) $L(x, \lambda)$ $:=\lambda^{n}-\sum_{k=1}^{n}p_{k}\cdot x^{km}\lambda^{n-k}=0$

and we suppose that it is factored as follows:

(1.3) $L(x, \lambda)=\prod_{k=1}^{n}(\lambda-a_{k}\cdot x^{m})=0$ ,

where $a_{k}’ s$ are real constants such that

(1.4) $a_{1}<a_{2}<\cdots<a_{n}$ ; $\forall a_{k}\neq 0$ .

Then the characteristic roots $\lambda_{k}$ $:=a_{k}\cdot x^{m}$ coincide at the origin $x=0$ , which is, by definition,
a tuming point of (1.1). Furthermore we suppose that the following equality among three
constants $h,$ $m$ and $l$ is valid:

(1.5) $h=\frac{l(m+1)}{m}+1$ .

We call (1.5) the singular perturbation condition, by which a stretched equation (2.2) in \S 2
below becomes a singular perturbation type. The stretched equation possesses its own tuming
points and they are called secondary turning points of (1.1). Thus, we call our analysis $a$

secondary tuming point problem.

Received December 10, 1997
Revised May 10, 2001



344 MINORU NAKANO

1.2. In analyzing our secondary tuming point problem, we need solutions of the
stretched equation in order to know an asymptotics in the neighborhood of $x=0$ . Thus, we
adopt the so-called stretching-matching method (Nakano [7], Nishimoto [13], Wasow [18])

for (1.1) by dividing the domain $|x|\leq x_{0}$ into two subdomains. In them two reduced equa-
tions are obtained. One of them is a stretched equation. They are separately analyzed in each
subdomain, and their solutions should be related linearly by a matching matrix.

Secondary tuming point problems are treated in Fedoryuk [3], Nakano $[8]-[10]$ , Nakano-
Nishimoto [11], Roos [15], [16] and Wasow [20], etc. Other contributions can be seen in the
references of these papers and books.

The contents of this paper are as follows: In \S 2 we reduce (1.1) to two equations, one of
which is the stretched equation, in respective divided subdomains near the tuming point. In \S 3
and \S 4 we will introduce WKB solutions for n-th order differential equations that can be re-
garded as generalization of the classical WKB solutions for the one-dimensional Schr\"odinger
equation. In \S 5 we construct a canonical domain, i.e., the maximal existence region of the
true solutions whose asymptotic expansions are WKB solutions for the stretched equation. In
\S 6 we show existence theorems of the solutions for the reduced differential equations, and we
compute a matching matrix in \S 7.

We have analyzed in Nakano [10] the differential equation

(1.1) $\epsilon^{nh}y^{(n)}=\sum_{k=1}^{n}\epsilon^{(n-k)h}p_{k}\cdot(x^{m}-\epsilon^{l}/x^{r})^{k}y^{(n-k)}$ ,

where $r$ is a positive integer. This differential equation has a singular point at the origin, which
is a tuming point at the same time. In this paper we study the case where $r$ is zero in $(1.1)_{\Gamma}$ .

2. Reduction of (1.1) and the problem.

2.1. We can rewrite (1.1) as follows:

$\epsilon^{nh}y^{(n)}=\sum_{k=1}^{n}(x^{-m/l}\epsilon)^{(n-k)h}\cdot x^{m(n-k)h/l+mk}\cdot p_{k}\cdot\{1+O((x^{-m/l}\epsilon)^{l})\}y^{(n-k)}$

for $(x, \epsilon)$ such that $x^{-m/l}\epsilon\leq 1/K^{\prime}$ , where $K^{\prime}$ is a sufficiently large constant. We can neglect
the term $O((x^{-m/l}\epsilon)^{l})$ as a regular perturbation term if $x^{-m/l}\epsilon\rightarrow 0$ (Iwano-Sibuya [6]).

Then, if $x^{-m/l}\epsilon\rightarrow 0$, the leading term of the solution of (1.1) is derived from the reduced
differential equation

(2.1) $\epsilon^{nh}y^{(n)}=\sum_{k=1}^{n}\epsilon^{(n-k)h}p_{k}\cdot x^{km}y^{(n-k)}$ ,

whose solutions should be got in (a subdomain of) the domain $D^{out}$ $:=\{x$ : $ K\epsilon^{l/m}\leq|x|\leq$

$x_{0}\}$ , where $K$ is a sufficiently large constant. The equation (2.1) is called the outer equation
of (1.1), and the x-domain $D^{out}$ is called the outer domain for (1.1).
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2.2. For $x$ and $\epsilon$ not belonging to $D^{out}$ , we introduce a new variable $t$ $:=x\epsilon^{-l/m}(a$

stretching transformation) and apply (1.5) to (1.1). Then we get a stretched equation of (1.1)

(2.2) $\epsilon^{n}y^{(n)}=\sum_{k=1}^{n}\epsilon^{n-k}p_{k}\cdot(t^{m}-1)^{k}y^{(n-k)}$ $(t :=x\epsilon^{-l/m}:=d/dt)$

in the domain $\{t : |t|\leq K\}$ , which is the complement of $D^{out}$ in the domain $|x|\leq x_{0}$ but the
boundary $|t|=K$ is common. We call (2.2) the inner equation of (1.1).

Since a characteristic equation of (2.2) is defined by

(2.3) $\prod_{k=1}^{n}\{\lambda-a_{k}\cdot(t^{m}-1)\}=0$ ,

its characteristic roots $\lambda’ s$ coincide at zeros of $t^{m}-1$ . The zeros of $t^{m}-1$ are tuming points
of (2.2) and they are called, by definition, secondary tuming points of (1.1). The tuming point
$x=0$ corresponds to $t=0$ that is not a secondary tuming point. Thus, if we can get solutions
of (2.2) in (a subdomain containing $t=0$ of) the domain $\{t : |t|\leq K\}$ , we can know some
information of asymptotics about the tuming point $x=0$ . Furthermore, if we can get soutions
of (2.2) in (an unbounded subdomain containing $t=0oDD^{in}$ $:=\{t : |t|<\infty\}$ , we can use
the matching method and we can match, i.e., connect two sets of solutions of the outer and
the inner equations because $D^{out}$ and $D^{in}$ have common interior points. We call the t-domain
$D^{in}$ the inner domain for (1.1).

Thus, our main problems are
(i) to get solutions of (2.1) and (2.2) (\S \S 4, 6), and

(ii) to match them at a common interior point of $D^{out}$ and $D^{in}$ (\S 7).

3. WKB solutions and the double asymptotic property.

3.1 We recall several known results to obtain the formal solutions of (2.1) and (2.2).
Both equations have a common form except exponents of $\epsilon$ , i.e., they are of n-th order singu-
lar perturbation type with polynomial coefficients. Therefore they may have similar type of
solutions.

Thus we consider here the following linear ordinary differential equation with polyno-
mial coefficients $q_{k}(x)s$

(3.1) $L[y]$ $:=\sum_{k=0}^{n}\epsilon^{n-k}q_{k}(x)y^{(n-k)}=0$ $(’:=d/dx, q_{0}(x)\equiv 1,0<\epsilon\leq\epsilon_{0})$ .

The characteristic equation of (3.1) is given by

(3.2) $L(x, \lambda)$ $:=\sum_{k=0}^{n}q_{k}(x)\lambda^{n-k}=0$ ,

where the characteristic roots $\lambda_{j}(x)s$ are supposed to satisfy the condition $\lambda_{j}(x)\not\equiv\lambda_{k}(x)$

$(j\neq k)$ . The point $x_{0}$ is, by definition, a tuming point of (3.1) if $x_{0}$ satisfies $\lambda_{j}(x_{0})=\lambda_{k}(x_{0})$
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$(j\neq k)$ . We define $WKB$ solutions $\tilde{y}_{j}(x, \epsilon)s$ ($j=1,2,$ $\cdots$ , n) of (3.1) by

(3.3) $\tilde{y}_{j}(x, \epsilon)$ $:=\exp(\frac{1}{\epsilon}\int_{a}^{X}\lambda_{j}(t)dt+\int_{a}^{X}\lambda_{j}^{*}(t)dt)$ , $\lambda_{j}^{*}(x)$ $:=\sum_{k\neq j}\frac{\lambda_{j}^{\prime}(x)}{\lambda_{k}(x)-\lambda_{j}(x)}$ ,

where $a$ is a constant. The WKB solutions (3.3) are the truncated formal series solutions of
(3.1). How to get (3.3) is outlined in Nakano [10]. The formula (3.3) is originally led in
$\Phi eI\iota op\iota oK[2]$ . They are considered as generalization of the classical WKB solutions

(3.3) $\frac{1}{\sqrt[4]{Q(x)}}\exp(\pm\frac{1}{\epsilon}\int^{X}\sqrt{Q(x)}dx)$

for the one-dimensional Schr\"odinger equation $\epsilon^{2}y^{\prime\prime}=Q(x)y$ .

3.2. Let $D_{j}$ be a simply connected and unbounded region in the complex x-plane con-
taining no tuming points of (3.1). Fixing $j(=1,2, \cdots , n)$ , we introduce symbols

(3.4) $\xi_{j}(a, x):=\int_{a}^{X}\lambda_{j}(s)ds$ ,

(3.5) $\xi_{jk}(a, x)$ $:=\xi_{j}(a, x)-\xi_{k}(a, x)$ $(k=1,2, \cdots , n;k\neq j)$ .

Let $\gamma_{jk}(x)(k\neq j)$ be a curve joining $x$ and $\infty$ in $D_{j}$ . We call $\gamma_{jk}(x)a(j, k)$-canonical path
for (3.1) if the function $\Re\xi_{jk}(x, t)$ of $t$ decreases when $t$ varies from the fixed $x$ to $\infty$ along
$\gamma_{jk}(x)$ . A set of paths $\Gamma_{j}(x)$ $:=(\gamma_{j1}(x), \cdots , \gamma_{j,j-1}(x), \gamma_{j,j+1}(x), \cdots , \gamma_{jn}(x))$ is called aj-
canonical vectorpath for (3.1). If $D_{j}$ is a maximal region such that there exists a j-canonical
vector path $\Gamma_{j}(x)$ for each $x\in D_{j}$ , then $D_{j}$ is called aj-admissible region for (3.1). Then we
can show the following existence theorem of the solutions for (3.1).

LEMMA 3.1. Let $D_{j}$ ($j=1,2,$ $\cdots$ , n) be aj-admissible regionfor (3.1). Then (3.1)

has a true solution $y_{j}(x, \epsilon)$ with the asymptotic property:

(3.6) $y_{j}(x, \epsilon)=\tilde{y}_{j}(x, \epsilon)\{1+\epsilon\delta_{j}(x, \epsilon)\}$ ,

where $\tilde{y}_{j}(x, \epsilon)$ is the $WKB$ solution of (3.1) and $\delta_{j}(x, \epsilon)$ satisfies the condition

(3.7) $|\delta_{j}(x, \epsilon)|\leq v_{j}(x)$ $(0<\epsilon\leq\epsilon_{0})$ ,
$\lim_{D_{j}\ni x\rightarrow\infty}$

$v_{j}(x)=0$ .

Moreover, $D_{j}$ is the maximal existence region of the true solution $y_{j}(x, \epsilon)$ with the propeny
(3.6).

The proof is very similar to that of the result for the lower order differential equation
given in Nakano et al. [12] and it is omitted here.

When $D_{j}$ is the j-admissible region for (3.1), we call the intersection $\bigcap_{j=1}^{n}D_{j}$ a canon-
ical domain for (3.1). Then, from the above lemma and the definition of the canonical domain
for (3.1), we get the following
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LEMMA 3.2. Let $D$ be the canonical domain of (3.1). Then, in $D$ , there exist $n$ lin-
early independent true solutions $y_{j}(x, \epsilon)s$ ($j=1,2,$ $\cdots$ , n) of (3.1) such that

(3.8) $y_{j}(x, \epsilon)\sim\tilde{y}_{j}(x, \epsilon)\left\{\begin{array}{l}\epsilon\rightarrow 0,x\in D\\x\rightarrow\infty D,0<\epsilon\leq\epsilon_{0}\end{array}\right.$

The property (3.8) is called the double asymptotic property of solutions of (3.1) (Fedo-

ryuk [3]). We will construct a canonical domain for (2.2) in \S 5, and Lemma 3.2 plays an
important role in \S 6.

4. The outer and the inner WKB solutions.

4.1. Solutions of (2.1) are called outer solutions of (1.1), and WKB solution of (2.1)

are called outer $WKB$ solutions of (1.1), which are given below.

THEOREM 4.1. There existn outer $WKB$ solutions $\tilde{y}_{j}^{out}(x, \epsilon)s$ ($j=1,2,$ $\cdots$ , n) of
(1.1) :

(4.1) $\tilde{y}_{j}^{out}(x, \epsilon):=x^{-m\mu_{j}}\exp(\frac{a_{j}}{\epsilon^{h}}\frac{x^{m+1}}{m+1})$ $(\mu_{j}$
$;=\sum_{k\neq j}\frac{a_{j}}{a_{j}-a_{k}})$ .

PROOF. Putting

(4.2) $L[y];=\epsilon^{nh}y^{(n)}-\sum_{k=1}^{n}\epsilon^{(n-k)h}p_{k}\cdot x^{km}y^{(n-k)}=0$ ,

we get its characteristic equation

$L(x, \lambda);=\lambda^{n}-\sum_{k=1}^{n}p_{k}\cdot x^{km}\lambda^{n-k}=\prod_{j=1}^{n}(\lambda-a_{j}x^{m})=0$

with characteristic roots

$\lambda=\lambda_{j}(x):=a_{j}x^{m}$ $(j=1,2, \cdots n)$ ,

from which we get
$\lambda_{j}^{*}(x)=-\frac{m\mu_{j}}{x}$ .

By substituting them into (3.3), we can obtain (4.1). Q.E.D.

4.2. Solutions of the inner equation (2.2) are called inner solutions of (1.1), and WKB
solutions of (2.2) are called inner $WKB$ solutions of (1.1), which are given below.

THEOREM 4.2. There exist $n$ inner $WKB$ solutions $\tilde{y}_{j}^{in}(t, \epsilon)s$ ($j=1,2,$ $\cdots$ , n) of
(1.1) :

(4.3) $\tilde{y}_{j}^{in}(t, \epsilon)$ $:=(t^{m}-1)^{-\mu_{j}}\exp\{\frac{a_{j}}{\epsilon}(\frac{t^{m+1}}{m+1}-t)\}(t$ $;=x\epsilon^{-\iota/m},$
$\mu_{j}$ $;=\sum_{k\neq j}\frac{a_{j}}{a_{j}-a_{k}})$ .

The proof is very similar to that of Theorem 4.1 and is omitted.
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5. The canonical domains for (2.2).

5.1. In this subsection we give a brief sketch of the Fedoryuk’s theory about the canon-
ical domain for (3.1) to apply it to (2.2). Fedoryuk’s theory is explained in, say, Evgrafov-
Fedoryuk [1], Fedoryuk [3] and Wasow [20]. We use the notation introduced in \S 3.2 again:

(5.1) $\xi_{j}(a, x):=\int_{a}^{X}\lambda_{j}(s)ds$ ,

(5.2) $\xi_{jk}(a, x):=\xi_{j}(a, x)-\xi_{k}(a, x)=\int_{a}^{X}\{\lambda_{j}(s)-\lambda_{k}(s)\}ds$ $(j\neq k)$ ,

where $\lambda_{j}(t)s$ are the characteristic roots of (3.1) and $a$ is a constant. The curves in the x-plane
defined by the equations

(5.3) $\Re\xi_{jk}(x_{0}, x)=0$ , $\mathfrak{J}\xi_{jk}(x_{0}, x)=0$ $(\lambda_{j}(x_{0})=\lambda_{k}(x_{0}), j\neq k)$

are respectively called Stokes curves and anti-Stokes curves of (3.1), which emerge from the
tuming point $x_{0}.$ A Stokes domain is, by definition, a simply connected region in the x-plane
bounded by several Stokes curves without any Stokes curves in it.

Since (3.1) has polynomial coefficients, it is known that there are two types of Stokes
domains: one is a half-plane type and the other is a strip type. A Stokes domain of half-
plane type is mapped conformally by the mapping $\xi=\xi_{jk}(a, x)$ , which is defined by (5.2),
onto a right half plane $\Re\xi>C$ or a left half plane $\Re\xi<C$ ($C=$ const.) in the $\xi$ -plane
$(\Re\xi, 3\xi)$ . A Stokes domain of strip type is mapped conformally onto a ship $C_{1}<\Re\xi<C_{2}$

$(C_{1}, C_{2}=const.)$ in the $\xi$ -plane. In a Stokes domain of half-plane type there exists an anti-
Stokes curve along which $\Re\xi_{jk}\rightarrow+\infty(or-\infty)$ as $ x\rightarrow\infty$ if $\Re\xi_{jk}>0$ (or $\Re\xi_{jk}<0$)

in it. The function $\Re\xi_{jk}(x, t)$ is a decreasing function of $t$ when $t$ varies from a fixed $x$ to
$\infty$ along a $(j, k)$ -canonical path $\gamma_{jk}(x)$ in a j-admissible region $D_{j}$ due to the definition of a
$(j, k)$ -canonical path (\S 3.2).

If a simply connected x-region is mapped one-to-one conformally onto the whole $\xi-$

plane except for slits emerging from the images of the tuming points, then it is a canonical
domain for (3.1), because a canonical domain is the intersection of all j-admissible regions.
A canonical domain consists of two half-plane type Stokes domains with or without strip type
ones. In the following subsection we will construct canonical domains for (2.2).

5.2. In order to get a canonical domain for (2.2) we need the topology of Stokes curves
of (2.2). Since the characteristic roots of (2.2) are $a_{k}\cdot(t^{m}-1)$ with $a_{j}\neq a_{k}(j\neq k)$ , the
Stokes and the anti-Stokes curves of (2.2) can be derived from the integral

(5.4) $\xi=\xi(t_{0}, t)$ $;=\int_{t_{0}}^{t}(s^{m}-1)ds$ ,

where $t_{0}$ is a secondary tuming point of (1.1), i.e., a zero of $t^{m}-1$ . Both Stokes and anti-
Stokes curves are essentially the same as thoes for the third order differential equation studied
in Nakano [9] and we state here only the information of the Stokes curves of (2.2).

THEOREM 5.1. The Stokes curves of (2.2) have thefollowing properties.
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(a) Every Stokes curve emerges from a secondary tuming point and it tends either to

the point at infinity or to one of the other secondary tuming points. Two Stokes curves from a
secondary tuming point do not tend to the infinity in the same direction.

(b) Every Stokes curve emerging from a secondary tuming point does not cross any
Stokes curves emerging from any other secondary tuming points except secondary tuming
points.

(c) There exist no closed Stokes curves homotopic to a circle.

PROOF. The Stokes curves are determined by the equation $\Re\xi=0$ where $\xi$ is given
by (5.4). The integrand $\sqrt{(t^{m}-1)^{2}}$ of $\xi$ is a square root of a polynomial and we get the result
similar to the case of second order differential equations (Evgrafov-Fedoryuk [1]). Q.E.D.

THEOREM 5.2. The Stokes curves of (2.2) have thefollowing properties.
(a) Four Stokes curves of (2.2) emerge from a secondary tuming point $t_{0}$ in the four

directions ofarguments

(5.5) $\pm\frac{\pi}{4}-\frac{m-1}{2}\arg t_{0}$ , $\pm\frac{3\pi}{4}-\frac{m-1}{2}\arg t_{0}$ ,

and Stokes curves tend to the point at infinity in the $2m+2$ directions ofarguments

(5.6) $\pm\frac{\pi}{2(m+1)},$ $\pm\frac{3\pi}{2(m+1)},$ $\pm\frac{5\pi}{2(m+1)},$ $\cdot\cdot$ $\pm\frac{(2m+1)\pi}{2(m+1)}$ .

(b) The Stokes curve configuration is symmetric with respect to the real axis. There are
no Stokes curves connecting two secondary tuming points $t_{0}$ and t\’o if $\Re t0\neq\Re t_{0}^{\prime}$ .

For a secondary tuming point $t_{0}$ such as $t_{0}\neq\pm 1$ , there exists only one Stokes curve
connecting $t_{0}and\overline{t_{0}}$. For a secondary tuming point $t_{0}(\neq\pm 1)$ such as $\Re t_{0}\neq 0$ , there exists
only one Stokes curve connecting $t_{0}and\overline{t_{0}}$ not passing through the origin. Here, the notation
$\overline{t_{0}}$ means a complex conjugate of $t_{0}$ .

(c) Whenm $=4p(p\in N)$ , the imaginary axis isa Stokes curve.

PROOF. (a) By integrating (5.4), we get $\xi=(m/2)t_{0}^{m-1}\tau^{2}+O(\tau^{3})(\tau :=t-t_{0})$ for
small $\tau$ . Putting $\tau$

$:=re^{i\theta}$ and $\Re\xi=0$ , we obtain arguments $\theta$ of (5.5) near $t_{0}$ . For large $t$

we see $\xi=t^{m+1}/(m+1)+O(t)$ . Then putting $t$
$:=Re^{i\Theta}$ and $\Re\xi=0$ , we obtain arguments

$\Theta$ of (5.6) near the point at infinity.
(b) The equation

(5.7) $\overline{\int_{\alpha}^{\beta}(s^{m}-1)ds}=\int_{\overline{\alpha}}^{\overline{\beta}}(s^{m}-1)ds$ $(\forall\alpha, \forall\beta\in C)$

is valid and then holds the equality

$\Re\int_{\alpha}^{\beta}(s^{m}-1)ds=\Re\int_{\alpha}^{\overline{\beta}}(s^{m}-1)ds$ ,

which shows the desired symmetry of the Stokes curve configuration.
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Let $t_{0}$ and $t_{0}^{\prime}$ be secondary tuming points. Since $\tau^{m+1}=\tau$ for any secondary tuming
point $\tau$ , we get the integral

$\int_{t_{0}}^{t_{\acute{0}}}(s^{m}-1)ds=\frac{m}{m+1}(t_{0}-t_{0}^{\prime})$ ,

whose real part does not vanish if $\Re t_{0}\neq\Re t_{0}^{\prime}$ , and so there are no Stokes curves connecting
$t_{0}$ and $t_{0}^{\prime}$ if $\Re t_{0}\neq\Re t_{0}^{\prime}$ .

If $t_{0}$ is a secondary tuming point, then its complex conjugate $\overline{t_{0}}$ is also a secondary tuming
point, because the equation $t^{m}=1$ induces the equation $\overline{t}^{m}=1$ . Then, from the relation

$\Re\int_{t_{0}}^{\overline{t_{0}}}(s^{m}-1)ds=\frac{m}{m+1}\Re(t_{0}-\overline{t_{0}})=0$ ,

we see that there exists a Stokes curve connecting $t_{0}td\overline{t_{0}}$. There exists only one such Stokes
curve because there exist no closed Stokes curves homotopic to a circle from Theorem 5.1.

If the point $t_{0}$ is a secondary tuming point such that $0<\Re t_{0}<1$ , we get the following
inequality:

$(\Re\int_{t_{0}}^{0}(s^{m}-1)ds)\cdot(\Re\int_{t_{0}}^{1}(s^{m}-1)ds)=(\frac{m}{m+1})^{2}\Re t_{0}\cdot\Re(t_{0}-1)<0$ .

From this and the monotonicity of the integral $\Re\int_{t_{0}}^{t}(s^{m}-1)ds$ , we can see that there exists
only one $t^{*}\in R$ such that $0<t^{*}<1$ and $\Re\int_{t_{0}}^{t^{*}}(s^{m}-1)ds=0$ . Hence, the Stokes curve
above does not pass through the origin. Similarly, we get the result for the case: $-1<\Re t_{0}<$

$0$ .
(c) There are two secondary tuming $points\pm i$ for $m=4p(p\in N)$ . We can see that

the whole imaginary axis is a Stokes curve emerging $from\pm i$ by the direct computation of
the integral $\int_{\pm i}^{ia}(s^{m}-1)ds(a\in R)$ , which takes only the purely imaginary values. Q.E.D.

We must obtain a canonical domain containing the origin $t=0$ as its interior point
because we want to know an asymptotic property of solutions of (1.1) near $x=0$ (cf. \S 2.2).
Thus, by Theorem 5.2, we should suppose $m\neq 4p(p\in N)$ .

To get the accurate Stokes curve configuration by the analytic means is extremely diffi-
cult. We should use a computer program such as Uchiyama-Nakano [17].

5.3. We suppose that $m\neq 4p(p\in N)$ and we will construct a canonical domain for
(2.2) containing the origin as its interior point.

We first assume $m\geq 5$ . Let $t_{0}$ be a secondary tuming point situating nearest to $t=i$ and
$\Re t_{0}>0$ , and let $t_{1}$ be a secondary tuming point situating nearest to $t=i$ and $\Re t_{1}<0$ . There
exist two Stokes curves $l_{0}^{(1)},$ $l_{1}^{(1)}$ connecting $t_{0}$ and $\overline{t_{0}},$

$t_{1}$ and $\overline{t_{1}}$ respectively by Theorem 5.2
(Fig. 5-1). $L_{0}^{(1)},$ $L_{0}^{(2)}$ and $L_{1}$ are anti-Stokes curves and they do not cross each other, because
they are Stokes curves induced from the integral $ i\xi$ (cf. Theorem 5.1). Let $D_{0}$ be a Stokes
domain bounded by two Stokes curves $l_{0}^{(2)}$ and $l_{0}^{(3)}$ . Let $D_{1}$ be a Stokes domain bounded by
two Stokes curves $l_{1}^{(2)}$ and $l_{1}^{(3)}$ . Let $D_{2}$ be a Stokes domain bounded by six Stokes curves $l_{0}^{(1)}$ ,
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FIGURE. 5-1. The canonical region $D^{can}$ .

$l_{0}^{(2)},$
$\overline{l_{0}^{(2)}},$

$l_{1}^{(1)},$ $l_{1}^{(2)}and\overline{l_{1}^{(2)}}$ . Here, $l_{j}^{(*)}’ s(j=0,1)$ are Stokes curves emerging from $t_{j}$ with the
properties:

$\lim_{l_{0}^{(2)}\ni t\rightarrow\infty}\arg t=\lim_{l_{1}^{(2)}\ni t\rightarrow\infty}\arg t=\left\{\begin{array}{ll}\frac{m+2}{2(m+1)}\pi & (m=odd),\\\frac{\pi}{2} & (m=even),\end{array}\right.$

$\lim_{l_{0}^{(3)}\ni t\rightarrow\infty}\arg t=\left\{\begin{array}{ll}\frac{m}{2(m+1)}\pi & (m=odd),\\\frac{m-1}{2(m+1)}\pi & (m=even),\end{array}\right.$

$\lim_{l_{1}^{(3)}\ni t\rightarrow\infty}\arg t=\left\{\begin{array}{ll}\frac{m+4}{2(m+1)}\pi & (m=odd),\\\frac{m+3}{2(m+1)}\pi & (m=even),\end{array}\right.$
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$\lim_{\overline{\iota_{0}^{(2)}}\ni t\rightarrow\infty}\arg t=\lim_{\overline{l_{1}^{(2)}}\ni t\rightarrow\infty}\arg t=\left\{\begin{array}{ll}-\frac{m+2}{2(m+1)}\pi & (m=odd),\\-\frac{\pi}{2} & (m=even).\end{array}\right.$

Put
$\xi_{0}$ $:=\int_{t_{0}}^{t_{1}}(s^{m}-1)ds$ ,

then $\Re\xi_{0}>0$ because $\xi_{0}=(m/(m+1))(t_{0}-t_{1})$ and $\Re t_{0}>\Re t_{1}$ . Therefore the Stokes
domain $D_{2}$ is mapped by the mapping $\xi=\xi(t_{0}, t)$ , which is defined by (5.4), onto a strip
region $0<\Re\xi<\Re\xi_{0}$ on the $\xi$ -plane, and the Stokes domains $D_{0}$ and $D_{1}$ are mapped by
$\xi=\xi(t_{0}, t)$ onto the left half plane $\Re\xi<0$ and the right half plane $\Re\xi>\Re\xi_{0}$ , respectively.
$D_{0}$ and $D_{1}$ are Stokes domains of half-plane type, and $D_{2}$ is a Stokes domain of strip type.

If $m=3$ then $t_{0}=\overline{t_{0}}=1$ , and so $l_{0}^{(1)}$ does not exist. If $m=2$ , then $t_{0}=\overline{t_{0}}=1$ ,
$t_{1}=\overline{t_{1}}=-1$ and $l_{0}^{(1)},$ $l_{1}^{(1)}$ do not exist. If $m=1$ , we set $t_{0}=t_{1}=1$ . In these cases, $D_{2}$ is
empty, $D_{0}=\{(\Re t, \mathfrak{J}t):\mathfrak{J}t>|\Re t-1|\},$ $D_{1}=\{(\Re t, Jt):|\mathfrak{J}t|<1-\Re t\}$ and $l_{0}^{(2)}=l_{1}^{(2)}$ .

The set, shaded in Fig. 5-1,

(5.8) $D_{0}^{can}$ $:=D_{0}\cup l_{0}^{(2)}\cup D_{2}\cup l_{1}^{(2)}\cup D_{1}$

is a canonical domain which contains the origin as its interior point. The region $D_{0}^{can}$ is
mapped by $\xi=\xi(t_{0}, t)$ , defined by (5.4), onto the $\xi$ -plane with one slit $(m=1)$ or with two
slits $(m\geq 2)$ along upper half lines $\Re\xi=0$ and $\Re\xi=\Re\xi_{0}$ emerging from the images of

FIGURE. 5-2. The image ofD by (5.4). The same letters are used for images.
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$t_{0}$ and $t_{1}$ , respectively. (See Fig. 5-2. Notice that the same letters are used for the images for
convenience’s sake.)

There may exist several canonical domains. The set $D^{\prime}$ $:=D_{0}\cup l_{0}^{(3)}\cup D_{0}^{\prime}$ (Fig. 5-1), for
instance, is also a canonical domain. However, it is not suitable for our analysis, because it
does not contain the origin. Thus we adopt $D_{0}^{can}$ as our canonical domain.

We notice the angle relations (Fig. 5-1)

(5.9) $\lim_{l_{1}^{(3)}\ni t\rightarrow\infty}\arg t-\lim_{l_{0}^{(3)}\ni t\rightarrow\infty}\arg t=\lim_{l_{0}^{(2)}\ni r\rightarrow\infty}\arg t-\lim_{l_{0}^{(4)}\ni t\rightarrow\infty}\arg t=\frac{2\pi}{m+1}$ .

Then the angles of $D_{0}^{can}$ and $D^{\prime}$ near $ t=\infty$ are respectively $2\pi/(m+1)$ , which is the
maximum angle of the existence regions of true solutions near an irregular singular point
$ t=\infty$ (Hukuhara [5], Wasow [19]).

6. The existence theorems.

6.1. We can derive two existence theorems from Lemma 3.2 by interpretating it ap-
propriately as follows. First, we show the existence theorem with respect to the true inner
solutions of (1.1).

THEOREM 6.1. Suppose that $m\neq 4p(p\in N)$ and that $D_{0}^{can}$ is the canonical domain

of (2.2) given by (5.8). Then there exist the true inner solutions $y_{j}^{in}(t, \epsilon)s(j=1,2, \cdots n)$

of (1.1) with the double asymptotic property in $D_{0}^{can}$ :

(6.1) $y_{j}^{in}(t, \epsilon)\sim\tilde{y}_{j}^{in}(t, \epsilon)\left\{\begin{array}{ll}as \epsilon\rightarrow 0, & t\in D_{0}^{can}\\as t\rightarrow\infty in D_{0}^{can} & 0<\epsilon\leq\epsilon_{0},\end{array}\right.$

where $\tilde{y}_{j}^{in}(t, \epsilon)$ is the inner $WKB$ solution of (1.1).

PROOF. It is sufficient to show the existence of a $(j, k)$ -canonical path $\gamma_{jk}(t)$ emerging
from any $t\in D_{0}^{can}$ . We recall that $\gamma_{jk}(t)$ for a fixed $j$ in $D_{0}^{can}$ is an integral path of

$\xi_{jk}(t, \tau)$ $;=\int^{\tau}\{\lambda_{j}(s)-\lambda_{k}(s)\}ds$ .

Fist we consider the case where $a_{j}>a_{k}$ for any $k(\neq j)$ . Let $t^{*}$ and $\tau^{*}$ designate the images
of $t$ and $\tau$ by (5.4), respectively. The origin of the $\xi$ -plane is the image of $t_{0}$ . If we consider
$\tau^{*}$ on the $\xi$ -plane, the integral path $\gamma_{jk}(t)$ can be easily constructed as the inverse image of it
(Fig. 5-2). There exist three possibilities of moving of $\tau$ .

(i) Let $t$ belong to a subregion of $D_{0}^{can}$ which is mapped onto the half-plane $\Re\xi<0$

by (5.4), namely, we suppose that $t^{*}$ belongs to the image of $D_{0}$ . When $\tau^{*}$ starts from $t^{*}$ and
moves upward or downward along a curve $\Re\xi=const$ . passing through $t^{*}$ , then it can cross
an anti-Stokes curve, say, $L_{0}^{(1)}$ . Furthermore, $\tau^{*}$ can continue along this anti-Stokes curve to
the left such that $\Re\xi\rightarrow-\infty$ . The trace of $\tau$ constructs $\gamma_{jk}(t)$ .
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(ii) Let $t$ belong to $D_{1}\cup l_{1}^{(2)}\cup D_{2}$ such that $\mathfrak{J}\xi<0$ . When $\tau^{*}$ starts from $t^{*}$ and moves
to the left along a curve $J\xi=const$ . passing through $t^{*}$ , then $T^{*}Ct$ enter the image of $D_{0}$ .
Repeating the case (i), all the trace of $\tau$ constructs $\gamma_{jk}(t)$ .

(iii) Let $t$ belong to $D_{1}\cup l_{1}^{(2)}\cup D_{2}$ such that $\mathfrak{J}\xi\geq 0$ . If $\tau^{*}$ starts from $t^{*}td$ moves
downward along the curve $\Re\xi=const$ . passing through $t^{*}$ , then $T^{*}Ct$ enter the image of
$D_{1}\cup l_{1}^{(2)}\cup D_{2}$ such that $J\xi<0$ . Repeating the case (ii), all the trace of $\tau$ constructs $\gamma_{jk}(t)$ .

In the same way, we can obtain a $(j, k)$ -canonical path for the other case $a_{j}<a_{k}$ such
that $\Re\xi\rightarrow+\infty$ along it. Q.E.D.

6.2. Similarly, we can get the existence theorem of the true outer solutions of (1.1) by
applying Lemma 3.2 (cf. Fukuhara [4], Wasow [19]).

THEOREM 6.2. Let $D_{0}^{out}$ be a sector-like domain with an angle $2\pi/(m+1)$ in the
x-plane given by

(6.2) $D_{0}^{out}$ $:=\{x|\frac{m}{2(m+1)}\pi<\arg x<\frac{m+4}{2(m+1)}\pi,$ $K\epsilon^{l/m}\leq|x|\leq x_{0},$ $m=odd\}$

$or$

(6.2) $D_{0}^{out}$ $:=\{x|\frac{m-1}{2(m+1)}\pi<\arg x<\frac{m+3}{2(m+1)}\pi,$ $K\epsilon^{l/m}\leq|x|\leq x_{0},$ $m=even\}$ .

Then there exist the true outer solutions $y_{j}^{out}(x, \epsilon)s$ ($j=1,2,$ $\cdots$ , n) $0\beta(1.1)$ such that

(6.3) $y_{j}^{out}(x, \epsilon)\sim\tilde{y}_{j}^{out}(x, \epsilon)$ as $\epsilon\rightarrow 0$ , $x\in D_{0}^{out}$

where $\tilde{y}_{j}^{out}(x, \epsilon)$ is the outer $WKB$ solution of (1.1).

PROOF. The origin $x=0$ can be considered as the tuming point of the outer equation
because two characteristic roots coincide there and we get curves defined by the equations

(6.4) $\Re\xi_{jk}(0, x)=0$ and $\mathfrak{J}\xi_{jk}(0, x)=0$ ,

where

$\xi_{jk}(0, x):=\int_{0}^{X}\{\lambda_{j}(s)-\lambda_{k}(s)\}ds$ , $\lambda_{j}(s)=a_{j}s^{m}$ $(J=1,2\cdots n)$ .

These curves emerge from the origin $x=0$ and tend to the boundary $|x|=x_{0}$ , and their parts
are contained outside of the outer domain. Then we adopt only parts of curves (6.4) contained
in the outer domain as Stokes and anti-Stokes curves for the outer equation. They can be
considered respectively as the continuation from Stokes and anti-Stokes curves in the t-plane
as $ t\rightarrow\infty$ because $\arg\epsilon=0$ and $\arg(x^{m+1}/(m+1))=\arg\{\lim_{t\rightarrow\infty}(t^{m+1}/(m+1)-t)\}$ .
Thus, we can adopt, say for $m=$ odd, three lines with arguments of $m\pi/2(m+1),$ $(m+$

$2)\pi/2(m+1)$ , and $(m+4)\pi/2(m+1)$ as Stokes curves of the outer equation, two of them
are boundaries $D_{0}^{out}$ . The equation (3.1) and the outer equation (2.1) have the same form and
the domain $D_{0}^{out}$ can read a canonical domain $D$ in Lemma 3.2. Hence, we can apply Lemma
3.2 to (2.1). Q.E.D.
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We notice here that the boundary lines of the x-domain $D_{0}^{out}$ in Theorem 6.2 correspond
to those of the inner domain $D_{0}^{can}$ with the same arguments as, say in the case where $ t\rightarrow\infty$

for $m=odd,$ $\arg t=\arg x=m\pi/2(m+1)$ and $(m+4)\pi/2(m+1)$ (cf. (5.9)).

7. The matching matrix.

7.1. The outer domain $D_{0}^{out}$ and the inner domain $D_{0}^{can}$ overlap each other for small $\epsilon$

(cf. \S 2.2), and we could show the existence of the true outer and the true inner solutions in
the preceding section. Now, we can compute a matching matrix, i.e., alinear relation between
the outer and the inner solutions. By using $n$ independent outer solutions $y_{j}^{out}(x, \epsilon)s$ , we put

(7.1) $Y^{out}$ $:={}^{t}(y_{1}^{out}(x, \epsilon),$ $y_{2}^{out}(x, \epsilon),$ $\cdots$ $y_{n}^{out}(x, \epsilon))$ ,

which is called an outer vector solution of (1.1). Similarly, we get an inner vector solution of
(1.1)

(7.2) $Y^{in}$ $:={}^{t}(y_{1}^{in}(t, \epsilon),$ $y_{2}^{in}(t, \epsilon),$ $\cdots$ $y_{n}^{in}(t, \epsilon))$ $(t=x\epsilon^{-l/m})$ .
The matching matrix $M=(m_{ij})$ is, by definition, an n-by-n matrix such that

(7.3) $MY^{out}=Y^{in}$

7.2. By using the outer and the inner WKB solutions we can compute the matching
matrix as follows.

THEOREM 7.1. The asymptotic representation $M_{0}$ of $M$ is given by

(7.4) $M\sim M_{0}$ , $M_{0}$
$:=\epsilon^{ldiag(\mu_{1},\mu_{2},\cdots,\mu_{n})}$ , $\mu_{j}$

$;=\sum_{k\neq j}\frac{a_{j}}{a_{j}-a_{k}}$

$(\epsilon\rightarrow 0)$ .

PROOF. The matching relation (7.3) is asymptotically represented by

(7.5) $M\tilde{Y}^{out}\sim\tilde{Y}^{in}$
$(\epsilon\rightarrow 0)$ ,

where $\tilde{Y}^{out}$ (resp. $\tilde{Y}^{in}$ ) is an outer (resp. inner) vector WKB solution which is obtained by
substituting the outer WKB solutions $\tilde{y}_{j}^{out}’ s$ (resp. $\tilde{y}_{j}^{in}’ s$) for $y_{j}^{out}’ s$ of (7.1) (resp. $y_{j}^{in}’ s$ of
(7.2)) (cf. \S 4).

The elements of the matrix equation (7.5) are written as

(7.6) $\sum_{j=1}^{n}m_{jj^{\prime}}\tilde{y}_{j}^{out}\sim\tilde{y}_{j}^{in}$ ($\epsilon\rightarrow 0;j=1,2,$ $\cdots$ , n) ,

i.e.,

(7.6) $\sum_{j=1}^{n}m_{jj^{\prime}}\frac{\tilde{y}_{j^{\prime}}^{out}}{\tilde{y}_{j}^{in}}\sim 1$ $(\epsilon\rightarrow 0;j=1,2, \cdots n)$ .

Put

(7.7) $x$ $:=\eta\rho$ . $t$ $;=\eta\rho^{-1}$ $(|\eta|=1)$ , $\rho$

$:=\epsilon^{l/2m}$
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The point $x$ can belong to the outer domain $(K\rho^{2}\leq|x|\leq x_{0})$ for small $\rho$ and the point $t$ can
tend to $\infty$ in the inner domain $(|t|<\infty)$ as $\rho$ tends to $0$ . A new complex parameter $\eta$ will be
defined soon later. By substituting $ x=\eta\rho$ and $\epsilon=\rho^{2m/l}$ into the outer WKB solutions (4.1),
we get

(7.8) $\tilde{y}_{j}^{out}=(\eta\rho)^{-m\mu_{j}}\exp(\frac{a_{j}\eta^{m+1}}{m+1}\rho^{-m-1-2m/l})$

In the same way, from (7.7) and (4.3) we get

(7.9) $\tilde{y}_{j}^{in}\sim(\eta\rho^{-1})^{-m\mu_{j}}\exp(\frac{a_{j}\eta^{m+1}}{m+1}\rho^{-m-1-2m/l})$ $(\rho\rightarrow 0)$ .

From (7.8) and (7.9) we get for small $\rho$

(7.10) $\frac{\tilde{y}_{j}^{out}}{\tilde{y}_{j}^{in}}\sim\rho^{-2m\mu_{j}}$
$(=\epsilon^{-l\mu_{j}})$

and

(7.11) $\frac{\tilde{y}_{j^{\prime}}^{out}}{\tilde{y}_{j}^{in}}\sim\rho^{m(\mu_{j}-\mu_{j};)}\exp(\frac{a_{j^{\prime}}-a_{j}}{m+1}\eta^{m+1}\rho^{-m-1-2m/l})$ $(j\neq j^{\prime})$ .

If we choose a parameter $\eta$ such that $\Re\eta^{m+1}>0$ for $a_{j^{\prime}}-a_{j}>0$ and ifwe choose $\eta$ such that
$\Re\eta^{m+1}<0$ for $a_{j^{\prime}}-a_{j}<0$, then the magnitude of the exponential term in (7.11) tends to
$+\infty$ as $\rho\rightarrow 0$ . In fact we can choose a parameter $\eta$ with this property, because our canonical
domain contains routes on which $\eta$ satisfies the above conditions: Such routes are given by
two anti-Stokes curves defined by $\mathfrak{J}\xi=0$ contained in the canonical domain $D_{0}^{can}$ (cf. \S 5).

The anti-Stokes curves $L_{0}^{(1)}$ and $L_{0}^{(2)}$ in Fig. 5-1 emerge from the secondary tuming point to,

and hold the inequalities $\Re\xi>0$ on $L_{0}^{(2)}$ and $\Re\xi<0$ on $L_{0}^{(1)}$ . From (7.10), (7.11) and (7.6)
we get

(7.12) $m_{jj}\sim\epsilon^{l\mu_{j}}$ , $m_{jj^{\prime}}\sim 0(j\neq j^{\prime})$ $(\epsilon\rightarrow 0)$ ,

then follows the matching matnix (7.4). Q.E.D.

7.3. We remark finally that we have studied in Nakano [10] the differential equation

(1.1) $\epsilon^{nh}y^{(n)}=\sum_{k=1}^{n}\epsilon^{(n-k)h}p_{k}\cdot(x^{m}-\epsilon^{l}/x^{r})^{k}y^{(n-k)}$ ,

where $l,$ $m$ and $r$ are positive integers satisfying the inequality

(7.13) $h>\frac{m+1}{m+r}l$ ,

and we got the matching matrix $M_{r}$ for $(1.1)_{r}$ :
(7.14) $M_{r}$

$:=\epsilon^{lm/(m+r)diag(\mu_{1},\mu_{2},\cdots,\mu_{n})}$ ,

where $\mu_{j}’ s$ are the same as in (7.4). The matrix $M_{r}$ is a continuous function of $r(\neq-m)$ ,

and if $r=0$ in (7.14) it coincides with $M_{0}$ of (7.4), although the equation (1.5) is a special
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case of (7.13) for $r=0$ and the canonical domains are quite different from each other (cf.

Fig. 6 in Nakano [10]).
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